JP7166505B1 - 画像フィルタ生成システム、画像フィルタ生成装置、推論装置、推論方法及びプログラム - Google Patents
画像フィルタ生成システム、画像フィルタ生成装置、推論装置、推論方法及びプログラム Download PDFInfo
- Publication number
- JP7166505B1 JP7166505B1 JP2022547921A JP2022547921A JP7166505B1 JP 7166505 B1 JP7166505 B1 JP 7166505B1 JP 2022547921 A JP2022547921 A JP 2022547921A JP 2022547921 A JP2022547921 A JP 2022547921A JP 7166505 B1 JP7166505 B1 JP 7166505B1
- Authority
- JP
- Japan
- Prior art keywords
- data
- image
- article
- inference result
- ocr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/20—Combination of acquisition, preprocessing or recognition functions
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
(実施の形態1に係る画像フィルタ生成システム1について)
本開示の実施の形態1に係る画像フィルタ生成システム1は、例えば、工場で生産された製品、部品といった所謂ワークを撮像した画像データについてOCR(Optical Character Recognition/Reader)を行う前の画像処理に用いる画像フィルタを生成するシステムである。
図2に示すように、ビジョンセンサ100は、物品を撮像する撮像部材の一例としてのカメラ110を含む。また、ビジョンセンサ100は、複数種類の画像フィルタの組合せ及び各画像フィルタのパラメータを示すデータである画像フィルタ関連データを生成する画像フィルタ関連データ生成部120を含む。また、ビジョンセンサ100は、画像フィルタを生成する画像フィルタ生成部130、画像フィルタを出力する画像フィルタ出力部140、画像処理を行う画像処理部150、OCRを行うOCR部160を含む。また、ビジョンセンサ100は、物品画像データを出力する物品画像データ出力部170、学習用データを出力する学習用データ出力部180、推論結果データを取得する推論結果データ取得部190を含む。
学習装置200は、例えば、パーソナルコンピュータ、サーバコンピュータ、スーパーコンピュータといったコンピュータ装置である。学習装置200は、学習用データを取得する学習用データ取得部210、学習済モデルを生成する学習済モデル生成部220、学習済モデルを出力する学習済モデル出力部230を含む。学習済モデル生成部220は、後述する報酬を算出する報酬算出部221、後述する価値関数を更新する価値関数更新部222を含む。
推論装置300は、学習装置200と同様のコンピュータ装置である。推論装置300は、学習済モデルを取得する学習済モデル取得部310、物品画像データを取得する物品画像データ取得部320、推論結果データを生成する推論結果データ生成部330、推論結果データを出力する推論結果データ出力部340を含む。
記憶装置400は、例えば、LANで接続された通信ネットワーク上のHDD(Hard Disk Drive)、所謂NAS(Network Attached Storage)である。記憶装置400は、学習済モデルを記憶する学習済モデル記憶部410を含む。
図3に示すように、学習装置200は、制御プログラム59に従って処理を実行する制御部51を備える。制御部51は、CPU(Central Processing Unit)を備える。制御部51は、制御プログラム59に従って、図2に示す、学習済モデル生成部220、報酬算出部221、価値関数更新部222として機能する。
また、図3に示すように、推論装置300も学習装置200と同様に、制御部51、主記憶部52、外部記憶部53、操作部54、表示部55、送受信部56を備える。制御部51は、制御プログラム59に従って、図2に示す、推論結果データ生成部330として機能する。また、送受信部56は、図2に示す、学習済モデル取得部310、物品画像データ取得部320、推論結果データ出力部340として機能する。
また、図示は省略するが、ビジョンセンサ100は、制御部51、主記憶部52、外部記憶部53、操作部54、送受信部56を備える。制御部51は、制御プログラム59に従って、図2に示す、画像フィルタ関連データ生成部120、画像フィルタ生成部130、画像フィルタ出力部140、画像処理部150、OCR部160として機能する。また、送受信部56は、図2に示す、物品画像データ出力部170、学習用データ出力部180、推論結果データ取得部190として機能する。
図2に戻り、カメラ110は、物品の一例として、予め定めた設計値の許容範囲内のワーク、すなわち、良品のワークを撮像して物品画像データを生成する。ここで、カメラ110は、製造時に実際の製造ラインで搬送されるワークを撮像してもよく、実際の製造ラインと近似する製造ラインで搬送されるワークを撮像してもよく、製造時の環境の模擬環境でワークを撮像してもよい。なお、模擬環境でワークを撮像する場合、カメラ110は、例えば、製造時に想定される環境のゆらぎ、具体的には、朝・昼・夕といった時間帯、搬送されるワークの向き、回転角度を模倣してワークを複数回撮像することで、複数種類の物品画像データを生成してもよい。
画像処理部150は、画像フィルタ出力部140から取得した画像フィルタを用いて物品画像データの画像処理を行う。
OCR部160は、画像処理が行われた物品画像データに対してOCRを行うとともに、文字認識の信頼度を示す値である得点を出力する。
学習用データ出力部180は、学習用データを学習装置200に出力する。ここで、学習用データは、OCRを試行した物品画像データと、当該物品画像データの画像処理に用いた画像フィルタを特定可能な画像フィルタ関連データとを含む。さらに、学習用データは、当該画像フィルタ関連データに基づく画像フィルタで物品画像データの画像処理を行った後にOCRを試行して出力された得点を示すデータであるOCR得点データを含む。よって、学習用データは、過去の製造時のワークについての物品画像データと画像フィルタ関連データとOCR得点データとを含むデータである。
学習用データ取得部210は、ビジョンセンサ100から出力された学習用データを取得する。学習用データ取得部210は、例えば、学習用データとして、m種類の物品画像データIMG-1、IMG-2、…、IMG-mと、n種類の画像フィルタ関連データF/P-001、F/P-002、…F/P-00nと、m×n種類のOCR得点データIMG-1_F/P-001、IMG-1_F/P-002、…、IMG-1_F/P-00n、IMG-2_F/P-001、IMG-2_F/P-002、…、IMG-2_F/P-00n、…、IMG-m_F/P-001、IMG-m_F/P-002、…、IMG-m_F/P-00nとを含むデータを取得する。
学習済モデル出力部230は、生成した学習済モデル、すなわち、行動価値関数Q(st,at)を示すデータを記憶装置400に出力して記憶させる。
学習済モデル取得部310は、記憶装置400が記憶している学習済モデルを取得する。
物品画像データ取得部320は、ビジョンセンサ100から出力されたOCRを行う物品画像データを取得する。本実施の形態では、物品画像データ取得部320が取得するOCRを行う物品画像データは、ビジョンセンサ100においてOCRの運用を行う前に実際の製造ラインで予め撮像しておいたワークの物品画像データである。具体的には、OCRを行う物品画像データには、ワークに記載された文字がボケている物品画像データ、室内が明るい状態で撮像したワークの物品画像データ、室内が暗い状態で撮像したワークの物品画像データといった画像処理が必要な複数種類の物品画像データが含まれる。なお、画像処理が必要な物品画像データには、実際の製造ラインにおいて画像が撮像される確率を示すデータが含まれていてもよい。
なお、物品画像データ取得部320が取得したOCRを行う物品画像データには、実際の製造ラインにおいて画像が撮像される確率を示すデータが含まれていなくてもよい。この場合、推論結果データ生成部330は、取得した物品画像データが得られる確率が全て同一である前提で得点の期待値が最も高くなる画像フィルタ関連データF/P-001~F/P-005の組合せを特定してもよい。
次に、フローチャートを用いて学習装置200が学習済モデルを生成、出力する動作について説明する。学習装置200は、電源をオンにすると、図6に示す学習済モデル生成処理の実行を開始する。先ず、学習用データ取得部210は、ビジョンセンサ100から新たな学習用データを取得する(ステップS101)。例えば、学習用データ取得部210は、学習用データとして、図4に示すm種類の物品画像データIMG-1、IMG-2、…、IMG-mと、n種類の画像フィルタ関連データF/P-001、F/P-002、…F/P-00nと、m×n種類のOCR得点データIMG-1_F/P-001、IMG-1_F/P-002、…、IMG-1_F/P-00n、IMG-2_F/P-001、IMG-2_F/P-002、…、IMG-2_F/P-00n、…、IMG-m_F/P-001、IMG-m_F/P-002、…、IMG-m_F/P-00nとを含むデータを取得する。
次に、フローチャートを用いて推論装置300が推論結果データを生成、出力する動作について説明する。推論装置300は、電源をオンにすると、図7に示す推論結果データ生成処理の実行を開始する。先ず、学習済モデル取得部310は、記憶装置400が記憶している学習済モデルを取得する(ステップS201)。次に、物品画像データ取得部320は、ビジョンセンサ100から新たにOCRを行う物品画像データを取得する(ステップS202)。次に、推論結果データ生成部330は、学習済モデルに新たにOCRを行う物品画像データを入力して第1推論結果データと第2推論結果データとを生成する(ステップS203)。そして、推論結果データ出力部340は、生成された第1推論結果データと第2推論結果データとをビジョンセンサ100に出力し(ステップS204)、処理を終了する。
次に、フローチャートを用いてビジョンセンサ100が画像フィルタを生成、出力する動作について説明する。ビジョンセンサ100は、電源をオンにすると、図8に示す画像フィルタ生成処理の実行を開始する。先ず、物品画像データ出力部170は、OCRを行う物品画像データを推論装置300に出力する(ステップS301)。次に、推論結果データ取得部190は、推論装置300から出力された第1推論結果データと第2推論結果データとを取得する(ステップS302)。次に、画像フィルタ生成部130は、第1推論結果データに基づく第1画像フィルタと、第2推論結果データに基づく第2画像フィルタとを生成する(ステップS303)。そして、画像フィルタ出力部140は、第1画像フィルタと第2画像フィルタとを画像処理部150に出力し(ステップS304)、処理を終了する。
このようにすることで、本実施の形態に係る画像フィルタ生成システム1は、画像フィルタを人手作業で準備、採用するよりもOCRを行う物品画像データを得てから画像フィルタを用いた画像処理を行うまでの時間を短縮できる。
このようにすることで、本実施の形態に係る画像フィルタ生成システム1は、過去の製造時に実際に撮像されたワークの物品画像データを含む学習用データを用いた機械学習によって学習済モデルを生成しない画像フィルタ生成システムよりも実際の製造時のワークの物品画像データに対してOCRを行ったときの文字の誤認識を低減できる。
このようにすることで、本実施の形態に係る画像フィルタ生成システム1は、模擬環境で撮像されたワークの物品画像データを含む学習用データを用いた機械学習によって学習済モデルを生成しない画像フィルタ生成システムよりも実際の製造時のワークの物品画像データに対してOCRを行ったときの文字の誤認識を低減できる。
実施の形態1では、推論装置300は、複数種類の推論結果データを生成、出力しているが、推論装置300が複数種類の推論結果データを生成、出力しなくてもよい。実施の形態2に係る画像フィルタ生成システム1では、推論装置300は、1種類の推論結果データのみを生成、出力する。以下、図2、図5、図10、図11を参照して、実施の形態2に係る画像フィルタ生成システム1について、詳細に説明する。なお、実施の形態2では、実施の形態1と異なる構成について説明し、実施の形態1と同一の構成については冗長であるため説明を省略する。
図2に戻り、本実施の形態2に係る物品画像データ取得部320は、ビジョンセンサ100から出力されたOCRを行う物品画像データを取得する。本実施の形態では、物品画像データ取得部320が取得するOCRを行う物品画像データは、ビジョンセンサ100においてOCRの運用を行っているときに実際の製造ラインで撮像されたワークの物品画像データである。
実施の形態2に係る推論結果データ生成部330は、学習済モデルにOCRを行う物品画像データを入力して推論結果データを生成する。
実施の形態2に係る推論結果データ出力部340は、生成された推論結果データをビジョンセンサ100に出力する。
次に、フローチャートを用いて推論装置300が推論結果データを生成、出力する動作について説明する。図10に示すように、ステップS201、202の処理が実行された後、推論結果データ生成部330は、学習済モデルに新たにOCRを行う物品画像データを入力して推論結果データを生成する(ステップS213)。そして、推論結果データ出力部340は、生成された推論結果データを出力し(ステップS214)、処理を終了する。
次に、フローチャートを用いてビジョンセンサ100が画像フィルタを生成、出力する動作について説明する。図11に示すように、ステップS301の処理が実行された後、推論結果データ取得部190は、推論装置300から出力された推論結果データを取得する(ステップS312)。次に、画像フィルタ生成部130は、取得した推論結果データに基づく画像フィルタを生成する(ステップS313)。そして、画像フィルタ出力部140は、生成された画像フィルタを画像処理部150に出力し(ステップS314)、処理を終了する。
その他、本実施の形態に係る画像フィルタ生成システム1は、実施の形態1に係る画像フィルタ生成システム1と同様の作用効果を奏する。
実施の形態1、2では、ビジョンセンサ100、学習装置200、推論装置300及び記憶装置400を別個の装置としたが、これに限定されず、一体の装置であってもよい。例えば、画像フィルタ生成装置であるビジョンセンサ100が他の装置200、300、400の機能を備えていてもよい。実施の形態3に係るビジョンセンサ100は、学習装置200、推論装置300及び記憶装置400の機能を全て備える。以下、図12を参照して、実施の形態3に係るビジョンセンサ100について、詳細に説明する。なお、実施の形態3では、実施の形態1、2と異なる構成について説明し、実施の形態1、2と同一の構成については冗長であるため説明を省略する。
図12に示すように、ビジョンセンサ100は、物品画像データ出力部170、学習用データ出力部180、推論結果データ取得部190が省略されている。また、ビジョンセンサ100は、学習用データ取得部210、学習済モデル生成部220、報酬算出部221、価値関数更新部222、物品画像データ取得部320、推論結果データ生成部330、学習済モデル記憶部410を更に含む。なお、学習済モデル取得部310は、学習済モデル記憶部410が記憶している学習済モデルを取得し、物品画像データ取得部320は、カメラ110からOCRを行う物品画像データを取得する。
このようにすることで、本実施の形態に係るビジョンセンサ100は、実施の形態1、2に係る画像フィルタ生成システム1と同様の作用効果を奏する。
なお、上記の実施の形態3では、実施の形態1、2に係る各装置100、200、300、400を一体の装置としたが、一体の装置とする組み合わせについてはこれに限定されない。例えば、実施の形態1、2に係る学習装置200と記憶装置400とを一体の装置とし、残りの装置100、300は別体の装置であってもよく、実施の形態1、2に係る推論装置300と記憶装置400とを一体の装置とし、残りの装置100、200は別体の装置であってもよい。また、例えば、実施の形態1、2に係る学習装置200と推論装置300と記憶装置400とを一体の装置とし、残りのビジョンセンサ100のみが別体の装置であってもよい。
また、学習済モデル生成部220が教師なし学習で学習済モデルを生成する場合、学習用データには、例えば、ワークに記載された文字がボケている物品画像データ、室内が明るい状態で撮像したワークの物品画像データ、室内が暗い状態で撮像したワークの物品画像データといった画像処理が必要な各物品画像データの分類が可能な分類データが含まれている必要がある。また、学習用データに含まれる画像フィルタ関連データは、例えば、各分類の物品画像データの画像処理に適した画像フィルタの画像フィルタ関連データである必要があり、このような画像フィルタ関連データを予め選択しておく必要がある。
また、学習済モデル生成部220が半教師なし学習で学習済モデルを生成する場合、学習用データには、例えば、上述した分類データと正解データとが含まれている必要がある。
Claims (7)
- 撮像部材が撮像した物品の画像データである物品画像データに対してOCRを行う前の画像処理に用いる画像フィルタを生成する画像フィルタ生成システムであって、
前記画像フィルタを生成する画像フィルタ生成装置と、
予め取得した前記物品画像データと前記物品画像データの画像処理に用いた前記画像フィルタとの関係性を学習する学習装置と、
前記OCRを行う前記物品画像データの画像処理に適した前記画像フィルタを推論する推論装置と、
を備え、
前記学習装置は、
前記物品画像データ、前記物品画像データの画像処理に用いた前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである画像フィルタ関連データ、ならびに、前記画像フィルタ関連データに基づく前記画像フィルタを用いて前記物品画像データの画像処理を行ったときの前記OCRで出力された文字認識の得点を示すデータであるOCR得点データ、を含む学習用データを取得する学習用データ取得部と、
前記学習用データを用いた機械学習によって前記物品画像データと前記画像フィルタ関連データと前記OCR得点データとの関係性を示す学習済モデルを生成する学習済モデル生成部と、
前記学習済モデルを出力する学習済モデル出力部と、
を含み、
前記推論装置は、
前記OCRを行う前記物品画像データを取得する物品画像データ取得部と、
前記学習済モデルに前記OCRを行う前記物品画像データを入力して、前記OCRを行う前記物品画像データの画像処理に適した前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである推論結果データとして、第1推論結果データ、ならびに、前記第1推論結果データとは異なる第2推論結果データ、を生成する推論結果データ生成部と、
前記第1推論結果データと前記第2推論結果データとを出力する推論結果データ出力部と、
を含み、
前記画像フィルタ生成装置は、
前記第1推論結果データに基づく前記画像フィルタである第1画像フィルタと前記第2推論結果データに基づく前記画像フィルタである第2画像フィルタとを生成する画像フィルタ生成部と、
前記第1画像フィルタと前記第2画像フィルタとを出力する画像フィルタ出力部と、
を含む、
画像フィルタ生成システム。 - 前記学習用データに含まれる前記物品画像データは、過去の製造時に実際に撮像されたワークの前記物品画像データである、
請求項1に記載の画像フィルタ生成システム。 - 前記学習用データに含まれる前記物品画像データは、実際の環境を想定した模擬環境で撮像されたワークの前記物品画像データである。
請求項1に記載の画像フィルタ生成システム。 - 撮像部材が撮像した物品の画像データである物品画像データに対してOCRを行う前の画像処理に用いる画像フィルタを生成する画像フィルタ生成装置であって、
予め取得した前記物品画像データ、前記物品画像データの画像処理に用いた前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである画像フィルタ関連データ、ならびに、前記画像フィルタ関連データに基づく前記画像フィルタを用いて前記物品画像データの画像処理を行ったときの前記OCRで出力された文字認識の得点を示すデータであるOCR得点データ、を含む学習用データを取得する学習用データ取得部と、
前記学習用データを用いた機械学習によって前記物品画像データと前記画像フィルタ関連データと前記OCR得点データとの関係性を示す学習済モデルを生成する学習済モデル生成部と、
前記OCRを行う前記物品画像データを取得する物品画像データ取得部と、
前記学習済モデルに前記OCRを行う前記物品画像データを入力して、前記OCRを行う前記物品画像データの画像処理に適した前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである推論結果データとして、第1推論結果データ、ならびに、前記第1推論結果データとは異なる第2推論結果データ、を生成する推論結果データ生成部と、
前記第1推論結果データに基づく前記画像フィルタである第1画像フィルタと前記第2推論結果データに基づく前記画像フィルタである第2画像フィルタとを生成する画像フィルタ生成部と、
前記第1画像フィルタと前記第2画像フィルタとを出力する画像フィルタ出力部と、
を備える画像フィルタ生成装置。 - 撮像部材が撮像した物品の画像データである物品画像データに対してOCRを行う前の画像処理に用いる画像フィルタを推論する推論装置であって、
前記OCRを行う前記物品画像データを取得する物品画像データ取得部と、
予め取得した前記物品画像データ、前記物品画像データの画像処理に用いた前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである画像フィルタ関連データ、ならびに、前記画像フィルタ関連データに基づく前記画像フィルタを用いて前記物品画像データの画像処理を行ったときの前記OCRで出力された文字認識の得点を示すデータであるOCR得点データ、を含む学習用データを用いた機械学習によって生成された学習済モデルに前記OCRを行う前記物品画像データを入力して、前記OCRを行う前記物品画像データの画像処理に適した前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである推論結果データとして、第1推論結果データ、ならびに、前記第1推論結果データとは異なる第2推論結果データ、を生成する推論結果データ生成部と、
前記第1推論結果データと前記第2推論結果データとを出力する推論結果データ出力部と、
を備える推論装置。 - 撮像部材が撮像した物品の画像データである物品画像データに対してOCRを行う前の画像処理に用いる画像フィルタを推論する推論方法であって、
コンピュータが、前記OCRを行う前記物品画像データを取得する物品画像データ取得ステップと、
前記コンピュータが、予め取得した前記物品画像データ、前記物品画像データの画像処理に用いた前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである画像フィルタ関連データ、ならびに、前記画像フィルタ関連データに基づく前記画像フィルタを用いて前記物品画像データの画像処理を行ったときの前記OCRで出力された文字認識の得点を示すデータであるOCR得点データ、を含む学習用データを用いた機械学習によって生成された学習済モデルに前記OCRを行う前記物品画像データを入力して、前記OCRを行う前記物品画像データの画像処理に適した前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである推論結果データとして、第1推論結果データ、ならびに、前記第1推論結果データとは異なる第2推論結果データ、を生成する推論結果データ生成ステップと、
前記第1推論結果データと前記第2推論結果データとを出力する推論結果データ出力ステップと、
を含む推論方法。 - コンピュータを、
OCRを行うために撮像部材が撮像した物品の画像データである物品画像データを取得する物品画像データ取得部、
予め取得した前記物品画像データ、前記物品画像データに対して前記OCRを行う前の画像処理に用いた画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである画像フィルタ関連データ、ならびに、前記画像フィルタ関連データに基づく前記画像フィルタを用いて前記物品画像データの画像処理を行ったときの前記OCRで出力された文字認識の得点を示すデータであるOCR得点データ、を含む学習用データを用いた機械学習によって生成された学習済モデルに前記OCRを行う前記物品画像データを入力して、前記OCRを行う前記物品画像データの画像処理に適した前記画像フィルタの組合せ及び前記画像フィルタ毎のパラメータの値を示すデータである推論結果データとして、第1推論結果データ、ならびに、前記第1推論結果データとは異なる第2推論結果データ、を生成する推論結果データ生成部、
前記第1推論結果データと前記第2推論結果データとを出力する推論結果データ出力部、
として機能させるプログラム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/006000 WO2023157092A1 (ja) | 2022-02-15 | 2022-02-15 | 画像フィルタ生成システム、画像フィルタ生成装置、推論装置、推論方法及びプログラム |
Publications (3)
Publication Number | Publication Date |
---|---|
JP7166505B1 true JP7166505B1 (ja) | 2022-11-07 |
JPWO2023157092A1 JPWO2023157092A1 (ja) | 2023-08-24 |
JPWO2023157092A5 JPWO2023157092A5 (ja) | 2024-01-23 |
Family
ID=83931107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022547921A Active JP7166505B1 (ja) | 2022-02-15 | 2022-02-15 | 画像フィルタ生成システム、画像フィルタ生成装置、推論装置、推論方法及びプログラム |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7166505B1 (ja) |
CN (1) | CN118661210A (ja) |
WO (1) | WO2023157092A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009282940A (ja) * | 2008-05-26 | 2009-12-03 | Toshiba Corp | パターン認識パラメータ学習装置、パターン認識装置、パターン認識パラメータ学習方法 |
JP2020144735A (ja) * | 2019-03-08 | 2020-09-10 | 富士ゼロックス株式会社 | 画像処理装置及びプログラム |
JP2020154600A (ja) * | 2019-03-19 | 2020-09-24 | 富士ゼロックス株式会社 | 画像処理装置及びプログラム |
-
2022
- 2022-02-15 CN CN202280086732.XA patent/CN118661210A/zh active Pending
- 2022-02-15 WO PCT/JP2022/006000 patent/WO2023157092A1/ja active Application Filing
- 2022-02-15 JP JP2022547921A patent/JP7166505B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009282940A (ja) * | 2008-05-26 | 2009-12-03 | Toshiba Corp | パターン認識パラメータ学習装置、パターン認識装置、パターン認識パラメータ学習方法 |
JP2020144735A (ja) * | 2019-03-08 | 2020-09-10 | 富士ゼロックス株式会社 | 画像処理装置及びプログラム |
JP2020154600A (ja) * | 2019-03-19 | 2020-09-24 | 富士ゼロックス株式会社 | 画像処理装置及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
WO2023157092A1 (ja) | 2023-08-24 |
JPWO2023157092A1 (ja) | 2023-08-24 |
CN118661210A (zh) | 2024-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6504590B2 (ja) | 画像のセマンティックセグメンテーションのためのシステム及びコンピューター実施方法、並びに非一時的コンピューター可読媒体 | |
US11593586B2 (en) | Object recognition with reduced neural network weight precision | |
US20180341872A1 (en) | Methods and systems for cnn network adaption and object online tracking | |
CN111492382B (zh) | 训练第一神经网络模型和第二神经网络模型 | |
US11163978B2 (en) | Method and device for face image processing, storage medium, and electronic device | |
CN109997168B (zh) | 用于生成输出图像的方法和系统 | |
CN108230346B (zh) | 用于分割图像语义特征的方法和装置、电子设备 | |
US11423297B2 (en) | Processing apparatus, processing method, and nonvolatile recording medium | |
CN111950638A (zh) | 基于模型蒸馏的图像分类方法、装置和电子设备 | |
JP2021511579A (ja) | 画像処理システム及び画像処理方法 | |
US10977549B2 (en) | Object animation using generative neural networks | |
US9165213B2 (en) | Information processing apparatus, information processing method, and program | |
CN111783997B (zh) | 一种数据处理方法、装置及设备 | |
US20220319157A1 (en) | Temporal augmentation for training video reasoning system | |
CN108229650B (zh) | 卷积处理方法、装置及电子设备 | |
CN113836804A (zh) | 基于卷积神经网络的动物识别模型建立方法及其应用系统 | |
Henniges et al. | Efficient occlusive components analysis. | |
JP7166505B1 (ja) | 画像フィルタ生成システム、画像フィルタ生成装置、推論装置、推論方法及びプログラム | |
JP7166506B1 (ja) | 画像フィルタ生成システム、画像フィルタ生成装置、学習装置、学習方法及びプログラム | |
CN112101204B (zh) | 生成式对抗网络的训练方法、图像处理方法、装置和设备 | |
CN117315758A (zh) | 面部表情的检测方法、装置、电子设备及存储介质 | |
CN116805162A (zh) | 基于自监督学习的Transformer模型训练方法 | |
CN115423087A (zh) | 脉冲神经网络的剪枝方法、装置及电子设备 | |
US20230027309A1 (en) | System and method for image de-identification to humans while remaining recognizable by machines | |
CN111815658B (zh) | 一种图像识别方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220805 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220805 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7166505 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |