JP7162365B2 - Exiguobacterium sibilicum producing cryoproteases and uses thereof - Google Patents

Exiguobacterium sibilicum producing cryoproteases and uses thereof Download PDF

Info

Publication number
JP7162365B2
JP7162365B2 JP2021100444A JP2021100444A JP7162365B2 JP 7162365 B2 JP7162365 B2 JP 7162365B2 JP 2021100444 A JP2021100444 A JP 2021100444A JP 2021100444 A JP2021100444 A JP 2021100444A JP 7162365 B2 JP7162365 B2 JP 7162365B2
Authority
JP
Japan
Prior art keywords
exiguobacterium
producing
temperature
cryoproteases
cryoprotease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021100444A
Other languages
Japanese (ja)
Other versions
JP2022031130A (en
Inventor
革 楊
松鶴 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qufu Normal University
Original Assignee
Qufu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qufu Normal University filed Critical Qufu Normal University
Publication of JP2022031130A publication Critical patent/JP2022031130A/en
Application granted granted Critical
Publication of JP7162365B2 publication Critical patent/JP7162365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

CGMCC CGMCC 2035820358

本発明は、微生物のスクリーニング及び使用の分野に関し、具体的には、低温プロテアーゼを生産するエキシグオバクテリウム・シビリカム、及びその使用に関する。 FIELD OF THE INVENTION The present invention relates to the field of microbial screening and use, and in particular to Exiguobacterium sibilicum, which produces cryoproteases, and uses thereof.

酵素とは、一般的に、常温、さらに低温条件下でペプチド結合の加水分解を触媒できる酵素のことである。低温プロテアーゼとは、最適触媒温度が40℃以下であり、しかも、20~30℃においても高酵素活性(50%以上)を保持できるタンパク質加水分解酵素であり、その最適触媒温度が自然環境の温度に近いため、使用時に加熱又は冷却のプロセスを省略することができ、高温プロテアーゼに比べて、エネルギーを節約して、時間節約などの特徴を有し、食品や洗濯産業において応用の将来性が期待できる。現在発見されている低温プロテアーゼ生産菌株には、氷河永久凍土に由来するバチルス・リケニフォルミスとバチルス・プミルス、南極大陸に由来するクロストリジウムとサイクロバクター、海氷の浮氷に由来するコルウェリア属、寒い砂漠地帯に由来するエグジゴバクテリウム、及び他の寒冷環境に由来するセラチア、ビブリオ、キサントモナス、シェワネラ属のペニシリウム・クリソゲナムなどがある。これらの菌株により生産される低温プロテアーゼの最適触媒温度はほとんどが30~40℃の間であり、最適触媒温度が20℃未満のものはごくわずかであるがが、安定性が劣る。 Enzymes generally refer to enzymes that can catalyze the hydrolysis of peptide bonds at room temperature and even at low temperatures. A low-temperature protease is a protein hydrolase that has an optimum catalyst temperature of 40°C or less and can maintain high enzyme activity (50% or more) even at 20 to 30°C, and its optimum catalyst temperature is the temperature of the natural environment. Because it is close to , the heating or cooling process can be omitted during use, and compared to high-temperature proteases, it saves energy and time, and is expected to be applied in the food and laundry industries in the future. can. Currently discovered cold protease-producing strains include Bacillus licheniformis and Bacillus pumilus from glacial permafrost, Clostridium and Cyclobacter from Antarctica, Colwellia from sea ice floes, Exygobacterium from which it originates, and Serratia, Vibrio, Xanthomonas from other cold environments, and Penicillium chrysogenum of the Shewanella genus. Most of the cryoproteases produced by these strains have an optimum catalytic temperature between 30 and 40°C, and only a few have an optimum catalytic temperature below 20°C, but are less stable.

南極の極寒環境で生きている南極オキアミAntarctickrill及びEuphausiasuperbaは、生存温度が-1.7℃~-3℃であり、南極の生態系における重要な種である。巨大なバイオマスを有し、南極海域の生物学的連鎖において細菌、藻類や微小動物プランクトンを餌としつつ、頂点捕食者の獲物でもあり、南極の生態系において重要な役割を果たしている。低温に適している生物は低温での機能の完全性を維持するために専用の酵素を必要とし、一方、好冷性生物の体内の酵素は、好熱性動物よりも、低温で高い活性及び触媒効率を有する。南極オキアミの体内には多種類のタンパク質加水分解酵素が含まれており、従来の研究より、南極オキアミの体内から単離されたタンパク質加水分解酵素は壊死組織に対して分解作用を有し、デブリードマン剤として医療用として有用であることが証明されている。 Antarctic krill Antarctickrill and Euphausiasuperba, which live in the frigid environment of Antarctica, have a survival temperature of -1.7°C to -3°C and are important species in the Antarctic ecosystem. It has a huge biomass, feeds on bacteria, algae and microzooplankton in the Antarctic biological chain, and is also the prey of apex predators, playing an important role in the Antarctic ecosystem. Cold-adapted organisms require dedicated enzymes to maintain their functional integrity at low temperatures, while enzymes in the body of psychrophilic organisms are more active and catalytic at low temperatures than thermophilic animals. have efficiency; The body of Antarctic krill contains many types of proteolytic enzymes, and previous studies have shown that the proteolytic enzymes isolated from the body of Antarctic krill have a degrading effect on necrotic tissue and reduce fat. It has been proved to be useful for medical use as a lead man agent.

1972年にNabou Katoらが海洋細菌Peseudomoassp.No.548がプロテアーゼを生産することを最初に報告して以来、中国の国内外では、多くの研究グループは、海洋微生物由来のプロテアーゼを研究しており、主に、新しい酵素生産微生物及び新規プロテアーゼ、例えば、低温適応プロテアーゼ、高温プロテアーゼ、アルカリプロテアーゼ、中性プロテアーゼなどに集中している。中国特許CN104818225Aでは、低温プロテアーゼ生産菌であるプラノコッカスPlanococcus sp.が開示されており、このプラノコッカスは、南インド洋の深海堆積物に由来するものである。中国特許CN110724701Aでは、低温での南極オキアミのトリプシンの酵素活性の評価方法が開示されており、この低温トリプシンは、低温でも優れた酵素活性を有する。しかしながら、今まで、南極オキアミから低温プロテアーゼを生産する菌株は単離・抽出されておらず、他の低温環境から単離された低温プロテアーゼは、熱安定性が悪く、加熱すると分解して失活しやすい。 In 1972, Nabou Kato et al. identified the marine bacterium Pseudomoassp. No. 548 producing proteases, many research groups at home and abroad in China have been studying proteases from marine microorganisms, mainly new enzyme-producing microorganisms and novel proteases, such as , cold-adapted proteases, high-temperature proteases, alkaline proteases, neutral proteases, etc. In Chinese patent CN104818225A, a cold protease-producing fungus, Planococcus sp. has been disclosed, which Planococcus originates from deep-sea sediments in the South Indian Ocean. Chinese patent CN110724701A discloses a method for evaluating the enzymatic activity of Antarctic krill trypsin at low temperature, and the low-temperature trypsin has excellent enzymatic activity even at low temperature. However, to date, no strains producing cryoproteases have been isolated or extracted from Antarctic krill, and cryoproteases isolated from other low-temperature environments have poor thermostability and are decomposed and inactivated when heated. It's easy to do.

中高温プロテアーゼの低温適応性及び熱安定が劣るという従来技術に存在する問題に対して、本発明は、低温プロテアーゼを生産するエキシグオバクテリウム・シビリカム、及びその使用を提供する。この低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムは、南極オキアミからスクリーニングしたものであり、その最適成長温度と最適酵素生産温度がどちらも自然環境の温度に近いため、発酵プロセスにおいて加熱又は冷却のプロセスを省略することができる。この菌株により生産されるプロテアーゼは、最適反応温度が37℃程度であり、しかも0~60℃において優れた触媒活性を有し(最高触媒酵素活性の60%以上)、低温適応性、及び優れた熱安定性を有する。 The present invention provides a cryoprotease-producing Exiguobacterium sibilicum and its use in response to the existing problems in the prior art of poor cold adaptability and thermostability of mesophilic proteases. This cryoprotease-producing Exiguobacterium sibiricum was screened from Antarctic krill, and its optimum growth temperature and optimum enzyme production temperature are both close to those in the natural environment, so it is not necessary to heat or cool in the fermentation process. process can be skipped. The protease produced by this strain has an optimum reaction temperature of about 37°C, and has excellent catalytic activity at 0 to 60°C (60% or more of the maximum catalytic enzyme activity), low temperature adaptability, and excellent Has thermal stability.

本発明は、以下の技術解決策により達成される。 The present invention is achieved by the following technical solutions.

低温プロテアーゼを生産するエキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)であって、中国微生物菌種寄託管理委員会普通微生物センターに寄託され、寄託番号がCGMCC No.20358である。 Exiguobacterium sibiricum producing low-temperature protease, which is deposited in China Microbial Species Deposit Management Commission Common Microorganism Center, Deposit No. CGMCC No. 20358.

さらに、前記エキシグオバクテリウム・シビリカムは短い棒状のグラム陽性菌である。 Furthermore, said Exiguobacterium sibilicum is a short, rod-shaped Gram-positive bacterium.

本発明は、前記低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムの、低温プロテアーゼの生産における使用である。 The present invention is the use of said cryopretease-producing Exiguobacterium sibilicum in the production of cryoproteases.

さらに、前記低温プロテアーゼは、低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムを発酵させることにより得られる。 Furthermore, the cryoproteases are obtained by fermenting cryoproteases-producing Exiguobacterium sibiricum.

さらに、前記発酵に使用される発酵温度は10~20℃である。 Furthermore, the fermentation temperature used for said fermentation is 10-20°C.

1.本発明では、低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムの発酵条件は制御しやすく、この菌株の最適成長温度及び最適酵素生産温度がどちらも自然環境の温度に近いため、発酵プロセスにおいて加熱又は冷却のプロセスを省略することができる。
2.本発明では、低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムにより生産される低温プロテアーゼは、最適触媒温度が人体の正常温度に近い37℃程度であり、30~40℃の間で高い触媒活性を維持することができる。低温プロテアーゼは、0~60℃でも高い酵素活性を維持し、最高触媒酵素活性は60%以上であり、低温環境に適応できるとともに、優れた熱安定性を有するため、適用範囲が広がる。
菌種寄託情報
寄託時間:2020年7月14日
寄託機関:中国微生物菌種寄託管理委員会普通微生物センター(ブダペスト条約に基づく国際寄託当局)
寄託番号:CGMCC No.20358;
寄託機関アドレス:北京市朝陽区北辰西路1号院3号中国科学院微生物研究所、郵便番号:100101;
カテゴリー命名:エキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)。
1. In the present invention, the fermentation conditions of the cryoprotease-producing Exiguobacterium sibilicum are easy to control, and both the optimum growth temperature and the optimum enzyme production temperature of this strain are close to the temperature of the natural environment, so that heating or The cooling process can be omitted.
2. In the present invention, the cryoprotase produced by Exiguobacterium sibilicum, which produces cryoproteases, has an optimum catalytic temperature of about 37°C, which is close to the normal temperature of the human body, and exhibits high catalytic activity between 30 and 40°C. can be maintained. The low-temperature protease maintains high enzymatic activity even at 0 to 60° C., has a maximum catalytic enzymatic activity of 60% or more, and is adaptable to a low-temperature environment and has excellent thermostability, so that the range of application is widened.
Bacterial species deposit information Deposit time: July 14, 2020 Depositary institution: China Microbial Species Deposit Management Committee Ordinary Microorganism Center (International depositary authority based on the Budapest Treaty) ;
Deposit number: CGMCC No. 20358;
Depository address: Institute of Microbiology, Chinese Academy of Sciences, No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, postal code: 100101;
Category nomenclature: Exiguobacterium sibiricum.

スクリーニングした菌株の写真であり、aは平板式加水分解により生成した透明円の図であり、bは精製ストリーク図である。Photographs of the screened strains, a: Transparent circles produced by plate hydrolysis, b: Purification streak. エキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)のグラム染色顕微鏡写真である。1 is a Gram-stained photomicrograph of Exiguobacterium sibiricum. アガロースゲル電気泳動画像である。It is an agarose gel electrophoresis image. 本発明のエキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)の系統樹図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a phylogenetic tree of Exiguobacterium sibiricum of the present invention. チロシン標準曲線である。Tyrosine standard curve. 低温プロテアーゼの各温度での相対酵素活性である。Relative enzymatic activity of cryogenic protease at each temperature.

以下、本発明の実施例を詳しく説明する。本実施例は、本発明の技術解決策を基に実施され、詳細な実施形態及び具体的な操作プロセスが記載されているが、本発明の特許範囲は下記の実施例に限定されない。 Examples of the present invention will be described in detail below. Although the present examples are implemented on the basis of the technical solutions of the present invention and describe detailed embodiments and specific operating processes, the patent scope of the present invention is not limited to the following examples.

実施例1
本発明の前記低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムは、南極オキアミに由来し、複数回スクリーニングしたものであり、カテゴリー命名はエキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)である。この菌株は、2020年7月14日に中国微生物菌種寄託管理委員会普通微生物センターに寄託され、寄託アドレスは北京市朝陽区北辰西路1号院3号中科院微生物研究所であり、寄託番号はCGMCC No.20358である。
菌株スクリーニング:サンプル収集、サンプル処理、一次スクリーニング、再スクリーニング、酵素活性測定、高収量菌株の同定、菌種寄託。
1)サンプル収集:山東省の某海鮮市場から南極オキアミを購入した。
2)サンプル処理:低温で乳鉢を用いて南極オキアミをすり潰し、3gを秤量し、滅菌水に加えて、30mLまで定容し、原液とし、試験管に分注し、試験管を恒温培養床に入れて固定し、180r/minに設定して、30分間の時間を測定した。
3)一次スクリーニング(平板分離):滅菌水を用いて10-1~10-5g/mlの濃度勾配で原液を希釈して管に分注し、準備した分離培養平皿に接種し、温度が15℃に設定された恒温インキュベータに入れて、2週間培養した。成長したコロニーから、コロニー形状が大きく、コロニー周辺の透明円が大きい単一コロニーを選択し、平板分離により、加水分解円が最大である菌株をスクリーニングした。加水分解円の直径とコロニーの直径との比は2.1であり、さらに選択された単一コロニーをクリーンベンチにおいてストリークして精製し、これを3回繰り返し、より純粋な菌株を得た。図1は、スクリーニングした菌株が平板式加水分解により生じた透明円、及びストリーク精製図である。
前記平板分離時に使用される固体培地は表1の成分と寒天からなり、寒天は20g/Lの割合で添加され、pH7.2~7.4であり、20min滅菌後、平板を逆様にして使用に備えた。

Figure 0007162365000001
4)再スクリーニング
成分が表1と同じで、pHが7.2~7.4である液体発酵培地を調製し、三角フラスコに分注し、20min滅菌して使用に備えた。
容量250mLの三角フラスコに発酵培地100mLを入れて、121℃で高圧蒸気により30min滅菌し、一次スクリーニングにより得られた菌株を接種した後、15℃の恒温培養床に置いて、180r/minで5日間培養し、再スクリーニングした菌株を得た。
再スクリーニングした菌株の平板における加水分解円の直径とコロニーの直径との直径比は2.2であった。
5)低温プロテアーゼ産生菌株の同定
a)グラム染色
グラム染色方法のステップは、塗抹、固定、一次染色、媒染染色、脱色、再染色であり、最後に、顕微鏡下で観察した。図2の顕微鏡像に示すように、菌体は青紫色であり、単一の細胞は短い棒状のものであり、不規則に配列されており、グラム陽性菌であると同定された。
b)細菌ゲノムDNAの抽出
細菌ゲノムDNA抽出キッドの原理ステップに従ってゲノムDNAを抽出し、高品質の細菌ゲノムDNAを得た。
c)PCR増幅
DNA増幅反応系(50μL):
Mix 25μL
ddHO 20μL
上流プライマー(F) 2μL
下流プライマー(R) 2μL
テンプレート1μL;
PCR反応条件:
94予備変性4min
94変性1min
55アニーリング1min
72伸長2min
30サイクル
72 10minまで補充;
d)PCR産物の電気電気泳動
アガロースゲル電気泳動後、紫外線ランプでバンドを観察した(図4参照)。この菌株は、16srDNA断片の長さが3500bp程度である。同社でシーケンシングして、16srDNA配列をデータベースと類似性を比較して、系統樹を作成した。本特許のエグジゴバクテリウムの系統樹を図4に示す。データベースと比較した結果、配列類似性は99.9%であり、配列相同性は99.9%である。それにより、スクリーニングした菌株はエキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)であると同定された。 Example 1
The cryoprotease-producing Exiguobacterium sibiricum of the present invention is derived from Antarctic krill, has been screened multiple times, and is categorized as Exiguobacterium sibiricum. This strain was deposited in the General Microbiology Center of the China Microbial Species Deposit Management Committee on July 14, 2020. The deposit address is the Institute of Microbiology, No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing. is CGMCC No. 20358.
Strain Screening: Sample Collection, Sample Processing, Primary Screening, Re-Screening, Enzyme Activity Measurement, High Yield Strain Identification, Strain Deposit.
1) Sample collection: Antarctic krill was purchased from a seafood market in Shandong Province.
2) Sample processing: Grind Antarctic krill with a mortar at a low temperature, weigh 3 g, add sterilized water to a constant volume of 30 mL, make a stock solution, dispense into test tubes, and place the test tubes in a constant temperature culture bed. It was put in and fixed, set to 180 r/min, and measured the time for 30 minutes.
3) Primary screening (plating): The stock solution was diluted with sterile water in a concentration gradient of 10 −1 to 10 −5 g/ml, dispensed into tubes, inoculated into the prepared separate culture plates, and the temperature was adjusted to It was placed in a constant temperature incubator set at 15° C. and cultured for 2 weeks. A single colony with a large colony shape and a large transparent circle around the colony was selected from the grown colonies, and the strain with the largest hydrolysis circle was screened by plate separation. The ratio of hydrolysis circle diameter to colony diameter was 2.1, and further selected single colonies were streaked and purified on a clean bench, which was repeated three times to obtain a purer strain. FIG. 1 shows transparent circles and streak purification diagrams produced by tabular hydrolysis of screened strains.
The solid medium used during the plate separation consists of the components shown in Table 1 and agar. ready for use.
Figure 0007162365000001
4) Re-screening A liquid fermentation medium having the same ingredients as in Table 1 and a pH of 7.2 to 7.4 was prepared, dispensed into Erlenmeyer flasks, sterilized for 20 minutes, and ready for use.
Put 100 mL of fermentation medium in a 250 mL conical flask, sterilize with high pressure steam at 121 ° C. for 30 min, inoculate the strain obtained by primary screening, place on a constant temperature culture bed at 15 ° C., and 5 at 180 r / min. A rescreened strain was obtained after culturing for days.
The diameter ratio between the hydrolysis circle diameter and the colony diameter in the rescreened strain plates was 2.2.
5) Identification of cold protease-producing strains a) Gram staining The steps of the Gram staining method were smearing, fixing, primary staining, mordant staining, destaining, restaining, and finally observed under a microscope. As shown in the microscopic image of FIG. 2, the cells were bluish-purple and the single cells were short rod-shaped and irregularly arranged, which was identified as a Gram-positive bacterium.
b) Bacterial Genomic DNA Extraction Genomic DNA was extracted according to the principle steps of the Bacterial Genomic DNA Extraction Kit to obtain high quality bacterial genomic DNA.
c) PCR amplification DNA amplification reaction system (50 μL):
Mix 25 μL
20 μL of ddH2O
Upstream primer (F) 2 μL
Downstream primer (R) 2 μL
1 μL template;
PCR reaction conditions:
94 pre-denaturation 4 min
94 denaturation 1 min
55 Annealing 1 min
72 extension 2min
Refill up to 30 cycles 72 10 min;
d) Electrophoresis of PCR products After agarose gel electrophoresis, bands were observed with an ultraviolet lamp (see FIG. 4). This strain has a 16s rDNA fragment with a length of about 3500 bp. Sequencing in-house, the 16s rDNA sequences were compared for similarity with databases to generate a phylogenetic tree. FIG. 4 shows the phylogenetic tree of the Exygobacterium of this patent. The sequence similarity is 99.9% and the sequence homology is 99.9% as compared with the database. The screened strain was thereby identified as Exiguobacterium sibiricum.

実施例2
低温プロテアーゼ酵素活性の測定
(1)酵素活性測定
アルカリプロテアーゼの酵素活性の測定方法として、一般的にはFolin-フェノール発色法を使用する。1つの酵素活性単位Uは、本実験では、恒温37℃の条件下で1分間あたりカゼインを加水分解してチロシン1μmolを生成するのに必要な酵素量のことであり、以下の式により酵素活性の値を算出した。
U=A*B*C/D
U:プロテアーゼの酵素活性値;
A:サンプル吸光値とブランク吸光値との差であって、標準曲線と比較した後のチロシン放出量(μg/mL);
B:反応拡大倍率;
C:酵素希釈倍率;
D:反応時間。
実施例1の表1に示す液体培地を調製し、容量250mLの三角フラスコに発酵培地100mLを入れて、121℃で高圧蒸気により30min滅菌し、実施例1においてスクリーニングしたエキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)を接種した後、15℃恒温培養床に置いて、180r/minで5日間培養し、発酵液を得た。
発酵液を処理し、4℃、6000r/minで15min遠心分離し、上清液として酵素液を得た。酵素液をろ過した後、800μLを10倍(希釈液:リン酸塩緩衝液)希釈し、1本あたり1ml分注し、37℃で10min放置した。1本あたり2%カゼイン緩衝液1mlを加え(最初にTCAを加えたものをブランク対照とする)、37℃で10min反応させた後、TCA 2mlを加え、1min遠心分離し、炭酸ナトリウム溶液とフォリンフェノール試薬を加えて、10min発色させ、660nmで値を測定した。
表2は、チロシン標準溶液の調製方法であり、表2にしたがって、4本の試験管を準備して、試験管に下記溶液を徐々に加え、37℃で水浴処理し、30min放置した。次に、吸収値(660nm)を測定し、得られたデータについて標準曲線をプロットし、図5に示すように、回帰直線方程式を作成する。

Figure 0007162365000002
Folin発色法によりエグジゴバクテリウムの酵素活性を測定した結果、エキシグオバクテリウム・シビリカムの吸光値は0.531であり、相対酵素活性は8.65であった。 Example 2
Measurement of Low-Temperature Protease Enzyme Activity (1) Measurement of Enzyme Activity As a method for measuring the enzyme activity of alkaline protease, the Folin-phenol chromogenic method is generally used. In this experiment, one enzymatic activity unit U is the amount of enzyme required to hydrolyze casein per minute at a constant temperature of 37° C. to produce 1 μmol of tyrosine. was calculated.
U=A*B*C/D
U: enzyme activity value of protease;
A: difference between sample absorbance value and blank absorbance value, tyrosine release (μg/mL) after comparison to standard curve;
B: reaction magnification factor;
C: enzyme dilution ratio;
D: reaction time.
A liquid medium shown in Table 1 of Example 1 was prepared, 100 mL of fermentation medium was placed in an Erlenmeyer flask with a capacity of 250 mL, sterilized with high pressure steam at 121 ° C. for 30 minutes, and Exiguobacterium sibiricum screened in Example 1 ( After being inoculated with Exiguobacterium sibiricum), it was placed on a 15° C. constant temperature culture bed and cultured at 180 r/min for 5 days to obtain a fermented liquid.
The fermented liquid was treated and centrifuged at 4° C. and 6000 r/min for 15 minutes to obtain an enzyme liquid as a supernatant. After filtering the enzyme solution, 800 μL was diluted 10-fold (diluent: phosphate buffer), 1 ml was dispensed per tube, and left at 37° C. for 10 minutes. Add 1 ml of 2% casein buffer per tube (the one to which TCA was added first is used as a blank control), react at 37° C. for 10 minutes, add 2 ml of TCA, centrifuge for 1 minute, and mix with sodium carbonate solution and Folin. A phenol reagent was added to develop the color for 10 min and the value was measured at 660 nm.
Table 2 shows the method for preparing tyrosine standard solutions. Four test tubes were prepared according to Table 2, the following solutions were gradually added to the test tubes, treated in a water bath at 37°C, and left for 30 minutes. Next, absorbance values (660 nm) are measured, a standard curve is plotted for the obtained data, and a linear regression equation is created as shown in FIG.
Figure 0007162365000002
As a result of measuring the enzymatic activity of Exigobacterium by the Folin chromogenic method, the absorbance value of Exigobacterium sibilicum was 0.531, and the relative enzymatic activity was 8.65.

実施例3
最適酵素活性の測定
温度勾配(0~60℃、5℃ごとに1回反応)を設定して10min反応させた後、TCA 2mlを加えて、1min遠心分離し、炭酸ナトリウム溶液とフォリンフェノール試薬を加え、10min発色させ、660nmで値を測定した以外、エキシグオバクテリウム・シビリカムの発酵、酵素液処理のステップは実施例2と同様であった。相対酵素活性を以下の図6に示す。
測定した結果、この菌株は、最適酵素活性温度が37℃であり、0~60℃でも高い活性を有する。これは、この低温プロテアーゼは高温にも低温にも耐えられ、熱安定性に優れることを示している。
Example 3
Measurement of optimal enzyme activity Set a temperature gradient (0 to 60°C, one reaction every 5°C) and react for 10 minutes, then add 2 ml of TCA, centrifuge for 1 minute, remove sodium carbonate solution and folinphenol reagent. In addition, the steps of fermentation of Exiguobacterium sibiricum and enzyme solution treatment were the same as in Example 2, except that the color was developed for 10 minutes and the value was measured at 660 nm. Relative enzymatic activity is shown in Figure 6 below.
As a result of measurement, this strain has an optimum enzyme activity temperature of 37°C and has high activity even at 0 to 60°C. This indicates that this cryoprotease can withstand both high and low temperatures and has excellent thermostability.

Claims (5)

中国微生物菌種寄託管理委員会普通微生物センターに寄託され、寄託番号がCGMCC No.20358のエキシグオバクテリウム・シビリカムであり、前記エキシグオバクテリウム・シビリカムは、単一の細胞が短い棒状のグラム陽性菌である、ことを特徴とする低温プロテアーゼを生産するエキシグオバクテリウム・シビリカム(Exiguobacterium sibiricum)。 It was deposited at the General Microorganism Center of the Chinese Microbial Species Deposit Management Committee, and the deposit number is CGMCC No. 20358 of Exiguobacterium sibiricum, said Exiguobacterium sibiricum producing a cryoprotease characterized in that the single cell is a short rod-shaped Gram-positive bacterium (Exiguobacterium sibiricum). 前記エキシグオバクテリウム・シビリカムは、16srDNA断片の長さが3500bp程度である、ことを特徴とする請求項1に記載の低温プロテアーゼを生産するエキシグオバクテリウム・シビリカム。 2. The cryoprotease-producing Exiguobacterium sibiricum according to claim 1 , wherein the length of the 16s rDNA fragment of the Exiguobacterium sibiricum is about 3500 bp. 請求項1又は2に記載の前記低温プロテアーゼを生産するエキシグオバクテリウム・シビリカムの、低温プロテアーゼの生産における使用。 Use of the cryoprotease-producing Exiguobacterium sibiricum according to claim 1 or 2 in the production of cryoproteases. 前記低温プロテアーゼはエキシグオバクテリウム・シビリカムを発酵させることにより得られる、ことを特徴とする請求項3に記載の使用。 4. Use according to claim 3, characterized in that the cryoprotease is obtained by fermenting Exiguobacterium sibilicum. 前記発酵に使用される発酵温度は10~20℃である、ことを特徴とする請求項3に記載の使用。 Use according to claim 3, characterized in that the fermentation temperature used for the fermentation is 10-20°C.
JP2021100444A 2020-08-05 2021-06-16 Exiguobacterium sibilicum producing cryoproteases and uses thereof Active JP7162365B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010777051.0A CN111893067B (en) 2020-08-05 2020-08-05 Microbacterium siberia for producing low-temperature protease and application thereof
CN202010777051.0 2020-08-05

Publications (2)

Publication Number Publication Date
JP2022031130A JP2022031130A (en) 2022-02-18
JP7162365B2 true JP7162365B2 (en) 2022-10-28

Family

ID=73245663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021100444A Active JP7162365B2 (en) 2020-08-05 2021-06-16 Exiguobacterium sibilicum producing cryoproteases and uses thereof

Country Status (2)

Country Link
JP (1) JP7162365B2 (en)
CN (1) CN111893067B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540253B (en) * 2022-03-31 2022-10-11 山东省农业科学院 Application of bacillus pumilus P6 keratinase in detergent and application method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150203793A1 (en) * 2012-08-22 2015-07-23 Novozymes A/S Metalloprotease from Exiguobacterium
EP3060659B1 (en) * 2013-10-03 2019-05-29 Danisco US Inc. Alpha-amylases from exiguobacterium, and methods of use, thereof
CN104818225A (en) * 2015-03-10 2015-08-05 天津科技大学 Low temperature protease production strain, low temperature protease produced by the same and gene of enzyme
CN108048366B (en) * 2018-01-19 2021-03-30 曲阜师范大学 Marine actinomycete and application thereof
CN111334454B (en) * 2020-03-12 2021-03-12 中国科学院南海海洋研究所 Microbacterium PT3 with protein degradation function and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biology, 2013, Vol.2, pp.755-783; doi:10.3390/biology2020755
J Ind Microbiol Biotechnol, 2016, Vol.43,pp.829-840
Journal of Biotechnology, 1999, Vol.70, pp.53-60

Also Published As

Publication number Publication date
CN111893067B (en) 2022-07-05
JP2022031130A (en) 2022-02-18
CN111893067A (en) 2020-11-06

Similar Documents

Publication Publication Date Title
Pant et al. Production, optimization and partial purification of protease from Bacillus subtilis
Sousa et al. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum
Vaseekaran et al. Isolation and identification of a bacterial strain producing thermostable α-amylase.
CN1199424A (en) Alkaliphilic and thermophilic microorganisms and enzymes obtained therefrom
Elbanna et al. Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt
Lawson et al. Dysgonomonas hofstadii sp. nov., isolated from a human clinical source
Rakaz et al. Isolation, Extraction, Purification, and Molecular Characterization for Thermostable α‐Amylase from Locally Isolated Bacillus Species in Sudan
WO2017133331A1 (en) Pseudomonas aeruginosa and use thereof in production of protease
CN104894024B (en) One plant of Pseudoalteromonas mutant strain and its application
JP7162365B2 (en) Exiguobacterium sibilicum producing cryoproteases and uses thereof
Jean et al. Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas
Mawlankar et al. Microbacterium enclense sp. nov., isolated from sediment sample
Alves et al. Thermomonas hydrothermalis sp. nov., a new slightly thermophilic γ-proteobacterium isolated from a hot spring in central Portugal
CN102399726A (en) Sporosarcina and application thereof
CN112574920B (en) Fibro-cellulose microbacterium PX02, method for producing dextranase by using fibro-cellulose microbacterium PX02 and application of method
CN108330079A (en) The structure of Pullulanase and recombinant vector and application that a kind of bacillus amyloliquefaciens of production Pullulanase, its fermentation obtain
Ming et al. Meiothermus roseus sp. nov., a thermophilic bacterium isolated from a geothermal area
Márquez et al. Isolation and partial characterization of a new moderate thermophilic Albidovulum sp. SLM16 with transaminase activity from Deception Island, Antarctica
Guo et al. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae
Neelam et al. Characterization, phylogenetic analysis and potential applications of heterotrophic bacteria inhabit sand dunes of Thar Desert, India.
Chen et al. Salinicoccus salitudinis sp. nov., a new moderately halophilic bacterium isolated from a saline soil sample
Arya et al. Isolation, production and applications of alkaline protease from hot springs bacterial isolates
Ravi et al. Isolation and characterization of hydrolytic enzyme producing halophilic bacteria Salinicoccus roseus from Okha
CN111117923A (en) New Laenibacillus aquaticus strain Gj-4 with pectin degrading function
Pokhrel et al. Screening and optimization of extra cellular protease from bacteria isolated from sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7162365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150