JP7161872B2 - プラント診断システム - Google Patents

プラント診断システム Download PDF

Info

Publication number
JP7161872B2
JP7161872B2 JP2018122960A JP2018122960A JP7161872B2 JP 7161872 B2 JP7161872 B2 JP 7161872B2 JP 2018122960 A JP2018122960 A JP 2018122960A JP 2018122960 A JP2018122960 A JP 2018122960A JP 7161872 B2 JP7161872 B2 JP 7161872B2
Authority
JP
Japan
Prior art keywords
plant
model
piping
equipment
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018122960A
Other languages
English (en)
Other versions
JP2020004087A (ja
Inventor
浩貴 山本
嘉成 堀
喜治 林
達朗 矢敷
恩敬 金
博史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018122960A priority Critical patent/JP7161872B2/ja
Priority to CN201980033391.8A priority patent/CN112136088B/zh
Priority to PCT/JP2019/006466 priority patent/WO2020003598A1/ja
Publication of JP2020004087A publication Critical patent/JP2020004087A/ja
Application granted granted Critical
Publication of JP7161872B2 publication Critical patent/JP7161872B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

本発明は、プラント診断システムおよび方法に関する。
例えば、石油精製プラント、化学プラント、水処理プラント等のプラントでは、長期にわたる安定運用が期待されている。このために、プラントを診断するシステムが提案されている(特許文献1~3)。
特許文献1は、複数の発電プラントから運転・保守フィールドデータをネットワーク経由で収集し、運用性と経済性に優れた発電プラントを監視したり診断したりするシステムを提供する。
特許文献2は、プラントの種々の異常に対して適用可能なプラント監視装置を開示している。
特許文献3には、プラントの製造や点検または運転等の履歴を考慮して、異常を診断する方法が記載されている。
特開2003-114294号公報 特開2010-49359号公報 特開平6-331507号公報
特許文献1~3に記載の従来技術は、プラントを構成する各機器の材料の劣化特性まで考慮して解析していないため、診断の信頼性に改善の余地がある。
本発明は、上述の問題に鑑みてなされたもので、その目的は、診断の信頼性を向上できるようにしたプラント診断システムおよび方法を提供することにある。
前記課題を解決すべく、本発明に従うプラント診断システムは、プラントを診断するプラント診断システムであって、プラントについての所定の運転データを取得するデータ取得部と、所定の運転データを所定のモデルに基づいてシミュレーション処理することにより、第1解析結果を算出する第1解析部と、所定の運転データを統計処理した結果と第1解析結果とに基づいて、第2解析結果を算出する第2解析部と、第1解析結果と第2解析結果とに基づいて所定の解析結果情報を出力する解析結果情報出力部とを備え、所定のモデルは、プラント全体の挙動を記述するプラントモデルと、プラントを構成する各機器に関する機器・配管モデルと、各機器を構成する材料に関する材料モデルとを含む。
本発明によれば、プラントモデルと機器・配管モデル及び材料モデルを含む所定のモデルを用いてシミュレーション処理することにより得られる第1解析結果と、所定の運転データを統計処理した結果とに基づいて、第2解析結果を算出し、第1解析結果と第2解析結果とに基づいて所定の解析結果情報を出力することができ、信頼性が向上する。
プラント診断システムを含む全体システムの機能ブロック図である。 プラント診断システムを実現するハードウェア構成図である。 プラントモデルを示す説明図である。 機器・配管モデルを示す説明図である。 機器・配管モデルシミュレータの出力結果を示す説明図である。 機器・配管モデルと機器・配管モデルシミュレータとの関係を示すブロック図である。 材料モデルと機器・配管モデルと機器・配管モデルシミュレータとの関係を示すブロック図である。 三次元の解析モデルを用いて異常の有無を判定する説明図である。 ユーザに提供される画面の例を示す。 プラント診断システムの処理概要を示す説明図である。
以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、後述のように、プラント2の実際の状態から算出される演算結果を帰納的解析モデル14へ反映させることにより、高い信頼性を持つ診断を可能とする。
本実施形態に係るプラント診断システム1は、例えば、石油精製プラント、化学プラント、電力プラント、水処理プラント、医薬品製造プラント等の流体を取り扱うプラントに適用することができる。流体としては、例えば、水、石油、海水、化学薬品、蒸気、ガス等がある。自動車工場、機械加工工場等においても、水蒸気または石油、ガスといった流体を使用する。それらの流体が機器へ加える作用の影響を診断する場合、本実施形態に係るプラント診断システム1を用いることができる。
本実施例では、プラントモデル131と機器・配管モデル132および材料モデル133の三層構造を持つ所定モデルを用い、運転データを所定モデルへ与えた結果を統計解析モデル(帰納的解析モデル)14へ入力する。これにより、本実施形態に係るプラント診断システム1は、所定時間後の運転状態を信頼性高く診断できる。以下の説明では、「機器」には、例えば、バルブ、反応槽、蒸留塔、熱交換機といった装置のほかに、配管、継ぎ手、オリフィスといった接続構造も含む。
本実施形態では、いわゆるIoT(Internet of Things)を活用してプラントの運転または保守を適切に行うために、プラント2から出力されるセンサーデータを用いた帰納的(統計的)な解析14と演繹的(物理的)な解析13とを連携させる。
これにより、本実施形態に係るプラント診断システム1は、プラント2の異常をいち早く検知することができる。さらに、プラント診断システム1は、プラント2を構成する機器や材料の劣化特性を評価することにより、異常の生じた原因や場所、機器やプラントの余寿命を推定できる。
本実施形態のプラント診断システム1は、少なくとも、プラント2の各センサデータが入力されるデータ取得部11と、データを演繹的及び帰納的に解析する解析部13,14と、解析結果出力部16とを含む。
演繹的解析部13は、サイバー空間上に構築されたプラント全体の挙動を記述するプラントモデル131、プラントを構成する機器のモデル132、機器を構成する材料のモデル133とを含む。これにより、プラント2の各部位の任意の運転時間後の状態が可視化される。
プラント診断システム1は、プラント2の構成を記述するプラント構成データを利用することができる。プラント構成データは、例えば、プロセスフロー図、配管計装図、アイソメトリック図、三次元設計図を含む。
プラントモデル131は、プロセスフロー図を基に記述され、センサデータ、及び/または、プラント2が取扱う化学操作からプラント各部の操業中の状態を記述するシミュレーションから、プラント2の状態を記述するモデルである。
機器・配管モデル132は、配管計装図、または、アイソメトリック図を基に記述される機器・配管配置図から構成される。機器・配管モデル132は、プラントモデル131から出力されるマクロな一次元流体属性計算情報と、各機器の部位の形状に起因するミクロな三次元流体属性計算情報とを記述する。機器・配管モデル132のマクロな一次元流体属性計算情報の一部は、ミクロな三次元流体属性計算情報を縮約することにより得られる。
材料モデル133は、機器を構成する材質情報を蓄積するデータベース17と、各機器の各部位の流体属性情報とから計算される。材料モデル133は、材料の任意の運転時間後の状態を記述する。材料モデル133は、材料の物性を記述する材料物性モデルと呼ぶこともできる。
プラントの運転データには、プラント2の状態を検査する検査装置3で生成される検査データを含めることができる。検査は、定期的または不定期に実施される。プラント診断システム1は、検査データによりプラントの状態の整合を図る。すなわち、プラント診断システム1は、検査データを用いることにより、演繹的解析部13のモデル131~133を補正することができる。
材料データベース17で管理する材料情報は、材料に対する流体の作用を記述する情報である。流体の作用としては、例えば、腐食、浸食がある。流体の性質(種類、温度、圧力、pH、流速、溶存酸素量、不純物の含有量等)によって、ある材料の機器がその流体により腐食等する程度は異なる。
解析結果情報出力部16は、例えば、プラント2の異常部位を診断した結果、異常の原因を特定した結果、保守計画を最適化した結果、運転を最適化した結果のうちの少なくともいずれか一つを出力する。
このように構成される本実施形態によれば、材料の劣化挙動に基づく演繹的解析部(物理的解析部)13と実データ(センサデータ)に基づく帰納的解析部(統計解析部)14とを連携させて解析結果情報を得ることができる。これにより本実施形態では、複数の解析部13,14の連携により得られた解析結果情報に基づいて、プラントの異常診断、異常の原因特定、保守計画の修正、運転計画の修正等を行うことができる。
図1~図10を用いて第1実施例を説明する。図1は、プラント診断システム1を含む全体システムの機能ブロック図である。
プラント診断システム1は、図2で後述するように、一つまたは複数の計算機から構成することができる。プラント診断システム1は、プラント2に配置された各センサ21からのデータD11(センサデータ)を通信ネットワークCNを介して取得する。プラント診断システム1は、センサデータD11とプラント2の構成を示す図面データD12とに基づいて、プラント2を所定の観点で診断する。プラント診断システム1は、プラント2の状態を検査する検査装置3から検査データD13を受け取ることにより、モデル131~133をプラント2の実態に合わせることもできる。
プラント診断システム1は、プラント単位で設けることもできるし、複数のプラント2を一つのプラント診断システム1で管理することもできる。
図1を用いて、プラント診断システム1の機能構成を説明する。プラント診断システム1は、例えば、それぞれ後述するように、データ取得部11、運転データ記憶部12、演繹的解析部13、帰納的解析部14、解析結果記憶部15、解析結果情報出力部16を備える。
データ取得部11は、運転データを取得する機能である。運転データは、センサデータD11と検査データD13とを含む。
センサデータD11は、プラント2に設置された各センサ21から出力される。センサ21には、例えば、温度センサ、圧力センサ、pH計、流速計、流量計、溶存酸素量計、色彩センサ等がある。一つまたは複数のセンサ21のデータを現場計器(コントローラ、シーケンサ、データーロガー等)で受信し、現場計器からプラント診断システム1へ送信してもよい。
検査データD13は、検査員等が所持する検査装置3により生成されて、データ取得部11へ送られる。検査装置3としては、例えば、減肉または腐食の程度を計測する超音波厚さ計、磁気式厚さ計、X線検査装置等がある。本実施例の検査装置3は、演繹的解析部13で使用するモデルの補正に使用することのできるパラメータを計測する。
運転データ記憶部12は、データ取得部11から受領した運転データD11,D13を記憶する。
「第1解析部」としての演繹的解析部13は、センサデータD11および図面データD12を所定のモデル131~133に基づいてシミュレーション処理することにより、第1解析結果を出力する。演繹的解析部13は、後述のように、プラントモデル131、機器・配管モデル132、材料モデル133を有する。さらに演繹的解析部13は、材料データベース17と機器・配管モデルシミュレータ18とに接続されている。
「第2解析部」としての帰納的解析部14は、各センサデータD11及び/またはセンサデータD11を演算して得られたデータ、及び/または、演繹的解析部13からの出力される第1解析結果とを数学的、統計的に処理する。これにより、帰納的解析部14は、第2解析結果を算出し、解析結果記憶部15へ記憶させる。
解析結果を記憶する解析結果記憶部15は、演繹的解析部13からの第1解析結果と、帰納的解析部14からの第2解析結果とが記憶される。解析結果情報出力部16は、解析結果記憶部15に記憶された第1解析結果および第2解析結果に基づいて解析結果情報を作成し、出力する。解析結果情報には、第1解析結果の情報および第2解析結果の情報に限らず、例えば、プラント2の各部の余寿命、余寿命の分布、保守計画見直しの提案、運転計画修正の提案といった、第1解析結果の情報及び/または第2解析結果の情報から算出される加工情報も含めることができる。解析結果情報は、例えば、プラント診断システム1を操作するオペレータの端末または、生産計画を立案管理する外部システム(不図示)へ送られる。
上述の通り、プラント2に設置された各センサ21より、プラント2内を流れる流体の温度、圧力、流量、差圧などのセンサデータD11が時系列に取得されて、プラント診断システム1へ送信される。データ取得部11により取得されたセンサデータD11の少なくとも一部は、帰納的解析モデル14に導入され、統計的な処理により解析結果記憶部15に出力される。解析結果記憶部15を活用し、異常の判定や寿命の推定、運転最適化などのプラント診断、運用に関わる解析結果を解析結果の活用手段5に出力する。
センサデータD11の少なくとも一部は、演繹的解析モデル13に送られる。演繹的解析部13は、受け取ったセンサデータD11について所定の解析処理を実施した後に、その解析結果(第1解析結果)を帰納的解析モデル14へ送る。
演繹的解析モデル13は、「所定のモデル」としてのプラントモデル131、機器・配管モデル132、材料モデル133を有する。
プラントモデル131と機器・配管モデル132とは、図面データ記憶部22に記憶された図面データD12に基づいて構成される。図面データ記憶部22は、プラント診断システム1内に設けてもよいし、あるいは、プラント診断システム1とは別のシステム内に設けられてもよい。別システム内の図面データ記憶部22の記憶内容の一部を、プラント診断システム1内にコピーして使用してもよい。
図面データD12には、例えば、プラント2のプロセスフロー図(PFD図)、機器計装図(P&ID図)、アイソメトリック図、3D-CAD図などが含まれる。
プラントモデル131は、主にプロセスフロー図と機器計装図とを基に構成されるもので、化学種成分の挙動や用益系の挙動が記述される。化学種成分の挙動は、例えば、化学プロセスの物質収支や反応、熱の出入り等に基づいて発生する。用益系の挙動とは、例えば水蒸気、電力等の用益系の挙動である。プラントモデル131は、センサデータD11の情報と化学プロセスシミュレータ(不図示)による計算結果とを基に、センサデータD11以外の他のデータを予測して演算する。
機器・配管モデル132は、主として、アイソメトリック図と3D-CAD図とに基づいて構成される。機器・配管モデル132は、実際に機器(配管を含む)を実際に流れる流体の温度、流量、圧力等を算出する。
すなわち機器・配管モデル132は、プラントモデル131で得られたセンサ情報と化学プロセスシミュレータによる計算結果とに基づき、機器および配管の実際の取り回しと機器の構成情報等も加味して、実際に配管内を流れる流体の温度、流量、圧力等を求める。本実施例では、より詳細に三次元的な流れ解析を行い、その解析結果を抽出してモデルとして活用するために、機器・配管モデルシミュレータ18によって三次元解析を行った後、特徴量を抽出して機器・配管モデル132へ情報を伝達する。例えば、機器・配管モデルシミュレータ18により計算された「流速の最も早くなる部分」を抽出し、「流速の最も早くなる部分」を特徴量として機器・配管モデル132へ伝達する。
材料モデル133は、腐食、亀裂または浸食等の、材料的な劣化の要因となる現象を記述するモデルである。モデル133の例として、例えば、流れ加速腐食、液滴衝突エロージョン、外面腐食、ガルバニック腐食、孔食腐食等がある。
材料モデル133では、機器・配管モデル132から入力される流れ、温度、圧力、pH、溶存酸素量、ドレイン量、液滴粒子系等を基に、これらの条件が複合的に生じた際の、例えば、腐食等による減肉速度を計算する。この減肉速度等を計算するために必要な各条件の減肉量等の情報は、材料データベース17より抽出する。
以上のモデル131~133から求められる計算値は、演繹的解析部13から帰納的解析部14を経て解析結果記憶部15に記憶される場合と、演繹的解析部13から解析結果記憶部15へ直接送られて記憶される場合とがある。すなわち、各モデル131~133で得られた計算値は、帰納的解析モデルである帰納的解析部14に送られて、センサデータD11と一緒に統計的に処理される。統計処理された結果は解析結果記憶部15に記憶される。あるいは、モデル131~133で求められた計算値は、解析結果記憶部15へ直接送られて記憶される。
図2は、プラント診断システム1を実現する計算機のハードウェア構成例である。計算機は、例えば、マイクロプロセッサ(図中、CPU:Central Processing Unit)101と、メモリ102と、補助記憶装置103と、通信インターフェース部104と、ユーザインターフェース部105とを備える。補助記憶装置103には、プラント診断システム1の各機能11~16を実現するためのコンピュータプログラムP1と、プラント診断システム1で使用する各種データD1とが記憶されている。マイクロプロセッサ101がコンピュータプログラムP1をメモリ102に読み出して実行することにより、プラント診断システム1としての機能が実現される。
通信インターフェース部104は、通信ネットワークCNを介して、プラント2の各センサ21と通信可能に接続される。ユーザインターフェース部105には、プラント診断システム1のユーザ(オペレータ)との間で情報を交換する装置が接続される。ユーザインターフェース部105は、情報入力装置と情報出力装置とを含む。情報入力装置には、例えば、キーボード、マウス、タッチパネル、音声入力装置等がある。情報出力装置には、例えば、ディスプレイ、プリンタ、音声合成装置等がある。記憶媒体にデータを読み書きする装置を用いることにより、プラント診断システム1内で算出された解析結果を外部へ出力したり、あるいは、外部からプラント診断システム1へコンピュータプログラムまたはデータを入力したりすることもできる。
図10に示すように、コンピュータ端末(オペレータ端末)4をプラント診断システム1へ接続してもよい。これにより、プラント診断システム1とオペレータとは、コンピュータ端末4を介して情報を交換できる。コンピュータ端末4は、いわゆるデスクトップ型のコンピュータ端末でもよいし、タブレット型等のモバイル端末でもよい。
図3~図7を用いて演繹的解析部13の構成を説明する。図3は、プラントモデル131の例を示す。図3は、原料を、蒸留塔を用いて4つの溜分に分離する仮想プラントを示している。
原料タンク23の液体原料は、ポンプ24により蒸留塔26へ送られる。液体原料は、ポンプ24から蒸留塔26へ送られるまでの間に、熱交換器25により加熱される。液体原料の温度T2を所定温度に保持するために、加熱蒸気配管27(1)から熱交換器25へ供給される加熱水蒸気の流量を流量制御弁29で調整する。
熱交換器25では、加熱蒸気の流れる配管27(1)からの熱により、液体原料が加熱される。液体原料を加熱した水蒸気は配管27(2)に流出する。加熱された液体原料が蒸留塔26へ送られることにより、4種類の留分28A~28Dを得る。
図3の例では、プラントの各所にセンサ21(1)~21(7)が設置されており、これらセンサ21は、温度(T)、流量(F)、圧力(P)といったデータを測定してプラント診断システム1へ送信する。或るセンサ21(4)は温度、流量、圧力を測定するが、他のセンサ21(1)~(5),(7)は温度と流量だけを測定する。センサ21(6)は実際には設けられていないものとする。
例えばセンサ21(6)が存在しない場合、通常のプラント診断システムは、溜分Cの温度T6、流量F6のデータを取得することができない。そこで、本実施例のプラント診断システム1は、プラントモデル131と他のセンサデータとを用いることにより、不足しているデータT6,F6を予測する。さらに、本実施例のプラント診断システム1によれば、プラントモデル131を用いるため、不足データT6,F6を含む各センサデータD11の将来の運転時における変化を予測することができる。
さらに、本実施例では、例えば、熱交換器25の熱伝達率を、液体原料が熱交換器を通過する際の温度変化と、液体原料の流量と、水蒸気の温度および流量との関係から求めることもできる。このように、プラント2に含まれる機器の特徴量(熱伝達率等)を計算して帰納的解析部14へ渡すことにより、帰納的解析部14ではより詳細に解析することができる。
図4に、機器・配管モデル132の例を示す。図5に、機器・配管モデルシミュレータ18による計算例を示す。
図4に示す機器・配管モデル132は、ノードN1に相当する機器からノードN11に相当する機器に至る配管の経路を模式化して示す。機器・配管モデル132は、実際の施工図面であるアイソメトリック図を基に作図されており、一次元の流れ解析を実施することにより得られる。
ノードN1の機器から流れ出た流体(液体原料等)は、各ノードN2~N10を経由してノードN11の機器に流入する。図4の例では、各ノードN1-N11におけるヘッド圧や流速を、一次元解析モデルを用いて計算する。
ここで、仮にノードN8とノードN9との間に、例えばオリフィス271が設けられており、流量が調整されていたとすると、オリフィス271を通過する部分の流れは複雑になり、通常の直管とは違った流れが生じる。これにより、配管材料に対して過酷な流れの場が形成されることがある。そこで、本実施例では三次元の流れ解析を実施する。
図5は、機器・配管モデルシミュレータ18による三次元流れ解析の例である。図5では、オリフィス271における流れの解析例を示す。機器・配管モデルシミュレータ18は、流れが過酷な点(オリフィス271での特徴量を抽出する。機器・配管モデルシミュレータ18により抽出された特徴量は、機器・配管モデル132に導入される。これにより機器・配管モデル132の精度が向上する。
三次元流れ解析の対象はオリフィスに限らない。例えば、エルボ継ぎ手、バルブ等の複雑な形状を有する配管を解析対象としてもよい。ポンプ、圧縮機、熱交換器等の機器を解析対象にしてもよい。
図6に、機器・配管モデル132と機器・配管モデルシミュレータ18との接続関係を示す。図6には、機器・配管モデルシミュレータを計算する計算部181と、機器・配管モデルシミュレータで使用するデータを記憶するデータベース182と、既存モデルの有無を判定する機構183との関係が示されている。
図5で述べた機器・配管モデルシミュレータ18は、複雑なシミュレーション結果を出力するのに膨大な時間を必要とする。このため、図1では、機器・配管モデルシミュレータ18を、センサデータD11の流れの外に配置している。
機器・配管モデルシミュレータ計算部181の計算結果は、データベース182に随時保管される。機器・配管モデルシミュレータ18による適切な計算結果は、機器・配管モデル132に送信される。もし使用可能な計算結果がデータベース182に保存されていなければ、機器・配管モデルシミュレータ計算部181によって新たに計算される。その計算結果はデータベース182に保存される。
機器・配管モデルシミュレータ18による計算結果が既に存在するか否かは、既存モデル有無判定機構183にて判定される。既存モデルが存在する場合(YES)には、その既存モデルがデータベース182より読み出される。これに対し、既存モデルが存在しない場合(NO)には、機器・配管モデルシミュレータ計算部181により新たに計算され、その計算結果がデータベース182に保存される。
図7に、材料モデル133と機器・配管モデル132と機器・配管モデルシミュレータ18との関係を示す。
材料特性評価機構1331は、機器・配管モデル132と、機器・配管モデルシミュレータ18と、材料データベース17とに接続されている。さらに、材料特性評価機構1331は、機器材料仕様1332を使用することができる。機器材料仕様1332は、機器および配管の材料の仕様データである。
上述の通り、機器・配管モデル132と機器・配管モデルシミュレータ18とは、抽出された特徴量を活かす点で連携する。すなわち、機器・配管モデルシミュレータ18で抽出された特徴量は、機器・配管モデル132に反映される。
これに対し、材料モデル133は、機器・配管モデル132または機器・配管モデルシミュレータ18のいずれとも連携することができる。すなわち、機器・配管モデル132のように特徴量が抽出された後の流れ場に対して、材料モデル133を適用することもできるし、あるいは、機器・配管モデルシミュレータ18のように詳細な三次元流れ場に対して材料モデル133を適用することもできる。
材料モデル133は、機器・配管モデル132若しくは機器・配管モデルシミュレータ18より得られた流体の流れ、温度、圧力、振動等のデータと、機器材料仕様1332より得られる配管を構成する材料の材質情報とから、解析対象の機器や配管の劣化状況を算出する。材料モデル133の算出結果は、出力結果1333として出力される。
配管の流れ加速腐食を例にあげて説明する。機器・配管モデル132若しくは機器・配管モデルシミュレータ18より、流体の流速、温度、圧力、pH、溶存酸素量若しくはそれらの分布が材料モデル133に入力される。さらに、機器材料仕様1332より、配管を流れる流体の種類と、配管を構成する材料の種類とが材料モデル133に入力される。材料特性評価機構1331には、下記の式1に示す流れ加速腐食による減肉速度の計算式が与えられている。
(減肉速度)=f(流速、温度、圧力、pH、溶存酸素量)・・・(式1)
材料特性評価機構1331に入力された各値より、それらの値に適した減肉速度が材料データベース17から検索される。検索された減肉速度は、式1により計算されて出力結果1333に出力される。検索しても適切な値が存在しなかった場合には、内挿により値を推定して返すことも可能である。
ここでは、流れ加速腐食について記述したが、液滴衝突エロージョンを解析する場合には、流速、流体の圧力、温度等から得られるドレイン液滴の粒径分布と、ドレイン液滴の速度、流体に接触する部分を形成する材料の硬度などが必要なパラメータとなる。
振動その他の機械的な要因による破断等を解析する場合も前記同様に、計算に必要なパラメータを材料データベース17に蓄えることにより、計算できる。
図7の例では、材料データベース17を用いる場合を説明したが、これに代えて、熱力学的な溶解の理論式等を用いて記述することも可能である。
次に、帰納的解析モデルである帰納的解析部14の処理を説明する。本実施例の帰納的解析部14は、例えば、適応共鳴理論(Adaptive Resonance Theory:ART)を用いてデータを解析する。
(異常診断)
帰納的解析部14は、適応共鳴理論(Adaptive Resonance Theory:ART)を使用して、運転状態Yを複数のカテゴリに分類することができる。カテゴリには“正常”または“異常”のいずれか一つが関連付けられているため、帰納的解析部14は、運転状態Yの異常を検出することができる。異常を検出する方法についてさらに説明する。
(#1:サンプルの収集)
帰納的解析部14は、運転状態Yのサンプルを複数収集する。このサンプルは、プラント2が“正常”または“異常”であることが既知である場合における運転状態Yの集合である。
(#2:サンプルの分類)
運転状態Yは、n行ラm列のマトリクスであるとする。つまり、運転情報Yは、m個の時点分のn次元の要素を有する。帰納的解析部14は、n次元の空間を想定し、その空間の各座標軸にn個の要素の値をそれぞれ割り当てることによって、空間内にm個の点をドットする。
図8は、n次元空間が三次元空間である場合の例を示す。図8の左上側に「異常2」として示すように、例えば“常圧蒸留塔のフラッティング”という異常が発生している場合の複数の点は、空間内のある位置に集中する。他の例として図8の右側に「異常1」として示すように、“常圧蒸留塔のウィーピング”という異常が発生している場合の複数の点は、空間内の他のある位置に集中する。プラント2が正常である場合の点についても、例えばプラントが使用される季節が同じもの同士、プラントの使用者が同じもの同士等が、近くに集まることになる。
そこで、本実施例の帰納的解析部14は、m個の点を相互に距離が近いもの同士でグループ分けする。グループの数は特に制限されない。個々のグループは、“異常1”、“異常2”、“異常3”、・・・、“正常1”、“正常2”、“正常3”、・・・のいずれかのカテゴリに対応している。各カテゴリは、n次元空間内における“球”を形成する。帰納的解析部14は、このカテゴリが特定できれば、例えば“カテゴリ異常1=常圧蒸留塔のフラッティング”のように、異常の具体的な内容を検出できる。
(#3:診断)
診断対象となる複数の運転状態Yがあるとする。診断対象の運転状態Yは、実際にプラント2が稼働した結果取得されたもの(実データ)であってもよいし、帰納的解析部14がシミュレーションした結果(模擬データ)であってもよい。帰納的解析部14は、上述したn次元空間内に診断対象の運転状態Yを示す点をドットすることにより、ドットされた点が含まれるカテゴリ(球)を特定する。診断対象となる複数の運転状態Yもまたn行m列のマトリクスであるとすると、カテゴリは、m個の時点ごとに特定される。
図9を用いて、プラントモデル131が提供するユーザーインターフェース画面と使用方法の流れを示す。以下に述べるように、例えばステップ1~ステップ4という流れで、プラント2の余寿命等を診断することができる。
プラント診断システム1は、3D-CADをベースとして構成される。プラント診断システム1の計算結果として、特に余寿命が短いと推定された場所については、3D-CAD上の該当場所にアラームが表示される。
ステップ1に矢印で示すように、ユーザが、アラーム表示された場所(例えば配管)を指定すると、その場所の流体条件(温度、圧力、流量等)および配管情報等の、計算に必要なパラメータがポップアップウインドウに表示される。さらに3D-CADの下側には、該当場所における運転パターンの過去データを表示させることもできる。
ステップ2に示すように、一次元モデル(1Dモデル)と3Dモデル(三次元モデル)および計算結果を表示させることもできる。すなわち、プラント診断システム1は、流体解析計算により、三次元解析の詳細と、一次元モデルの詳細と、流速や溶存酸素濃度の分布などを表示可能である。
ステップ3に示すように、プラント診断システム1は、流速および溶存酸素濃度のデータを元に計算された減肉速度の分布と、これまでの運転条件に基づいて積算された減肉量とを表示させることもできる。
ステップ4に示すように、プラント診断システム1は、減肉量の積算値と予測された減速速度に基づいて、配管の厚さ寸法が限界値に到達するまでの時間(余寿命)を算出し、グラフとして表示することもできる。
図10は、プラント診断システム1の処理概要を示す。一例として、流れ加速腐食を診断する場合を説明する。プラントモデル131は、運転データの履歴とシミュレーション処理とにより、過去データと予測データとからなるトレンドデータを出力する。
機器・配管モデル132では、例えば、三次元形状のテンプレートからの選択と、三次元解析処理と、一次元モデルへの変換処理とが行われ、その処理結果が材料モデル133へ引き渡される。すなわち、機器・配管モデル132では、三次元形状のテンプレートが用意されている。機器のサイズ情報は、3D-CADデータ情報により値が決定される。機器・配管モデル132での詳細計算により、最もクリティカルな部分(流れによる腐食の最も生じやすい部分)の特徴量が抽出されて一次元モデルへ変換される。ここでの特徴量には、例えば、流速、温度、圧力、pH、DO(溶存酸素量)等がある。
材料モデル133では、劣化モードの選択と、流体物性データベースの参照と、配管材料データベースの参照と、腐食速度の計算とが行われる。すなわち、材料モデル133では、腐食やエロージョン等の劣化モードが選択されると、選択されたモードに必要な流体状態量が流体物性データベースから抽出される。流体物性データベースでは、例えば水、蒸気、水と蒸気の混合体、海水、プロセス流体などの物性がデータベース化されており、必要に応じて呼び出される。
配管材料データベースでは、例えば鉄鋼、ステンレス、高耐熱合金などの、配管(機器を含む)に使用される材料の物性がデータベース化されている。材料モデル133では、材料物性データベースから呼び出したデータに基づいて、腐食速度や腐食の分布が計算される。これにより、プラント診断システム1は、累積減肉量と余寿命の分布を算出して表示させることができる。
ここで、発明者らは、プラント診断システム1の精度を検証するため、プラント2内の流れ加速腐食による配管の解析を行った。あるポンプに付属する配管が、腐食例として抽出された場合の配管の減肉腐食の測定例を説明する。
液層の水が、オリフィスと、オリフィスの直後に存在する90度エルボとを流れており、オリフィスとエルボとで生じる乱流によって、流れ加速腐食が進行したと考えられる例である。平均の減肉速度を稼働日数と時間とから算出し、最大の減肉速度を計算したところ、0.73mm/年という値が得られた。
流れ加速腐食に影響を及ぼす因子として、温度、流速、pH、溶存酸素量(DO)、配管部材金属中のCr濃度、形状を抽出した。
式2に示すように、流れ加速腐食による減肉量(m)を温度と流速との関数として規定し(m0)、その他のパラメータによる影響を補正係数として乗算することにより、実際の使用環境条件下での減肉量(m)を求めた。
m = m0(Temp, FR )* fph*fDO(Temp)*fCr*fKc ・・・(式2)
m: FACによる減肉量(補正後)
m0: FACによる減肉量(補正前)
Temp:温度
FR:流速
fpH :pHによる補正係数
fDO :DO(溶存酸素両)による補正係数
fCr :Cr含有量による補正係数
fKc :形状による補正係数
腐食例として抽出されたポンプのミニマムフロー管のアイソメトリック図から、圧力損失と流速とを一次元解析により計算し、測定データに基づいて温度を推定した。この結果、温度は118.7度、圧力は1.96MPa、平均の流速は2.59ミリ/秒と推定された。
さらに溶存酸素濃度(DO)とpHとの参照値として、以前の対象プラントでの測定結果である「2ppb」と「9.5」とを用いた。解析対象の配管の材質は、圧力配管用炭素鋼であり、Cr濃度として0.001mass%を用いた。Cr濃度として0.001mass%を用い、形状因子として直管障害部の形状因子であるKc1を選択した。この結果、補正後の減肉量(m)は0.17mm/年と計算できた。
このように構成される本実施例によれば、プラント診断システム1の信頼性を向上することができる。
本実施例によれば、プラントモデル131と機器・配管モデル132及び材料モデル133を含む所定のモデルを用いてシミュレーション処理することにより得られる第1解析結果と、所定の運転データを統計処理した結果とに基づいて、第2解析結果を算出し、第1解析結果と第2解析結果とに基づいて所定の解析結果情報を出力することができ、信頼性が向上する。
本実施例によれば、材料の劣化挙動に基づく演繹的解析部(物理的解析部)13と実データ(センサデータ)に基づく帰納的解析部(統計解析部)14とを連携させて解析結果情報を得ることができる。これにより本実施例では、複数の解析部13,14の連携により得られた解析結果情報に基づいて、プラントの異常診断、異常の原因特定、保守計画の修正、運転計画の修正等を行うことができる。
なお、本発明は、上述した実施形態に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。上述の実施形態において、添付図面に図示した構成例に限定されない。本発明の目的を達成する範囲内で、実施形態の構成や処理方法は適宜変更することが可能である。
また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれる。さらに特許請求の範囲に記載された構成は、特許請求の範囲で明示している組合せ以外にも組み合わせることができる。
1:プラント診断システム、2:プラント、3:検査装置、4:コンピュータ端末、11:データ取得部、12:運転データ記憶部、13:演繹的解析部、14:帰納的解析部、15:解析結果記憶部、16:解析結果情報出力部、17:材料データベース、18:機器・配管モデルシミュレータ、21:センサ、22:図形データ記憶部、131:プラントモデル、132:機器・配管モデル、133:材料モデル

Claims (10)

  1. プラントを診断するプラント診断システムであって、
    前記プラントについての所定の運転データを取得するデータ取得部と、
    前記所定の運転データを所定のモデルに基づいてシミュレーション処理することにより、第1解析結果を算出する第1解析部と、
    前記所定の運転データを統計処理した結果と前記第1解析結果とに基づいて、第2解析結果を算出する第2解析部と、
    前記第1解析結果と前記第2解析結果とに基づいて所定の解析結果情報を出力する解析結果情報出力部とを備え、
    前記所定のモデルは、前記プラント全体の挙動を記述するプラントモデルと、前記プラントを構成する各機器に関する機器・配管モデルと、前記各機器を構成する材料に関する材料モデルとを含み、
    前記第1解析部は、前記プラントの構成を示すプラント構成データを利用することにより前記所定のモデルを生成し、
    前記プラント構成データは、プロセスフロー図と、配管計装図と、アイソメトリック図と、三次元設計図とを含み、
    前記プラントモデルは、前記プロセスフロー図に基づいて記述されるモデルであって、かつ、前記運転データ及び/または前記プラントが取扱う化学操作から、前記プラントの操業中の状態を記述するシミュレーション処理を実施することにより前記プラントの状態を記述するモデルであり、
    前記機器・配管モデルは、前記配管計装図または前記アイソメトリック図に基づいて記述される機器・配管配置図の情報のうち少なくともいずれかを用いて構成されるモデルであって、前記プラントモデルから出力されるマクロな一次元流体の属性を示す一次元流体属性計算情報と、前記各機器の形状のうち流体の流れる所定部位の形状に起因するミクロな三次元流体の属性を示す三次元流体属性計算情報とを記述するモデルであり、さらに機器・配管モデルシミュレータに接続されており、前記機器・配管モデルシミュレータにより三次元解析された特徴量が計算結果として反映され、
    前記材料モデルは、前記各機器を構成する材料の情報を蓄積する材料データベースと前記三次元流体属性計算情報とから計算される、材料の任意の運転時間後の状態を記述するモデルであり、
    前記機器・配管モデルシミュレータは、機器・配管モデルシミュレーションを計算する計算部と、前記シミュレーションの計算結果を記憶するデータベースと、前記機器・配管モデルに適用する計算結果が前記データベースに記憶されているか判定する機構とを備え、前記計算結果が前記データベースに存在する場合は、当該計算結果が前記データベース読み出され、前記計算結果が前記データベースに存在しない場合は、前記計算部によりシミュレーションが新たに計算され、その計算結果が前記データベースに保存される
    プラント診断システム。
  2. 前記第2解析部は、前記プラントの所定の領域について所定時間後の運転状態を前記第2解析結果として算出する、
    請求項1に記載のプラント診断システム。
  3. 前記所定の運転データには、前記プラントに設置されたセンサからのセンサデータが含まれる、
    請求項1に記載のプラント診断システム。
  4. 前記所定の運転データには、前記プラントを検査した結果である検査データさらに含まれている、
    請求項3に記載のプラント診断システム。
  5. 前記第1解析部は、前記検査データに基づいて前記所定のモデルを修正する、
    請求項4に記載のプラント診断システム。
  6. 前記材料データベースは、流体による材料の減肉を記述した情報を記憶する、
    請求項1に記載のプラント診断システム。
  7. 前記一次元流体属性計算情報の少なくとも一部は、前記三次元流体属性計算情報を縮約することにより得られる、
    請求項1に記載のプラント診断システム。
  8. 前記解析結果情報出力部は、
    前記プラントのうち解析対象の領域が指定されると、
    前記指定された解析対象の領域についての流体の状態を前記所定のモデルを用いて計算し、
    前記計算された流体の状態と前記材料データベースとに基づいて減肉を予測し、
    前記予測された減肉に基づいて前記解析対象の領域の余寿命を計算し、
    前記算出された余寿命を出力する、
    請求項6に記載のプラント診断システム。
  9. 前記解析結果情報出力部は、前記解析結果情報として、前記プラントの異常を診断した結果、異常の原因を特定した結果、前記プラントの保守計画を最適化した結果、前記プラントの運転を最適化した結果のうち、少なくともいずれか一つを出力する、
    請求項1に記載のプラント診断システム。
  10. 前記プラントは、石油精製プラント、化学プラント、電力プラント、水処理プラントまたは医薬品製造プラントのうちのいずれかである、
    請求項1に記載のプラント診断システム。
JP2018122960A 2018-06-28 2018-06-28 プラント診断システム Active JP7161872B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018122960A JP7161872B2 (ja) 2018-06-28 2018-06-28 プラント診断システム
CN201980033391.8A CN112136088B (zh) 2018-06-28 2019-02-21 成套设备诊断系统以及方法
PCT/JP2019/006466 WO2020003598A1 (ja) 2018-06-28 2019-02-21 プラント診断システムおよび方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122960A JP7161872B2 (ja) 2018-06-28 2018-06-28 プラント診断システム

Publications (2)

Publication Number Publication Date
JP2020004087A JP2020004087A (ja) 2020-01-09
JP7161872B2 true JP7161872B2 (ja) 2022-10-27

Family

ID=68986290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018122960A Active JP7161872B2 (ja) 2018-06-28 2018-06-28 プラント診断システム

Country Status (3)

Country Link
JP (1) JP7161872B2 (ja)
CN (1) CN112136088B (ja)
WO (1) WO2020003598A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380393B2 (ja) * 2020-03-31 2023-11-15 株式会社プロテリアル バルブの減肉診断システム、バルブの減肉診断方法およびバルブの減肉診断サービス
JP7433171B2 (ja) * 2020-09-08 2024-02-19 三菱重工業株式会社 表示装置、プラント運転支援システムおよびプラント運転支援方法
WO2023175711A1 (ja) * 2022-03-15 2023-09-21 日揮株式会社 プラント構造物腐食予測装置、推論装置、機械学習装置、情報予測装置、プラント構造物腐食予測方法、推論方法、機械学習方法及び情報予測方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280599A (ja) 2000-03-31 2001-10-10 Hitachi Ltd 発電プラント配管の寿命予測方法
JP2005332360A (ja) 2004-04-22 2005-12-02 Yokogawa Electric Corp プラント運転支援装置
JP2017138919A (ja) 2016-02-05 2017-08-10 横河電機株式会社 プラント性能評価装置、プラント性能評価システム、およびプラント性能評価方法
WO2017154744A1 (ja) 2016-03-11 2017-09-14 株式会社日立製作所 生産設備経営最適化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103400A (ja) * 1993-10-07 1995-04-18 Toshiba Corp 配管系統のモデリング方法
JP3812358B2 (ja) * 2001-04-06 2006-08-23 Jfeエンジニアリング株式会社 プラントの運転支援方法及びそのプログラム
JP5469131B2 (ja) * 2011-07-19 2014-04-09 株式会社日立製作所 プラントの診断方法及び装置。
JP6116466B2 (ja) * 2013-11-28 2017-04-19 株式会社日立製作所 プラントの診断装置及び診断方法
CN106257367B (zh) * 2015-06-18 2019-01-08 中核控制系统工程有限公司 一种基于仿真系统的核电dcs平台测试装置及测试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280599A (ja) 2000-03-31 2001-10-10 Hitachi Ltd 発電プラント配管の寿命予測方法
JP2005332360A (ja) 2004-04-22 2005-12-02 Yokogawa Electric Corp プラント運転支援装置
JP2017138919A (ja) 2016-02-05 2017-08-10 横河電機株式会社 プラント性能評価装置、プラント性能評価システム、およびプラント性能評価方法
WO2017154744A1 (ja) 2016-03-11 2017-09-14 株式会社日立製作所 生産設備経営最適化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
米田公俊、森田良、藤原和俊、稲田文夫,配管減肉ソフトウェアFALSETの開発,電力中央研究所報告,日本,電力中央研究所,2012年06月,URL:https://criepi.denken.or.jp/jp/kenkikaku/ report/download/c9H31hB7wSqYmpydLC3IFjeFnyXfJcB9/L11007.pdf

Also Published As

Publication number Publication date
WO2020003598A1 (ja) 2020-01-02
CN112136088B (zh) 2024-07-19
JP2020004087A (ja) 2020-01-09
CN112136088A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
JP7161872B2 (ja) プラント診断システム
EP1393136B1 (en) Method for monitoring and detecting sensor failure in oil and gas production system
CN113272748B (zh) 解析系统和解析方法
Yuan et al. Variable correlation analysis-based convolutional neural network for far topological feature extraction and industrial predictive modeling
US9372944B2 (en) Numerical analysis device, element generation program, and numerical analysis method
Diaz-Bejarano et al. A model-based method for visualization, monitoring, and diagnosis of fouling in heat exchangers
Das et al. Multivariate control loop performance assessment with Hurst exponent and Mahalanobis distance
JP7097263B2 (ja) プラントデータ解析システム
Bagajewicz A review of techniques for instrumentation design and upgrade in process plants
US10429828B2 (en) Plant simulation device and plant simulation method with first parameter adjustable at start and second parameter adjustable during operation of the plant
CN117910230A (zh) 一种复杂油气环境下管道腐蚀速率的预测方法
Loyola-Fuentes et al. Classification and estimation of unmeasured process variables in crude oil pre-heat trains subject to fouling deposition
CN113822459A (zh) 计划装置、计划方法以及程序
WO2021034901A1 (en) Localized metal loss estimation across piping structure
Sansana et al. A functional data-driven approach to monitor and analyze equipment degradation in multiproduct batch processes
Dai et al. Estimation of data uncertainty in the absence of replicate experiments
JP7363840B2 (ja) 解析装置、解析方法およびプログラム
JP7380393B2 (ja) バルブの減肉診断システム、バルブの減肉診断方法およびバルブの減肉診断サービス
Li et al. A fault tolerant model for multi-sensor measurement
US20220308016A1 (en) Piping wall thinning prediction system, piping soundness evaluation system, and method
Petrov et al. Methodology of application of open-source platform Protégé in the measurement and computing systems development for diagnostics of heat supply networks
US20240061982A1 (en) Pipe blockage prediction methods
CN116681268B (zh) 过滤器生产线运行管理方法及系统
WO2024202459A1 (en) Apparatus, method, and program
JP7042082B2 (ja) 異常予兆診断装置、異常予兆診断方法及び異常予兆診断プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221017

R150 Certificate of patent or registration of utility model

Ref document number: 7161872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150