JP7161632B2 - Increased capacity overhead insulated wire - Google Patents

Increased capacity overhead insulated wire Download PDF

Info

Publication number
JP7161632B2
JP7161632B2 JP2021573768A JP2021573768A JP7161632B2 JP 7161632 B2 JP7161632 B2 JP 7161632B2 JP 2021573768 A JP2021573768 A JP 2021573768A JP 2021573768 A JP2021573768 A JP 2021573768A JP 7161632 B2 JP7161632 B2 JP 7161632B2
Authority
JP
Japan
Prior art keywords
weight
carbon
parts
layer
based nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021573768A
Other languages
Japanese (ja)
Other versions
JP2022528295A (en
Inventor
クァン ヒョン ハン
Original Assignee
ナノ ティム テック インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノ ティム テック インコーポレイテッド filed Critical ナノ ティム テック インコーポレイテッド
Publication of JP2022528295A publication Critical patent/JP2022528295A/en
Application granted granted Critical
Publication of JP7161632B2 publication Critical patent/JP7161632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/221Longitudinally placed metal wires or tapes
    • H01B7/223Longitudinally placed metal wires or tapes forming part of a high tensile strength core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/004Inhomogeneous material in general with conductive additives or conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/428Heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/008Power cables for overhead application
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、絶縁体を用いて導体の表面を絶縁処理した架空絶縁電線に関し、より具体的には、前記架空絶縁電線の被覆層を熱伝導層及び耐候性被覆層に分割することで、前記架空絶縁電線の連続使用温度及び許容電流容量を増加させることができる増容量架空絶縁電線に関する。 The present invention relates to an overhead insulated wire in which the surface of a conductor is insulated using an insulator. The present invention relates to an increased capacity overhead insulated wire capable of increasing the continuous use temperature and allowable current capacity of the overhead insulated wire.

一般に、発電所で生産された電気は、昇圧変電所で昇圧された後、鉄塔及び架空送電線から構成される送電線路(transmission lines)を介して各使用場所に供給されるが、前記送電線路には、アルミニウム導体や鋼心を有するACSR(Aluminium Conductor Steel Reinforced)電線が用いられている。 In general, electricity produced at a power plant is stepped up at a step-up substation and then supplied to each place of use through transmission lines composed of steel towers and overhead transmission lines. ACSR (Aluminum Conductor Steel Reinforced) electric wire having an aluminum conductor or a steel core is used for the wire.

韓国の電力系統における送電線路は、765kv、345kv、154kvで運営されている。降圧変電所では、送電線路から、電柱と絶縁電線から構成される配電線路に降圧電圧を送る降圧作業を行う。例えば、154kVの送電線路から22kvの配電線路に降圧電圧を送る降圧作業がある。韓国では、2018年を基準として、長さが送電線路は約33,000c-kmであり、配電線路は約436,000c-kmである。 Transmission lines in the Korean power system are operated at 765kv, 345kv and 154kv. At a step-down substation, step-down work is performed to send a step-down voltage from a transmission line to a distribution line composed of utility poles and insulated wires. For example, there is a step-down operation that sends a stepped-down voltage from a 154 kV transmission line to a 22 kV distribution line. In South Korea, as of 2018, the length of transmission lines is about 33,000 c-km and the length of distribution lines is about 436,000 c-km.

送・配電線路の建設においては、高圧で発生する電磁波リスクに対する懸念や景観毀損などの理由から社会的葛藤が生じている状況であるが、その対処法としては、送・配電線路の地中化が望ましい。しかし、その建設コストが架空線路に比べて非常に高いため、結局、電気消費者に莫大な費用がなすり付けられるという問題がある。 In the construction of transmission and distribution lines, there is a social conflict due to concerns about the risk of electromagnetic waves generated by high voltage and damage to the landscape. is desirable. However, since the construction cost is much higher than that of overhead lines, there is a problem that huge costs are ultimately passed on to electricity consumers.

かかる問題を打開する方法として、前記送電線路では、導体の耐熱性を向上させて常時使用温度90℃から常時使用温度150~230℃に昇温させ、熱膨張係数の低いインバー線(invar wire)などを用いて使用温度での鋼線の熱膨張を抑えることで、架空送電線の許容電流容量を50~100%に増大させる、増容量架空送電線が開発されている。これにより、既存の鉄塔などの設備を利用し、既設置の架空送電線のみを、同一サイズの増容量架空送電線路で交替することで、苦情や過度な投資コストなしに、送電容量の需要増加に適切に対処することができるようになった。 As a method for overcoming such a problem, in the power transmission line, the heat resistance of the conductor is improved, the temperature is raised from a constant operating temperature of 90 ° C. to a constant operating temperature of 150 to 230 ° C., and an invar wire with a low coefficient of thermal expansion is used. By suppressing the thermal expansion of the steel wire at the operating temperature using such as, an increased capacity overhead power transmission line has been developed in which the allowable current capacity of the overhead power transmission line is increased by 50 to 100%. By using existing facilities such as towers and replacing only existing overhead transmission lines with increased capacity overhead transmission lines of the same size, it is possible to increase the demand for transmission capacity without complaints or excessive investment costs. can now be dealt with appropriately.

ところが、架空配電線路に用いる従来の絶縁電線は、韓国電力標準規格「ES-6145-0021」によると、鋼線(reinforcing wire)、導体層(electrical conductor layer)、半導電層(semi electrical conductive layer)、絶縁層(insulation layer)、及び被覆層(covering layer)の同心円構造を有し、90℃の連続使用温度で用いられているが、許容電流容量を増大させることが困難である。 However, conventional insulated wires used for overhead distribution lines, according to the Korean Electric Power Standard "ES-6145-0021", consist of a reinforcing wire, an electrical conductor layer, and a semi-electrical conductive layer. ), an insulation layer, and a covering layer, and is used at a continuous use temperature of 90° C., but it is difficult to increase the allowable current capacity.

この際、前記絶縁電線は、連続使用温度が90℃を超えると、絶縁層の素材として用いられる架橋ポリエチレンの絶縁耐力と機械的性質の劣化(thermal aging)が加速し、結果として、架空配電線路の事故が引き起こされるという問題があるため、従来の架空送電線の増容量技術を用いて架空絶縁電線に適用することは困難である。 At this time, if the continuous use temperature of the insulated wire exceeds 90 ° C., the deterioration (thermal aging) of the dielectric strength and mechanical properties of the crosslinked polyethylene used as the material of the insulating layer accelerates, and as a result, the overhead distribution line It is difficult to apply conventional overhead power transmission line capacity increasing technology to overhead insulated wires because of the problem of causing accidents.

上記の問題を解決するために、韓国特許公開第10-2011-0020126号公報には、前記絶縁層の樹脂組成物を改良することで、連続使用温度120℃以上、及び従来の架空絶縁電線に比べて33%向上した許容電流容量が提示されているが、架空絶縁電線の連続使用許容温度を120℃以上に昇温させた際に誘発される導体層の劣化問題と、熱膨張による鋼心のサグ(垂れ量)増加の問題などを解決することが困難である。 In order to solve the above problems, Korean Patent Publication No. 10-2011-0020126 discloses that by improving the resin composition of the insulation layer, Although the allowable current capacity improved by 33% is presented, the deterioration problem of the conductor layer induced when the continuous use allowable temperature of the overhead insulated wire is raised to 120 ° C or more, and the steel core due to thermal expansion It is difficult to solve problems such as an increase in sag (amount of sagging).

一方、韓国特許公開第10-2011-0098548号公報には、導体層として、ジルコニウムを含有する耐熱アルミニウム合金を採択し、絶縁層の架橋ポリエチレン樹脂組成物を改良することで、連続使用温度125℃以上、及び従来の架空絶縁電線に比べて37%向上した許容電流容量が提示されているが、熱膨張による鋼線のサグ(垂れ量)増加の問題などに対する解決方案を提示できていないという問題がある。 On the other hand, in Korean Patent Publication No. 10-2011-0098548, by adopting a heat-resistant aluminum alloy containing zirconium as the conductor layer and improving the crosslinked polyethylene resin composition of the insulating layer, the continuous use temperature of 125 ° C. Although the allowable current capacity improved by 37% compared to the above and conventional overhead insulated wires is presented, there is a problem that a solution to the problem of increased sag (sagging amount) of steel wires due to thermal expansion has not been presented. There is

また、上記の特許によると、架空絶縁電線の連続許容温度は120~125℃に限定されており、従来の架空絶縁電線に比べて許容電流容量が33~37%以上増加する効果が開示されているが、架空配電線路の需要容量の増加に効果的に対処できることは言うまでもなく、新設費用に比べて顕著な経済性を提供可能な、架空絶縁電線の 許容電流容量が 50%以上の増加効果は得られないという問題がある。 In addition, according to the above patent, the continuous allowable temperature of the overhead insulated wire is limited to 120-125°C, and the effect of increasing the allowable current capacity by 33-37% or more compared to the conventional overhead insulated wire is disclosed. However, it goes without saying that it is possible to effectively cope with the increase in demand capacity of overhead distribution lines, and the effect of increasing the allowable current capacity of overhead insulated lines by 50% or more, which can provide remarkable economic efficiency compared to the cost of new installation, is The problem is that I don't get it.

韓国特許公開公報第10-2011-0020126号(A)(公開日: 2011.03.02)Korean Patent Publication No. 10-2011-0020126 (A) (publication date: 2011.03.02) 韓国特許公開公報第10-2011-0098548号(A)(公開日: 2011.09.01)Korean Patent Publication No. 10-2011-0098548 (A) (publication date: 2011.09.01) 韓国特許公開公報第10-2019-0000063号(A)(公開日: 2019.01.02)Korean Patent Publication No. 10-2019-0000063 (A) (publication date: 2019.01.02) 韓国特許登録公報第10-0747932号(B1)(登録日: 2007.08.02)Korean Patent Registration No. 10-0747932 (B1) (Registration Date: 2007.08.02)

そこで、本発明は、上記の問題を解決するためになされたものであって、前記架空絶縁電線の被覆層を熱伝導層及び耐候性被覆層に分割することで、前記架空絶縁電線の連続使用温度及び許容電流容量を増加させることができる増容量架空絶縁電線を提供することをその目的とする。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems, and is characterized by dividing the coating layer of the overhead insulated wire into a heat conductive layer and a weather resistant coating layer, thereby enabling the continuous use of the overhead insulated wire. It is an object of the present invention to provide an increased capacity overhead insulated wire capable of increasing the temperature and allowable current capacity.

前記目的を達成するための本発明の増容量架空絶縁電線は、鋼線と、前記鋼線を囲み、アルミニウム線を含む導体層と、前記導体層を囲み、カーボン系ナノ粒子を含有する半導電層と、前記半導電層を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する絶縁層と、前記絶縁層を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する熱伝導層と、前記熱伝導層を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する耐候性被覆層と、を含む。 The increased capacity overhead insulated wire of the present invention for achieving the above object comprises a steel wire, a conductor layer surrounding the steel wire and containing an aluminum wire, and a semiconducting conductor layer surrounding the conductor layer and containing carbon-based nanoparticles. an insulating layer surrounding the semiconductive layer and containing carbon-based nanoparticles and inorganic nanoparticles; a thermally conductive layer surrounding the insulating layer and containing carbon-based nanoparticles and inorganic nanoparticles; a weather resistant coating layer surrounding the layer and containing carbon-based nanoparticles and inorganic nanoparticles.

上述したように、本発明は 少なくとも次のような効果を有する。 As described above, the present invention has at least the following effects.

前記架空絶縁電線の被覆層を熱伝導層及び耐候性被覆層に分割であることはもちろん、前記架空絶縁電線に高分子マトリックス組成物を適用することで、前記架空絶縁電線の連続使用温度を150℃まで増大させるとともに、許容電流容量を従来に比べて50%向上することができるため、前記架空絶縁電線の過度な投資費用なしに送電容量の需要増加に対処できることは言うまでもなく、サグ(垂れ量)増加の問題を解決することができる。 In addition to dividing the coating layer of the overhead insulated wire into a heat conductive layer and a weather resistant coating layer, by applying a polymer matrix composition to the overhead insulated wire, the continuous use temperature of the overhead insulated wire can be increased to 150°C. ℃ and the allowable current capacity can be improved by 50% compared to the conventional one. ) can solve the increasing problem.

本発明に係る架空絶縁電線の断面を示した例示図である。1 is an exemplary view showing a cross section of an overhead insulated wire according to the present invention; FIG.

以下、本発明に係る実施形態を説明する。 Hereinafter, embodiments according to the present invention will be described.

本発明の増容量架空絶縁電線は、図1に示したように、鋼線1と、前記鋼線1を囲み、アルミニウム線2を含む導体層10と、前記導体層10を囲み、カーボン系ナノ粒子を含有する半導電層20と、前記半導電層20を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する絶縁層30と、前記絶縁層30を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する熱伝導層40と、前記熱伝導層40を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する耐候性被覆層50と、を含む。 The increased capacity overhead insulated wire of the present invention, as shown in FIG. a semiconductive layer 20 containing particles; an insulating layer 30 surrounding the semiconductive layer 20 and containing carbon-based nanoparticles and inorganic nanoparticles; and a weather-resistant coating layer 50 surrounding the heat conductive layer 40 and containing carbon-based nanoparticles and inorganic nanoparticles.

先ず、既設置の架空配電線路を用いて許用電流容量を増加させるためには、線路の長さ、許容サグ、電線の鋪設張力などを同一にする必要があり、また、接続金具類を同一に使用すべきである。このような条件下で架空絶縁電線の許容電流容量を増加させると、ジュール加熱(Joule heating)により導体の温度が上昇することになる。現在用いられている従来の架空絶縁電線導体の最大連続使用温度は90℃である。最大許容電流容量を50%増加させると、導体の最大連続使用温度は150℃になる。この際、鋼線と導体の熱膨張量の増加により、架空絶縁電線のサグが増加するという問題が発生する。 First, in order to increase the allowable current capacity of existing overhead distribution lines, it is necessary to make the length of the line, the allowable sag, the installation tension of the electric wire, etc. the same. should be used for If the allowable ampacity of the overhead insulated wire is increased under such conditions, the temperature of the conductor will rise due to Joule heating. The maximum continuous service temperature of conventional overhead insulated wire conductors currently in use is 90°C. A 50% increase in the maximum allowable ampacity would result in a maximum continuous use temperature for the conductor of 150°C. At this time, there arises a problem that the sag of the overhead insulated wire increases due to an increase in the amount of thermal expansion of the steel wire and the conductor.

また、前記連続使用温図150℃で、熱による導体の劣化(thermal aging)が、90℃での劣化よりも加速されるため、従来の架空絶縁電線において導体層の素線として用いられる硬アルミ線(hard drawn aluminium wire)と、鋼線として用いられる引張強度200kgf/mm以下の鋼線は、50%増容量架空絶縁電線に使用が不可能である。 In addition, since the deterioration of the conductor due to heat (thermal aging) is accelerated at a continuous use temperature of 150 ° C. compared to the deterioration at 90 ° C., hard aluminum used as a strand of a conductor layer in a conventional overhead insulated wire Wires (hard drawn aluminum wires) and steel wires with a tensile strength of 200 kgf/mm 2 or less used as steel wires cannot be used for 50% increased capacity overhead insulated wires.

したがって、本発明は、最大許容電流容量を50%増大させるべく、前記架空絶縁電線の最大連続使用温度を150℃まで向上させるために、超高強度鋼線と軟化熱処理されたアルミニウム線を用いることを特徴とする。 Therefore, in order to increase the maximum allowable current carrying capacity by 50% and increase the maximum continuous use temperature of the overhead insulated wire to 150°C, the present invention uses an ultra-high strength steel wire and a softening heat-treated aluminum wire. characterized by

一方、架空絶縁電線の許用電流の増大時に解決すべくさらに1つの技術的問題は、絶縁層(insulation layer)の高分子素材の劣化(thermal aging)による機械的物性及び絶縁耐力(insulation breakdown voltage)の低下である。 On the other hand, another technical problem to be solved when the allowable current of overhead insulated wires is increased is mechanical properties and insulation breakdown voltage due to thermal aging of the polymer material of the insulation layer. ).

したがって、本発明は、最大許容電流容量を50%増大させるべく、前記絶縁体の劣化による機械的物性及び絶縁耐力の低下を最小化させるために、前記絶縁層を囲む熱伝導層(thermal conductive layer)を含むことを特徴とする。 Therefore, in order to increase the maximum allowable current capacity by 50%, the present invention provides a thermal conductive layer surrounding the insulation layer in order to minimize deterioration of mechanical properties and dielectric strength due to deterioration of the insulation. ).

この際、前記架空絶縁電線の許用電流容量は、絶縁体が劣化することなく耐える最大温度によって決定される。この温度は、一般に90℃と決定される。最も高い絶縁体の温度は、絶縁体と導体との境界面で発生するため、導体の温度によって許用電流が決定される。 At this time, the allowable current capacity of the overhead insulated wire is determined by the maximum temperature that the insulator can withstand without deterioration. This temperature is generally determined to be 90°C. Since the highest insulator temperature occurs at the insulator-conductor interface, the conductor temperature determines the allowable current.

本発明は、従来の架空絶縁電線の半導電層と絶縁層及び被覆層の熱抵抗度を減少させ、または熱伝導度を増加させることで、架空絶縁電線の最大許容電流容量を増大させることを特徴とし、本発明は、前記最大許容電流をさらに増大させるために、絶縁層30と耐候性被覆層50との間に、熱伝導度が従来の被覆層より著しく高い熱伝導層40を含むことを特徴とする。 The present invention aims to increase the maximum allowable ampacity of the overhead insulated wire by reducing the thermal resistance or increasing the thermal conductivity of the semi-conductive layer, the insulating layer and the coating layer of the conventional overhead insulated wire. Characteristically, the present invention includes a thermally conductive layer 40 between the insulating layer 30 and the weather resistant coating layer 50, which has significantly higher thermal conductivity than conventional coating layers, in order to further increase the maximum allowable current. characterized by

以下、前記架空絶縁電線100の構成要素を説明する。 The constituent elements of the overhead insulated wire 100 will be described below.

[1]鋼線(1)
前記鋼線1の引張強度の範囲を200kgf/mm以上に限定する理由は、200kgf/mm未満では、アルミニウムの線熱膨張係数よりも低い線熱膨張係数を有する鋼線の張力分担率が低くなり、結果として、架空絶縁電線の150℃でのサグが増加することにより、既存の電柱を利用しにくくなるためである。
[1] Steel wire (1)
The reason why the range of tensile strength of the steel wire 1 is limited to 200 kgf/mm 2 or more is that below 200 kgf/mm 2 , the tension sharing ratio of the steel wire having a lower linear thermal expansion coefficient than that of aluminum is As a result, the sag of overhead insulated wires at 150° C. increases, making it difficult to utilize existing utility poles.

前記鋼線1として、線熱膨張係数が非常に低いインバー線も使用可能であるが、前記インバー線は非常に高価であるため、経済的な点から、本発明の一例として採用した超高強度鋼線1が好ましい。前記鋼線1は、外周に、亜鉛めっきもしくは亜鉛-アルミニウム-ミッシュメタルの合金めっき、またはアルミニウム被覆のうち1つの表面処理がなされていることが好ましく、前記鋼線1の表面処理は耐腐食性を向上させるためのことである。 As the steel wire 1, an Invar wire having a very low linear thermal expansion coefficient can be used, but since the Invar wire is very expensive, from an economic point of view, an ultra-high strength wire adopted as an example of the present invention Steel wire 1 is preferred. The outer circumference of the steel wire 1 is preferably subjected to one of zinc plating, zinc-aluminum-misch metal alloy plating, and aluminum coating, and the surface treatment of the steel wire 1 is corrosion resistant. to improve

[2]導体層(10)
前記導体層の素線として軟化熱処理されたアルミニウム線の引張強度の範囲を限定する理由は、7kgf/mm未満では、撚線(stranding)時に頻繁な断線の恐れがあるためであり、12kgf/mmを超える場合には、劣化による引張強度の低下により、導体使用期間が減少するためである。
[2] Conductor layer (10)
The reason for limiting the range of tensile strength of the aluminum wire subjected to softening heat treatment as the wire of the conductor layer is that if it is less than 7 kgf/mm 2 , there is a risk of frequent disconnection during stranding. This is because if it exceeds mm 2 , the period of use of the conductor will be shortened due to the decrease in tensile strength due to deterioration.

前記アルミニウム線の断面形状は、円形または台形が好ましい。特に、鋼線と導体層との間に間隙を置くことで、鋼線がサグ維持張力を担うようにする間隙型のサグ抑制架空絶縁電線には台形が採択される。アルミニウム線の軟化熱処理方法及び熱処理条件は、本発明が属する分野において広く知られた技術的思想の範囲で通常用いられるものであれば、制限されずに使用可能である。 The cross-sectional shape of the aluminum wire is preferably circular or trapezoidal. In particular, the trapezoidal shape is adopted for gap-type sag-suppressing overhead insulated wires in which a gap is placed between the steel wire and the conductor layer so that the steel wire carries the sag-retaining tension. The softening heat treatment method and heat treatment conditions for the aluminum wire can be used without limitation as long as they are commonly used within the scope of technical ideas widely known in the field to which the present invention belongs.

[3]半導電層(20)
前記半導電層20の素材として用いられる高分子マトリックスを構成する基本樹脂として、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレンメチルアクリレート(ethylene methyl acrylate)、エチレンビニルアクリレート、エチレンエチルアクリレート(EEA)、エチレンブチルアクリレート(EBA)、ポリアクリレート、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、及びポリスチレンからなる群から選択される1種以上組み合わせて用いてもよい。
[3] Semiconductive layer (20)
Basic resins constituting the polymer matrix used as the material of the semiconductive layer 20 include low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, ethylene methyl acrylate, ethylene vinyl acrylate, and ethylene ethyl acrylate. (EEA), ethylene butyl acrylate (EBA), polyacrylate, polyester, polycarbonate, polyurethane, polyimide, and polystyrene.

前記カーボン系ナノ粒子として、カーボンナノチューブ(Carbon Nano Tube;CNT)グラフェン(Graphene)、グラフェンナノプレートレット(Graphene nano platelet)、ナノカーボンブラック(nano carbon black)などの種々の炭素系ナノ物質群から選択される1種以上組み合わせて用いてもよい。 The carbon-based nanoparticles are selected from various carbon-based nanomaterial groups such as carbon nano tubes (CNT), graphene, graphene nano platelets, and nano carbon black. may be used in combination of one or more.

前記半導電層は、カーボン系ナノ粒子を前記樹脂組成物100重量部に対して2~20重量部含有する半導電性高分子マトリックスからなる。前記カーボン系ナノ粒子を2重量部未満で含む場合には、電気伝導性の向上効果が微小であり、20重量部を超えて含む場合には、押出加工性が低下する。 The semiconductive layer is made of a semiconductive polymer matrix containing 2 to 20 parts by weight of carbon-based nanoparticles with respect to 100 parts by weight of the resin composition. If the carbon-based nanoparticles are contained in an amount of less than 2 parts by weight, the effect of improving the electrical conductivity is minimal, and if the amount exceeds 20 parts by weight, the extrusion processability is deteriorated.

前記カーボン系ナノ粒子を含有する前記基本樹脂に、架橋剤、酸化防止劑、加工助剤などの添加剤が添加され、前記半導電性高分子マトリックス組成物が構成される。基本樹脂100重量部に対して各添加剤の種類及び添加重量部は本発明が属する分野において広く知られた技術的思想の範囲で通常用いられるものであれば、制限されずに使用可能である。 Additives such as a cross-linking agent, an antioxidant, and a processing aid are added to the basic resin containing the carbon-based nanoparticles to form the semiconductive polymer matrix composition. The type and weight parts of each additive per 100 parts by weight of the basic resin can be used without limitation as long as they are generally used within the scope of technical ideas widely known in the field to which the present invention belongs. .

[4]絶縁層(30)
前記絶縁層30の素材として用いられる高分子マトリックスを構成する基本樹脂として、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン、及び超高分子量ポリエチレン(UHMW-PE)を単独で用いるか、2種以上混合して用いてもよい。
[4] Insulating layer (30)
Low-density polyethylene (LDPE), medium-density polyethylene, high-density polyethylene, and ultra-high molecular weight polyethylene (UHMW-PE) are used alone as basic resins constituting the polymer matrix used as the material of the insulating layer 30, Two or more kinds may be mixed and used.

前記カーボン系ナノ粒子として、カーボンナノチューブ(Carbon Nano Tube;CNT)グラフェン(Graphene)、グラフェンナノプレートレット(Graphene nano platelet)、ナノカーボンブラック(nano carbon black)などの種々の炭素系ナノ物質群から選択される1種以上組み合わせて用いてもよい。 The carbon-based nanoparticles are selected from various carbon-based nanomaterial groups such as carbon nano tubes (CNT), graphene, graphene nano platelets, and nano carbon black. may be used in combination of one or more.

前記無機ナノ粒子としては、AlN(Aluminum Nitride)、Al(Aluminum Oxide or Alumina)、Al(OH)(Aluminum Trihydroxide)、ATH(Alumina Trihydrate)、BN(Boron Nitride)、BeO(Beryllium Oxide)、BaTiO(Barium Titanate)、CaCO(Calcium Carbonate)、LS(Layered Silicate)、MgO(Magnesium Oxide)、SiC(Silicon Carbide)、SiO(Silicon Dioxide or Silica)、TiO(Titanium Oxide or Titania)、ZnO(Zinc Oxide)などの無機物質のナノ粒子群から1種以上組み合わせて用いてもよい。 Examples of the inorganic nanoparticles include AlN (Aluminum Nitride), Al 2 O 3 (Aluminum Oxide or Alumina), Al (OH) 3 (Aluminum Trihydroxide), ATH (Alumina Trihydrate), BN (Boron Nitride), and BeO (Beryllium Oxide). ), BaTiO 3 (Barium Titanate), CaCO 3 (Calcium Carbonate), LS (Layered Silicate), MgO (Magnesium Oxide), SiC (Silicon Carbide), SiO 2 (Silicon Dioxide or Silica), TiO 2 ( ), ZnO (Zinc Oxide), and the like.

前記絶縁層は、カーボン系ナノ粒子及び無機ナノ粒子をそれぞれ前記樹脂組成物100重量部に対して0.5~5.0重量部含有する絶縁性高分子マトリックスからなる。前記数値範囲に関連して、0.5重量部未満で含む場合には、機械的特性の向上効果を発揮されず、5.0重量部を超えて含む場合には、絶縁耐力性能が低下する。 The insulating layer is made of an insulating polymer matrix containing 0.5 to 5.0 parts by weight of carbon-based nanoparticles and inorganic nanoparticles based on 100 parts by weight of the resin composition. Regarding the above numerical range, if the content is less than 0.5 parts by weight, the effect of improving the mechanical properties is not exhibited, and if the content exceeds 5.0 parts by weight, the dielectric strength performance is reduced. .

前記カーボン系ナノ粒子と前記無機ナノ粒子を含有する前記基本樹脂に、架橋剤、酸化安定剤、酸化安定助剤、UV安定剤、加工助剤などの添加剤が添加され、前記絶縁性高分子マトリックス組成物が構成される。 Additives such as a cross-linking agent, an oxidation stabilizer, an oxidation stabilizer aid, a UV stabilizer, and a processing aid are added to the basic resin containing the carbon-based nanoparticles and the inorganic nanoparticles, and the insulating polymer is A matrix composition is constructed.

基本樹脂100重量部に対して各添加剤の種類及び添加重量部は本発明が属する分野において広く知られた技術的思想の範囲で通常用いられるものであれば、制限されずに使用可能である。 The type and weight parts of each additive per 100 parts by weight of the basic resin can be used without limitation as long as they are generally used within the scope of technical ideas widely known in the field to which the present invention belongs. .

[5]熱伝導層(40)
前記熱伝導層40の素材として用いられる高分子マトリックスを構成する基本樹脂として、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン、及び超高分子量ポリエチレン(UHMW-PE)を単独で用いるか、2種以上混合して用いてもよい。
[5] Thermally conductive layer (40)
Low density polyethylene (LDPE), medium density polyethylene, high density polyethylene, and ultra high molecular weight polyethylene (UHMW-PE) are used alone as basic resins constituting the polymer matrix used as the material of the heat conductive layer 40. , may be used in combination of two or more.

前記カーボン系ナノ粒子として、カーボンナノチューブ(Carbon Nano Tube;CNT)グラフェン(Graphene)、グラフェンナノプレートレット(Graphene nano platelet)、ナノカーボンブラック(nano carbon black)などの種々の炭素系ナノ物質群から選択される1種以上組み合わせて用いてもよい。 The carbon-based nanoparticles are selected from various carbon-based nanomaterial groups such as carbon nano tubes (CNT), graphene, graphene nano platelets, and nano carbon black. may be used in combination of one or more.

前記無機ナノ粒子としては、AlN(Aluminum Nitride)、Al(Aluminum Oxide or Alumina)、Al(OH)(Aluminum Trihydroxide)、ATH(Alumina Trihydrate)、BN(Boron Nitride)、BeO(Beryllium Oxide)、BaTiO(Barium Titanate)、CaCO(Calcium Carbonate)、LS(Layered Silicate)、MgO(Magnesium Oxide)、SiC(Silicon Carbide)、SiO(Silicon Dioxide or Silica)、TiO(Titanium Oxide or Titania)、ZnO(Zinc Oxide)などの無機物質のナノ粒子群から1種以上組み合わせて用いてもよい。 Examples of the inorganic nanoparticles include AlN (Aluminum Nitride), Al 2 O 3 (Aluminum Oxide or Alumina), Al (OH) 3 (Aluminum Trihydroxide), ATH (Alumina Trihydrate), BN (Boron Nitride), and BeO (Beryllium Oxide). ), BaTiO 3 (Barium Titanate), CaCO 3 (Calcium Carbonate), LS (Layered Silicate), MgO (Magnesium Oxide), SiC (Silicon Carbide), SiO 2 (Silicon Dioxide or Silica), TiO 2 ( ), ZnO (Zinc Oxide), and the like.

前記熱伝導層は、カーボン系ナノ粒子及び無機ナノ粒子を、前記樹脂組成物100重量部に対して5.0~15.0重量部含有する熱伝導性高分子マトリックスからなる。前記数値範囲に関連して、5.0重量部未満で含む場合には、熱伝導性特性の向上効果を発揮されず、15.0重量部を超えて含む場合には、絶縁耐力性能が低下する。 The heat conductive layer is made of a heat conductive polymer matrix containing 5.0 to 15.0 parts by weight of carbon-based nanoparticles and inorganic nanoparticles with respect to 100 parts by weight of the resin composition. Regarding the numerical range, if it is contained in less than 5.0 parts by weight, the effect of improving thermal conductivity characteristics is not exhibited, and if it is contained in more than 15.0 parts by weight, dielectric strength performance is reduced. do.

前記カーボン系ナノ粒子を含有する前記基本樹脂に、架橋剤、酸化安定剤、酸化安定助剤、UV安定剤、加工助剤などの添加剤が添加され、前記絶縁性高分子マトリックス組成物が構成される。基本樹脂100重量部に対して各添加剤の種類及び添加重量部は本発明が属する分野において広く知られた技術的思想の範囲で通常用いられるものであれば、制限されずに使用可能である。 Additives such as a cross-linking agent, an oxidation stabilizer, an oxidation stabilizer aid, a UV stabilizer, and a processing aid are added to the basic resin containing the carbon-based nanoparticles to form the insulating polymer matrix composition. be done. The type and weight parts of each additive per 100 parts by weight of the basic resin can be used without limitation as long as they are generally used within the scope of technical ideas widely known in the field to which the present invention belongs. .

[6]耐候性被覆層(50)
前記耐候性被覆層50の素材として用いられる高分子マトリックスを構成する基本樹脂として、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン、及び超高分子量ポリエチレン(UHMW-PE)を単独で用いるか、2種以上混合して用いてもよい。
[6] Weather resistant coating layer (50)
Low-density polyethylene (LDPE), medium-density polyethylene, high-density polyethylene, and ultra-high-molecular-weight polyethylene (UHMW-PE) are used alone as basic resins constituting the polymer matrix used as the material of the weather-resistant coating layer 50. or two or more of them may be mixed and used.

前記カーボン系ナノ粒子として、カーボンナノチューブ(Carbon Nano Tube;CNT)グラフェン(Graphene)、グラフェンナノプレートレット(Graphene nano platelet)、ナノカーボンブラック(nano carbon black)などの種々の炭素系ナノ物質群から選択される1種以上組み合わせて用いてもよい。 The carbon-based nanoparticles are selected from various carbon-based nanomaterial groups such as carbon nano tubes (CNT), graphene, graphene nano platelets, and nano carbon black. may be used in combination of one or more.

前記無機ナノ粒子としては、AlN(Aluminum Nitride)、Al(Aluminum Oxide or Alumina)、Al(OH)(Aluminum Trihydroxide)、ATH(Alumina Trihydrate)、BN(Boron Nitride)、BeO(Beryllium Oxide)、BaTiO(Barium Titanate)、CaCO(Calcium Carbonate)、LS(Layered Silicate)、MgO(Magnesium Oxide)、SiC(Silicon Carbide)、SiO(Silicon Dioxide or Silica)、TiO(Titanium Oxide or Titania)、ZnO(Zinc Oxide)などの無機物質のナノ粒子群から1種以上組み合わせて用いてもよい。 Examples of the inorganic nanoparticles include AlN (Aluminum Nitride), Al 2 O 3 (Aluminum Oxide or Alumina), Al (OH) 3 (Aluminum Trihydroxide), ATH (Alumina Trihydrate), BN (Boron Nitride), and BeO (Beryllium Oxide). ), BaTiO 3 (Barium Titanate), CaCO 3 (Calcium Carbonate), LS (Layered Silicate), MgO (Magnesium Oxide), SiC (Silicon Carbide), SiO 2 (Silicon Dioxide or Silica), TiO 2 ( ), ZnO (Zinc Oxide), and the like.

前記耐候性被覆層50は、カーボン系ナノ粒子及び無機ナノ粒子を、前記樹脂組成物100重量部に対して2.0~9.9重量部含有する高分子マトリックスからなる。前記数値範囲に関連して、2.0重量部未満で含む場合には、耐トラッキング(water tee resistance)及び機械的特性の向上効果が発揮されず、9.9重量部を超えて含む場合には、絶縁耐力性能が低下する。 The weather-resistant coating layer 50 is made of a polymer matrix containing 2.0 to 9.9 parts by weight of carbon-based nanoparticles and inorganic nanoparticles with respect to 100 parts by weight of the resin composition. Regarding the numerical range, if it is contained in less than 2.0 parts by weight, the effect of improving water tee resistance and mechanical properties is not exhibited, and if it is contained in more than 9.9 parts by weight , the dielectric strength performance decreases.

前記カーボン系ナノ粒子を含有する前記基本樹脂に、架橋剤、酸化安定剤、酸化安定助剤、UV安定剤、加工助剤、撥水剤などの添加剤が添加され、前記耐候性被覆層高分子マトリックス組成物が構成される。基本樹脂100重量部に対して各添加剤の種類及び添加重量部は本発明が属する分野において広く知られた技術的思想の範囲で通常用いられるものであれば、制限されずに使用可能である。本発明に係る架空絶縁電線100は、連続使用温度が150℃まで向上し、従来の架空絶縁電線に比べて50%向上した許容電流容量を有する。 Additives such as a cross-linking agent, an oxidation stabilizer, an oxidation stabilizer auxiliary, a UV stabilizer, a processing aid, and a water repellent are added to the basic resin containing the carbon-based nanoparticles, and the weather-resistant coating layer height is increased. A molecular matrix composition is constructed. The type and weight parts of each additive per 100 parts by weight of the basic resin can be used without limitation as long as they are generally used within the scope of technical ideas widely known in the field to which the present invention belongs. . The overhead insulated wire 100 according to the present invention has a continuous use temperature of up to 150° C. and has a permissible current capacity improved by 50% compared to the conventional overhead insulated wire.

以上の説明は、本発明の一実施例にすぎず、本発明が属する技術分野において通常の知識を有する者は、本発明の本質的特性から逸脱しない範囲で変形された形態で具現することができる。したがって、本発明の範囲は、前述した実施例に限定されず、特許請求の範囲に記載された内容と同等の範囲内にある様々な実施形態が含まれるように解釈されるべきである。 The above description is only one embodiment of the present invention, and those skilled in the art to which the present invention pertains can implement it in modified forms without departing from the essential characteristics of the present invention. can. Therefore, the scope of the invention should not be limited to the above-described examples, but rather should be construed to include various embodiments within the scope and equivalence of the claims.

100 架空絶縁電線、1 鋼線、2 アルミニウム線、10 導体層、20 半導電層、30 絶縁層、40 熱伝導層、50 耐候性被覆層。 100 overhead insulated wire, 1 steel wire, 2 aluminum wire, 10 conductor layer, 20 semiconductive layer, 30 insulating layer, 40 heat conductive layer, 50 weather resistant coating layer.

Claims (1)

鋼線1と、
前記鋼線1を囲み、アルミニウム線2を含む導体層10と、
前記導体層10を囲み、カーボン系ナノ粒子を含有する半導電層20と、
前記半導電層20を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する絶縁層30と、
前記絶縁層30を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する熱伝導層40と、
前記熱伝導層40を囲み、カーボン系ナノ粒子及び無機ナノ粒子を含有する耐候性被覆層50と、
を含み、
前記鋼線1は、200kgf/mm以上の引張強度を有し、前記鋼線1は、その外周に、亜鉛めっき、亜鉛-アルミニウム-ミッシュメタルの合金めっき、およびアルミニウム被覆から選択される任意の1つの表面処理がなされており、
前記半導電層20は、全樹脂組成物100重量部に対してカーボン系ナノ粒子を2~20重量部含有し、前記アルミニウム線2は、7~12kgf/mmの引張強度を有し、前記半導電層20として、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレンメチルアクリレート、エチレンビニルアクリレート、エチレンエチルアクリレート(EEA)、エチレンブチルアクリレート(EBA)、ポリアクリレート、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、及びポリスチレンからなる群から選択される1種以上が組み合わせて用いられ、前記カーボン系ナノ粒子として、カーボンナノチューブ(CNT)グラフェン、グラフェンナノプレートレット、及びナノカーボンブラックを含む種々の炭素系ナノ物質の群から選択される1種以上が組み合わせて用いられ、
前記半導電層20はまた、カーボン系ナノ粒子を前記樹脂組成物100重量部に対して2~20重量部含有する半導電性高分子マトリックスを含み、
架橋剤、酸化防止剤、または加工助剤を含む添加剤が、前記半導層20の前記カーボン系ナノ粒子を含む基本樹脂に添加され、
前記絶縁層30は、全樹脂組成物100重量部に対してカーボン系ナノ粒子及び無機ナノ粒子を0.5~5.0重量部含有し、前記絶縁層30のための高分子マトリックスを構成する基本樹脂として、低密度ポリエチレン(LDPE)、中密度ポリエチレン、高密度ポリエチレン、及び超高分子量ポリエチレン(UHMW-PE)が単独で用いられるか、2種以上混合して用いられ、
前記熱伝導層40は、全樹脂組成物100重量部に対してカーボン系ナノ粒子及び無機ナノ粒子を5.0~15.0重量部含有し、
前記耐候性被覆層50は、全樹脂組成物100重量部に対してカーボン系ナノ粒子及び無機ナノ粒子を2.0~9.9重量部含有することを特徴とする増容量架空絶縁電線。
a steel wire 1;
a conductor layer 10 surrounding the steel wire 1 and containing the aluminum wire 2;
a semiconductive layer 20 surrounding the conductor layer 10 and containing carbon-based nanoparticles;
an insulating layer 30 surrounding the semiconducting layer 20 and containing carbon-based nanoparticles and inorganic nanoparticles;
a heat conductive layer 40 surrounding the insulating layer 30 and containing carbon-based nanoparticles and inorganic nanoparticles;
a weather-resistant coating layer 50 surrounding the heat conductive layer 40 and containing carbon-based nanoparticles and inorganic nanoparticles;
including
The steel wire 1 has a tensile strength of 200 kgf/mm 2 or more, and the outer circumference of the steel wire 1 has an arbitrary coating selected from zinc plating, zinc-aluminum-mischmetal alloy plating, and aluminum coating. One surface treatment is done,
The semiconductive layer 20 contains 2 to 20 parts by weight of carbon-based nanoparticles with respect to 100 parts by weight of the total resin composition, the aluminum wire 2 has a tensile strength of 7 to 12 kgf/mm 2 , and the As the semiconductive layer 20, low-density polyethylene, medium-density polyethylene, high-density polyethylene, polypropylene, ethylene methyl acrylate, ethylene vinyl acrylate, ethylene ethyl acrylate (EEA), ethylene butyl acrylate (EBA), polyacrylate, polyester, polycarbonate, polyurethane. , polyimide, and polystyrene are used in combination, and the carbon-based nanoparticles include carbon nanotubes (CNT) graphene, graphene nanoplatelets, and nanocarbon black. One or more selected from the group of nano-substances are used in combination,
The semiconductive layer 20 also includes a semiconductive polymer matrix containing 2 to 20 parts by weight of carbon-based nanoparticles with respect to 100 parts by weight of the resin composition,
an additive comprising a cross-linking agent, an antioxidant, or a processing aid is added to the base resin comprising the carbon-based nanoparticles of the semi- conductive layer 20;
The insulating layer 30 contains 0.5 to 5.0 parts by weight of carbon-based nanoparticles and inorganic nanoparticles with respect to 100 parts by weight of the total resin composition, and constitutes a polymer matrix for the insulating layer 30. Low-density polyethylene (LDPE), medium-density polyethylene, high-density polyethylene, and ultra-high molecular weight polyethylene (UHMW-PE) are used alone or in combination of two or more as the base resin,
The heat conductive layer 40 contains 5.0 to 15.0 parts by weight of carbon-based nanoparticles and inorganic nanoparticles with respect to 100 parts by weight of the total resin composition,
The increased capacity overhead insulated wire, wherein the weather resistant coating layer 50 contains 2.0 to 9.9 parts by weight of carbon-based nanoparticles and inorganic nanoparticles with respect to 100 parts by weight of the total resin composition.
JP2021573768A 2019-06-14 2020-06-12 Increased capacity overhead insulated wire Active JP7161632B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2019-0070883 2019-06-14
KR1020190070883A KR102328534B1 (en) 2019-06-14 2019-06-14 Insulated overhead cable with increased capacity
PCT/KR2020/007632 WO2020251296A1 (en) 2019-06-14 2020-06-12 Increased capacity overhead insulated wire

Publications (2)

Publication Number Publication Date
JP2022528295A JP2022528295A (en) 2022-06-09
JP7161632B2 true JP7161632B2 (en) 2022-10-26

Family

ID=73782183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021573768A Active JP7161632B2 (en) 2019-06-14 2020-06-12 Increased capacity overhead insulated wire

Country Status (5)

Country Link
EP (1) EP3971914A4 (en)
JP (1) JP7161632B2 (en)
KR (1) KR102328534B1 (en)
CN (1) CN114008725B (en)
WO (1) WO2020251296A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164974A (en) 2022-05-26 2023-12-05 한국전력공사 Electric power line using composite material, and method for manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045885A (en) 2016-09-15 2018-03-22 日立金属株式会社 Insulated wire

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102405A (en) * 1981-12-14 1983-06-18 ダイキン工業株式会社 Snow deposition resistant wire
JPH0642418B2 (en) * 1987-06-22 1994-06-01 株式会社東芝 Heat resistant insulated wire
JPH0411299Y2 (en) * 1987-10-28 1992-03-19
CN1256807A (en) * 1998-03-14 2000-06-14 古河电气工业株式会社 Heat dissipating device for transmission line, transmission line with heat dissipating device and method for fitting heat dissipating device to transmission line
KR100747932B1 (en) 2006-02-15 2007-08-08 엘에스전선 주식회사 Composition for manufacturing insulation materials of electrical wire and manufactured electrical wire using the same
KR101311227B1 (en) 2009-08-21 2013-09-24 에스케이종합화학 주식회사 Crosslinked polyethylene composition for insulation of power cable
KR20110098548A (en) 2010-02-26 2011-09-01 한국전력공사 Insulated electric wire
KR101161360B1 (en) * 2010-07-13 2012-06-29 엘에스전선 주식회사 DC Power Cable Having Reduced Space Charge Effect
KR101408925B1 (en) * 2011-01-25 2014-06-18 엘에스전선 주식회사 Light Weight Power Cable Using Semiconductive Composition And Insulation Composition
CN202632871U (en) * 2012-07-13 2012-12-26 安徽明都电力线缆有限公司 10 kV steel-core abrasion-resistant bundled aerial insulated cable
KR20130089217A (en) * 2013-06-04 2013-08-09 한국전력공사 Insulated electric wire
KR101549660B1 (en) * 2013-09-30 2015-09-03 한국전기연구원 Overhead Conductor using Ultra High Strength Steel Wire
JP6318749B2 (en) * 2014-03-20 2018-05-09 住友電気工業株式会社 Insulating material manufacturing method, masterbatch, insulating material and power cable
KR101565447B1 (en) * 2015-06-05 2015-11-04 한국전기연구원 Ultra high strength coated steel wire for overhead transmission and distribution conductor
CN104992754A (en) * 2015-07-20 2015-10-21 江苏中超电缆股份有限公司 Aerial insulated cable cross linked polyethylene insulation material containing graphene and cable
US9972420B2 (en) * 2015-12-08 2018-05-15 The Boeing Company Carbon nanotube shielding for transmission cables
KR20170107326A (en) * 2016-03-15 2017-09-25 엘에스전선 주식회사 An insulating composition having low dielectric constant and cable comprising an insulating layer formed from the same
KR102565592B1 (en) * 2016-07-26 2023-08-10 엘지디스플레이 주식회사 System and method for measuring of luminance and chromaticity
CN107871556A (en) * 2016-09-23 2018-04-03 江苏亨通电力电缆有限公司 The aerial insulated cable and its manufacturing process of high current-carrying capacity
KR20180091555A (en) * 2017-02-07 2018-08-16 고려대학교 산학협력단 Compound for a semiconductor layer of a power cable and power cable including the same
KR102473515B1 (en) 2017-06-22 2022-12-01 엘에스전선 주식회사 Halogen-free insulating composition with excellent low-teperature resistance and oil resistance and cable having a dielectric layer formed from the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018045885A (en) 2016-09-15 2018-03-22 日立金属株式会社 Insulated wire

Also Published As

Publication number Publication date
KR20200143059A (en) 2020-12-23
WO2020251296A1 (en) 2020-12-17
CN114008725B (en) 2023-01-17
EP3971914A4 (en) 2023-08-09
EP3971914A1 (en) 2022-03-23
CN114008725A (en) 2022-02-01
KR102328534B1 (en) 2021-11-18
JP2022528295A (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN111276291B (en) Ultra-high voltage direct current power cable
CN104992754A (en) Aerial insulated cable cross linked polyethylene insulation material containing graphene and cable
JP7161632B2 (en) Increased capacity overhead insulated wire
JP2000511684A (en) High voltage winding conductor and method of manufacturing the conductor
CN103050177A (en) Electrically insulated wire having multi-layered coating
WO2023035487A1 (en) Medium-voltage feeder cable, preparation method therefor and application thereof
KR101355572B1 (en) Extra high voltage cable
KR20120097685A (en) Semicoductive resin composition for high voltage direct current power cable having space charge accumulation suppression
CN202134258U (en) Reinforced fiber composite high temperature resistant overhead insulated cable
US20100032188A1 (en) Electric insulator and use thereof
US20110118393A1 (en) Surge-resistant and abrasion-resistant flexible insulating enamel
CN111292875B (en) Insulating composition and DC power cable having insulating layer formed of the same
CN204884602U (en) Crosslinked polyethylene insulating material's cable for overhead insulated cable that contains graphite alkene
CN204991259U (en) High heat conduction polyvinyl chloride jacketed cable that contains graphite alkene
CN109754921A (en) Naval vessel heat-conducting type degaussing cable
CN101291086B (en) Corona protecting method of stator winding cable of straight line motor
CN103594181A (en) Electric line insulating skin with inflaming retarding effect
CN103106980A (en) High-strength power cable
KR20180131310A (en) High Voltage direct current power cable
RU148883U1 (en) SINGLE CABLE POWER CABLE
CN212411606U (en) Anti-aging electric wire for building
KR20130089217A (en) Insulated electric wire
US8324303B2 (en) Surge-resistant and abrasion-resistant flexible insulating enamel
RU202509U1 (en) POWER CABLE CONTAINING SELF-REGULATING CABLE
CN102194555A (en) Method for manufacturing watertight overhead protective power cable with copper core

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7161632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150