JP7164882B2 - Method for producing water or aqueous solution enriched with hydrogen isotope, method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration - Google Patents

Method for producing water or aqueous solution enriched with hydrogen isotope, method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration Download PDF

Info

Publication number
JP7164882B2
JP7164882B2 JP2019513716A JP2019513716A JP7164882B2 JP 7164882 B2 JP7164882 B2 JP 7164882B2 JP 2019513716 A JP2019513716 A JP 2019513716A JP 2019513716 A JP2019513716 A JP 2019513716A JP 7164882 B2 JP7164882 B2 JP 7164882B2
Authority
JP
Japan
Prior art keywords
water
hydrogen
fuel cell
gas
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019513716A
Other languages
Japanese (ja)
Other versions
JPWO2018194182A1 (en
Inventor
永佳 松島
亮太 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Publication of JPWO2018194182A1 publication Critical patent/JPWO2018194182A1/en
Application granted granted Critical
Publication of JP7164882B2 publication Critical patent/JP7164882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/38Separation by electrochemical methods
    • B01D59/40Separation by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水素同位体が濃縮された水または水溶液の製造方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置に関する。より詳しくは、水素同位体含有水を含有する水または水溶液から、水素同位体が濃縮された水または水溶液を製造する方法、水素同位体濃度が低減された水素ガスの製造方法及び製造装置に関する。水素同位体が濃縮された水または水溶液の製造方法及び装置では、水素同位体濃度が低減された水素ガスを併産することも可能である。
関連出願の相互参照
本出願は、2017年4月21日出願の日本特願2017-084386号の優先権を主張し、その全記載は、ここに特に開示として援用される。
TECHNICAL FIELD The present invention relates to a method for producing water or an aqueous solution enriched with hydrogen isotopes, and a method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration. More specifically, the present invention relates to a method for producing hydrogen isotope-enriched water or an aqueous solution from water or an aqueous solution containing hydrogen isotope-containing water, and a method and apparatus for producing hydrogen gas with a reduced hydrogen isotope concentration. The method and apparatus for producing water or an aqueous solution enriched with hydrogen isotopes can co-produce hydrogen gas with reduced hydrogen isotope concentration.
Cross-Reference to Related Applications This application claims priority from Japanese Patent Application No. 2017-084386 filed on April 21, 2017, the entire description of which is specifically incorporated herein by reference.

重水素やトリチウムの水素同位体は、核融合炉燃料の原料や医療材料として重要である。さらに福島原発事故に関わる汚染水は、トリチウムの効果的な分離方法が見つからず、今でも汚染水処理の最大の懸案事項となっている。 Hydrogen isotopes of deuterium and tritium are important as raw materials for nuclear fusion reactor fuel and medical materials. Furthermore, the contaminated water related to the Fukushima nuclear power plant accident has not found an effective separation method for tritium, which is still the biggest concern for contaminated water treatment.

水素同位体である重水素やトリチウムの分離濃縮技術としては、沸点の違いを利用した蒸留法、軽水素原子と交換置換による水-硫化水素交換法(GS法)、水電解法と白金触媒を使った化学交換法を組み合わせた(CECE法)などある(非特許文献1(東電提供資料)参照)。 Technologies for separating and concentrating hydrogen isotopes such as deuterium and tritium include a distillation method that utilizes differences in boiling points, a water-hydrogen sulfide exchange method (GS method) that uses light hydrogen atoms and exchange substitution, a water electrolysis method, and platinum catalysts. (CECE method) in which the chemical exchange method is combined (see Non-Patent Document 1 (provided by TEPCO)).

非特許文献1:http://www.tepco.co.jp/nu/fukushima-np/roadmap/images/c130426_06-j Non-Patent Document 1: http://www.tepco.co.jp/nu/fukushima-np/roadmap/images/c130426_06-j

中でも、水電解法は1933年にG.N.ルイスらが古い電解槽の水を連続的に電解して少量の重水を得たのに始まり、現在でも工業的にこの方法が採用されている。しかし福島原発では毎日大量の汚染水を処理する必要があり、その電力消費量は膨大となり、大規模生産には適していない。 Among them, the water electrolysis method was started in 1933 by G.N. Lewis et al. by continuously electrolyzing water in an old electrolytic cell to obtain a small amount of heavy water, and this method is still used industrially today. However, at the Fukushima nuclear power plant, it is necessary to treat a large amount of contaminated water every day, which consumes a huge amount of electricity, making it unsuitable for large-scale production.

そこで電力消費の少ない革新的な電解法を提案することが、大規模な水素同位体を必要とする原子力産業や、さらには福島汚染水の問題解決に求められている。本発明は、水素同位体を含有する水の新たな濃縮技術を提供することを目的とする。 Therefore, proposing an innovative electrolysis method with low power consumption is required for the nuclear industry, which requires large-scale hydrogen isotopes, and for solving the problem of contaminated water in Fukushima. An object of the present invention is to provide a new technique for concentrating water containing hydrogen isotopes.

本発明は、以下の通りである。
[1]
少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体を含有する水または水溶液(以下、水溶液AS)から、前記水溶液ASよりも水素同位体含有率が高い水または水溶液(AS)を製造する方法であって、
(we1)水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得ること、
(fc1)前記電気分解で得られる水素ガスを燃料電池1(FC1)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること、
(fc2)回収した水素ガス(HG)を燃料電池2(FC2)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること、
(fc3)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収すること(nは、3以上の整数)、
(we2)前記水電気分解装置から、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収すること、を含む、前記方法。
[2]
FC1~FCnの正極側には、酸素ガスまたは酸素含有ガスが供給され、前記回収した水素同位体含有水WからWの少なくとも一部は前記水電気分解装置に供給する、[1]に記載の方法。
[3]
前記回収した水素同位体含有水WからWの少なくとも一部を前記水電気分解装置に水溶液ASと共に供給する、[1]または[2]に記載の方法。
[4]
水素同位体含有水WからWの燃料電池からの回収は、燃料電池の正極側から排出される酸素ガスまたは酸素含有ガスに同伴させることで行う、[1]~[3]のいずれかに記載の方法。
[5]
前記水電気分解で得られる酸素ガスの少なくとも一部を、少なくとも一部の燃料電池の正極側に供給することを含む、[1]~[4]のいずれかに記載の方法。
[6]
前記水電気分解で得られる酸素ガスの少なくとも一部は、FCnの正極側に供給され、FCnの正極側から排出される酸素ガスまたは酸素含有ガスは燃料電池n-1(FCn-1)の正極側に供給され、順次、FC1まで、排出された酸素ガスまたは酸素含有ガスの次の燃料電池への供給が繰り返される[5]に記載の方法。
[7]
前記工程(fc2)のFC2又は工程(fc3)のFCnから前記水素同位体含有率が水素ガスHGより低い水素ガスHGまたはHGを回収して水素ガスを併産することを含む(ただし、nは2以上の整数)、[1]~[6]のいずれかに記載の方法。
[8]
少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行うことを含む、水素同位体濃度が低減された水素ガスを製造する方法であって、
(we1)水電気分解装置において水素同位体を含有する水または水溶液を水電気分解して水素ガス(HG)及び酸素ガスを得ること、
(fc1h)前記電気分解で得られる水素ガスHGを燃料電池1(FC1)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
(fc2h)回収した水素ガスHGを燃料電池2(FC2)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
(fc3h)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)を回収して(nは、3以上の整数)、
水素ガスHGよりも水素同位体濃度が低い水素ガスHGまたはHGを得ること、
を含む、前記方法。
[9]
前記工程(fc1)においてFC1の負極側に供給される水素ガスの量と、前記工程(fc2)においてFC2又は前記工程(fc3)においてFCnから回収される水素ガスの量の比は、100:0~50の範囲である、[1]~[8]のいずれかに記載の方法。
[10]
前記水電気分解装置における水電気分解用の電力の少なくとも一部は、前記燃料電池において発電された電力により賄われる、[1]~[9]のいずれかに記載の方法。
[11]
少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、[1]~[10]のいずれかに記載の方法。
[12]
前記水溶液ASが、純水、アルカリ水溶液又は海水である、[1]~[11]のいずれかに記載の方法。
[13]
少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の正極室間に酸素ガスまたは酸素含有ガス流通手段を有し、かつ、
上記燃料電池より生成した水を上記水電気分解装置へ回収する流通手段を有する、
水素同位体が濃縮された水または水溶液の製造装置。
[14]
同位体濃度が低減された水素ガスを併産するための、[13]に記載の製造装置。
[15]
少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有る、
水電気分解装置で得られた水素ガスより水素同位体が低減された水素ガスの製造装置。
[16]
少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、[13]~[15]のいずれかに記載の製造装置。
[17]
前記燃料電池は、固体高分子形燃料電池である、[13]~[16]のいずれかに記載の製造装置。
[18]
前記水電気分解装置は、隣接する燃料電池と連結した酸素ガスまたは酸素含有ガス流通手段を有する、[13]~[17]のいずれかに記載の製造装置。
The present invention is as follows.
[1]
A fuel cell connected in series with at least one water electrolyser and at least two hydrogen gas streams (FCn, where n is an integer greater than or equal to 2 and firstly connected to the water electrolyser) is FC1.), and each fuel cell generates power independently, and water electrolysis is performed in a water electrolysis device to obtain water or an aqueous solution containing hydrogen isotopes (hereinafter, aqueous solution AS 0 ) A method for producing a water or aqueous solution (AS e ) having a higher hydrogen isotope content than the aqueous solution AS 0 from
(we1) water electrolysis of the aqueous solution AS 0 in a water electrolyzer to obtain hydrogen gas and oxygen gas;
(fc1) The hydrogen gas obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), part of the hydrogen gas (HG 0 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) and recovering the hydrogen isotope-containing water (W 1 ) produced on the positive electrode side;
(fc2) The recovered hydrogen gas (HG 1 ) is supplied to the negative electrode side of the fuel cell 2 (FC2), part of the hydrogen gas (HG 1 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 2 ) and recovering hydrogen isotope-containing water (W 2 ) produced on the positive electrode side;
(fc3) If fuel cells are connected next to fuel cell 2 (FC2), this operation is sequentially repeated up to fuel cell n (FCn), and the remaining hydrogen gas (HG n ) and recovering hydrogen isotope-containing water (W n ) generated on the positive electrode side (n is an integer of 3 or more);
(we2) recovering water or an aqueous solution AS e having a higher hydrogen isotope content than the aqueous solution AS 0 after electrolysis from the water electrolyzer.
[2]
Oxygen gas or an oxygen-containing gas is supplied to the positive electrode sides of FC1 to FCn , and at least part of the recovered hydrogen isotope-containing water W1 to Wn is supplied to the water electrolysis device, [ 1 ] described method.
[3]
The method according to [1] or [2], wherein at least part of the recovered hydrogen isotope - containing water W1 to Wn is supplied to the water electrolyzer together with the aqueous solution AS0 .
[4]
Any one of [1] to [3], wherein the recovery of the hydrogen isotope - containing water W1 to Wn from the fuel cell is carried out by entraining it with the oxygen gas or oxygen-containing gas discharged from the positive electrode side of the fuel cell. The method described in .
[5]
The method according to any one of [1] to [4], comprising supplying at least part of the oxygen gas obtained by the water electrolysis to the positive electrode side of at least part of the fuel cells.
[6]
At least part of the oxygen gas obtained by the water electrolysis is supplied to the positive electrode side of FCn, and the oxygen gas or oxygen-containing gas discharged from the positive electrode side of FCn is the positive electrode of fuel cell n-1 (FCn-1). The method according to [5], in which the supply of discharged oxygen gas or oxygen-containing gas to the next fuel cell is repeated, in sequence, up to FC1.
[7]
Co-producing hydrogen gas by recovering hydrogen gas HG2 or HGn having a lower hydrogen isotope content than hydrogen gas HG0 from FC2 in step (fc2) or FCn in step (fc3) (however, , n is an integer of 2 or more), and the method according to any one of [1] to [6].
[8]
A fuel cell connected in series with at least one water electrolyser and at least two hydrogen gas streams (FCn, where n is an integer greater than or equal to 2 and firstly connected to the water electrolyser) shall be referred to as FC1.), generating power independently in each fuel cell, and performing water electrolysis in a water electrolyzer, producing hydrogen gas with a reduced hydrogen isotope concentration and
(we1) obtaining hydrogen gas (HG 0 ) and oxygen gas by water electrolysis of water or an aqueous solution containing hydrogen isotopes in a water electrolyzer;
(fc1h) The hydrogen gas HG 0 obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas HG 0 is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ),
(fc2h) The recovered hydrogen gas HG 1 is supplied to the negative electrode side of the fuel cell 2 (FC2), part of the hydrogen gas HG 1 is reacted at the negative electrode, and the remaining hydrogen gas (HG 2 ) is recovered at the negative electrode side. thing,
(fc3h) If fuel cells are connected next to fuel cell 2 (FC2), this operation is sequentially repeated up to fuel cell n (FCn), and the remaining hydrogen gas (HG n ) is released on the negative electrode side. Collect (n is an integer of 3 or more),
obtaining a hydrogen gas HG 2 or HG n having a lower hydrogen isotope concentration than hydrogen gas HG 0 ;
The above method, comprising
[9]
The ratio of the amount of hydrogen gas supplied to the negative electrode side of FC1 in the step (fc1) to the amount of hydrogen gas recovered from FC2 in the step (fc2) or FCn in the step (fc3) is 100:0. The method according to any one of [1] to [8], wherein the range is ∼50.
[10]
The method according to any one of [1] to [9], wherein at least part of the electric power for water electrolysis in the water electrolysis device is covered by electric power generated in the fuel cell.
[11]
The method of any one of [1] to [10], wherein the at least two series-connected fuel cells are 3 to 10 fuel cells connected in series.
[12]
The method according to any one of [1] to [11], wherein the aqueous solution AS 0 is pure water, alkaline aqueous solution or seawater.
[13]
at least one water electrolyser and at least two fuel cells connected in series with a stream of hydrogen gas, said water electrolyzer having a cathode compartment and an anode compartment, said fuel cell having an anode compartment and a cathode compartment, respectively. has
a means for flowing hydrogen gas from the cathode chamber of the water electrolyzer to the anode chamber of the fuel cell adjacent to the water electrolyzer of the fuel cells connected in series;
The fuel cells connected in series have hydrogen gas flow means between the negative electrode chambers of the fuel cells connected in order from the fuel cell adjacent to the water electrolysis device,
The fuel cells connected in series have an oxygen gas or oxygen-containing gas distribution means between the positive electrode chambers of the fuel cells sequentially connected from the fuel cell adjacent to the water electrolysis device, and
Having a distribution means for recovering the water generated by the fuel cell to the water electrolysis device,
Equipment for producing water or aqueous solutions enriched with hydrogen isotopes.
[14]
The production apparatus according to [13], for co-producing hydrogen gas with a reduced isotope concentration.
[15]
at least one water electrolyser and at least two fuel cells connected in series with a stream of hydrogen gas, said water electrolyzer having a cathode compartment and an anode compartment, said fuel cell having an anode compartment and a cathode compartment, respectively. has
a means for flowing hydrogen gas from the cathode chamber of the water electrolyzer to the anode chamber of the fuel cell adjacent to the water electrolyzer of the fuel cells connected in series;
The fuel cells connected in series have hydrogen gas flow means between the negative electrode chambers of the fuel cells connected in order from the fuel cell adjacent to the water electrolysis device.
An apparatus for producing hydrogen gas in which hydrogen isotopes are reduced from the hydrogen gas obtained by a water electrolyzer.
[16]
The manufacturing apparatus according to any one of [13] to [15], wherein the at least two series-connected fuel cells are 3 to 10 fuel cells connected in series.
[17]
The manufacturing apparatus according to any one of [13] to [16], wherein the fuel cell is a polymer electrolyte fuel cell.
[18]
The production apparatus according to any one of [13] to [17], wherein the water electrolysis device has an oxygen gas or oxygen-containing gas distribution means connected to an adjacent fuel cell.

本発明の製造方法及び装置においては、水電解及び燃料電池による発電を組み合わせて、水素同位体を含む水の水素同位体濃度を濃縮することができ、濃縮効率は高く、かつ燃料電池により発電された電気を水電解に利用することができることからシステム全体としての電力消費を抑制することができる。本発明においては、水素同位体濃度が低減された水素ガスを併産することも可能である。さらに、本発明の別の態様では、水素同位体濃度が低減された水素ガスを製造することができる方法及び装置を提供することもできる。
In the production method and apparatus of the present invention, water electrolysis and power generation by a fuel cell can be combined to enrich the hydrogen isotope concentration of water containing hydrogen isotopes, the concentration efficiency is high, and power is generated by the fuel cell. Since the generated electricity can be used for water electrolysis, the power consumption of the system as a whole can be suppressed. In the present invention, it is also possible to co-produce hydrogen gas with a reduced hydrogen isotope concentration. Furthermore, in another aspect of the present invention, it is also possible to provide a method and apparatus capable of producing hydrogen gas with reduced hydrogen isotope concentration.

本発明の装置の一態様の概略説明図である。1 is a schematic illustration of one embodiment of the apparatus of the present invention; FIG. 本発明の方法の説明図である。It is explanatory drawing of the method of this invention. 実施例1で用いた実験装置の概要を示す。1 shows an outline of an experimental apparatus used in Example 1. FIG. 実施例1の実験結果を示す。1 shows experimental results of Example 1. FIG. 実施例2の実験結果を示す。2 shows experimental results of Example 2. FIG. 実施例3で用いた実験装置の概要を示す。The outline of the experimental apparatus used in Example 3 is shown. 実施例3の実験結果を示す。3 shows experimental results of Example 3. FIG. 実施例5で用いた酸素順流型の本発明の装置の概略説明図である。FIG. 10 is a schematic illustration of the oxygen downflow type apparatus of the present invention used in Example 5. FIG. 実施例5で用いた酸素逆流型の本発明の装置の概略説明図である。FIG. 10 is a schematic explanatory view of the oxygen backflow type apparatus of the present invention used in Example 5. FIG. 実施例5の実験結果を示す。1 shows experimental results of Example 5. FIG. 実施例5の実験結果を示す。1 shows experimental results of Example 5. FIG.

<水素同位体濃縮水/水溶液の製造方法>
本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体を含有する水または水溶液(以下、水溶液AS)から、前記水溶液ASよりも水素同位体含有率が高い水または水溶液(AS)を製造する方法に関する。
<Method for producing hydrogen isotope-enriched water/aqueous solution>
The present invention employs fuel cells connected in series with at least one water electrolyser and at least two hydrogen gas streams, and independently generating electricity in each fuel cell and electrolyzing water in the water electrolyzer. to produce water or an aqueous solution (AS e ) having a hydrogen isotope content higher than that of the aqueous solution AS 0 from water or an aqueous solution containing a hydrogen isotope (hereinafter referred to as an aqueous solution AS 0 ).

<水素同位体濃縮水/水溶液の製造装置>
さらに本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの直列に連結した燃料電池を含む、水素同位体が濃縮された水または水溶液(水素同位体濃縮水/水溶液)の製造装置に関する。前記水電気分解装置は、陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有する。
<Production equipment for hydrogen isotope enriched water/water solution>
Further, the present invention relates to an apparatus for producing hydrogen isotopically enriched water or aqueous solution (hydrogen isotopically enriched water/aqueous solution) comprising at least one water electrolysis device and at least two series connected fuel cells. The water electrolyzer has a cathode compartment and an anode compartment, and the fuel cells each have an anode compartment and a cathode compartment.

本発明の製造装置の一態様の概略図を図1に示す。
図1に示す装置は、1つの水電気分解装置(水電解槽)10及び直列に連結した燃料電池FC1、FC2、・・・FCnを含む。nは3以上の整数である。nの上限に制限はなく、例えば、10以下の整数であることができる。尚、図1においては、FCnが示されているが、燃料電池はFC1及びFC2の2つの場合もある。燃料電池の連結様式が直列とは、燃料電池の間を流通する水素ガスの流れに沿って、複数の燃料電池が連結されることを意味する。複数の燃料電池の間の電気の流れに注目して直列に連結される意味ではない。複数の燃料電池は独立の条件で運転されるため電気的に直列に連結されることはない。
A schematic diagram of one embodiment of the manufacturing apparatus of the present invention is shown in FIG.
The apparatus shown in FIG. 1 includes one water electrolyzer (water electrolyzer) 10 and fuel cells FC1, FC2, . . . FCn connected in series. n is an integer of 3 or more. There is no upper limit to n, and it can be an integer of 10 or less, for example. Although FCn is shown in FIG. 1, there may be two fuel cells, FC1 and FC2. When the fuel cells are connected in series, it means that a plurality of fuel cells are connected along the flow of hydrogen gas flowing between the fuel cells. It does not mean that multiple fuel cells are connected in series with respect to the flow of electricity between them. A plurality of fuel cells are operated under independent conditions and are not electrically connected in series.

水電解槽10は、図示はされていないが、電解槽内に陽極及び負極並びに陽極及び負極の間に設置された隔膜(例えば、イオン交換膜)を有する。水電解槽を構成する陽極、負極及び隔膜(例えば、イオン交換膜)の種類、構造、形状及び寸法などには特に制限はない。陽極及び負極には、図示しないが、外部電源が接続する。 Although not shown, the water electrolytic bath 10 has an anode, a negative electrode, and a diaphragm (for example, an ion exchange membrane) installed between the anode and the negative electrode in the electrolytic bath. There are no particular restrictions on the type, structure, shape, size, etc. of the anode, anode and diaphragm (eg, ion exchange membrane) that constitute the water electrolytic cell. An external power source (not shown) is connected to the anode and the negative electrode.

水電気分解装置としては、固体高分子型水電気分解装置、アルカリ型水電気分解装置等が知られているが、多量の水素ガスを発生できる点からアルカリ型水電気分解装置が適している。水電気分解装置を稼働させる際の温度は、例えば、20℃~70℃の範囲が適している。但し、この範囲に限定される意図ではない。電気分解においては、電流量を調整して水素の発生量を制御することができる。好ましい電流は、例えば、0.1~100Aの範囲であることができる。但し、この範囲に限定される意図ではない。なお、水電気分解装置は複数の装置を合わせて使用してもよい。 Solid polymer water electrolyzers, alkaline water electrolyzers, and the like are known as water electrolyzers, but alkaline water electrolyzers are suitable because they can generate a large amount of hydrogen gas. A suitable temperature range for operating the water electrolyzer is, for example, 20°C to 70°C. However, it is not intended to be limited to this range. In electrolysis, the amount of hydrogen generated can be controlled by adjusting the amount of current. A preferred current can range, for example, from 0.1 to 100A. However, it is not intended to be limited to this range. A plurality of water electrolyzers may be used in combination.

陽極室には、水/水溶液を供給する流通手段及び電気分解により陽極で発生する酸素ガスを排出するための酸素ガス流通手段を有する。陰極室には、水素ガスを排出するための水素ガス流通手段を有し、陰極室には、水/水溶液を供給する流通手段を有することもできる。但し、図1に示す装置は、水/水溶液を供給する流通手段は陽極室側に接続する。 The anode chamber has flow means for supplying water/aqueous solution and oxygen gas flow means for discharging oxygen gas generated at the anode by electrolysis. The cathode chamber may have hydrogen gas circulation means for discharging hydrogen gas, and the cathode chamber may have circulation means for supplying water/aqueous solution. However, in the apparatus shown in FIG. 1, the flow means for supplying water/aqueous solution is connected to the anode chamber side.

燃料電池FC1、FC2、・・・FCnは、電解質を挟んで両側に正極となる触媒層と負極となる触媒層とを有し、正極となる触媒層の外側に正極室、負極となる触媒層の外側に負極室を有する。電解質、正極及び負極の種類、構造、形状、寸法は、それぞれ特に制限はない。但し、正極となる触媒層に用いられる触媒は、水素イオンと酸素との水生成反応に比べて、水素同位体イオンと酸素との水生成反応を優先的に生じ得る材料であることが好ましい。そのような材料としては、白金やルテニウム等の貴金属、ニッケルやコバルト等の遷移金属およびその合金や酸化物等を挙げることができる。負極となる触媒層に用いられる触媒は、水素ガスの酸化反応に比べて、水素同位体を含む水素ガスの酸化反応を優先的に生じ得る材料であることが好ましい。そのような材料としては、白金やルテニウム等の貴金属、ニッケルやコバルト等の遷移金属およびその合金や酸化物等を挙げることができる。 Fuel cells FC1, FC2, . . . FCn have a positive electrode catalyst layer and a negative electrode catalyst layer on both sides of an electrolyte. has a negative electrode chamber on the outside of the There are no particular restrictions on the types, structures, shapes, and dimensions of the electrolyte, positive electrode, and negative electrode. However, the catalyst used in the catalyst layer serving as the positive electrode is preferably a material capable of preferentially causing the water-producing reaction between hydrogen isotope ions and oxygen over the water-producing reaction between hydrogen ions and oxygen. Examples of such materials include noble metals such as platinum and ruthenium, transition metals such as nickel and cobalt, and their alloys and oxides. The catalyst used in the catalyst layer that serves as the negative electrode is preferably a material that can preferentially cause the oxidation reaction of hydrogen gas containing hydrogen isotopes as compared with the oxidation reaction of hydrogen gas. Examples of such materials include noble metals such as platinum and ruthenium, transition metals such as nickel and cobalt, and their alloys and oxides.

電解質は、水素イオンのみならず、水素同位体イオンの電解質内の拡散を容易に許容する材料であることが好ましい。そのような材料としては、プロトン導電性固体高分子膜やアニオン導電性固体高分子膜等を挙げることができる。 The electrolyte is preferably a material that readily permits the diffusion of not only hydrogen ions, but also hydrogen isotope ions, within the electrolyte. Examples of such materials include proton conductive solid polymer membranes and anion conductive solid polymer membranes.

正極室には、酸素ガス流通手段(供給側及び排出側)が接続され、負極室には、水素ガス流通手段(供給側及び排出側)が接続される。但し、本明細書においては、酸素ガス流通手段は、酸素ガス又は酸素含有ガスを流通させるための手段である。正極室には、図示していないが、水/水溶液を供給する流通手段(供給側及び排出側)をさらに設けることもできる。尚、水/水溶液の排出は、正極室から排出される酸素含有ガスに同伴させて行うこともできる。燃料電池に設けられた水/水溶液を供給する流通手段(供給側及び排出側)、酸素ガス流通手段(供給側及び排出側)、及び水素ガス流通手段(供給側及び排出側)は、それぞれ隣接する燃料電池、水電解槽又は外部と接続することができる。図1においては、FC1が水電解槽と隣接しており、水電解槽に隣接するFC1の酸素ガス流通手段(供給側)は水電解槽の陽極室と接続し、FC1の水素ガス流通手段(供給側)が水電解槽の陰極室と接続する。FC1の水/水溶液を供給する流通手段(排出側)は、水電解槽とすることもできる。 Oxygen gas circulation means (supply side and discharge side) are connected to the positive electrode chamber, and hydrogen gas circulation means (supply side and discharge side) are connected to the negative electrode chamber. However, in this specification, the oxygen gas circulating means is means for circulating oxygen gas or oxygen-containing gas. Although not shown, the positive electrode chamber can be further provided with flow means (supply side and discharge side) for supplying water/aqueous solution. Incidentally, the water/aqueous solution can be discharged together with the oxygen-containing gas discharged from the positive electrode chamber. Circulation means for supplying water/aqueous solution (supply side and discharge side), oxygen gas circulation means (supply side and discharge side), and hydrogen gas circulation means (supply side and discharge side) provided in the fuel cell are adjacent to each other. It can be connected to a fuel cell, a water electrolyser, or externally. In FIG. 1, FC1 is adjacent to the water electrolyzer, the oxygen gas circulation means (supply side) of FC1 adjacent to the water electrolysis vessel is connected to the anode chamber of the water electrolysis vessel, and the hydrogen gas circulation means of FC1 ( supply side) connects with the cathode chamber of the water electrolyser. The flow means (discharge side) for supplying the water/aqueous solution of FC1 can also be a water electrolytic bath.

一方、FCnの水/水溶液を供給する流通手段(供給側)、酸素ガス流通手段(排出側)、及び水素ガス流通手段(排出側)が装置の外部と接続する。但し、各燃料電池への酸素ガス流通手段(供給側)は、隣接する水電解槽または隣接する燃料電池の酸素ガス流通手段(排出側)と接続せず、独立に、酸素ガス(例えば、空気)供給源と接続することもできる。 On the other hand, the flow means for supplying the water/aqueous solution of FCn (supply side), the oxygen gas flow means (discharge side), and the hydrogen gas flow means (discharge side) are connected to the outside of the apparatus. However, the oxygen gas distribution means (supply side) to each fuel cell is not connected to the oxygen gas distribution means (discharge side) of the adjacent water electrolyzer or the adjacent fuel cell, and oxygen gas (for example, air ) can also be connected to a source.

直列に連結した燃料電池の間を接続する水素ガス流通手段は、隣接する燃料電池の負極室間を連絡する。直列に連結した燃料電池を接続する酸素ガス流通手段は、隣接する燃料電池の正極室間を連絡する。また、水または水溶液流通手段が、直列に連結した燃料電池の隣接する燃料電池の正極室間を接続するもできる。 A hydrogen gas flow means connecting between the fuel cells connected in series communicates between the anode chambers of the adjacent fuel cells. The oxygen gas flow means connecting the fuel cells connected in series communicates between the positive electrode chambers of the adjacent fuel cells. Alternatively, a water or aqueous solution flow means may connect between the positive electrode chambers of adjacent fuel cells in series-connected fuel cells.

本発明の水素同位体濃縮水/水溶液の製造方法は、例えば、上記本発明の装置を用いて実施することができる。本発明の方法を、図2を参照して説明する。 The method for producing hydrogen isotope-enriched water/aqueous solution of the present invention can be carried out using, for example, the apparatus of the present invention. The method of the invention will now be described with reference to FIG.

(we1)水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得る。
(fc1)前記電気分解で得られる水素ガスを燃料電池1(FC1)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収する。
(fc2)回収した水素ガス(HG)を燃料電池2(FC2)の負極側に供給し、水素ガス(HG)の一部を負極で反応させ、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収する。
(fc3)燃料電池2の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)及び正極側で生成する水素同位体含有水(W)を回収する(nは、3以上の整数)。
(we2)前記水電気分解装置から、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収する。
(we1) Hydrogen gas and oxygen gas are obtained by water electrolysis of the aqueous solution AS 0 in a water electrolyzer.
(fc1) The hydrogen gas obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), part of the hydrogen gas (HG 0 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) and hydrogen isotope-containing water (W 1 ) produced on the positive electrode side are recovered.
(fc2) The recovered hydrogen gas (HG 1 ) is supplied to the negative electrode side of the fuel cell 2 (FC2), part of the hydrogen gas (HG 1 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 2 ) and hydrogen isotope-containing water (W 2 ) produced on the positive electrode side are recovered.
(fc3) If fuel cells are connected next to fuel cell 2, this operation is repeated until fuel cell n (FCn), and the remaining hydrogen gas (HG n ) on the negative electrode side and the remaining hydrogen gas (HG n ) on the positive electrode side The produced hydrogen isotope-containing water (W n ) is recovered (n is an integer of 3 or more).
(we2) Recover water or aqueous solution ASe having a hydrogen isotope content higher than that of aqueous solution AS0 after electrolysis from the water electrolyzer.

水電気分解装置において水溶液ASを水電気分解して水素ガス及び酸素ガスを得るとともに、電気分解後の、前記水溶液ASよりも水素同位体含有率が高い水または水溶液ASを回収する。Hydrogen gas and oxygen gas are obtained by water electrolysis of the aqueous solution AS 0 in the water electrolyzer, and water or aqueous solution AS e having a higher hydrogen isotope content than the aqueous solution AS 0 after electrolysis is recovered.

水溶液ASは、水素同位体元素である重水素(D)又はトリチウム(T)を含む水を含有する水(水溶液)であることができる。水素同位体元素である重水素(D)を含む水は、HO、HDO及び/又はDOを含有する。水素同位体元素であるトリチウム(T)を含む水は、HO、HTO及び/又はTOを含有する。水溶液AS中に含まれる水素同位体元素を含む水の(HDO及び/又はDO、HTO及び/又はTOなど)の濃度は、特に制限はない。例えば、水素同位体元素が0.1~100atomic%の範囲であることができる。但し、この範囲に限定される意図ではない。The aqueous solution AS 0 can be water (aqueous solution) containing water containing the hydrogen isotopes deuterium (D) or tritium (T). Water containing the hydrogen isotope deuterium ( D) contains H2O , HDO and/or D2O. Water containing the hydrogen isotope tritium (T) contains H2O , HTO and/or T2O . The concentration of water containing hydrogen isotopes (such as HDO and/or D 2 O, HTO and/or T 2 O) contained in the aqueous solution AS 0 is not particularly limited. For example, hydrogen isotope elements can range from 0.1 to 100 atomic percent. However, it is not intended to be limited to this range.

燃料電池の運転に関しては、固体高分子型水電気分解装置の場合、水溶液は電解質を含まない純水であることが好ましい。 As for the operation of the fuel cell, in the case of a polymer electrolyte water electrolyzer, the aqueous solution is preferably pure water containing no electrolyte.

また、アルカリ型水電気分解装置の場合は、アルカリイオンの存在が必要であり、電解質を含む水であってよい。むしろ、電気抵抗を考慮すると、水溶液AS又は水溶液ASが供給される水電気分解の電解液は電解質を含有することが好ましい。水溶液ASが純水である場合には、水溶液ASに電解質を添加することができる。電解質は、腐食性等の不都合な反応性を有さないという観点から、例えば、アルカリ物質であることができ、アルカリ物質は、例えば、水酸化ナトリウム、水酸化カリウム等であることが好ましい。電解質を含む水溶液は、海水であることもできる。また、ため池水であることもできる。電解質の濃度は、電解の条件等を考慮して適宜決定できる。In the case of an alkaline water electrolyzer, the presence of alkaline ions is required, and the water may contain electrolytes. Rather, in consideration of electrical resistance, it is preferable that the aqueous solution AS 0 or the electrolytic solution for water electrolysis to which the aqueous solution AS 0 is supplied contain an electrolyte. If the aqueous solution AS 0 is pure water, electrolytes can be added to the aqueous solution AS n . The electrolyte can be, for example, an alkaline substance from the viewpoint of not having adverse reactivity such as corrosiveness, and the alkaline substance is preferably, for example, sodium hydroxide, potassium hydroxide, or the like. The aqueous solution containing the electrolyte can also be seawater. It can also be pond water. The concentration of the electrolyte can be appropriately determined in consideration of the electrolysis conditions and the like.

水電気分解装置における水の電気分解の条件は特に制限はなく、水電解槽中の陽極で酸素分子、陰極で水素分子が生成する条件であればよい。水電気分解においては、水溶液に含まれる水素同位体元素を含む水は、水素同位体元素を含まない水(HO)に比べて電気分解されにくい。しかし、水溶液に含まれる水素同位体元素を含む水が全く電気分解されない訳ではない。水電気分解において酸素分子と水素分子に分解される、軽水素と水素同位体元素との割合(H/Xと表記する(XはDまたはT)は、水素同位体元素の種類や電気分解の装置や運転条件により変動するが、1を超え、例えば、1.5~5の範囲である。H/Xが大きい程、電気分解における水素同位体の濃縮効果は高くなる。H/Xが2以上、好ましくは3以上で電気分解をすることが好ましい。電気分解後の水溶液中には水溶液ASよりも高い濃度の水素同位体が含まれ、即ち、水素同位体が濃縮される。一方、電気分解により生成する水素ガス中の水素同位体濃度は、水溶液ASよりも低くなる。しかし、水素ガスにも水素同位体は含まれ、水素同位体元素である重水素(D)を含む水の電解においては、H以外に、HD及び/又はDを含有する。水素同位体元素であるトリチウム(T)を含む水の電解においては、H以外に、HT及び/又はTを含有する。The conditions for water electrolysis in the water electrolyzer are not particularly limited, and may be any conditions as long as oxygen molecules are produced at the anode and hydrogen molecules are produced at the cathode in the water electrolyzer. In water electrolysis, water containing hydrogen isotopes contained in an aqueous solution is less likely to be electrolyzed than water (H 2 O) not containing hydrogen isotopes. However, this does not mean that water containing hydrogen isotopes contained in the aqueous solution is not electrolyzed at all. The ratio of light hydrogen and hydrogen isotope elements (expressed as H/X (X is D or T), which is decomposed into oxygen molecules and hydrogen molecules in water electrolysis) depends on the type of hydrogen isotope element and electrolysis. Although it varies depending on the equipment and operating conditions, it exceeds 1, for example, in the range of 1.5 to 5. The greater the H/X, the higher the hydrogen isotope enrichment effect in electrolysis.H/X is 2. It is preferable to perform electrolysis at the above, preferably at least 3. The aqueous solution after electrolysis contains hydrogen isotopes at a higher concentration than the aqueous solution AS 0 , that is, the hydrogen isotopes are enriched. The hydrogen isotope concentration in the hydrogen gas produced by electrolysis is lower than that of the aqueous solution AS 0. However, the hydrogen gas also contains hydrogen isotopes, and water containing deuterium (D), which is a hydrogen isotope element, contains HD and/or D 2 in addition to H 2. In the electrolysis of water containing tritium (T), which is a hydrogen isotope, HT and/or T 2 are contained in addition to H 2 . contains.

工程(fc1)においては、FC1の負極側に水電気分解で生成した水素ガスHGが供給される。この水素ガスには上記のように、水素同位体は含まれる。水素同位体を含む水素ガスは燃料電池において正極側の酸素と反応し水が生成する。燃料電池の正極及び負極における反応式は、図2に例示する。燃料電池における酸素との反応性は、水素同位体元素の種類や燃料電池種類(電極及び電解質等)や運転条件により変動するが、一般に、軽水素(H)に比べて水素同位体元素Xの方が高い。例えば、反応性をX/Hと表示すると(XはDまたはT)は、X/Hは1を超え、例えば、1.5~5の範囲である。その結果、負極側に水素ガスが残存する場合、残存する水素ガスHG中の水素同位体元素の濃度は、HG中の水素同位体元素の濃度より低くなる。一方、燃料電池の正極側で生成する水に含まれる水素同位体元素の濃度は、HG中の水素同位体元素の濃度より高くなる。即ち、水素同位体元素は、水側に濃縮され、水素ガス中で低減する。In step (fc1), hydrogen gas HG 0 produced by water electrolysis is supplied to the negative electrode side of FC1. This hydrogen gas contains hydrogen isotopes as described above. Hydrogen gas containing hydrogen isotopes reacts with oxygen on the positive electrode side in the fuel cell to produce water. Reaction formulas at the positive and negative electrodes of the fuel cell are illustrated in FIG. The reactivity of the fuel cell with oxygen varies depending on the type of hydrogen isotope element, the type of fuel cell (electrode, electrolyte, etc.) and operating conditions. higher. For example, denoting reactivity as X/H, where X is D or T, X/H is greater than 1, eg, in the range of 1.5-5. As a result, when hydrogen gas remains on the negative electrode side, the concentration of hydrogen isotope elements in the remaining hydrogen gas HG1 is lower than the concentration of hydrogen isotope elements in HG0. On the other hand, the concentration of hydrogen isotope contained in the water produced on the positive electrode side of the fuel cell is higher than the concentration of hydrogen isotope in HG0 . That is, the hydrogen isotopes are concentrated on the water side and depleted in the hydrogen gas.

工程(fc1)の次の工程である(fc2)においては、FC2に水素ガスHGが供給されること以外、工程(fc1)におけるFC1における操作と同様である。FC2の負極側に水素ガスが残存する場合、残存する水素ガスHG中の水素同位体元素の濃度は、HG中の水素同位体元素の濃度より低くなる。また、一方、FC2の正極側で生成する水に含まれる水素同位体元素の濃度は、HG中の水素同位体元素の濃度より高くなる。即ち、水素同位体元素は、水側に濃縮され、水素ガス中で低減する。この関係は、工程(fc3)においけるFCnまで続く。In step (fc2) following step (fc1), the operation in FC1 is the same as in step (fc1) except that hydrogen gas HG1 is supplied to FC2. When hydrogen gas remains on the negative electrode side of FC2, the concentration of hydrogen isotope elements in the remaining hydrogen gas HG2 is lower than the concentration of hydrogen isotope elements in HG1 . On the other hand, the concentration of hydrogen isotope contained in water generated on the positive electrode side of FC2 is higher than the concentration of hydrogen isotope in HG1 . That is, the hydrogen isotopes are concentrated on the water side and depleted in the hydrogen gas. This relationship continues until FCn in step (fc3).

工程(fc1)におけるFC1の負極側に供給される水素ガスHGの量と、(fc2)又は(fc3)においてFC2またはFCnから回収される水素ガスHG又はHGの量の比(HG:HG又はHG)は、例えば、100:0~50の範囲であることができる。100:0は、FCnにおいて全ての水素ガスが消費されることを意味し、100:0超は、FCnにおいて水素ガスの一部が回収されることを意味する。各FCにおける水素ガスの消費は、各FCにおける発電量を調整することで調整できる。発電量の調整は、設定される電気的な外部負荷のコントロールによる。100:0超である場合、HGに含まれる水素同位体元素の濃度は、HGに含まれる水素同位体元素の濃度、接続される燃料電池の個数や燃料電池の運転条件等により異なるが、例えば、HGに含まれる水素同位体元素の濃度の50%以下、好ましくは10%以下とすることができる。例えば、(fc2)のFC2又は(fc3)のFCnから水素同位体含有率が水素ガスHGより低い水素ガスHGまたはHGを回収して水素ガスを併産することができる。 The ratio ( HG 0 :HG 2 or HG n ) can range, for example, from 100:0 to 50. 100:0 means that all hydrogen gas is consumed in FCn, and greater than 100:0 means that some hydrogen gas is recovered in FCn. The consumption of hydrogen gas in each FC can be adjusted by adjusting the power generation amount in each FC. Adjustment of the power generation is by control of the set electrical external load. When the ratio exceeds 100: 0 , the concentration of hydrogen isotope elements contained in HGn varies depending on the concentration of hydrogen isotope elements contained in HG0, the number of fuel cells to be connected, the operating conditions of the fuel cells, and the like. For example, it can be 50% or less, preferably 10% or less, of the hydrogen isotope concentration contained in HG0 . For example, hydrogen gas HG2 or HGn having a lower hydrogen isotope content than hydrogen gas HG0 can be recovered from FC2 of (fc2) or FCn of ( fc3 ) to co-produce hydrogen gas.

(fc1)~(fc3)において、任意の燃料電池FCn-1の負極側に供給される水素ガスの量と、FCn-1の負極側から回収される水素ガスの量の比(即ち、水素ガスの消費比率)は、特に制限はないが、例えば、100:10~90の範囲である(但し、nは3以上であり、nが2の場合、前記比は100:0~50の範囲である)。各FCにおける水素ガスの消費比率は、FC間で独立に設定することができる。 In (fc1) to (fc3), the ratio of the amount of hydrogen gas supplied to the negative electrode side of any fuel cell FCn-1 to the amount of hydrogen gas recovered from the negative electrode side of FCn-1 (i.e., hydrogen gas consumption ratio) is not particularly limited, but is, for example, in the range of 100:10 to 90 (where n is 3 or more, and when n is 2, the ratio is in the range of 100:0 to 50). be). The consumption ratio of hydrogen gas in each FC can be set independently between FCs.

FC1~FCnの正極側には、酸素ガスまたは酸素含有ガスが供給される。一方、水電気分解においては、上述のように酸素ガスも生成する。この酸素ガスの少なくとも一部は、少なくとも一部の燃料電池の正極側に供給することができる。燃料電池の正極側に供給する酸素ガスは、水電気分解で得られる酸素ガスのみならず、空気中の酸素ガスであることや、両者の混合物であることもできる。図2の説明図においては、各燃料電池における酸素ガスの供給方法は、複数のオプションが記載されており、このなかの少なくとも一つを採用することができる。例えば、水電気分解で生成した酸素ガスをFC1からFCnに順次流通することもできるし、この酸素ガスにさらに空気を追加することもできる。あるいは、水電気分解で生成した酸素ガスは、酸素ガスのプール(図示せず)に一時保存し、そこからFC1からFCnの各燃料電池に独立に供給することもできる。 Oxygen gas or an oxygen-containing gas is supplied to the positive electrode sides of FC1 to FCn. On the other hand, water electrolysis also produces oxygen gas as described above. At least part of this oxygen gas can be supplied to the positive electrode side of at least part of the fuel cells. The oxygen gas supplied to the positive electrode side of the fuel cell can be not only oxygen gas obtained by water electrolysis, but also oxygen gas in the air or a mixture of both. In the explanatory diagram of FIG. 2, a plurality of options are described for the method of supplying oxygen gas in each fuel cell, and at least one of these options can be adopted. For example, oxygen gas generated by water electrolysis can be sequentially circulated from FC1 to FCn, or air can be added to this oxygen gas. Alternatively, the oxygen gas produced by water electrolysis can be temporarily stored in an oxygen gas pool (not shown), and supplied from there to each of the fuel cells FC1 to FCn independently.

例えば、水電気分解で得られる酸素ガスの少なくとも一部は、FCnの正極側に供給され、FCnの正極側から排出される酸素ガスまたは酸素含有ガスは燃料電池n-1(FCn-1)の正極側に供給され、順次、FC1まで、排出された酸素ガスまたは酸素含有ガスの次の燃料電池への供給が繰り返される。 For example, at least part of the oxygen gas obtained by water electrolysis is supplied to the positive electrode side of FCn, and the oxygen gas or oxygen-containing gas discharged from the positive electrode side of FCn is the fuel cell n-1 (FCn-1). The oxygen gas or oxygen-containing gas is supplied to the positive electrode side, and the discharged oxygen gas or oxygen-containing gas is sequentially supplied to the next fuel cell up to FC1.

各燃料電池の正極側においては、上記のように水素同位体を含む水が生成する。この水は、回収される。回収方法には特に制限はないが、例えば、正極室に供給され、未消費の酸素ガスが正極室から排出される際にガスに同伴して排出、回収することができる。回収した水素同位体含有水WからWの少なくとも一部は、含まれる水素同位体の濃度によるが、水素同位体濃度が比較的高い場合(例えば、FC1やFC2からの回収水)、水素同位体濃縮水溶液としてASに合流されることができる。あるいは、比較的水素同位体濃度が低い場合(例えば、FCnからの回収水)、ASと共に水電気分解に供することもできる。On the positive electrode side of each fuel cell, water containing hydrogen isotopes is produced as described above. This water is recovered. The recovery method is not particularly limited, but, for example, when the unconsumed oxygen gas supplied to the positive electrode chamber is discharged from the positive electrode chamber, it can be discharged and collected together with the gas. At least part of the recovered hydrogen isotope - containing water W1 to Wn depends on the concentration of the contained hydrogen isotope, but when the hydrogen isotope concentration is relatively high (for example, recovered water from FC1 or FC2), hydrogen It can be combined with AS e as an isotopically enriched aqueous solution. Alternatively, if the hydrogen isotope concentration is relatively low (eg recovered water from FCn), it can be subjected to water electrolysis together with AS 0 .

水電気分解装置における水電気分解用の電力の少なくとも一部は、燃料電池において発電された電力により賄うことができる。但し、水電気分解用の電力は、燃料電池により発電された電力以外の電力であることもできる。 At least part of the power for water electrolysis in the water electrolyzer can be covered by power generated in the fuel cell. However, the power for water electrolysis can be power other than the power generated by the fuel cell.

少なくとも2つの直列に連結した燃料電池は、例えば、3~10個の燃料電池を直列に連結したものであることができ、直列に連結する燃料電池の数は、2、3、4、5、6、7、8、9、10個の何れであってもよい。また、各燃料電池には、並列に接続された1以上の燃料電池であっても良い。また、各燃料電池は、同じ種類の燃料電池であっても異なる種類の燃料電池であってもよい。 The at least two series-connected fuel cells can be, for example, 3 to 10 fuel cells connected in series, and the number of series-connected fuel cells can be 2, 3, 4, 5, Any of 6, 7, 8, 9 and 10 may be used. Also, each fuel cell may be one or more fuel cells connected in parallel. Also, each fuel cell may be the same type of fuel cell or a different type of fuel cell.

本発明において、燃料電池は独立に発電できることを特徴とする。各燃料電池において、水電気分解装置から発生した水素ガスを独立した運転条件にて消費して発電し、同時に発生する水に水素同位体元素が濃縮させることになる。ここで、水素同位体元素の濃縮効果は、燃料電池を多段とすることにより相乗的に発現する。一方で、本発明の装置において、水電気分解装置における水素ガスの発生量(エネルギーの消費量に相当する)、各燃料電池における水素ガスの消費量(エネルギーの発生量に相当する)は、装置全体のエネルギー収支を設計するための重要な因子となる。本発明においては、各燃料電池におけるエネルギーの発生量を独立に制御することができ、本発明の目的である水素同位体元素の濃縮効果の最大と、エネルギー効率の最大を合わせて達成することができることになる。なお、各燃料電池におけるエネルギーの発生量は、例えば、電気抵抗の負荷の程度により調整することができる。 The present invention is characterized in that the fuel cell can generate power independently. In each fuel cell, the hydrogen gas generated from the water electrolyzer is consumed under independent operating conditions to generate power, and at the same time, the generated water is enriched with hydrogen isotopes. Here, the effect of concentrating the hydrogen isotope element is synergistically expressed by the multi-stage fuel cell. On the other hand, in the apparatus of the present invention, the amount of hydrogen gas generated in the water electrolyzer (corresponding to the amount of energy consumed) and the amount of hydrogen gas consumed in each fuel cell (corresponding to the amount of energy generated) It becomes an important factor for designing the overall energy balance. In the present invention, the amount of energy generated in each fuel cell can be controlled independently, and it is possible to achieve both the maximum effect of concentrating hydrogen isotopes and the maximum energy efficiency, which is the object of the present invention. It will be possible. The amount of energy generated in each fuel cell can be adjusted, for example, by the degree of electrical resistance load.

燃料電池としては、例えば、リン酸型燃料電池、固体酸化物型燃料電池、固体高分子型燃料電池、アルカリ膜型燃料電池やアルカリ型燃料電池などを挙げることができる。例えば、固体高分子形燃料電池を用いる場合には、20~90℃の範囲の温度で発電できるので好しい。固体高分子形燃料電池を用いる場合には、特に、60~80℃の範囲の温度であることが好ましい。 Examples of fuel cells include phosphoric acid fuel cells, solid oxide fuel cells, polymer electrolyte fuel cells, alkaline membrane fuel cells, and alkaline fuel cells. For example, when using a solid polymer fuel cell, it is preferable because it can generate power at a temperature in the range of 20 to 90°C. When using polymer electrolyte fuel cells, the temperature is preferably in the range of 60 to 80°C.

本発明の製造装置は、同位体濃度が低減された水素ガスを併産するために用いることもできる。例えば、燃料電池を三段直列に連結すると、同位体濃度は例えば、1/100倍程度にまで低減され、同位体濃度が低減された水素ガスは、高純度水素として他の用途に使用することができる。 The production apparatus of the present invention can also be used to co-produce hydrogen gas with reduced isotope concentration. For example, when three fuel cells are connected in series, the isotope concentration is reduced, for example, to about 1/100 times, and the hydrogen gas with the reduced isotope concentration can be used for other purposes as high-purity hydrogen. can be done.

<水素同位体濃度低減水素ガスの製造方法>
本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行うことを含む、水素同位体濃度が低減された水素ガスを製造する方法を包含する。この製造方法は、
(we1)水電気分解装置において水素同位体を含有する水または水溶液を水電気分解して水素ガス(HG)及び酸素ガスを得ること、
(fc1h)前記電気分解で得られる水素ガスHGを燃料電池1(FC1)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
(fc2h)回収した水素ガスHGを燃料電池2(FC2)の負極側に供給し、水素ガスHGの一部を負極で反応させ、負極側で残りの水素ガス(HG)を回収すること、
(fc3h)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HG)を回収して(nは、3以上の整数)、
水素ガスHGよりも水素同位体濃度が低い水素ガスHGまたはHGを得ることを含む。
<Method for producing hydrogen gas with reduced hydrogen isotope concentration>
The present invention provides a fuel cell (FCn) connected in series with at least one water electrolyser and at least two hydrogen gas streams, where n is an integer greater than or equal to 2, and the water electrolyzer The connected fuel cells are referred to as FC1.), generating power independently in each fuel cell, and performing water electrolysis in a water electrolyzer. Hydrogen gas with reduced hydrogen isotope concentration including a method of making a This manufacturing method
(we1) obtaining hydrogen gas (HG 0 ) and oxygen gas by water electrolysis of water or an aqueous solution containing hydrogen isotopes in a water electrolyzer;
(fc1h) The hydrogen gas HG 0 obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), a part of the hydrogen gas HG 0 is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ),
(fc2h) The recovered hydrogen gas HG 1 is supplied to the negative electrode side of the fuel cell 2 (FC2), part of the hydrogen gas HG 1 is reacted at the negative electrode, and the remaining hydrogen gas (HG 2 ) is recovered at the negative electrode side. thing,
(fc3h) If fuel cells are connected next to fuel cell 2 (FC2), this operation is sequentially repeated up to fuel cell n (FCn), and the remaining hydrogen gas (HG n ) is released on the negative electrode side. Collect (n is an integer of 3 or more),
Obtaining a hydrogen gas HG 2 or HG n having a lower hydrogen isotope concentration than the hydrogen gas HG 0 .

工程(we1)は、水素同位体濃縮水/水溶液の製造方法における工程(we1)は、同義である。
工程(fc1h)は、水素同位体濃縮水/水溶液の製造方法における工程(fc1)と、正極側で生成する水素同位体含有水(W)を回収することを含まなくてもよいこと以外は、同義である。
工程(fc2h)は、水素同位体濃縮水/水溶液の製造方法における工程(fc2)と、正極側で生成する水素同位体含有水(W)を回収することを含まなくてもよいこと以外は、同義である。
工程(fc3h)は、水素同位体濃縮水/水溶液の製造方法における工程(fc3)と、正極側で生成する水素同位体含有水(W)を回収することを含まなくてもよいこと以外は、同義である。
The step (we1) is synonymous with the step (we1) in the method for producing hydrogen isotope-enriched water/aqueous solution.
Except that the step (fc1h) may not include the step (fc1) in the method for producing a hydrogen isotope-enriched water/aqueous solution and recovering the hydrogen isotope-containing water (W 1 ) produced on the positive electrode side. , are synonymous.
Except that the step (fc2h) may not include the step (fc2) in the method for producing a hydrogen isotope-enriched water/aqueous solution and recovering the hydrogen isotope-containing water (W 2 ) produced on the positive electrode side. , are synonymous.
Except that the step (fc3h) may not include the step (fc3) in the method for producing a hydrogen isotope-enriched water/aqueous solution and recovering the hydrogen isotope-containing water (W n ) produced on the positive electrode side. , are synonymous.

尚、工程(fc2h)で回収される水素ガスHG及び工程(fc3h)で回収される水素ガスHGは水素ガスHGよりも水素同位体濃度が低い。この点は水素同位体濃縮水/水溶液の製造方法における工程(fc2)で回収される水素ガスHG及び工程(fc3)で回収される水素ガスHGも同様である。The hydrogen gas HG2 recovered in the step ( fc2h ) and the hydrogen gas HGn recovered in the step ( fc3h ) have lower hydrogen isotope concentrations than the hydrogen gas HG0. This is the same for hydrogen gas HG2 recovered in step (fc2) and hydrogen gas HGn recovered in step ( fc3 ) in the method for producing hydrogen isotope-enriched water/aqueous solution.

水素ガスHG及びHGにおける水素同位体濃度の低減の度合は、水素ガスHGの水素同位体濃度及び燃料電池FCnの構成や運転条件等により変動し、適宜制御することが可能である。The degree of reduction of the hydrogen isotope concentrations in the hydrogen gases HG2 and HGn varies depending on the hydrogen isotope concentration of the hydrogen gas HG0 and the configuration and operating conditions of the fuel cell FCn , and can be appropriately controlled.

<水素同位体濃度低減水素ガス製造装置>
本発明は、少なくとも1つの水電気分解装置及び少なくとも2つの直列に連結した燃料電池を含む、水素同位体濃度が低減された水素ガスの製造装置を包含する。
<Hydrogen isotope concentration reduction hydrogen gas production equipment>
The present invention includes an apparatus for producing hydrogen gas with reduced hydrogen isotope concentration including at least one water electrolyzer and at least two series connected fuel cells.

この製造装置における水電気分解装置、水電気分解装置と燃料電池の間の水素ガス流通手段、及び燃料電池間の水素ガス流通手段は、水素同位体濃縮水/水溶液の製造装置における水電気分解装置、水電気分解装置と燃料電池の間の水素ガス流通手段、及び燃料電池間の水素ガス流通手段とそれぞれ同義である。 The water electrolyzer, the hydrogen gas distribution means between the water electrolyzer and the fuel cell, and the hydrogen gas distribution means between the fuel cells in this production apparatus are , hydrogen gas distribution means between the water electrolyzer and the fuel cell, and hydrogen gas distribution means between the fuel cells.

本発明の水素同位体濃度低減水素ガス製造装置を用いて、水電気分解装置で得られた水素ガスより水素同位体が低減された水素ガスが製造される。この装置では、前記の水素同位体濃度低減水素ガスの製造方法を実施できる。 Using the hydrogen isotope concentration-reduced hydrogen gas production apparatus of the present invention, hydrogen gas with hydrogen isotopes reduced from the hydrogen gas obtained by the water electrolysis apparatus is produced. With this apparatus, the above method for producing hydrogen gas with reduced hydrogen isotope concentration can be carried out.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

実施例1
実験方法:1段燃料電池
本実験では、アルカリ型水電解(AWE)と固体高分子型燃料電池(PEFC)を用いた。実験装置の概要を図3に示す。
Example 1
Experimental method: One-stage fuel cell In this experiment, alkaline water electrolysis (AWE) and polymer electrolyte fuel cell (PEFC) were used. Fig. 3 shows an outline of the experimental setup.

AWEでは、陽極および陰極に円形状のニッケルメッシュ電極(実面積35cm2)を用い、電解前にアセトンおよびエタノールにて超音波洗浄を行った。陽極および陰極の間には隔膜を使用し、個々の電極で発生したガスが混ざらないようにした。電解液には水酸化カリウム水溶液(pH 15)を用い、重水素/軽水素(D/H)比が1:9となるよう重水(D2O)を添加し、アクリル製の電解槽に0.6L充填させた。電解中はポンプにて水電解槽内を循環させた。水電解は直流電源装置を用いて電流を1~5Aまで変化させ、一定電流・室温の条件下で運転させた。In AWE, circular nickel mesh electrodes (actual area: 35 cm 2 ) were used for the anode and cathode, and ultrasonically cleaned with acetone and ethanol before electrolysis. A diaphragm was used between the anode and cathode to keep the gases generated at the individual electrodes from mixing. An aqueous solution of potassium hydroxide (pH 15) was used as the electrolyte, and heavy water (D 2 O) was added so that the ratio of deuterium/hydrogen (D/H) was 1:9. filled with L. During the electrolysis, the water was circulated in the water electrolyzer with a pump. For water electrolysis, the current was varied from 1 to 5 A using a DC power supply, and the equipment was operated under the conditions of constant current and room temperature.

PEFCでは、正極・負極両電極に白金触媒(Pt担持量:0.52 mg/cm2)を使用した電極接合膜(50×50 mm)を用い、電解質膜にはNafion(NRE211)を使用した。AWEから発生した水素ガスを直接PEFCの負極に供給し、正極には酸素ボンベから純酸素ガスを供給した。室温にて発電を行った。PEFCは可変抵抗器(菊水電子工業社製、PLZ164W)に接続し、発電電流が一定になるように調整した。In the PEFC, an electrode junction membrane (50×50 mm) using a platinum catalyst (Pt loading: 0.52 mg/cm 2 ) was used for both the positive and negative electrodes, and Nafion (NRE211) was used for the electrolyte membrane. Hydrogen gas generated from AWE was directly supplied to the negative electrode of PEFC, and pure oxygen gas was supplied to the positive electrode from an oxygen cylinder. Electricity was generated at room temperature. The PEFC was connected to a variable resistor (PLZ164W manufactured by Kikusui Denshi Kogyo Co., Ltd.) and adjusted so that the generated current was constant.

分離係数測定は、四重極質量分析計(ULVAC社製, Qulee HGM202, Q-Mass)を用いた。試料ガスはニードルバルブにて圧力を一定(10-5Pa)にし、検出器に供給した。検出器部分は温度を60℃に保ち、検出感度が外部環境に依存しない設計とした。水素同位体分離係数αは、PEFCで排出される発電前後の水素ガスをQ-Massにて分析し、両者の割合を式(1)にて求めた。結果を図に示す。A quadrupole mass spectrometer (ULVAC, Qulee HGM202, Q-Mass) was used to measure the separation factor. The sample gas was supplied to the detector after having a constant pressure (10 -5 Pa) with a needle valve. The temperature of the detector is maintained at 60°C, and the detection sensitivity is designed so that it does not depend on the external environment. The hydrogen isotope separation factor α was obtained by analyzing the hydrogen gas emitted from the PEFC before and after power generation with Q-Mass, and calculating the ratio between the two using the formula (1). The results are shown in the figure.

Figure 0007164882000001
Figure 0007164882000001

実施例2
実験方法:濃度依存性
PEFC単体での分離係数と水素同位体濃度(重水素)との関係を調べた。正極・負極両電極に白金触媒(Pt担持量:0.52 mg/cm2)を使用した電極接合膜(50×50 mm)を用い、電解質膜にはNafion(NRE211)を使用した。負極には軽水素ガスと重水素ガスの混合ガスを、正極には純酸素ガス(80 ml min-1)を供給した。このとき、軽水素ガス(H)流量を20ml min-1に固定し、重水素ガス(D2)の流量をマスフロー制御装置にて調整しD/H比を10-5~10-3とした。PEFCは可変抵抗器(菊水電子工業社製、PLZ164W)に接続し、発電電流が一定になるように室温にて発電させた。
Example 2
Experimental method: Concentration dependence
The relationship between the separation factor and hydrogen isotope concentration (deuterium) in PEFC alone was investigated. An electrode junction membrane (50×50 mm) using a platinum catalyst (Pt loading: 0.52 mg/cm 2 ) was used for both the positive and negative electrodes, and Nafion (NRE211) was used for the electrolyte membrane. A mixed gas of hydrogen gas and deuterium gas was supplied to the negative electrode, and pure oxygen gas (80 ml min -1 ) was supplied to the positive electrode. At this time, the flow rate of hydrogen gas (H 2 ) was fixed at 20 ml min -1 and the flow rate of deuterium gas (D 2 ) was adjusted with a mass flow controller to achieve a D/H ratio of 10 -5 to 10 -3 . did. The PEFC was connected to a variable resistor (PLZ164W manufactured by Kikusui Denshi Kogyo Co., Ltd.) and generated power at room temperature so that the generated current was constant.

分離係数測定は、Q-Massを用いた。試料ガスはニードルバルブにて圧力を一定(10-5Pa)とし、検出器に供給した。検出器部分は温度を60℃に保ち、検出感度が外部環境に依存しない設計とした。水素同位体分離係数αは、発電前後でPEFCから排出される水素ガスをQ-Massにて分析し、両者の割合を式(2)にて求めた。結果を図5に示す。Separation factor measurement was performed using Q-Mass. The sample gas was supplied to the detector under a constant pressure (10 -5 Pa) with a needle valve. The temperature of the detector is maintained at 60°C, and the detection sensitivity is designed so that it does not depend on the external environment. The hydrogen isotope separation factor α was obtained by analyzing the hydrogen gas discharged from the PEFC before and after power generation using Q-Mass, and calculating the ratio between the two using the formula (2). The results are shown in FIG.

Figure 0007164882000002
Figure 0007164882000002

実施例3
実験方法:多段燃料電池
多段式燃料電池のモデルとして、1段のAWEと3段のPEFCからなる装置を作り検証実験を行った。実験装置の概要を図6に示す。
AWEでは、陽極および陰極に円形状のニッケルメッシュ電極(実面積35cm2)を用い、電解前にアセトンおよびエタノールにて超音波洗浄を行った。陽極および陰極の間には隔膜を使用し、個々の電極で発生したガスが混ざらないようにした。電解液には水酸化カリウム水溶液(pH 15)を用い、重水素/軽水素(D/H)比が1:9となるよう重水を添加し、アクリル製の電解槽に0.6L充填させた。電解中はポンプにて水電解槽内を循環させた。水電解は直流電源装置を用いて電流を5Aの一定電流とし、室温条件下で運転させた。
Example 3
Experimental method: multi-stage fuel cell As a model of multi-stage fuel cell, we made a device consisting of one stage AWE and three stages PEFC and conducted verification experiments. An outline of the experimental setup is shown in FIG.
In AWE, circular nickel mesh electrodes (actual area: 35 cm 2 ) were used for the anode and cathode, and ultrasonically cleaned with acetone and ethanol before electrolysis. A diaphragm was used between the anode and cathode to keep the gases generated at the individual electrodes from mixing. An aqueous solution of potassium hydroxide (pH 15) was used as the electrolyte, and heavy water was added so that the ratio of deuterium/hydrogen (D/H) was 1:9. During the electrolysis, the water was circulated in the water electrolyzer with a pump. Water electrolysis was carried out at room temperature with a constant current of 5 A using a DC power supply.

PEFCでは、いずれの電池においても正極・負極両電極に白金触媒(Pt担持量 : 0.52 mg/cm2)を使用した電極接合膜(50×50 mm)を用い、電解質膜にはNafion(NRE211)を使用した。AWEから発生した水素ガスを一段目のPEFCの負極に供給し、一段目から排出された水素ガスは次段のPEFCの負極に逐次供給した。酸素ボンベから純酸素ガスを一段目の正極に供給し、一段目から排出された酸素ガスは次段のPEFCの正極に逐次供給した。各段のPEFCは独立した3つの可変抵抗器にそれぞれ接続し、発電電流が一定値になるよう調整した。PEFCをAWEに近い方からFC1、FC2、FC3とし、発電電流の総和が4.5Aになるよう以下の3条件について調べた。なお、作動温度は室温とした。In both PEFCs, electrode junction membranes (50 x 50 mm) using platinum catalyst (Pt loading: 0.52 mg/cm 2 ) are used for both the positive and negative electrodes, and Nafion (NRE211) is used for the electrolyte membrane. It was used. The hydrogen gas generated from the AWE was supplied to the negative electrode of the PEFC in the first stage, and the hydrogen gas discharged from the first stage was sequentially supplied to the negative electrode of the PEFC in the next stage. Pure oxygen gas was supplied from an oxygen cylinder to the positive electrode in the first stage, and the oxygen gas discharged from the first stage was successively supplied to the positive electrode of the PEFC in the next stage. Each stage of PEFC was connected to three independent variable resistors, and the generated current was adjusted to a constant value. The following three conditions were examined so that the total generated current would be 4.5A, with PEFCs set to FC1, FC2, and FC3 from the side closest to AWE. The operating temperature was room temperature.

(i)FC1= 1.2 A, FC2 = 0.6 A, FC3 = 1.7 A
(最後のPEFCの水素利用率が最大)
(ii)FC1= 2.7 A, FC2 = 1.2 A, FC3 = 0.6 A
(最初のPEFCの水素利用率が最大)
(iii)FC1= 1.5 A, FC2 = 1.5 A, FC3 = 1.5 A
(何れのPEFCの水素利用率も等しい)
(i) FC1 = 1.2A, FC2 = 0.6A, FC3 = 1.7A
(maximum hydrogen utilization rate of the last PEFC)
(ii) FC1 = 2.7A, FC2 = 1.2A, FC3 = 0.6A
(maximum hydrogen utilization of first PEFC)
(iii) FC1 = 1.5A, FC2 = 1.5A, FC3 = 1.5A
(The hydrogen utilization rate of both PEFCs is equal)

分離係数測定は、四重極質量分析計(ULVAC社製, Qulee HGM202, Q-Mass)を用いた。試料ガスはニードルバルブにて圧力を一定(10-5Pa)にし、検出器に供給した。検出器部分は温度を60℃に保ち、検出感度が外部環境に依存しない設計とした。水素同位体分離係数αは、3段目のPEFCで排出される水素ガスをQ-Massにて分析し、両者の割合を式(3)にて求めた。結果を表1及び図7に示す。A quadrupole mass spectrometer (ULVAC, Qulee HGM202, Q-Mass) was used to measure the separation factor. The sample gas was supplied to the detector after having a constant pressure (10 -5 Pa) with a needle valve. The temperature of the detector is maintained at 60°C, and the detection sensitivity is designed so that it does not depend on the external environment. The hydrogen isotope separation factor α was obtained by analyzing the hydrogen gas discharged from the third-stage PEFC by Q-Mass, and calculating the ratio between the two using the formula (3). The results are shown in Table 1 and FIG.

Figure 0007164882000003
Figure 0007164882000003

Figure 0007164882000004
Figure 0007164882000004

多段燃料電池の理論分離係数αは、水電解の分離係数をαAWE、FC1、FC2、FC3の分離係数をαFC1、αFC2、αFC3として、次のように定義した。
α=αAWE×αFC1×αFC2×αFC3
尚、αの計算においては、下記の条件を用いた。
・αAFEは別の実験結果より6.0とした。
・燃料電池の分離係数αFC1、αFC2、αFC3
The theoretical separation factor α of the multistage fuel cell is defined as follows, with the separation factor of water electrolysis as α AWE , FC1, FC2, and the separation factor of FC3 as α FC1 , α FC2 , α FC3 .
α=α AWE × α FC1 × α FC2 × α FC3
The following conditions were used in the calculation of α.
・α AFE was set to 6.0 based on the result of another experiment.
・Fuel cell separation factors α FC1 , α FC2 , α FC3 :

1段燃料電池の結果より、αは水素利用率Uに比例するとし、α=3.1×U+0.93の近似式を利用。(図4のグラフ中の点線に相当。)
さらに濃度依存性を考慮するため、流入ガス中のD/H比をXとし、α=20.075×X0.188の近似式を利用(図5のグラフの点線に相当)。
From the results of the single-stage fuel cell, α is proportional to the hydrogen utilization rate U, and the approximation formula α = 3.1 × U + 0.93 is used. (Corresponds to the dotted line in the graph of Fig. 4.)
Furthermore, in order to consider the concentration dependence, let X be the D/H ratio in the inflow gas, and use the approximation formula α=20.075×X 0.188 (corresponding to the dotted line in the graph of FIG. 5).

濃度依存性結果から、濃度低下によるαの減少率は同程度であると仮定し、補正項としてαFC1、αFC2、αFC3に(20.075×X0.188)/(20.075×(1/540)0.188)を掛ける。但し、1/540は水電解後のガス中のD/H比、Xは燃料利用率の近似式から得たαから逆算した燃料電池流入前のD/H比である。
この条件で得られた前記(ii)の条件における燃料電池の分離係数αFC1は2.16、αFC2は1.78、αFC3は1.53であり、これらにαAWE 6.0を乗じた値が表1に示した理論分離係数α=35.30=6.0×2.16×1.78×1.53である。
From the concentration-dependent results, it is assumed that the rate of decrease of α with decreasing concentration is the same, and the correction term is (20.075×X 0.188 )/(20.075×(1/540) 0.188 for α FC1 , α FC2 , and α FC3 ). However, 1/540 is the D/H ratio in the gas after water electrolysis, and X is the D/H ratio before flowing into the fuel cell calculated backward from α obtained from the approximation formula of the fuel utilization rate.
The separation factor αFC1 of the fuel cell under the condition (ii) obtained under these conditions was 2.16, αFC2 was 1.78, and αFC3 was 1.53. Table 1 shows the values obtained by multiplying these by αAWE 6.0 The theoretical separation factor α = 35.30 = 6.0 x 2.16 x 1.78 x 1.53.

実施例4
同量の水素を発電に用いる場合、FCの数が多い程、分離係数・発電電力ともに優位になることを実証するために以下の実験を行った。
Example 4
The following experiments were carried out to demonstrate that when the same amount of hydrogen is used for power generation, the greater the number of FCs, the higher the separation factor and generated power.

KOH電解液 (5 M, 10 at%D2O)を3.0 Aで電解し、発生させた水素ガスを用いて、以下の3通りの実験を行った。燃料電池FCは実施例1で用いたものと同様である。結果を表2に示す。表2に示す結果から、同量の水素を発電に用いる場合、FCの数が多い程、分離係数・発電電力ともに優位になることがわかる。A KOH electrolytic solution (5 M, 10 at% D 2 O) was electrolyzed at 3.0 A, and using hydrogen gas generated, the following three experiments were performed. The fuel cell FC is the same as that used in Example 1. Table 2 shows the results. From the results shown in Table 2, it can be seen that when the same amount of hydrogen is used for power generation, the greater the number of FCs, the higher the separation factor and generated power.

(1)燃料電池FCを1機用いて1.8 Aの電流量に設定して発電
(2)燃料電池FCを2機並列に用いて、それぞれ0.9 Aずつ発電(合計1.8 A)
(3)燃料電池FCを3機並列に用いて、それぞれ0.6 Aずつ発電(合計1.8 A)
(1) Power generation by setting the current amount to 1.8 A using one fuel cell FC
(2) Using two fuel cells FC in parallel, generating 0.9 A each (total 1.8 A)
(3) Using three fuel cells FC in parallel, generating 0.6 A each (total 1.8 A)

Figure 0007164882000005
Figure 0007164882000005

実施例5
燃料電池への酸素ガスの導入方向の検討
燃料電池FCを2機用いて、酸素ガスの導入方向の違いによる分離係数の違いを測定した。酸素ガスの導入方向は、図8に示す方向が酸素順流型であり、水素ガスと酸素ガスが同じ向きに順次燃料電池に供給される。図8に示す酸素順流型では酸素ガスが、D濃度の高い水素ガスから順に燃料電池において反応する。図9に示す方向が酸素逆流型であり、水素ガスと酸素ガスが逆向きに順次燃料電池に供給される。図9に示す酸素逆流型では、酸素ガスが、D濃度の低い水素ガスから順に反応する。酸素極側への分離も期待できる酸素逆流型の分離係数がよくなることが予想される。この点を確認するために以下の実験を行った。
Example 5
Investigation of the Direction of Oxygen Gas Introduction to Fuel Cell Using two fuel cell FCs, the difference in separation factor due to the difference in the direction of introduction of oxygen gas was measured. As for the introduction direction of the oxygen gas, the direction shown in FIG. 8 is the oxygen forward flow type, and the hydrogen gas and the oxygen gas are sequentially supplied to the fuel cell in the same direction. In the oxygen forward flow type shown in FIG. 8, oxygen gas reacts in the fuel cell in order from hydrogen gas with a high D concentration. The direction shown in FIG. 9 is the oxygen reverse flow type, in which hydrogen gas and oxygen gas are sequentially supplied to the fuel cell in opposite directions. In the oxygen backflow type shown in FIG. 9, oxygen gas reacts in order from hydrogen gas with low D concentration. Separation to the oxygen electrode side can also be expected. In order to confirm this point, the following experiment was conducted.

実施例4と同様にKOH電解液 (5 M, 10 at%D2O)を3.0 Aで電解し、発生させた水素ガスを用いた。燃料電池FCは実施例1で用いたものと同様である。結果を図10-1及び図10-2に示す。図10-1のIon Currentの測定は、燃料電池から排出される排ガスを調べることで実施した。このためIon Currentの減少は、排ガス中の水素同位体Dの量の減少(燃料電池におけるD消費の増大)を意味する。図10-1の結果から、酸素順流から酸素逆流になることで、燃料電池反応におけるD消費が増えたこと、即ち、酸素逆流型では、質量数3(m=3) の水素同位体を含む水素ガス(HD)と質量数4(m=4)の水素同位体を含む水素ガス(D)が、酸素順流型よりもより多く燃料電池で消費されたことが分かる。さらに図10-2の結果から、酸素逆流型の方が、分離係数が15%程度よくなることが分かる。A KOH electrolytic solution (5 M, 10 at% D 2 O) was electrolyzed at 3.0 A in the same manner as in Example 4, and hydrogen gas generated was used. The fuel cell FC is the same as that used in Example 1. The results are shown in Figures 10-1 and 10-2. The measurement of Ion Current in Fig. 10-1 was carried out by examining the exhaust gas discharged from the fuel cell. Therefore, a decrease in Ion Current means a decrease in the amount of hydrogen isotope D in the exhaust gas (an increase in D consumption in the fuel cell). From the results in Fig. 10-1, it can be seen that the D consumption in the fuel cell reaction increased by changing from the oxygen forward flow to the oxygen reverse flow. It can be seen that hydrogen gas (HD) and hydrogen gas (D 2 ) containing hydrogen isotopes with a mass number of 4 (m=4) were consumed more in the fuel cell than in the oxygen up-flow type. Furthermore, from the results in Fig. 10-2, it can be seen that the oxygen backflow type has a separation factor about 15% better.

本発明は、水素同位体を含有する水の処理分野に有用である。 INDUSTRIAL APPLICABILITY The present invention is useful in the field of treatment of water containing hydrogen isotopes.

Claims (17)

少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結し燃料電池(FCn、ここで、nは2以上の整数であって、水電気分解装置に一段目に連結した燃料電池をFC1とする。)を用い、かつ各燃料電池において独立して発電を行い、かつ水電気分解装置において水電気分解を行って、水素同位体を含有する水または水溶液(以下、水溶液AS0)から、前記水溶液AS0よりも水素同位体含有率が高い水または水溶液(ASe)を製造する方法であって、
(we1)水電気分解装置において水溶液AS0を水電気分解して水素ガス及び酸素ガスを得ること、
(fc1)前記電気分解で得られる水素ガスを燃料電池1(FC1)の負極側に供給し、水素ガス(HG0)の一部を負極で反応させ、負極側で残りの水素ガス(HG1)及び正極側で生成する水素同位体含有水(W1)を回収すること、
(fc2)回収した水素ガス(HG1)を燃料電池2(FC2)の負極側に供給し、水素ガス(HG1)の一部を負極で反応させ、負極側で残りの水素ガス(HG2)及び正極側で生成する水素同位体含有水(W2)を回収すること、
(fc3)燃料電池2(FC2)の次に、燃料電池が連結されている場合は、順次、この操作を燃料電池n(FCn)まで繰返して、負極側で残りの水素ガス(HGn)及び正極側で生成する水素同位体含有水(Wn)を回収すること(nは、3以上の整数)、
(we2)前記水電気分解装置から、電気分解後の、前記水溶液AS0よりも水素同位体含有率が高い水または水溶液ASeを回収すること、を含む、前記方法。
A fuel cell connected in series with at least one water electrolyser and at least two hydrogen gas streams (FCn, where n is an integer greater than or equal to 2 and firstly connected to the water electrolyser) is FC1.), and each fuel cell independently generates power, and water electrolysis is performed in a water electrolyzer to obtain water or an aqueous solution containing hydrogen isotopes (hereinafter, aqueous solution AS 0 ) A method for producing water or an aqueous solution (AS e ) having a higher hydrogen isotope content than the aqueous solution AS 0 from
(we1) water electrolysis of the aqueous solution AS 0 in a water electrolyzer to obtain hydrogen gas and oxygen gas;
(fc1) The hydrogen gas obtained by the electrolysis is supplied to the negative electrode side of the fuel cell 1 (FC1), part of the hydrogen gas (HG 0 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 1 ) and recovering hydrogen isotope-containing water (W 1 ) produced on the positive electrode side;
(fc2) The recovered hydrogen gas (HG 1 ) is supplied to the negative electrode side of the fuel cell 2 (FC2), part of the hydrogen gas (HG 1 ) is reacted at the negative electrode, and the remaining hydrogen gas (HG 2 ) and recovering hydrogen isotope-containing water (W 2 ) produced on the positive electrode side;
(fc3) If fuel cells are connected next to fuel cell 2 (FC2), this operation is sequentially repeated up to fuel cell n (FCn), and the remaining hydrogen gas (HG n ) and recovering hydrogen isotope-containing water (W n ) generated on the positive electrode side (n is an integer of 3 or more);
(we2) recovering water or an aqueous solution AS e having a higher hydrogen isotope content than the aqueous solution AS 0 after electrolysis from the water electrolyzer.
FC1~FCnの正極側には、酸素ガスまたは酸素含有ガスが供給され、前記回収した水素同位体含有水W1からWnの少なくとも一部は前記水電気分解装置に供給する、請求項1に記載の方法。 Oxygen gas or oxygen-containing gas is supplied to the positive electrode sides of FC1 to FCn , and at least part of the recovered hydrogen isotope-containing water W1 to Wn is supplied to the water electrolysis device. described method. 前記回収した水素同位体含有水W1からWnの少なくとも一部を前記水電気分解装置に水溶液AS0と共に供給する、請求項1または2に記載の方法。 3. The method according to claim 1 or 2, wherein at least part of the recovered hydrogen isotope - containing water W1 to Wn is supplied to the water electrolyzer together with the aqueous solution AS0 . 水素同位体含有水W1からWnの燃料電池からの回収は、燃料電池の正極側から排出される酸素ガスまたは酸素含有ガスに同伴させることで行う、請求項1~3のいずれかに記載の方法。 4. The method according to any one of claims 1 to 3, wherein the hydrogen isotope-containing water W 1 to W n is recovered from the fuel cell by making it accompany the oxygen gas or oxygen-containing gas discharged from the positive electrode side of the fuel cell. the method of. 前記水電気分解で得られる酸素ガスの少なくとも一部を、少なくとも一部の燃料電池の正極側に供給することを含む、請求項1~4のいずれかに記載の方法。 5. The method according to any one of claims 1 to 4, comprising supplying at least part of the oxygen gas obtained by said water electrolysis to the positive electrode side of at least part of the fuel cells. 前記水電気分解で得られる酸素ガスの少なくとも一部は、FCnの正極側に供給され、FCnの正極側から排出される酸素ガスまたは酸素含有ガスは燃料電池n-1(FCn-1)の正極側に供給され、順次、FC1まで、排出された酸素ガスまたは酸素含有ガスの次の燃料電池への供給が繰り返される請求項5に記載の方法。 At least part of the oxygen gas obtained by the water electrolysis is supplied to the positive electrode side of FCn, and the oxygen gas or oxygen-containing gas discharged from the positive electrode side of FCn is the positive electrode of fuel cell n-1 (FCn-1). 6. A method according to claim 5, wherein the supply of discharged oxygen gas or oxygen-containing gas to the next fuel cell is repeated, in sequence, until FC1. 程(fc2)のFC2から水素同位体含有率が水素ガスHG0より低い水素ガスHG 2 回収して水素ガスを併産することを含む、請求項1~6のいずれかに記載の方法。 7. Any one of claims 1 to 6, comprising recovering hydrogen gas HG 2 having a lower hydrogen isotope content than hydrogen gas HG 0 from FC 2 in step (fc2) to co-produce hydrogen gas. described method. 燃料電池2(FC2)の次に、燃料電池が連結されている場合であって、工程(fc3)のFCnから水素同位体含有率が水素ガスHG0より低い水素ガスHGnを回収して水素ガスを併産することを含む(ただし、nは3以上の整数)、請求項1~6のいずれかに記載の方法。Next to the fuel cell 2 (FC2), in the case where the fuel cell is connected, hydrogen gas HG n having a lower hydrogen isotope content than hydrogen gas HG 0 is recovered from FCn in step (fc3), and hydrogen The method according to any one of claims 1 to 6, comprising co-producing gas (where n is an integer of 3 or more). 程(fc1)においてFC1の負極側に供給される水素ガスの量と、程(fc2)においてFC2又は程(fc3)においてFCnから回収される水素ガスの量の比は、100:0~50の範囲である、請求項1~8のいずれかに記載の方法。 The ratio of the amount of hydrogen gas supplied to the anode side of FC1 in step (fc1) to the amount of hydrogen gas recovered from FC2 in step (fc2) or FCn in step (fc3) is 100:0. The method of any one of claims 1-8, wherein the range is ∼50. 前記水電気分解装置における水電気分解用の電力の少なくとも一部は、前記燃料電池において発電された電力により賄われる、請求項1~9のいずれかに記載の方法。 The method according to any one of claims 1 to 9, wherein at least part of the power for water electrolysis in said water electrolyzer is provided by power generated in said fuel cell. 少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、請求項1~10のいずれかに記載の方法。 A method according to any preceding claim, wherein the at least two series-connected fuel cells are 3-10 fuel cells connected in series. 前記水溶液AS0が、純水、アルカリ水溶液又は海水である、請求項1~11のいずれかに記載の方法。 A method according to any of claims 1 to 11, wherein said aqueous solution AS 0 is pure water, alkaline aqueous solution or seawater. 少なくとも1つの水電気分解装置及び少なくとも2つの水素ガスの流れに直列に連結した燃料電池を含み、前記水電気分解装置は陰極室及び陽極室を有し、前記燃料電池はそれぞれ負極室及び正極室を有し、
前記水電気分解装置の陰極室から前記直列に連結した燃料電池の前記水電気分解装置に隣接する燃料電池の負極室に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の負極室間に水素ガス流通手段を有し、
前記直列に連結した燃料電池は、上記水電気分解装置に隣接する燃料電池から順次連結する各燃料電池の正極室間に酸素ガスまたは酸素含有ガス流通手段を有し、かつ、
上記燃料電池より生成した水を上記水電気分解装置へ回収する流通手段を有する、
水素同位体が濃縮された水または水溶液の製造装置。
at least one water electrolyser and at least two fuel cells connected in series with a stream of hydrogen gas, said water electrolyzer having a cathode compartment and an anode compartment, said fuel cell having an anode compartment and a cathode compartment, respectively. has
a means for flowing hydrogen gas from the cathode chamber of the water electrolyzer to the anode chamber of the fuel cell adjacent to the water electrolyzer of the fuel cells connected in series;
The fuel cells connected in series have hydrogen gas flow means between the negative electrode chambers of the fuel cells connected in order from the fuel cell adjacent to the water electrolysis device,
The fuel cells connected in series have an oxygen gas or oxygen-containing gas distribution means between the positive electrode chambers of the fuel cells sequentially connected from the fuel cell adjacent to the water electrolysis device, and
Having a distribution means for recovering the water generated by the fuel cell to the water electrolysis device,
Equipment for producing water or aqueous solutions enriched with hydrogen isotopes.
同位体濃度が低減された水素ガスを併産するための、請求項13に記載の製造装置。 14. The production apparatus of claim 13 for co-producing isotope-reduced hydrogen gas. 少なくとも2つの直列に連結した燃料電池は、3~10個の燃料電池を直列に連結したものである、請求項13~14のいずれかに記載の製造装置。 The manufacturing apparatus according to any one of claims 13 to 14 , wherein the at least two series-connected fuel cells are 3 to 10 fuel cells connected in series. 前記燃料電池は、固体高分子形燃料電池である、請求項13~15のいずれかに記載の製造装置。 The manufacturing apparatus according to any one of claims 13 to 15 , wherein said fuel cell is a polymer electrolyte fuel cell. 前記水電気分解装置は、隣接する燃料電池と連結した酸素ガスまたは酸素含有ガス流通手段を有する、請求項13~16のいずれかに記載の製造装置。 The production apparatus according to any one of claims 13 to 16 , wherein said water electrolyzer has an oxygen gas or oxygen-containing gas communication means connected to an adjacent fuel cell.
JP2019513716A 2017-04-21 2018-04-23 Method for producing water or aqueous solution enriched with hydrogen isotope, method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration Active JP7164882B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017084386 2017-04-21
JP2017084386 2017-04-21
PCT/JP2018/016440 WO2018194182A1 (en) 2017-04-21 2018-04-23 Method for producing hydrogen isotope enriched water or aqueous solution, and method and device for producing hydrogen gas having reduced hydrogen isotope concentration

Publications (2)

Publication Number Publication Date
JPWO2018194182A1 JPWO2018194182A1 (en) 2020-05-28
JP7164882B2 true JP7164882B2 (en) 2022-11-02

Family

ID=63855824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019513716A Active JP7164882B2 (en) 2017-04-21 2018-04-23 Method for producing water or aqueous solution enriched with hydrogen isotope, method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration

Country Status (2)

Country Link
JP (1) JP7164882B2 (en)
WO (1) WO2018194182A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337843A (en) 2003-04-25 2004-12-02 Showa Denko Kk Method and apparatus for concentrating hydrogen isotope water
JP2012158499A (en) 2011-02-01 2012-08-23 Fc Kaihatsu Kk Method and apparatus for producing deuterium-depleted water
JP2015187552A (en) 2014-03-26 2015-10-29 三菱重工環境・化学エンジニアリング株式会社 Radioactive matter treatment system
JP2017008341A (en) 2015-06-17 2017-01-12 デノラ・ペルメレック株式会社 Water treatment system utilizing alkaline water electrolyzer and alkaline fuel battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038174B2 (en) * 1977-09-27 1985-08-30 三菱重工業株式会社 Hydrogen isotope separation equipment
JPH117974A (en) * 1997-06-18 1999-01-12 Mitsubishi Electric Corp Power generating device of medium and large capacity fuel cell
JP4908851B2 (en) * 2006-01-17 2012-04-04 三菱重工業株式会社 Fuel cell and operation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337843A (en) 2003-04-25 2004-12-02 Showa Denko Kk Method and apparatus for concentrating hydrogen isotope water
JP2012158499A (en) 2011-02-01 2012-08-23 Fc Kaihatsu Kk Method and apparatus for producing deuterium-depleted water
JP2015187552A (en) 2014-03-26 2015-10-29 三菱重工環境・化学エンジニアリング株式会社 Radioactive matter treatment system
JP2017008341A (en) 2015-06-17 2017-01-12 デノラ・ペルメレック株式会社 Water treatment system utilizing alkaline water electrolyzer and alkaline fuel battery

Also Published As

Publication number Publication date
WO2018194182A1 (en) 2018-10-25
JPWO2018194182A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US4311569A (en) Device for evolution of oxygen with ternary electrocatalysts containing valve metals
US20040142215A1 (en) Electrochemical hydrogen compressor for electrochemical cell system and method for controlling
ES2862823T3 (en) Water treatment system using alkaline water electrolysis device and alkaline fuel cell
JP5422083B2 (en) Non-flow redox battery
CN103459674B (en) For the electrodialytic groove of saline solution depolarization
CN109321936A (en) A kind of device and method based on flow redox medium substep water electrolysis hydrogen production
KR101451630B1 (en) Method for reducing carbon dioxide and reductor of carbon dioxide using the same
EP3613875A2 (en) Hydrogen system and method of operation
CN114729461B (en) Method and device for electrolysis of water
WO2020038383A1 (en) Method and device for purifying electrolyte solution of flow battery
CN114402095B (en) Cross-flow water electrolysis
JP7164882B2 (en) Method for producing water or aqueous solution enriched with hydrogen isotope, method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration
US20220288532A1 (en) Hydrogen isotope concentrating apparatus
WO2013019427A1 (en) Method for generating biocide
CN111232921A (en) Method and device for preparing hydrogen and sulfur by decomposing hydrogen sulfide assisted by flow battery
JPS62182292A (en) Diaphragm electrolysis of hci
JPH01234585A (en) Method and device for electrolysis using gas diffusion electrode
JP2007059196A (en) Power generating system
RU2548442C1 (en) Method of obtaining deuterium-depleted water
CN114457352B (en) Device and method for hydrogen production by stepwise electrolysis of water based on acidic electrolyte
CN212077164U (en) Electric energy supply type electrochemical reactor
JPS6038174B2 (en) Hydrogen isotope separation equipment
JP2004211190A (en) Water electrolyzer
Gandu Extension of dynamic operational range in alkaline water electrolysis process
KR20220121658A (en) Water management unit in hydrogen generating system using water electrolysis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7164882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150