JP7164430B2 - Support structure for rotary furnace - Google Patents

Support structure for rotary furnace Download PDF

Info

Publication number
JP7164430B2
JP7164430B2 JP2018244493A JP2018244493A JP7164430B2 JP 7164430 B2 JP7164430 B2 JP 7164430B2 JP 2018244493 A JP2018244493 A JP 2018244493A JP 2018244493 A JP2018244493 A JP 2018244493A JP 7164430 B2 JP7164430 B2 JP 7164430B2
Authority
JP
Japan
Prior art keywords
furnace
furnace body
tire
engaging portion
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018244493A
Other languages
Japanese (ja)
Other versions
JP2020106191A (en
Inventor
大志 深澤
充良 津乗
泰弘 大竹
道則 成澤
典之 岩本
良平 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2018244493A priority Critical patent/JP7164430B2/en
Publication of JP2020106191A publication Critical patent/JP2020106191A/en
Application granted granted Critical
Publication of JP7164430B2 publication Critical patent/JP7164430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本開示は、回転炉、特にロータリーキルン炉、回転ストーカ式焼却炉などにおける回転炉の支持構造に関する。 TECHNICAL FIELD The present disclosure relates to rotary furnace support structures, particularly rotary kiln furnaces, rotary stoker incinerators, and the like.

特許文献1は、回転ストーカ式焼却炉の回転炉として、円筒状の炉本体と、炉本体の入口側と出口側の端部外周に取り付けられたタイヤと、を備えた回転炉を開示している。 Patent Document 1 discloses, as a rotary furnace of a rotary stoker type incinerator, a rotary furnace comprising a cylindrical furnace body and tires attached to the outer periphery of the inlet side and outlet side of the furnace body. there is

特開2005-114213号公報JP-A-2005-114213

回転炉では、炉本体の径方向の熱膨張を吸収できるように、炉本体を板バネ材またはスポーク材などを介してタイヤに支持させることがある。しかしながら、板バネ材及びスポーク材は、いずれも構造が複雑で部品点数も多く、回転炉の重量軽減を阻む要因の一つとなっていた。 In a rotary furnace, the furnace body is sometimes supported by tires via leaf spring members or spoke members so as to absorb radial thermal expansion of the furnace body. However, both the leaf spring member and the spoke member have a complicated structure and a large number of parts, which is one of the factors that hinder weight reduction of the rotary furnace.

本開示の目的は、回転炉の支持構造を簡素化して、その重量を軽減することにある。 An object of the present disclosure is to simplify the support structure of a rotary furnace and reduce its weight.

本開示の一態様にかかる回転炉の支持構造は、円筒状の炉本体と、炉本体の径方向外側を囲むタイヤと、炉本体及びタイヤのうち一方に相対移動不能に設けられた係合部と、炉本体及びタイヤのうち他方に相対移動不能に設けられた被係合部と、を備える。被係合部は、係合部に炉本体の径方向に相対移動可能かつ周方向に相対移動不能に係合する。炉本体は、係合部と該係合部に係合した被係合部とを介して、タイヤに支持される。 A support structure for a rotary furnace according to an aspect of the present disclosure includes a cylindrical furnace body, a tire that surrounds the radially outer side of the furnace body, and an engaging portion that is provided to one of the furnace body and the tire so as not to move relative to each other. and an engaged portion provided relatively immovably on the other of the furnace main body and the tire. The engaged portion engages with the engaging portion so as to be relatively movable in the radial direction of the furnace body and relatively immovable in the circumferential direction. The furnace main body is supported by the tire via the engaging portion and the engaged portion engaged with the engaging portion.

上記係合部は、炉本体の軸方向に延びるピンであり、被係合部は、ピンが挿通される長孔であり、長孔は、炉本体の径方向に延びていてもよい。また、係合部は、上記一方に固定された第1部材に設けられ、被係合部は、上記他方に固定された第2部材に設けられ、第1及び第2部材が、互いに炉本体の軸方向に当接して、炉本体に対するタイヤの軸方向移動を規制してもよい。さらに、係合部と、被係合部と、第1部材と、第1部材に対して炉本体の軸方向の片側から当接する第2部材とから構成された支持機構が、炉本体の周方向に複数配置されてもよい。当該複数の支持機構は、第2部材が炉本体の軸方向の一側から第1部材に当接する第1支持機構と、第2部材が炉本体の軸方向の他側から第1部材に当接する第2支持機構とを含んでもよい。 The engaging portion may be a pin extending in the axial direction of the furnace main body, the engaged portion may be a long hole through which the pin is inserted, and the long hole may extend in the radial direction of the furnace main body. The engaging portion is provided on the first member fixed to one of the members, the engaged portion is provided on the second member fixed to the other, and the first and second members are connected to each other. to restrict axial movement of the tire with respect to the furnace body. Further, a support mechanism composed of an engaging portion, an engaged portion, a first member, and a second member abutting against the first member from one side in the axial direction of the furnace main body is provided around the furnace main body. A plurality of them may be arranged in the direction. The plurality of support mechanisms includes a first support mechanism in which the second member contacts the first member from one axial side of the furnace main body, and a second member contacts the first member from the other axial side of the furnace main body. A contacting second support mechanism may also be included.

また、上記係合部は、炉本体の径方向に延びる凸部であり、被係合部は、凸部に係合する凹部であり、凹部の内壁面が、凸部の側面に対して摺動可能に面接触してもよい。さらに、凸部と凹部を画成する部材とは、互いに炉本体の軸方向に当接して、炉本体に対するタイヤの軸方向移動を規制してもよい。 The engaging portion is a convex portion extending in the radial direction of the furnace body, the engaged portion is a concave portion that engages with the convex portion, and the inner wall surface of the concave portion slides against the side surface of the convex portion. It may be in surface contact so as to be movable. Furthermore, the members defining the protrusion and the recess may abut against each other in the axial direction of the furnace body to restrict axial movement of the tire with respect to the furnace body.

上記回転炉の支持構造によれば、構造が簡素化され、その重量が軽減される。 According to the supporting structure of the rotary furnace, the structure is simplified and the weight is reduced.

実施形態にかかる回転ストーカ式焼却炉の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the rotary stoker-type incinerator concerning embodiment. 第1実施形態にかかる回転炉の支持構造を示す図であり、(a)は当該支持構造を炉本体の軸方向からみた図、(b)は(a)のB-B線に沿った断面図、(c)は(a)のC-C線に沿った断面図である。1 is a view showing a support structure of a rotary furnace according to a first embodiment, (a) is a view of the support structure seen from the axial direction of the furnace main body, and (b) is a cross section along line BB of (a). FIG. (c) is a cross-sectional view taken along line CC of (a). 図2の支持構造の作用を説明する図である。3A and 3B are views for explaining the action of the support structure of FIG. 2; FIG. 比較例にかかる回転炉の支持構造を示す図であり、(a)は当該支持構造を炉本体の軸方向からみた図、(b)は(a)のD-D線に沿った断面図である。FIG. 2 is a view showing a support structure of a rotary furnace according to a comparative example, (a) is a view of the support structure seen from the axial direction of the furnace main body, and (b) is a cross-sectional view along the DD line of (a). be. 他の比較例にかかる回転炉の支持構造を示す図であり、(a)は当該支持構造を炉本体の軸方向からみた図、(b)は(a)のE-E線に沿った断面図である。FIG. 10 is a view showing a support structure of a rotary furnace according to another comparative example, where (a) is a view of the support structure seen from the axial direction of the furnace main body, and (b) is a cross section along line EE of (a). It is a diagram. 第2実施形態にかかる回転炉の支持構造を示す図であり、(a)は当該支持構造の支持機構の一つを炉本体の軸方向からみた図、(b)は(a)のF-F線に沿った断面図である。FIG. 4 is a view showing a support structure of a rotary furnace according to a second embodiment, (a) is a view of one of the support mechanisms of the support structure seen from the axial direction of the furnace main body, (b) is F- It is a sectional view along F line.

以下、いくつかの実施形態について、図面を参照しながら説明する。なお、各図において実質的に同一の機能を有する要素については、同一の符号を付し、重複する説明を省略する。 Several embodiments are described below with reference to the drawings. Elements having substantially the same functions in each drawing are denoted by the same reference numerals, and overlapping descriptions are omitted.

<第1実施形態>
図1に示すように、回転ストーカ式焼却炉Sは、回転炉RFを含む。回転炉RFは、円筒状の炉本体1と、炉本体1の径方向外側を囲むタイヤ2と、を備える。以下の説明では、炉本体1の軸方向をz方向、炉本体1の径方向をr方向、炉本体1の周方向をθ方向、回転炉RFの回転方向をR方向と称する。
<First Embodiment>
As shown in FIG. 1, the rotary stoker incinerator S includes a rotary furnace RF. The rotary furnace RF includes a cylindrical furnace main body 1 and tires 2 surrounding the outer side of the furnace main body 1 in the radial direction. In the following description, the axial direction of the furnace body 1 is called the z direction, the radial direction of the furnace body 1 is called the r direction, the circumferential direction of the furnace body 1 is called the θ direction, and the rotation direction of the rotary furnace RF is called the R direction.

回転炉RFの炉本体1は、カバーケーシング3内に、入口側よりも出口側の方が低くなるように傾斜して横置きされている。タイヤ2は、炉本体1の入口側と出口側の端部外周に取り付けられており、それぞれターニングローラ4上に炉本体1の中心軸周りに回転可能に載置されている。本実施形態では、入口側のタイヤ2を駆動装置で回転させることで、炉本体1を回転駆動させる。 A furnace main body 1 of the rotary furnace RF is placed horizontally in a cover casing 3 so that the outlet side is lower than the inlet side. The tires 2 are attached to the outer periphery of the inlet side and the outlet side of the furnace body 1 , and are placed on turning rollers 4 so as to be rotatable about the central axis of the furnace body 1 . In this embodiment, the furnace main body 1 is rotationally driven by rotating the tire 2 on the entrance side with a driving device.

炉本体1は、リング状に形成した入口側ヘッダ管5及び出口側ヘッダ管6と、それらの間にθ方向に一定間隔で配置された図示しない多数の水管と、を備える。各水管の両端は、入口側ヘッダ管5と出口側ヘッダ管6とにそれぞれ接続されている。水管同士の間の隙間には、図示しないフィンが取り付けられており、フィンには、長手方向に所定の間隔をあけて多数の空気孔が穿設されている。出口側ヘッダ管6には、ロータリージョイント7が連結されており、これを介してボイラ水を各水管内に循環流通させている。 The furnace main body 1 includes an inlet-side header pipe 5 and an outlet-side header pipe 6 which are formed in a ring shape, and a large number of water pipes (not shown) arranged at regular intervals in the θ direction between them. Both ends of each water pipe are connected to an inlet-side header pipe 5 and an outlet-side header pipe 6, respectively. Fins (not shown) are attached to gaps between the water pipes, and the fins are provided with a large number of air holes at predetermined intervals in the longitudinal direction. A rotary joint 7 is connected to the outlet side header pipe 6, and the boiler water is circulated through each water pipe via this.

炉本体1の下方には、送風ダクト8が配置されている。送風ダクト8は、炉本体1内の下側側面から各空気孔を通して炉内に燃焼用空気を供給する。送風ダクト8は、複数の流路に分割されている。各分割流路は、各々ダンパ9を備え、ダンパ9の開度調整で燃焼用空気の供給量を調整する。 A fan duct 8 is arranged below the furnace body 1 . The air duct 8 supplies combustion air into the furnace from the lower side surface of the furnace body 1 through each air hole. The air duct 8 is divided into a plurality of flow paths. Each divided flow path is provided with a damper 9, and the opening of the damper 9 is adjusted to adjust the amount of combustion air supplied.

回転ストーカ式焼却炉Sでは、投入ホッパ10内の廃棄物11を給じん機12で炉本体1の入口側から炉本体1内に供給する。供給された廃棄物11は、炉本体1の回転により下流側に移送されつつ、送風ダクト8から供給する燃焼用空気によって、炉内の上流側から順に乾燥、熱分解、燃焼処理される。未燃ガスは、下流の二次燃焼室13で処理される。炉本体1から排出された灰は、後燃焼装置14で処理される。 In the rotary stoker type incinerator S, the waste 11 in the input hopper 10 is fed into the furnace main body 1 from the inlet side of the furnace main body 1 by the dust feeder 12 . The supplied waste 11 is transferred to the downstream side by the rotation of the furnace body 1, and dried, thermally decomposed, and burned in order from the upstream side in the furnace by the combustion air supplied from the air duct 8. Unburned gas is processed in the downstream secondary combustion chamber 13 . The ash discharged from the furnace body 1 is treated in the post-combustion device 14 .

炉本体1は、図2(a)に示すように、複数の支持機構20によってタイヤ2に支持されている。複数の支持機構20は、タイヤ2の延在方向に沿って設けられ、互いにθ方向に所定の間隔をあけて配置されている。なお、図示した例では、支持機構20をθ方向に等間隔で8箇所に配置しているが、支持機構20の個数は、7以下または9以上でもよく、θ方向の間隔は、非等間隔であってもよい。 The furnace body 1 is supported on the tires 2 by a plurality of support mechanisms 20, as shown in FIG. 2(a). The plurality of support mechanisms 20 are provided along the extending direction of the tire 2 and arranged at predetermined intervals in the θ direction. In the illustrated example, the support mechanisms 20 are arranged at eight locations at regular intervals in the θ direction. may be

複数の支持機構20は、図2(a)に示すように、第1支持機構21と第2支持機構22とを含む。各支持機構21,22は、図2(b)及び(c)に示すように、タイヤ2に固定された第1部材である第1ブラケット31と、炉本体1に固定された第2部材である第2ブラケット32と、を備える。第1ブラケット31は、z方向に貫通する第1貫通孔31aを有し、第2ブラケット32は、z方向に貫通する第2貫通孔32aを有する。 The plurality of support mechanisms 20 includes a first support mechanism 21 and a second support mechanism 22, as shown in FIG. 2(a). As shown in FIGS. 2B and 2C, each support mechanism 21, 22 is composed of a first bracket 31, which is a first member fixed to the tire 2, and a second member fixed to the furnace body 1. a second bracket 32; The first bracket 31 has a first through hole 31a penetrating in the z direction, and the second bracket 32 has a second through hole 32a penetrating in the z direction.

第1貫通孔31aと第2貫通孔32aとには、z方向に延びるピン33が挿通されている。本実施形態のピン33は、例えばクロムモリブデン鋼製の段付きボルトから構成される。段付きボルトは、ボルト頭部33aと、円柱状の大径部33bと、大径部33bよりも先端側に設けられた小径部33cとを備える。大径部33bの長さは、第1ブラケット31のうち第1貫通孔31aが形成された板状部分の厚さt1と、第2ブラケット32のうち第2貫通孔32aが形成された板状部分の厚さt2との和と略等しくなるように設定される。なお、ピン33の形状、材質等は、上記に限定されず、要求される仕様条件に応じて適宜選択することができる。 A pin 33 extending in the z direction is inserted through the first through hole 31a and the second through hole 32a. The pin 33 of this embodiment is composed of, for example, a stepped bolt made of chromium molybdenum steel. The stepped bolt includes a bolt head 33a, a cylindrical large-diameter portion 33b, and a small-diameter portion 33c provided closer to the tip than the large-diameter portion 33b. The length of the large-diameter portion 33b is determined by the thickness t1 of the plate-shaped portion of the first bracket 31 formed with the first through hole 31a and the plate-shaped portion of the second bracket 32 formed with the second through hole 32a. It is set to be substantially equal to the sum of the thickness t2 of the portion. The shape, material, etc. of the pin 33 are not limited to those described above, and can be appropriately selected according to the required specification conditions.

第1ブラケット31の第1貫通孔31a周縁部と、ボルト頭部33aとの間には、座金34が設けられている。また、第2ブラケット32の第2貫通孔32a周縁部と、ナット35との間には、座金36が設けられている。座金36は、段付きボルトの大径部33bと小径部33cとの間に形成された段差部と、小径部33cに締め付けられたナット35との間に挟持されている。ピン33は、第1貫通孔31aに挿通された状態において、タイヤ2に対して相対移動不能に設けられた係合部G1を構成する。また、第2貫通孔32aは、炉本体1に対して相対移動不能に設けられた被係合部G2を構成する。第2貫通孔32aは、r方向に延びる長孔SHであり、ピン33に対してr方向に相対移動可能かつθ方向に相対移動不能に係合する。長孔SHの幅は、ピン33の大径部33bの径より僅かに大きい。長孔SHの長さは、特に限定されないが、ピン33の大径部33bの径の例えば140%程度に設定することができる。 A washer 34 is provided between the peripheral portion of the first through hole 31a of the first bracket 31 and the bolt head portion 33a. A washer 36 is provided between the peripheral portion of the second through hole 32 a of the second bracket 32 and the nut 35 . The washer 36 is sandwiched between a stepped portion formed between the large-diameter portion 33b and the small-diameter portion 33c of the stepped bolt and the nut 35 tightened to the small-diameter portion 33c. The pin 33 constitutes an engaging portion G1 that is provided so as not to move relative to the tire 2 when inserted into the first through hole 31a. Further, the second through hole 32a constitutes an engaged portion G2 that is provided so as not to move relative to the furnace body 1. As shown in FIG. The second through hole 32a is an elongated hole SH extending in the r direction, and engages with the pin 33 so as to be relatively movable in the r direction but not relatively movable in the θ direction. The width of the long hole SH is slightly larger than the diameter of the large diameter portion 33b of the pin 33 . The length of the long hole SH is not particularly limited, but can be set to about 140% of the diameter of the large diameter portion 33b of the pin 33, for example.

図3は、各ピン33から第2ブラケット32の第2貫通孔32a周縁部或いは長孔SHの内側面に伝達される力を模式的に示したものである。図中実線で示したベクトルは、長孔SHの内側面に作用する力である。図中破線で示したベクトルは、長孔SHの内側面に作用する力の鉛直方向成分であり、各第2貫通孔32a周縁部が分担する炉本体1の重量である。即ち、破線で示されたベクトルの和が、当該タイヤ2が支持する炉本体1の重量に対応する。ここで炉本体1の重量は、例えば、炉本体1を構成する水管、ヘッダ管5,6、フィンなどの構造物の重量、炉内に存在する廃棄物11の重量、水管内を流れる冷却水の重量などを含む。 FIG. 3 schematically shows the force transmitted from each pin 33 to the peripheral portion of the second through hole 32a of the second bracket 32 or the inner surface of the long hole SH. A vector indicated by a solid line in the figure is a force acting on the inner surface of the long hole SH. The vector indicated by the dashed line in the drawing is the vertical component of the force acting on the inner surface of the long hole SH, and is the weight of the furnace body 1 shared by the peripheral edge portions of the second through holes 32a. That is, the sum of the vectors indicated by the dashed lines corresponds to the weight of the furnace body 1 supported by the tire 2 . Here, the weight of the furnace body 1 includes, for example, the weight of structures such as the water pipes, header pipes 5 and 6, and fins that constitute the furnace body 1, the weight of the waste 11 existing in the furnace, and the cooling water flowing in the water pipes. including the weight of

各長孔SHは、図3に示すように、炉本体1の中心軸Xに垂直な断面において、それぞれ中心軸Xから放射状に延びている。従って、仮に炉本体1の中心軸Xの位置がタイヤ2の中心軸Yの位置からずれようとしても、複数の長孔SHの中に中心軸の位置ずれの方向と交差する方向に延在するものが必ず存在し、それらにおいて、長孔SHの内側面がピン33の外周面と干渉することになる。例えば、炉本体1が重力によってタイヤ2に対して鉛直下方に移動しようとしても、図3に示すように、複数の長孔SHのうち延在方向が鉛直方向に対して傾斜した状態にあるもの(図3では6箇所)において、長孔SHの内側面がピン33の外周面と干渉する。このピン33と長孔SHとの機械的干渉によって、タイヤ2に対する炉本体1の下方移動が拘束される。換言すれば、炉本体1は、ピン33とこれに係合した長孔SHとを介してタイヤ2に支持される。 Each long hole SH extends radially from the central axis X in a cross section perpendicular to the central axis X of the furnace body 1, as shown in FIG. Therefore, even if the position of the central axis X of the furnace body 1 were to deviate from the position of the central axis Y of the tire 2, it would extend into the plurality of long holes SH in a direction intersecting the direction of deviation of the central axis. In these, the inner surface of the long hole SH interferes with the outer surface of the pin 33 . For example, even if the furnace body 1 tries to move vertically downward with respect to the tire 2 due to gravity, some of the plurality of long holes SH are in a state in which the extending direction is inclined with respect to the vertical direction, as shown in FIG. The inner surface of the long hole SH interferes with the outer peripheral surface of the pin 33 at (six points in FIG. 3). The downward movement of the furnace body 1 with respect to the tire 2 is restrained by the mechanical interference between the pin 33 and the long hole SH. In other words, the furnace body 1 is supported by the tires 2 via the pins 33 and the long holes SH engaged therewith.

また、図2(b)に示すように、第1支持機構21では、第2ブラケット32がz方向入口側(z方向一側)から第1ブラケット31に当接する。具体的には、第1ブラケット31の入口側側面31bにおける第1貫通孔31a周縁部と、第2ブラケット32の出口側側面32bにおける第2貫通孔32a周縁部とが、z方向に対向して当接する。一方、第2支持機構22では、図2(c)に示すように、第2ブラケット32がz方向出口側(z方向他側)から第1ブラケット31に当接する。具体的には、第1ブラケット31の出口側側面31cにおける第1貫通孔31a周縁部と、第2ブラケット32の入口側側面32cにおける第2貫通孔32a周縁部とが、z方向に対向して当接する。このように、各ブラケット31,32は、互いにz方向に当接して、炉本体1に対するタイヤ2のz方向移動(位置ずれ)を規制している。 As shown in FIG. 2B, in the first support mechanism 21, the second bracket 32 contacts the first bracket 31 from the entrance side in the z direction (one side in the z direction). Specifically, the peripheral portion of the first through hole 31a on the inlet side surface 31b of the first bracket 31 and the peripheral portion of the second through hole 32a on the outlet side surface 32b of the second bracket 32 face each other in the z direction. abut. On the other hand, in the second support mechanism 22, as shown in FIG. 2C, the second bracket 32 contacts the first bracket 31 from the exit side in the z direction (the other side in the z direction). Specifically, the peripheral portion of the first through hole 31a on the outlet side surface 31c of the first bracket 31 and the peripheral portion of the second through hole 32a on the inlet side surface 32c of the second bracket 32 face each other in the z direction. abut. In this manner, the brackets 31 and 32 are in contact with each other in the z-direction to restrict movement (positional displacement) of the tire 2 in the z-direction with respect to the furnace body 1 .

さらに、図2(a)に示すように、第1支持機構21と第2支持機構22とは、θ方向に交互に配置されている。即ち、r方向外側からみたとき、第2ブラケット32は、第1ブラケット31に対して千鳥に配置されている。なお、各支持機構21,22のθ方向の並び方は、図示したものに限らず、支持機構21,22は例えば2つずつ交互に配置されてもよい。 Furthermore, as shown in FIG. 2A, the first support mechanisms 21 and the second support mechanisms 22 are alternately arranged in the θ direction. That is, the second bracket 32 is arranged in a staggered manner with respect to the first bracket 31 when viewed from the outside in the r direction. The arrangement of the support mechanisms 21 and 22 in the θ direction is not limited to that shown in the figure, and the support mechanisms 21 and 22 may be alternately arranged, for example.

以下、本実施形態の作用効果について説明する。 The effects of this embodiment will be described below.

(1)比較例にかかる回転炉RFの支持構造としては、図4に示すように、炉本体1を複数のスポーク材80を介してタイヤ2に支持したものがある。この支持構造では、各スポーク材80がその両端部においてそれぞれタイヤ2及び炉本体1に揺動可能に連結されており、炉本体1の熱膨張・熱収縮による拡径・縮径変形をスポーク材80の揺動により吸収するようになっている。また、他の比較例としては、図5に示すように、炉本体1を複数の板バネ材90を介してタイヤ2に支持したものがある。この支持構造では、炉本体1の拡径・縮径変形を板バネ材90の弾性変形によって吸収するようになっている。 (1) As a support structure of the rotary furnace RF according to the comparative example, there is one in which the furnace body 1 is supported on the tire 2 via a plurality of spoke members 80 as shown in FIG. In this support structure, each spoke member 80 is oscillatably connected to the tire 2 and the furnace main body 1 at both ends thereof, and the spoke member 80 is adapted to expand or contract diameter deformation due to thermal expansion/contraction of the furnace main body 1 . 80 is designed to absorb the vibration. As another comparative example, as shown in FIG. 5, there is one in which the furnace main body 1 is supported by the tires 2 via a plurality of leaf spring members 90 . In this support structure, the expansion/reduction deformation of the furnace body 1 is absorbed by the elastic deformation of the plate spring member 90 .

これに対し、本実施形態にかかる支持構造では、タイヤ2に対して相対移動不能に設けられた係合部G1であるピン33と、炉本体1に対して相対移動不能に設けられた被係合部G2である長孔SHとを備えている。長孔SHは、ピン33に対してr方向に相対移動可能かつθ方向に相対移動不能に係合している。そのため、炉本体1の熱膨張・熱収縮による拡径・縮径変形は、ピン33と長孔SHとの間のr方向の相対移動により吸収される。一方、上記のごとく、炉本体1の荷重は、ピン33とこれにr方向に相対移動可能かつθ方向に相対移動不能に係合した長孔SHとを介して、タイヤ2に支持される。 On the other hand, in the support structure according to the present embodiment, the pin 33 which is the engaging portion G1 provided immovable relative to the tire 2 and the engaged portion G1 provided immovable relative to the furnace main body 1 are provided. It has a long hole SH which is the joint G2. The long hole SH engages with the pin 33 so as to be movable relative to the pin 33 in the r direction and immovable relative to the θ direction. Therefore, expansion/reduction deformation due to thermal expansion/contraction of the furnace body 1 is absorbed by the relative movement in the r direction between the pin 33 and the long hole SH. On the other hand, as described above, the load of the furnace body 1 is supported by the tires 2 via the pins 33 and the long holes SH engaged with the pins 33 so as to be relatively movable in the direction r and immovable in the direction θ.

従って、本実施形態にかかる支持構造によれば、比較例にかかるスポーク材80または板バネ材90を設ける必要がなくなり、そのため部品点数を減少させて構造を簡素化することができ、支持構造の重量、ひいては回転炉RFの重量を軽減することができる。また、スポーク材80及び板バネ材90を省くことができ、炉本体1の外周面からタイヤ2外周面までの高さ(r方向寸法)を抑えることができる。これにより、タイヤ2の外径寸法に対する炉本体1の外径寸法の比を大きくして、回転炉RFのr方向の最大寸法を抑えつつ炉容積を増大させることができる。 Therefore, according to the support structure according to the present embodiment, it is not necessary to provide the spoke members 80 or leaf spring members 90 according to the comparative example. The weight, and thus the weight of the rotary furnace RF, can be reduced. Also, the spoke member 80 and the leaf spring member 90 can be omitted, and the height (dimension in the r direction) from the outer peripheral surface of the furnace body 1 to the outer peripheral surface of the tire 2 can be reduced. As a result, the ratio of the outer diameter of the furnace body 1 to the outer diameter of the tire 2 can be increased, and the furnace volume can be increased while suppressing the maximum dimension of the rotary furnace RF in the r direction.

(2)また、本実施形態にかかる支持構造では、z方向に延びるピン33が、r方向に長い長孔SHに挿通され、ピン33は、長孔SHの内側面によってθ方向の相対移動を規制されつつ、r方向に相対移動可能となっている。即ち、このピン33及び長孔SHの組み合わせによれば、比較例にかかるスポーク材80または板バネ材90よりも簡易な構造で、炉本体1の熱膨張・熱収縮による拡径・縮径変形を許容しつつ、炉本体1の荷重をタイヤ2に支持させることができる。さらに、本実施形態にかかる支持構造によれば、スポーク材80または板バネ材90よりも構造が簡素化されるため、その施工性、メンテナンス性も向上する。例えば炉本体1からタイヤ2を取り外す際は、ブラケット31,32からz方向にピン33を引き抜き、タイヤ2を、炉本体1に対してθ方向に所定角度だけ回転させてから或いはそのままの姿勢でz方向に移動させればよい。 (2) In addition, in the support structure according to the present embodiment, the pin 33 extending in the z direction is inserted through the long hole SH long in the r direction, and the pin 33 is prevented from relatively moving in the θ direction by the inner surface of the long hole SH. While being regulated, it is possible to relatively move in the r direction. That is, according to the combination of the pin 33 and the long hole SH, the structure is simpler than that of the spoke member 80 or the leaf spring member 90 according to the comparative example, and the expansion/contraction deformation due to the thermal expansion/contraction of the furnace main body 1 can be performed. while allowing the load of the furnace body 1 to be supported by the tire 2 . Furthermore, according to the support structure according to the present embodiment, the structure is simpler than that of the spoke member 80 or leaf spring member 90, so that workability and maintainability are also improved. For example, when removing the tire 2 from the furnace main body 1, the pin 33 is pulled out from the brackets 31 and 32 in the z direction, and the tire 2 is rotated by a predetermined angle in the θ direction with respect to the furnace main body 1, or left as it is. It suffices to move it in the z direction.

(3)図4に示した比較例にかかる支持構造では、炉本体1が熱膨張または熱収縮によってz方向に伸長または収縮したときの、炉本体1に対するタイヤ2のz方向変位を防止するために、炉本体1の外周面にスラスト受け金物81を設けている。スラスト受け金物81は、図4(b)に示すように、スポーク材80のタイヤ側取付ブラケット83に対してz方向両側からストッパボルト81aを当接させて、炉本体1に対するタイヤ2のz方向移動を阻止している。また、図5に示した他の比較例にかかる支持構造でも同様に、炉本体1の外周面にスラスト受け金物91を設けている。このスラスト受け金物91は、図5(b)に示すように、板バネ材90の取付ブラケット93に対してz方向両側からストッパボルト91aを当接させて、炉本体1に対するタイヤ2のz方向移動を阻止している。 (3) In the support structure according to the comparative example shown in FIG. In addition, a thrust receiving hardware 81 is provided on the outer peripheral surface of the furnace body 1 . As shown in FIG. 4(b), the thrust receiving hardware 81 is mounted on the tire side mounting bracket 83 of the spoke member 80 by abutting the stopper bolts 81a from both sides in the z direction, thereby supporting the tire 2 against the furnace body 1 in the z direction. blocking movement. Similarly, in the support structure according to the other comparative example shown in FIG. As shown in FIG. 5(b), the thrust receiving metal fittings 91 are attached to the mounting brackets 93 of the plate spring members 90 by the stopper bolts 91a abutting from both sides in the z-direction, thereby supporting the tire 2 against the furnace body 1 in the z-direction. blocking movement.

これに対し、本実施形態にかかる支持構造では、第1ブラケット31と第2ブラケット32とが、互いにz方向に当接して、炉本体1に対するタイヤ2のz方向移動を規制している。これにより、炉本体1がz方向に伸長または収縮したときの、炉本体1に対するタイヤ2のz方向変位(位置ずれ)を防止する。即ち、本実施形態によれば、ブラケット31,32が、炉本体1の重量の支持金物とスラスト受け金物とを兼ねることができるため、上記比較例にかかるスラスト受け金物81,91を省略することができる。 On the other hand, in the support structure according to this embodiment, the first bracket 31 and the second bracket 32 are in contact with each other in the z-direction to restrict the movement of the tire 2 in the z-direction with respect to the furnace body 1 . This prevents displacement (displacement) of the tire 2 in the z direction with respect to the furnace body 1 when the furnace body 1 expands or contracts in the z direction. That is, according to the present embodiment, the brackets 31 and 32 can serve both as support metal fittings for the weight of the furnace body 1 and as thrust receiving metal fittings, so the thrust receiving metal fittings 81 and 91 according to the comparative example can be omitted. can be done.

(4)また、本実施形態にかかる支持構造では、支持機構20が、第1支持機構21と第2支持機構22とを含む。そして、第1支持機構21では、第2ブラケット32がz方向入口側(z方向一側)のみから第1ブラケット31に当接し、第2支持機構22では、第2ブラケット32がz方向出口側(z方向他側)のみから第1ブラケット31に当接する。このため、ブラケット31,32の一方を他方に対してz方向両側から当接させる場合よりも、少ない部品で効率良くタイヤ2のz方向移動を規制して、タイヤ2を炉本体1のz方向の伸長及び収縮に追随させることができる。 (4) In addition, in the support structure according to this embodiment, the support mechanism 20 includes the first support mechanism 21 and the second support mechanism 22 . In the first support mechanism 21, the second bracket 32 contacts the first bracket 31 only from the entrance side in the z direction (one side in the z direction). It abuts on the first bracket 31 only from (the other side in the z direction). Therefore, compared with the case where one of the brackets 31 and 32 is brought into contact with the other from both sides in the z-direction, the movement of the tire 2 in the z-direction is efficiently restricted with a smaller number of parts, and the tire 2 is moved to the furnace body 1 in the z-direction. can follow the elongation and contraction of

(5)さらに、本実施形態にかかる支持構造では、第1ブラケット31の第1貫通孔31a周縁部と、第2ブラケット32の第2貫通孔32a周縁部とが、互いに面同士で当接してスラスト荷重を受ける。このため、比較例にかかるスラスト受け金物81,91のストッパボルト81a,91aよりも荷重受け面の面圧を低減して、繰り返し荷重に対する耐久性を向上させることができる。 (5) Furthermore, in the support structure according to the present embodiment, the peripheral portion of the first through hole 31a of the first bracket 31 and the peripheral portion of the second through hole 32a of the second bracket 32 are in contact with each other. receive a thrust load. Therefore, it is possible to reduce the surface pressure of the load receiving surface more than the stopper bolts 81a, 91a of the thrust receiving metal fittings 81, 91 according to the comparative example, thereby improving durability against repeated loads.

なお、本実施形態では、各支持機構20において、第2ブラケット32がz方向の片側のみから第1ブラケット31に当接していたが、支持機構20の一部において、第2ブラケット32は、z方向の両側から第1ブラケット31に当接するようにしてもよい。即ち、第1ブラケット31のz方向の両側に第2ブラケット32を設け、2つの第2ブラケット32で第1ブラケット31を間に挟むようにしてもよい。また、これとは逆に、第1ブラケット31がz方向の両側から第2ブラケット32に当接するようにしてもよい。片側のみから当接させる場合よりも、当該支持機構20におけるスラスト荷重に対する支持剛性を高めることができる。 In this embodiment, in each support mechanism 20, the second bracket 32 abuts the first bracket 31 only from one side in the z direction. You may make it contact|abut on the 1st bracket 31 from both sides of a direction. That is, the second brackets 32 may be provided on both sides of the first bracket 31 in the z direction, and the first bracket 31 may be sandwiched between the two second brackets 32 . Conversely, the first bracket 31 may abut on the second bracket 32 from both sides in the z direction. The support rigidity against the thrust load in the support mechanism 20 can be increased as compared with the case where only one side is brought into contact.

また、ピン33の断面形状は円形に限らない。例えば、ピン33の外周面のうち、ピン33のr方向の相対移動によって長孔SHの内側面と摺接することとなる領域には、接触面圧を低減するべく平坦部を形成してもよい。 Also, the cross-sectional shape of the pin 33 is not limited to a circular shape. For example, a flat portion may be formed in a region of the outer peripheral surface of the pin 33 that comes into sliding contact with the inner surface of the elongated hole SH due to the relative movement of the pin 33 in the r direction so as to reduce the contact surface pressure. .

<他の実施形態>
次に、他の実施形態にかかる回転炉RFの支持構造について説明する。なお、各実施形態の説明では、それぞれ先行する実施形態と異なる構成についてのみ説明することとし、先行する実施形態において既に説明した要素と同じ機能を有する要素については、同一の符号を付して、その説明を省略する。
<Other embodiments>
Next, a support structure for a rotary furnace RF according to another embodiment will be described. In addition, in the description of each embodiment, only the configurations different from those of the preceding embodiments will be described. The explanation is omitted.

なお、以下の実施形態にかかる回転炉RFの支持構造は、第1実施形態と同様に、炉本体1及びタイヤ2のうち一方に対して相対移動不能に設けられた係合部G1と、他方に対して相対移動不能に設けられた被係合部G2を備える。そして、被係合部G2は、係合部G1にr方向に相対移動可能かつθ方向に相対移動不能に係合する。従って、これらの実施形態でも、第1実施形態と同様の効果(少なくとも上記(1)の効果)を得ることができる。 As in the first embodiment, the support structure of the rotary furnace RF according to the following embodiments includes an engaging portion G1 provided immovably relative to one of the furnace main body 1 and the tire 2, and the other The engaged portion G2 is provided so as to be relatively immovable with respect to the . Then, the engaged portion G2 engages with the engaging portion G1 so as to be relatively movable in the r direction and relatively immovable in the θ direction. Therefore, in these embodiments as well, the same effects as in the first embodiment (at least the effect of (1) above) can be obtained.

<第2実施形態>
第2実施形態にかかる回転炉RFの支持構造では、各支持機構20が、図6(a)に示すように、炉本体1に対して相対移動不能に設けられた係合部G1である凸部41と、タイヤ2に対して相対移動不能に設けられた被係合部G2である凹部42と、を備える。そして、凸部41は、r方向に延びており、凹部42は、凸部41に対してr方向に相対移動可能かつθ方向に相対移動不能に係合する。
<Second embodiment>
In the support structure of the rotary furnace RF according to the second embodiment, as shown in FIG. and a concave portion 42 which is an engaged portion G2 provided so as not to be relatively movable with respect to the tire 2 . The convex portion 41 extends in the r direction, and the concave portion 42 engages with the convex portion 41 so as to be relatively movable in the r direction and not relatively movable in the θ direction.

凸部41は、例えば図6(b)に示すように、r方向と直交する方向に4つの側面を有する。4つの側面は、R方向前側の側面41a(以下、前側面)と、R方向後側の側面41b(以下、後側面)と、炉本体1の入口側の側面41cと、出口側の側面41dとである。 For example, as shown in FIG. 6B, the convex portion 41 has four side surfaces in a direction orthogonal to the r direction. The four side surfaces are a side surface 41a on the front side in the R direction (hereinafter referred to as a front side surface), a side surface 41b on the rear side in the R direction (hereinafter referred to as a rear side surface), a side surface 41c on the inlet side of the furnace body 1, and a side surface 41d on the outlet side. and

凹部42は、例えば図6(a)に示すように、凸部41よりR方向前側に設けられた前側ガイド部材43と、凸部41よりR方向後側に設けられた後側ガイド部材44との間に形成された、r方向に深さを有する溝45である。溝45は、R方向前側の内壁面45aと、R方向後側の内壁面45bとによって画成される。内壁面45aは、前側ガイド部材43のR方向後側の側面により構成され、内壁面45bは、後側ガイド部材44のR方向前側の側面により構成され得る。内壁面45a,45bは、互いに平行であり、かつr方向に平行である。内壁面45a,45b同士の間隔、即ち、溝45の幅は、凸部41の厚さ、即ち、前側面41aから後側面41bまでの幅より大きい。 For example, as shown in FIG. 6A, the concave portion 42 includes a front side guide member 43 provided on the R direction front side of the convex portion 41 and a rear side guide member 44 provided on the R direction rear side of the convex portion 41. is a groove 45 having a depth in the r-direction formed between . The groove 45 is defined by an inner wall surface 45a on the front side in the R direction and an inner wall surface 45b on the rear side in the R direction. The inner wall surface 45a may be formed by the side surface of the front guide member 43 on the rear side in the R direction, and the inner wall surface 45b may be formed by the side surface of the rear guide member 44 on the front side in the R direction. The inner wall surfaces 45a and 45b are parallel to each other and parallel to the r direction. The distance between the inner wall surfaces 45a and 45b, that is, the width of the groove 45, is larger than the thickness of the protrusion 41, that is, the width from the front side surface 41a to the rear side surface 41b.

凸部41と凹部42とが係合した状態では、凹部42の内壁面45aが、凸部41の前側面41aに、凹部42の内壁面45bが、凸部41の後側面41bに、それぞれ摺動可能に面接触するようになっている。凸部41のr方向外側先端部と凹部42の底部との間の隙間は、炉本体1が熱膨張・熱収縮する際の、凸部41と凹部42との間のr方向の相対移動を許容し得る大きさに設定される。ガイド部材43,44のr方向内側先端部と凸部41の基部との間の隙間も、同様である。 In the state where the convex portion 41 and the concave portion 42 are engaged, the inner wall surface 45a of the concave portion 42 slides on the front side surface 41a of the convex portion 41, and the inner wall surface 45b of the concave portion 42 slides on the rear side surface 41b of the convex portion 41, respectively. It is adapted to be in surface contact so as to be movable. The gap between the r-direction outer tip of the projection 41 and the bottom of the recess 42 prevents relative movement in the r-direction between the projection 41 and the recess 42 when the furnace body 1 thermally expands and contracts. Set to an acceptable size. The same applies to the gaps between the r-direction inner tips of the guide members 43 and 44 and the base of the projection 41 .

また、本実施形態では、図6(b)に示すように、ガイド部材43,44のz方向出口側(z方向他側)に、それらを互いに連結する板状の連結部材50が設けられている。連結部材50は、例えば、前側ガイド部材43の出口側側面43aと、後側ガイド部材44の出口側側面44aとに、図示しないボルト等の締結部材によって締結固定されている。連結部材50の入口側側面のうち溝45に対向する領域50aは、溝45のz方向出口側の端部を画成している。連結部材50は、その領域50aにおいて、凸部41の出口側側面41dに摺接可能に当接する。即ち、凸部41と、凹部42を画成する連結部材50とが、互いにz方向に当接する。これにより、炉本体1に対するタイヤ2のz方向移動が規制される。 In this embodiment, as shown in FIG. 6B, a plate-like connecting member 50 is provided on the exit side of the guide members 43 and 44 in the z direction (the other side in the z direction) to connect them to each other. there is The connecting member 50 is fastened and fixed to, for example, the exit side surface 43a of the front guide member 43 and the exit side surface 44a of the rear guide member 44 by fastening members such as bolts (not shown). A region 50a of the inlet-side side surface of the connecting member 50 that faces the groove 45 defines the end of the groove 45 on the outlet side in the z direction. The connecting member 50 slidably abuts on the exit-side side surface 41d of the projection 41 in the area 50a. That is, the convex portion 41 and the connecting member 50 defining the concave portion 42 abut each other in the z direction. As a result, the z-direction movement of the tire 2 with respect to the furnace body 1 is restricted.

なお、図6に示した支持機構20では、ガイド部材43,44のz方向出口側(z方向他側)に連結部材50が設けられていたが、連結部材50とガイド部材43,44との位置関係はこれに限らない。即ち、本実施形態の支持機構20は、ガイド部材43,44のz方向入口側(z方向一側)に連結部材50が設けられた支持機構を含み得る。 In the support mechanism 20 shown in FIG. 6, the connecting member 50 is provided on the exit side of the guide members 43 and 44 in the z direction (the other side in the z direction). The positional relationship is not limited to this. That is, the support mechanism 20 of this embodiment can include a support mechanism in which the connecting member 50 is provided on the entrance side in the z direction (one side in the z direction) of the guide members 43 and 44 .

(5)本実施形態によれば、凹部42の内壁面45a,45bが凸部41の側面41a,41bに対して面接触するため、凸部41と凹部42との間の接触部の接触面圧を低減して、当該接触部の摩耗を抑制することができる。 (5) According to the present embodiment, since the inner wall surfaces 45a and 45b of the concave portion 42 are in surface contact with the side surfaces 41a and 41b of the convex portion 41, the contact surfaces of the contact portions between the convex portion 41 and the concave portion 42 Wear of the contact portion can be suppressed by reducing the pressure.

(6)本実施形態によれば、凸部41と、凹部42を画成する連結部材50とが互いにz方向に当接して、炉本体1に対するタイヤ2のz方向移動を規制するため、第1実施形態と同様に、上記比較例にかかるスラスト受け金物81,91を省略することができる。 (6) According to the present embodiment, the convex portion 41 and the connecting member 50 defining the concave portion 42 are in contact with each other in the z-direction to restrict the movement of the tire 2 in the z-direction with respect to the furnace body 1. As in the first embodiment, the thrust receiving hardware 81, 91 according to the comparative example can be omitted.

なお、凸部41及び凹部42の形状は、凹部42が凸部41に対してr方向に相対移動可能かつθ方向に相対移動不能に係合し得るものであれば、特に限定されない。例えば、凸部41の形状は、上記板状の他、棒状、管状、方形状などであってもよく、凹部42の形状は、上記溝状の他、穴状などであってもよい。 The shapes of the convex portion 41 and the concave portion 42 are not particularly limited as long as the concave portion 42 can engage with the convex portion 41 so as to be relatively movable in the r direction and not relatively movable in the θ direction. For example, the shape of the convex portion 41 may be rod-like, tubular, rectangular, etc., in addition to the plate-like shape described above, and the shape of the concave portion 42 may be hole-like, etc., in addition to the groove-like shape.

<第3~第6実施形態>
第3実施形態にかかる支持構造では、複数の支持機構20のうちの一部または全部において、第1実施形態にかかるピン33が炉本体1に設けられ、第1実施形態にかかる長孔SHがタイヤ2に設けられる。また、第4実施形態にかかる支持構造では、複数の支持機構20のうちの一部または全部において、第2実施形態にかかる凸部41がタイヤ2に設けられ、第2実施形態にかかる凹部42が炉本体1に設けられる。
<Third to Sixth Embodiments>
In the support structure according to the third embodiment, the pins 33 according to the first embodiment are provided in the furnace body 1 in some or all of the plurality of support mechanisms 20, and the long holes SH according to the first embodiment are provided. It is provided on the tire 2 . Further, in the support structure according to the fourth embodiment, the protrusions 41 according to the second embodiment are provided on the tire 2 in some or all of the plurality of support mechanisms 20, and the recesses 42 according to the second embodiment. are provided in the furnace body 1 .

さらに、第5実施形態にかかる支持構造では、複数の支持機構20が、第1~第4実施形態及びそれらの変形例にかかる支持機構20のいずれか2以上の組み合わせから構成される。さらに、第6実施形態にかかる支持構造では、複数の支持機構20が、第1~第5実施形態及びそれらの変形例にかかる支持機構20のいずれか1以上と、上記比較例にかかる板バネ材90を用いた支持構造との組み合わせから構成される。この第6実施形態では、一部の板バネ材90が当該組み合わせにかかる支持機構20と入れ替わることで、比較例よりも回転炉RFの重量が軽減されることになる。 Furthermore, in the support structure according to the fifth embodiment, a plurality of support mechanisms 20 are configured by combining any two or more of the support mechanisms 20 according to the first to fourth embodiments and their modifications. Furthermore, in the support structure according to the sixth embodiment, the plurality of support mechanisms 20 include any one or more of the support mechanisms 20 according to the first to fifth embodiments and their modifications, and the leaf spring according to the comparative example. It consists of a combination with a support structure using material 90 . In the sixth embodiment, part of the leaf spring members 90 are replaced with the support mechanism 20 associated with the combination, thereby reducing the weight of the rotary furnace RF compared to the comparative example.

以上、いくつかの実施形態について説明したが、本開示は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although several embodiments have been described above, the present disclosure is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist thereof.

上記実施形態及びそれらの変形例では、回転ストーカ式焼却炉Sの回転炉RFを例にとって説明したが、上記支持構造は、ロータリーキルン炉の回転炉など他の回転炉の支持構造に適用できることは勿論である。 In the above embodiments and their modifications, the rotary furnace RF of the rotary stoker type incinerator S was taken as an example, but the above support structure can of course be applied to the support structure of other rotary furnaces such as rotary kiln furnaces. is.

RF 回転炉
1 炉本体
2 タイヤ
20 支持機構
21 第1支持機構
22 第2支持機構
31 第1ブラケット(第1部材)
32 第2ブラケット(第2部材)
SH 長孔
33 ピン
41 凸部
41a 前側面(側面)
41b 後側面(側面)
42 凹部
45 溝(凹部)
45a,45b 内壁面
50 連結部材(凹部を画成する部材)
G1 係合部
G2 被係合部
RF rotary furnace 1 furnace body 2 tire 20 support mechanism 21 first support mechanism 22 second support mechanism 31 first bracket (first member)
32 second bracket (second member)
SH long hole 33 pin 41 protrusion 41a front side surface (side surface)
41b rear side (side)
42 recess 45 groove (recess)
45a, 45b inner wall surface 50 connecting member (member defining recess)
G1 Engaging portion G2 Engaged portion

Claims (5)

円筒状の炉本体と、
前記炉本体の径方向外側を囲むタイヤと、
前記炉本体及び前記タイヤのうち一方に相対移動不能に設けられた第1係合部と、
前記炉本体及び前記タイヤのうち他方に相対移動不能に設けられ、前記第1係合部に前記炉本体の径方向に相対移動可能かつ周方向に相対移動不能に係合する第1被係合部と、
を備え、
前記炉本体が、前記第1係合部と該第1係合部に係合した前記第1被係合部とを介して、前記タイヤに支持され
前記第1係合部は、前記炉本体の軸方向に延びるピンであり、
前記第1被係合部は、前記ピンが挿通される長孔であり、
前記長孔は、前記炉本体の径方向に延びている、回転炉の支持構造。
a cylindrical furnace body;
a tire surrounding the radially outer side of the furnace body;
a first engaging portion provided in one of the furnace main body and the tire so as not to move relative to each other;
A first engaged portion which is provided on the other of the furnace main body and the tire so as not to move relative to each other, and engages with the first engaging portion so as to be relatively movable in the radial direction of the furnace main body and immovable relative to the circumferential direction of the furnace main body. Department and
with
The furnace body is supported by the tire via the first engaging portion and the first engaged portion engaged with the first engaging portion ,
The first engaging portion is a pin extending in the axial direction of the furnace body,
The first engaged portion is an elongated hole through which the pin is inserted,
The rotary furnace support structure , wherein the long hole extends in the radial direction of the furnace body .
前記第1係合部は、前記一方に固定された第1部材に設けられ、
前記第1被係合部は、前記他方に固定された第2部材に設けられ、
前記第1及び第2部材は、互いに前記炉本体の軸方向に当接して、前記炉本体に対する前記タイヤの軸方向移動を規制する、請求項に記載の回転炉の支持構造。
The first engaging portion is provided on a first member fixed to the one,
The first engaged portion is provided on a second member fixed to the other,
2. The support structure for a rotary furnace according to claim 1 , wherein said first and second members abut against each other in the axial direction of said furnace body to restrict axial movement of said tire with respect to said furnace body.
前記第1係合部と、前記第1被係合部と、前記第1部材と、前記第1部材に対して前記炉本体の軸方向の片側から当接する前記第2部材とから構成された支持機構が、前記炉本体の周方向に複数配置されており、
前記複数の支持機構は、前記第2部材が前記炉本体の軸方向の一側から前記第1部材に当接する第1支持機構と、前記第2部材が前記炉本体の軸方向の他側から前記第1部材に当接する第2支持機構とを含む、請求項に記載の回転炉の支持構造。
The first engaging portion, the first engaged portion, the first member, and the second member contacting the first member from one side in the axial direction of the furnace body. A plurality of support mechanisms are arranged in the circumferential direction of the furnace body,
The plurality of support mechanisms include: a first support mechanism in which the second member abuts against the first member from one side of the furnace body in the axial direction; 3. The support structure for a rotary furnace according to claim 2 , further comprising a second support mechanism that contacts said first member.
前記炉本体及び前記タイヤのうち一方に相対移動不能に設けられた第2係合部と、
前記炉本体及び前記タイヤのうち他方に相対移動不能に設けられ、前記第2係合部に前記炉本体の径方向に相対移動可能かつ周方向に相対移動不能に係合する第2被係合部と、
をさらに備え、
前記炉本体が、前記第2係合部と該第2係合部に係合した前記第2被係合部とを介して、前記タイヤに支持され、
前記第2係合部は、前記炉本体の径方向に延びる凸部であり、
前記第2被係合部は、前記凸部に係合する凹部であり、
前記凹部の内壁面が、前記凸部の側面に対して摺動可能に面接触する、請求項1に記載の回転炉の支持構造。
a second engaging portion provided in one of the furnace main body and the tire so as not to move relative to each other;
A second engaged portion which is provided on the other of the furnace main body and the tire so as not to move relative to each other, and which engages with the second engaging portion so as to be relatively movable in the radial direction of the furnace main body and immovable in the circumferential direction. Department and
further comprising
The furnace body is supported by the tire via the second engaging portion and the second engaged portion engaged with the second engaging portion,
The second engaging portion is a convex portion extending in the radial direction of the furnace body,
The second engaged portion is a concave portion that engages with the convex portion,
2. The support structure for a rotary furnace according to claim 1, wherein an inner wall surface of said recess is in surface contact with a side surface of said protrusion so as to be slidable.
前記凸部と前記凹部を画成する部材とが、互いに前記炉本体の軸方向に当接して、前記炉本体に対する前記タイヤの軸方向移動を規制する、請求項に記載の回転炉の支持構造。 5. The support of the rotary furnace according to claim 4 , wherein the protrusion and the member defining the recess are in contact with each other in the axial direction of the furnace body to restrict axial movement of the tire with respect to the furnace body. structure.
JP2018244493A 2018-12-27 2018-12-27 Support structure for rotary furnace Active JP7164430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018244493A JP7164430B2 (en) 2018-12-27 2018-12-27 Support structure for rotary furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018244493A JP7164430B2 (en) 2018-12-27 2018-12-27 Support structure for rotary furnace

Publications (2)

Publication Number Publication Date
JP2020106191A JP2020106191A (en) 2020-07-09
JP7164430B2 true JP7164430B2 (en) 2022-11-01

Family

ID=71448734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018244493A Active JP7164430B2 (en) 2018-12-27 2018-12-27 Support structure for rotary furnace

Country Status (1)

Country Link
JP (1) JP7164430B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188890A (en) 2000-10-13 2002-07-05 Ishikawajima Harima Heavy Ind Co Ltd Rotary kiln
JP5240570B2 (en) 2007-01-18 2013-07-17 株式会社安川電機 Power conversion control device and its AC motor starting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523876A (en) * 1978-08-10 1980-02-20 Babcock Hitachi Kk Thermal expansion absorber for kiln

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188890A (en) 2000-10-13 2002-07-05 Ishikawajima Harima Heavy Ind Co Ltd Rotary kiln
JP5240570B2 (en) 2007-01-18 2013-07-17 株式会社安川電機 Power conversion control device and its AC motor starting method

Also Published As

Publication number Publication date
JP2020106191A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
CN103527266B (en) The bubbler of exhaust section and gas turbine for gas turbine
EP2154335B1 (en) Ring seal attachment system
US8776864B2 (en) Full contact flexible seal assembly for heat exchanger
JP2009222058A (en) Inner turbine shell support configuration and method
US8157266B2 (en) Full contact flexible seal assembly for heat exchanger
JP7164430B2 (en) Support structure for rotary furnace
JP7254445B2 (en) Garbage incinerator grate cooling structure, garbage incinerator grate cooling method, and garbage incinerator combustion air preheating method
US7543682B2 (en) Sheet-metal-type part
JP7385778B2 (en) Incinerator structure
JPH024129A (en) Supporting structure for gas turbine combustion device
CN212775179U (en) Bearing mechanism, damper mechanism, and boiler provided with damper mechanism
JP7016645B2 (en) Rotating structure
JP7215928B2 (en) heat exchanger and boiler
KR102182103B1 (en) Variable exhaust nozzle for gas turbine engine
JP4583964B2 (en) Sealing device for raw material delivery device
CN111351026B (en) Combustor storage device and virtual combustion chamber blocking method
JP2008224184A (en) Suspension type heat transfer tube group and boiler device having this transfer tube group
JPH11325402A (en) Through-flow boiler
JP6827290B2 (en) Gas warmer
JP5087221B2 (en) Stoker-type combustor
JP7130569B2 (en) HEAT EXCHANGER, BOILER, AND METHOD FOR ADJUSTING HEAT EXCHANGER
JP4136879B2 (en) Rotary kiln and incinerator
JP7156936B2 (en) Support structure for rotating structures
JP4721589B2 (en) Dummy tube device for fluidized bed boiler
JP2005147426A (en) Heat exchanger

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221020

R150 Certificate of patent or registration of utility model

Ref document number: 7164430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150