JP7161331B2 - power controller - Google Patents

power controller Download PDF

Info

Publication number
JP7161331B2
JP7161331B2 JP2018139242A JP2018139242A JP7161331B2 JP 7161331 B2 JP7161331 B2 JP 7161331B2 JP 2018139242 A JP2018139242 A JP 2018139242A JP 2018139242 A JP2018139242 A JP 2018139242A JP 7161331 B2 JP7161331 B2 JP 7161331B2
Authority
JP
Japan
Prior art keywords
power
receiving point
period
command value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018139242A
Other languages
Japanese (ja)
Other versions
JP2020018082A (en
Inventor
太郎 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2018139242A priority Critical patent/JP7161331B2/en
Publication of JP2020018082A publication Critical patent/JP2020018082A/en
Application granted granted Critical
Publication of JP7161331B2 publication Critical patent/JP7161331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

この発明は、ネットワーク上に点在する電力需要部と電力発電部を統合して、電力を効率的に需要家に供給する電力マネージメントを行う電力制御装置に関する。 TECHNICAL FIELD The present invention relates to a power control apparatus that integrates power demand units and power generation units that are scattered on a network and performs power management that efficiently supplies power to consumers.

従来から、蓄電池、燃料電池などの蓄電設備を持つ電力需要家に設置され、負荷に応じて系統から受電する電力量と蓄電設備から供給可能な電力とを調整する電力制御装置が提案されている(特許文献1、2)。 Conventionally, there has been proposed a power control device that is installed in an electric power consumer having storage equipment such as a storage battery or fuel cell, and adjusts the amount of power received from the grid according to the load and the power that can be supplied from the storage equipment. (Patent Documents 1 and 2).

これらの電力制御装置は、センターからの電力指令値に応じて、系統からの電力を負荷に供給しつつ一部電力を蓄電設備に充電したり、系統からの電力を負荷に供給しつつ蓄電設備からも負荷に対して電力の一部を供給(放電)する。 Depending on the power command value from the center, these power control devices supply power from the grid to the load while charging a part of the power to the storage equipment, or supply power from the grid to the load while charging the storage equipment. also supplies (discharges) part of the power to the load.

また、上記電力マネージメントを行うためのアグリゲータを配置し、このアグリゲータにおいて、電力需要家7、8の電力需要を束ねるとともに、電力需要家7、8が発電または保有するエネルギーリソースを束ねて一つの仮想発電所として構築し、上流側(集中電源部)から供給される電力と、下流側(エネルギーリソース部)で発電、保有する電力とをマッチングさせて、各需要家に対する電力の配電が効率的となる制御を行うアグリゲータシステムが提案されている(特許文献3等) In addition, an aggregator for performing the power management is arranged, and in this aggregator, the power demand of the power consumers 7 and 8 is bundled, and the energy resources generated or held by the power consumers 7 and 8 are bundled into one virtual Constructed as a power plant, the power supplied from the upstream side (centralized power supply section) and the power generated and held downstream (energy resource section) are matched to efficiently distribute power to each consumer. An aggregator system that performs the following control has been proposed (Patent Document 3, etc.)

特開2001-258176号公報Japanese Patent Application Laid-Open No. 2001-258176 特開2012-249458号公報JP 2012-249458 A 特開2018-033273号公報JP 2018-033273 A

しかし、上記の装置では、センターからの電力指令値が送られたときの充放電制御のタイミングについては明確でない。このため、一般には、上位のサーバーやアグリゲータ等から電力指令値が送られてくると、その後は、装置内部の制御タイミングに応じて充電制御や放電制御が行われる。 However, in the above device, the timing of charge/discharge control when the power command value is sent from the center is not clear. Therefore, in general, when a power command value is sent from a host server, aggregator, or the like, charging control and discharging control are performed according to the control timing inside the device.

この場合、電力需要量の傾きが急激に変化する時間帯、例えば朝方であれば、当初は電力需要量(負荷電力)が電力指令値未満であるため余剰電力が蓄電池へ充電され、電力需要量が電力指令値を超えたタイミングから不足分が蓄電池からの放電で賄われる。 In this case, when the slope of the power demand changes rapidly, for example, in the early morning, the power demand (load power) is initially less than the power command value, so the storage battery is charged with surplus power, and the power demand When the power exceeds the power command value, the shortfall is covered by the discharge from the storage battery.

図1は、この様子を示す。 FIG. 1 shows this situation.

同図は、外部電力系統から電力が入力される受電点の電力指令値Cと、受電点電力の予測値を示す受電点電力カーブDと、蓄電池に対する充放電制御内容を示す。縦軸は受電点電力を示し、横軸は電力指令値Cを受けてからの経過時間を示す。図1では受電点電力の実測値を省略している。電力指令値Cは、受電点電力の実測値がこれに一致するよう指令する値であり、期間T1後の時刻t3で受電点電力の実測値が指令値Cに一致しているか判定される。また、電力指令値Cは、期間T1(30分間)毎にアグリゲータ等から受信する。電力制御装置は、この期間T1(30分間)よりも短い計測周期(例えば1分間)毎に、実際の受電点電力を計測し、充放電制御を行う。 The figure shows a power command value C at a power receiving point to which power is input from an external power system, a power receiving point power curve D indicating a predicted value of the power at the power receiving point, and charge/discharge control details for the storage battery. The vertical axis indicates the power at the receiving point, and the horizontal axis indicates the elapsed time since the power command value C was received. In FIG. 1, the measured value of the power at the receiving point is omitted. The power command value C is a value that instructs the actual measured value of the power at the receiving point to match this value. Also, the power command value C is received from an aggregator or the like every period T1 (30 minutes). The power control device measures the actual power at the receiving point and performs charging/discharging control at each measurement cycle (for example, 1 minute) shorter than this period T1 (30 minutes).

受電点電力カーブDは、過去の受電点電力から予測した今回の受電点電力の変化を示す。受電点電力カーブDは、上位のサーバー(アグリゲータ等)から送られてくる。 A power receiving point curve D indicates a change in the current power receiving point predicted from the past power receiving point. The receiving point power curve D is sent from a host server (aggregator or the like).

朝10時30分の時刻t1で上位のサーバー(アグリゲータ等)から、ネットワーク等を介して電力指令値Cと受電点電力カーブDが送られてくると、電力制御回路は、実際の受電点電力が電力指令値Cとなるように蓄電池への充放電制御を行う。具体的には、時刻t1~時刻t3までの間、受電点電力カーブDと電力指令値Cから、充電或いは放電の何れを行うかを決定してに蓄電池への充放電制御を行い、計測周期(1分間)毎に計測する受電点電力の実測値に基づき、実際の受電点電力が電力指令値Cに一致するように充放電量を制御する。上位サーバー(アグリゲータ等)は、期間T1(30分間)経過後の時刻t3で実際の受電点電力が電力指令値Cと一致しているか判定する。 At time t1 at 10:30 in the morning, when the power command value C and the receiving point power curve D are sent from the host server (aggregator, etc.) via the network, etc., the power control circuit detects the actual receiving point power is the power command value C. Specifically, from time t1 to time t3, it is determined whether charging or discharging is performed from the power receiving point power curve D and the power command value C, and the charging and discharging of the storage battery is controlled. The charge/discharge amount is controlled so that the actual power at the power receiving point matches the power command value C based on the actual value of the power at the power receiving point measured every (one minute). The host server (aggregator or the like) determines whether the actual power at the receiving point matches the power command value C at time t3 after the period T1 (30 minutes) has elapsed.

時刻t1では、予測した今回の受電点電力である受電点電力カーブDの値は電力指令値Cよりも小さいため、その差である余剰電力は蓄電池への充電として使用される。時刻t2以降になると、予測した今回の受電点電力である受電点電力カーブDの値が電力指令値C以上となるため、電力指令値Cだけでは電力が不足する。そこで、時刻t2からは蓄電池が放電し、不足分が蓄電池からの電力で賄われる。この間、計測周期毎に計測する受電点電力の実測値により充放電量が制御される。朝11時00分の時刻t3になると、上位サーバーから、次の電力指令値が来るタイミングとなる。時刻t3で新たに受信した電力指令値Cがそれまでの電力指令値Cと同じ場合や、それよりも大きい値に変更された場合は、引き続き放電が継続される。 At time t1, the value of the power receiving point power curve D, which is the predicted current power at the power receiving point, is smaller than the power command value C, so the surplus power that is the difference is used to charge the storage battery. After time t2, the value of the power receiving point power curve D, which is the predicted current power at the power receiving point, becomes equal to or greater than the power command value C, so the power command value C alone is insufficient. Therefore, the storage battery is discharged from time t2, and the shortfall is covered by the electric power from the storage battery. During this time, the charge/discharge amount is controlled based on the actual measurement value of the power at the power receiving point, which is measured at each measurement cycle. At time t3 at 11:00 in the morning, the next power command value comes from the host server. If the power command value C newly received at time t3 is the same as the previous power command value C, or is changed to a value greater than that, discharging continues.

このように、図1に示す電力制御では、朝の30分間で蓄電池に対する充電または放電が常に行われ、且つ、充電期間(t1~t2)と放電期間(t2~t3)がそれぞれ生じることになる。反対に、夕方から夜にかけての電力需要量は減少となるから、30分間で放電または放電が常に行われ、且つ、放電期間(t1~t2)と充電期間(t2~t3)がそれぞれ生じることになる。 Thus, in the power control shown in FIG. 1, the storage battery is always charged or discharged for 30 minutes in the morning, and a charging period (t1 to t2) and a discharging period (t2 to t3) occur respectively. . Conversely, since the power demand decreases from evening to night, discharging or discharging is always performed in 30 minutes, and a discharging period (t1 to t2) and a charging period (t2 to t3) occur respectively. Become.

そして、このような制御では、充電期間及び放電期間の何れにおいても、受電点電力の実測値と指令値Cが一致するよう、逐次充放電を繰り返すこととなり、スイッチング素子の損失発生や蓄電池の劣化を早める問題がある。 In such control, in both the charging period and the discharging period, charging and discharging are sequentially repeated so that the actual measurement value of the power at the receiving point and the command value C match, which causes loss in the switching element and deterioration of the storage battery. There is a problem of expediting

この発明は、電力指令値を受信して次の電力指令値を受信するまでの期間において、充電期間又は放電期間がいずれか1回ですむ、電力制御装置を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a power control device that requires only one charging period or one discharging period in the period between receiving a power command value and receiving the next power command value.

この発明は、外部電力系統から電力が入力する受電点と、
前記受電点に入力する受電点電力の電力指令値を、期間T1毎に上位サーバーから受信する通信端子と、
前記受電点電力が前記期間T1経過時に前記電力指令値となるように蓄電池に対する充放電制御を行うパワーコントローラーを備える。
The present invention comprises a power receiving point to which power is input from an external power system;
a communication terminal that receives a power command value of power at the power receiving point to be input to the power receiving point from a host server every period T1;
A power controller is provided to perform charge/discharge control of a storage battery so that the power at the power receiving point reaches the power command value when the period T1 has elapsed.

通信端子に上位サーバーから受電点の電力指令値が入力されると、パワーコントローラーにおいて蓄電池への充放電制御が行われる。 When the power command value of the power receiving point is input to the communication terminal from the host server, the power controller controls charging and discharging of the storage battery.

すなわち、パワーコントローラーは、前記通信端子に前記電力指令値を受信したときに、前記期間T1の受電点電力カーブを設定し、前記期間T1において前記受電点電力カーブと前記電力指令値との差の積算値を求め、該積算値に基づいて前記蓄電池の充電量又は放電量のいずれかを設定し、前記期間T1内で充電制御または放電制御のいずれか一方の制御を行う。 That is, the power controller sets the power receiving point power curve for the period T1 when the power command value is received at the communication terminal, and determines the difference between the power receiving point power curve and the power command value during the period T1. An integrated value is obtained, either the charge amount or the discharge amount of the storage battery is set based on the integrated value, and either charge control or discharge control is performed within the period T1.

前記積算値は、前記期間T1において、期間T2(T2<T1)毎の前記差を積算した値であり、この積算値が正のとき前記放電量を、前記積算値が負のとき前記充電量を設定する。 The integrated value is a value obtained by integrating the difference for each period T2 (T2<T1) in the period T1. When the integrated value is positive, the discharge amount is obtained. set.

T2<T1の関係は、例えば、T1が30分間、T2が1分とされる。 As for the relationship of T2<T1, for example, T1 is 30 minutes and T2 is 1 minute.

パワーコントローラーは、期間T1間の受電点電力カーブと電力指令値との差の積算値を求め、この積算値が正か負かに応じて期間T1間内に充電期間または放電期間を1回だけ設定し、この期間に充電または放電を一度だけ行う。また、積算値の大きさに基づいて充電量(充電時間)又は放電量(放電時間)を決める。 The power controller obtains the integrated value of the difference between the power receiving point power curve and the power command value during the period T1, and depending on whether the integrated value is positive or negative, the charging period or the discharging period is performed only once during the period T1. set and charge or discharge only once during this period. Also, the charging amount (charging time) or the discharging amount (discharging time) is determined based on the magnitude of the integrated value.

この発明では、朝方や夕方以降など、電力需要量が大きく変化する時間帯において、期間T1で充電と放電を逐次行う必要がなく、どちらか一方の制御を短時間行うだけで良い。このため、蓄電池の充放電サイクル数が小さくなって寿命が長くなる。また、充電又は放電を行わない時間帯では充放電動作(スイッチング制御による動作)が不要であるため、その分、電力制御装置内での電力損失を減らすことが出来る。 In the present invention, it is not necessary to sequentially perform charging and discharging during the period T1 in time periods such as early in the morning and late in the evening when the amount of power demand varies greatly. As a result, the number of charge/discharge cycles of the storage battery is reduced, and the life of the storage battery is lengthened. In addition, since no charging/discharging operation (operation by switching control) is required during a time period in which charging or discharging is not performed, power loss in the power control device can be reduced accordingly.

従来の電力制御装置の充放電制御動作を示す図である。FIG. 10 is a diagram showing a charge/discharge control operation of a conventional power control device; この発明の実施形態である電力統合システムの概略図である。1 is a schematic diagram of a power integration system that is an embodiment of the invention; FIG. 電力需要家7、8の概略構成図である。2 is a schematic configuration diagram of power consumers 7 and 8. FIG. この発明の実施形態である電力制御装置において、蓄電池へ放電のみ行う場合の動作を説明する図である。FIG. 4 is a diagram for explaining the operation of the power control device according to the embodiment of the present invention when only discharging to a storage battery is performed; この発明の実施形態である電力制御装置において、蓄電池へ充電のみ行う場合の動作を説明する図である。FIG. 4 is a diagram for explaining the operation of the power control apparatus according to the embodiment of the present invention when only charging the storage battery; この発明の実施形態である電力制御装置の充放電制御動作を示すフローチャートである。4 is a flow chart showing a charge/discharge control operation of the power control device that is the embodiment of the present invention; 蓄電池へ放電のみ行う場合の他の実施例を示す。Another embodiment in the case of performing only discharge to the storage battery is shown. 蓄電池へ充電のみ行う場合の他の実施例を示す。Another embodiment in the case of only charging the storage battery is shown.

図2は、この発明の実施形態である電力制御装置を含むバーチャルパワープラント1と、バーチャルパワープラント1に接続される電力事業者2とを備える電力統合システムの概略図である。この電力統合システムは、電力会社や発電事業者で発電する電力と、各需要家等で必要な電力及び発電・保有する電力とが、アグリゲータにより統合され、電力の配分等がマネージメントされるシステムである。 FIG. 2 is a schematic diagram of a power integration system comprising a virtual power plant 1 including a power control device that is an embodiment of the present invention, and a power company 2 connected to the virtual power plant 1. As shown in FIG. This power integration system is a system in which the power generated by electric power companies and power producers and the power required, generated and owned by each customer are integrated by an aggregator, and the distribution of power is managed. be.

電力統合システムでは、電力事業者2と、バーチャルパワープラント1がそれぞれ複数であっても良い。 In the power integrated system, there may be multiple power companies 2 and multiple virtual power plants 1 .

電力事業者2は、一つ以上の電力会社3と、各電力会社3にネットワーク網や専用の回線等で接続される、電力会社以外の発電事業者等4、5を含んでいる。発電事業者等4、5は、ソーラーパネル、風力発電施設等を用いて得られた再生エネルギーによる発電事業者、その他のエネルギーによる発電事業者等を含んでいる。電力事業者2は、図外の送配電線により、電力を工場や家庭の電力需要家に供給する。 The power companies 2 include one or more power companies 3 and power companies 4 and 5 other than the power companies connected to each power company 3 via a network, a dedicated line, or the like. The power generators 4 and 5 include power generators using renewable energy obtained by using solar panels, wind power generation facilities, etc., and power generators using other energy. The electric power company 2 supplies electric power to power consumers such as factories and homes through transmission and distribution lines (not shown).

バーチャルパワープラント1は、電力会社3にネットワーク網や専用の回線等で接続されるアグリゲータ6と、アグリゲータ6にネットワーク網や専用の回線等で接続される複数の電力需要家7、8を含む。電力需要家7、8は、基本的に図外の送配電線により電力事業者2から電力を受け取るが、自家発電施設、蓄電池、蓄熱施設などの小規模な電力の発電・保有施設を電力リソースとして備えている。このことから、バーチャルパワープラント1は、各電力需要家7、8が発電・保有する電力を束ねた一つの仮想発電所として概念される。 The virtual power plant 1 includes an aggregator 6 connected to a power company 3 via a network, a dedicated line, or the like, and a plurality of power consumers 7 and 8 connected to the aggregator 6 via a network, a dedicated line, or the like. Electric power consumers 7 and 8 basically receive electric power from the electric power company 2 through transmission and distribution lines (not shown), but use small-scale electric power generation/holding facilities such as in-house power generation facilities, storage batteries, and heat storage facilities as electric power resources. It is equipped as From this, the virtual power plant 1 is conceptualized as one virtual power plant that bundles the power generated and held by each of the power consumers 7 and 8 .

それにより、図1において全体の電力の供給源をみた場合、電力事業者2は、上流側に位置する集中電源部となり、電力需要家7、8が発電・保有する電力は下流側に位置するエネルギーリソース部となる。 As a result, when looking at the overall power supply source in FIG. 1, the electric power company 2 becomes a centralized power supply located on the upstream side, and the power generated and held by the power consumers 7 and 8 is located on the downstream side. Energy resource department.

アグリゲータ6は、電力需要家7、8の電力需要を束ねるとともに、電力需要家7、8が発電または保有するエネルギーリソースを束ねて一つの仮想発電所として構築し、上流側(集中電源部)から供給される電力と、下流側(エネルギーリソース部)で発電、保有する電力とをマッチングさせて、各需要家に対する電力の配電が効率的となるようにエネルギーマネージメントを行う。 The aggregator 6 bundles the power demand of the power consumers 7 and 8, and bundles the energy resources generated or owned by the power consumers 7 and 8 to build a single virtual power plant. Energy management is performed so that the power to be supplied is matched with the power generated and stored in the downstream side (energy resource section) so that the power distribution to each consumer is efficient.

アグリゲータ6のエネルギーマネージメントとしては様々な形態があるが、本実施形態では、電力指令値と受電点電力カーブの設定によるエネルギーマネージメントを示す。 Although there are various forms of energy management of the aggregator 6, this embodiment shows energy management by setting a power command value and a power receiving point power curve.

電力指令値とは、電力需要家7、8の受電点電力を指令する値である。この電力指令値は、本実施形態では30分毎に設定され、電力需要家7、8では、30分経過時の受電点電力の実測値が、設定された電力指令値になることが要請される。 The power command value is a value for commanding power at the receiving point of power consumers 7 and 8 . This power command value is set every 30 minutes in this embodiment, and the power consumers 7 and 8 are requested that the actual measured value of the power at the receiving point after 30 minutes has passed is the set power command value. be.

例えば、アグリゲータ6は、再生エネルギー(太陽光エネルギー等)発電事業者での発電が増大し上流側の電気が余るときには、電力需要家7、8に対して設定する電力指令値をより大きい値に設定する。また、アグリゲータ6は、電力需要がひっ迫するときは、電力需要家7、8に対して設定する電力指令値をより小さな値に設定する。 For example, the aggregator 6 increases the power command value set for the power consumers 7 and 8 when the power generation by the renewable energy (solar energy, etc.) power generation company increases and there is surplus electricity on the upstream side. set. Also, when the power demand is tight, the aggregator 6 sets the power command value set for the power consumers 7 and 8 to a smaller value.

受電点電力カーブとは、電力需要家7、8の受電点で過去に受電した実績を示すカーブである。過去に受電した実績を示す受電点電力カーブは、例えば、一日前の同時間帯の受電点電力カーブ、一年前の同日同時間帯の受電点電力カーブ、統計処理した同日同時間帯の受電点電力カーブ等である。 A power receiving point power curve is a curve that indicates past power reception results at power receiving points of the power consumers 7 and 8 . Receiving point power curves that show past power reception results include, for example, a receiving point power curve for the same time period one day ago, a receiving point power curve for the same time period on the same day one year ago, and a statistically processed power reception for the same time period on the same day. point power curve and the like.

本実施形態の電力需要家7、8では、アグリゲータ6から電力指令値と受電点電力カーブを受信すると、それらを参照して、30分後に、受電点電力の実測値がその電力指令値になるように、エネルギーリソースを調整する。すなわち、電力指令値が受電点電力カーブ以上の時は、その差を余剰電力とみなして電力保有手段に保存する。また、電力指令値が受電点電力カーブ未満の時は、その差を不足電力とみなして電力保有手段から放出することで、30分後に、受電点電力の実測値がその電力指令値になるように制御を行う。 When the power consumers 7 and 8 of the present embodiment receive the power command value and the power curve at the receiving point from the aggregator 6, they refer to them, and after 30 minutes, the measured value of the power at the receiving point becomes the power command value. so as to adjust energy resources. That is, when the power command value is greater than or equal to the power receiving point power curve, the difference is regarded as surplus power and stored in the power holding means. Also, when the power command value is less than the receiving point power curve, the difference is regarded as insufficient power and released from the power holding means so that the actual measured value of the receiving point power becomes the power command value after 30 minutes. to control.

本実施形態では、アグリゲータ6において、各電力需要家7、8のエネルギーリソースとなる電力保有手段が充放電可能な蓄電池とする。 In the present embodiment, in the aggregator 6, a chargeable/dischargeable storage battery is used as the power holding means, which is an energy resource for each of the power consumers 7 and 8. FIG.

したがって、アグリゲータ6が、例えば、電力需要家7、8に対して設定する電力指令値をより大きい値に設定したときは、電力需要家7、8は、設定された電力指令値と受電点電力カーブとの差(余剰電力)に基づいて蓄電池に充電する。また、アグリゲータ6が、電力需要家7、8に対して設定する電力指令値をより小さな値に設定したときは、電力需要家7、8は、設定された電力指令値と受電点電力カーブとの差(不足電力)に基づいて蓄電池の放電を行う。 Therefore, for example, when the aggregator 6 sets the power command value set for the power consumers 7 and 8 to a larger value, the power consumers 7 and 8 set the power command value and the receiving point power The storage battery is charged based on the difference (surplus power) from the curve. In addition, when the aggregator 6 sets the power command value set for the power consumers 7 and 8 to a smaller value, the power consumers 7 and 8 compare the set power command value and the power receiving point power curve. The storage battery is discharged based on the difference (insufficient power).

電力指令値は所定期間である30分毎に作成されて、各電力需要家7、8に送信される。各電力需要家7、8では、30分後に受電点電力の実測値が電力指令値となるように蓄電池の充放電制御を行う。 A power command value is created every 30 minutes, which is a predetermined period, and transmitted to each of the power consumers 7 and 8 . Each of the power consumers 7 and 8 performs charging/discharging control of the storage battery so that the actually measured value of the power at the power receiving point becomes the power command value after 30 minutes.

以上のように、各電力需要家7、8では、受電点電力カーブで予測される受電点電力がその時に設定されている電力指令値よりも小さいと、余剰電力が蓄電池に充電され、負受電点電力カーブで予測される受電点の電力が電力指令値よりも大きいと、その差分電力が蓄電池からの放電によって賄われる。 As described above, in each of the power consumers 7 and 8, when the power at the receiving point predicted by the power curve at the receiving point is smaller than the power command value set at that time, the storage battery is charged with the surplus power, and the negative power is received. If the power at the power receiving point predicted by the point power curve is greater than the power command value, the difference power is covered by the discharge from the storage battery.

なお、本実施形態では、時刻t1~t3の期間T1の30分間において、図1のように、逐次充電と放電をそれぞれ行うものではなく、期間T1内で充電または放電のいずれかを1回のみ行って、期間T1経過後の時刻t3で受電点電力の実測値がアグリゲータ6が指示した電力指令値に一致するように制御する。 Note that in the present embodiment, charging and discharging are not performed successively in the 30-minute period T1 from time t1 to t3, as shown in FIG. 1, but either charging or discharging is performed only once within the period T1. Then, at time t3 after the period T1 has elapsed, control is performed so that the actual measurement value of the power at the receiving point matches the power command value instructed by the aggregator 6. FIG.

図3は、電力需要家7、8の概略構成図である。 FIG. 3 is a schematic configuration diagram of power consumers 7 and 8. As shown in FIG.

電力需要家7、8の電力設備11は、外部電力系統(系統)10に接続される受電点12、変圧設備13、負荷14、蓄電池15、電力制御装置16を備えている。 The power equipment 11 of the power consumers 7 and 8 includes a power receiving point 12 connected to an external power system (system) 10 , a transformer equipment 13 , a load 14 , a storage battery 15 and a power control device 16 .

電力制御装置16は、受電点12での電力(受電点電力)を検出する電力検出器161、EMS(Energy Management System)と称されるパワーコントローラー162、PLC(シーケンサ)163、PCS(Power Conditional Subsystem)164を備えている。受電点12は、系統10からの電力を受電する。電力検出器161は、受電点電力を検出する。パワーコントローラー162は、アグリゲータ6内に設けられている上位サーバー100にネットワーク接続される通信端子162aを備えている。パワーコントローラー162は、上位サーバー100から電力指令値Cと受電点電力カーブDを受信すると、それらを設定し、後述の手順に従って、蓄電池15の充電制御または放電制御を行う。 The power control device 16 includes a power detector 161 that detects the power at the power receiving point 12 (power at the power receiving point), a power controller 162 called EMS (Energy Management System), a PLC (sequencer) 163, a PCS (Power Conditional Subsystem). ) 164. The power receiving point 12 receives power from the grid 10 . Power detector 161 detects power at the receiving point. The power controller 162 has a communication terminal 162 a that is network-connected to the host server 100 provided in the aggregator 6 . When the power controller 162 receives the power command value C and the power receiving point power curve D from the host server 100, the power controller 162 sets them, and performs charge control or discharge control of the storage battery 15 according to the procedure described later.

PLC(シーケンサ)163は、パワーコントローラー162に接続され、パワーコントローラー162の制御内容に従って、通信回線によりPCS164の制御を行う。PCS164は、蓄電池15への充電制御や、蓄電池15から負荷14への放電制御を行い、スイッチング素子を含むコンバータ回路を備えている。PLC(シーケンサ)163は、蓄電池15の充電状態(電圧など)をSOV信号により把握し、これをパワーコントローラー162に送る。 A PLC (sequencer) 163 is connected to the power controller 162 and controls the PCS 164 through a communication line according to the control contents of the power controller 162 . The PCS 164 controls charging to the storage battery 15 and discharging control from the storage battery 15 to the load 14, and includes a converter circuit including switching elements. A PLC (sequencer) 163 grasps the state of charge (voltage, etc.) of the storage battery 15 from the SOV signal and sends it to the power controller 162 .

次に、パワーコントローラー162の具体的な動作について説明する。 Next, specific operations of the power controller 162 will be described.

本実施形態では、期間T1の30分間において充電と放電をそれぞれ行うことはなく、期間T1の30分間において、充電または放電を一回のみ行う。 In this embodiment, charging and discharging are not performed during the 30 minutes of the period T1, and charging or discharging is performed only once during the 30 minutes of the period T1.

図4は、蓄電池へ放電のみ行う場合の動作を説明する図である。 FIG. 4 is a diagram for explaining the operation when only discharging to the storage battery is performed.

同図は、電力指令値Cと、受電点電力カーブDと、蓄電池15に対する放電制御内容を示す。縦軸は受電点電力を示し、横軸は電力指令値Cが設定されてからの経過時間を示す。電力指令値Cは、系統から受電点12に供給される電力の指令値であり、受電点電力カーブDは、受電点の過去の電力の実績で予測されたものである。例えば、一日前の同時間帯の受電点電力カーブ、一年前の同日同時間帯の受電点電力カーブ、統計処理した同日同時間帯の受電点電力カーブ等である。 The figure shows a power command value C, a power receiving point power curve D, and details of discharge control for the storage battery 15 . The vertical axis indicates the power at the power receiving point, and the horizontal axis indicates the elapsed time since the power command value C was set. The power command value C is a command value for the power supplied from the power system to the power receiving point 12, and the power receiving point power curve D is predicted based on the past power performance of the power receiving point. For example, there is a receiving point power curve in the same time zone one day ago, a receiving point power curve in the same time zone on the same day one year ago, a statistically processed receiving point power curve in the same time zone on the same day, and the like.

電力指令値Cと、受電点電力カーブDは、いずれも30分毎に上位サーバー100から受信し、パワーコントローラー162に設定される。 The power command value C and the power receiving point power curve D are both received from the host server 100 every 30 minutes and set in the power controller 162 .

朝10時30分の時刻t1でアグリゲータ6内の上位サーバー100から、ネットワークを介して電力指令値Cと受電点電力カーブDが送られてくると、パワーコントローラー162は、30分間である期間T1の経過時に、受電点電力の実測値が電力指令値Cとなるように蓄電池15への充放電制御を以下のように行う。 At time t1 at 10:30 in the morning, the power command value C and the power receiving point power curve D are sent from the host server 100 in the aggregator 6 via the network. The charging/discharging control of the storage battery 15 is performed as follows so that the measured value of the power at the power receiving point becomes the power command value C when .

時刻t1では、30分間である期間T1間の受電点電力カーブDを設定し、受電点電力カーブDの傾きを算出する。P1は、受電点電力カーブDを設定した時刻t1での受電点電力P1である。 At time t1, a power receiving point power curve D for a period T1 of 30 minutes is set, and the slope of the power receiving point power curve D is calculated. P1 is the receiving point power P1 at time t1 when the receiving point power curve D is set.

時刻t1で受電点電力カーブDを設定すると、受電点電力の実測値を電力指令値Cに一致させるために、30分後となる午前11時00分の時刻t3までに必要とされる充電量及び放電量の全積算値K(all)を計算する。全積算値K(all)は、受電点電力カーブDと電力指令値Cとの差を、時刻t1~時刻t3まで充放電制御周期である期間T2(1分間)毎に積算した値であり、以下のようにして求める。なお、図4において、時刻t2は、受電点電力カーブDと電力指令値Cとが交わる時刻、即ち計算上の充電期間から計算上の放電期間に変化する時刻である。 When the power receiving point power curve D is set at time t1, the amount of charge required by time t3 at 11:00 a.m., which is 30 minutes later, in order to match the actual measurement value of the power receiving point with the power command value C And the total integrated value K(all) of the amount of discharge is calculated. The total integrated value K (all) is a value obtained by integrating the difference between the power receiving point power curve D and the power command value C every period T2 (one minute), which is the charge/discharge control cycle, from time t1 to time t3, It is obtained as follows. In FIG. 4, time t2 is the time when the power receiving point power curve D and the power command value C intersect, that is, the time when the calculated charging period changes to the calculated discharging period.

時刻t1~時刻t2までは、(受電点電力カーブD-電力指令値C)を充放電制御周期である期間T2(1分間)毎に積算する。この充放電制御周期は、受電点電力を計測し、充放電制御を行う、計測周期である。この積算値を第1の積算値K1とする。時刻t2~時刻t3までは、(受電点電力カーブD-電力指令値C)を期間T2(1分間)毎に積算する。この積算値を第2の積算値K2とする。 From time t1 to time t2, (receiving point power curve D-power command value C) is integrated every period T2 (one minute), which is a charge/discharge control cycle. This charge/discharge control cycle is a measurement cycle for measuring the power at the power receiving point and performing charge/discharge control. This integrated value is defined as a first integrated value K1. From time t2 to time t3, (receiving point power curve D-power command value C) is integrated every period T2 (one minute). This integrated value is defined as a second integrated value K2.

すると、全積算値K(all)=積算値K1(マイナス値)+積算値K2(プラス値)で求められる。図4は、全積算値K(all)がプラスとなる場合を示している。 Then, total integrated value K(all)=integrated value K1 (negative value)+integrated value K2 (positive value). FIG. 4 shows a case where the total integrated value K(all) is positive.

全積算値K(all)がプラスとなる場合、時刻t3で受電点電力の実測値が電力指令値Cに一致するためには、時刻t3になる前に放電を行えばよい。そこで、時刻t2~時刻t3までの間で、積算値K1(マイナス値)+積算値K2´(プラス値)=0となる積算値K2´の時刻t4を求め、この時刻t4までは、蓄電池15への充放電制御を行わず、時刻(t4+T2)である時刻t5から時刻t3まで、期間T2(1分間)毎に放電制御を行う。したがって、図の斜線で示す区間が放電制御区間となる。 以上の制御によれば、期間T1(30分間)において、時刻t3前の一定の期間に放電のみ行われることになる。なお、このような制御を行っている間に、放電量を受電点電力の実測値で補正することも可能である。例えば、負荷の急変等があれば放電制御区間の放電量を受電点電力の実測値で補正する。すなわち、期間T2(1分間)毎に受電点電力(受電点12の電力)を計測し、受電点電力カーブDと電力指令値Cから計算される放電量を、受電点電力の実測値で逐次補正する制御を行う。このような制御を行うことで、電力指令値Cを指示した時刻t1から、期間T1経過後の時刻t3において、受電点電力を電力指令値Cに一致させる、というアグリゲータ6の要求を満たすことができる。また、期間T2(1分間)毎に受電点電力を実測し、期間T2毎に計算上の充放電量を補正することで、時刻t3において受電点電力を電力指令値Cに一致させる精度を高めることもできる。 When the total integrated value K(all) is positive, discharging should be performed before time t3 in order for the actual measurement value of the power at the power receiving point to match the power command value C at time t3. Therefore, from time t2 to time t3, the time t4 of the integrated value K2' where the integrated value K1 (negative value) + integrated value K2' (positive value) = 0 is obtained. is not controlled, and discharge control is performed every period T2 (one minute) from time t5, which is time (t4+T2), to time t3. Therefore, the section indicated by oblique lines in the figure is the discharge control section. According to the above control, in the period T1 (30 minutes), only discharging is performed for a certain period before the time t3. It should be noted that it is also possible to correct the amount of discharge with the actually measured value of the power at the receiving point while such control is being performed. For example, if there is a sudden change in the load, the amount of discharge in the discharge control section is corrected with the actually measured value of the power at the power receiving point. That is, the power at the power receiving point (power at the power receiving point 12) is measured every period T2 (one minute), and the amount of discharge calculated from the power curve D at the power receiving point and the power command value C is sequentially calculated using the actual measured power at the power receiving point. Perform correction control. By performing such control, it is possible to satisfy the request of the aggregator 6 to make the power receiving point power equal to the power command value C at time t3 after the period T1 has elapsed from the time t1 when the power command value C was instructed. can. In addition, by actually measuring the power at the receiving point every period T2 (one minute) and correcting the calculated charge/discharge amount every period T2, the accuracy of matching the power at the receiving point to the power command value C at time t3 is enhanced. can also

一方、充電のみ行われる制御は以下の通りである。 On the other hand, the control performed only for charging is as follows.

図5は、蓄電池へ充電のみ行う場合の動作を説明する図である。 FIG. 5 is a diagram for explaining the operation when only charging the storage battery.

図5は、図4に比較して、設定される受電点電力カーブDの傾きが緩やかである。 In FIG. 5, the slope of the set power receiving point power curve D is gentler than in FIG.

この場合、全積算値K(all)=積算値K1(マイナス値)+積算値K2(プラス値)はマイナスとなる。 In this case, total integrated value K(all)=integrated value K1 (negative value)+integrated value K2 (positive value) is negative.

そこで、時刻t1~時刻t2までの間で、積算値K1´(マイナス値)+積算値K2(プラス値)=0となる積算値K1´の時刻t6を求め、時刻t1~時刻t6、時刻t2~時刻t3までは、蓄電池15への充放電制御を行わず、時刻(t6+T2)である時刻t7から時刻t2まで、期間T2(1分間)毎に充電制御を行う。したがって、図のドットで示す区間が充電制御区間となる。なお、図5においても、期間T2(1分間)毎に受電点電力を実測し、期間T2毎に計算上の充放電量を補正することで、時刻t3において受電点電力を電力指令値Cに一致させる精度を高めることもできる。 Therefore, between time t1 and time t2, time t6 of the integrated value K1′ where integrated value K1′ (negative value)+integrated value K2 (positive value)=0 is obtained, and time t1 to time t6 and time t2 From time t3 to time t3, charging/discharging control of the storage battery 15 is not performed, and charging control is performed every period T2 (one minute) from time t7, which is time (t6+T2), to time t2. Therefore, the sections indicated by dots in the drawing are charging control sections. Note that in FIG. 5 as well, the power at the receiving point is actually measured every period T2 (one minute), and the calculated charge/discharge amount is corrected for each period T2. It is also possible to increase the accuracy of matching.

以上の制御によれば、期間T1(30分間)において、時刻t2前の一定の期間に充電のみ行われることになる。 According to the above control, in the period T1 (30 minutes), only charging is performed for a certain period before the time t2.

このように、受電点電力カーブDの傾きが大きければ、期間T1(30分間)において1回の放電(図4)のみ行われ、受電点電力カーブDの傾きが小さければ、期間T1(30分間)において1回の充電(図5)のみ行われる。いずれの場合も、図1に示すように受電と放電が各1回行われることはない。したがって、蓄電池の充放電サイクル数が少なくなり、寿命がより長くなる。 In this way, if the slope of the power receiving point power curve D is large, only one discharge (FIG. 4) is performed in the period T1 (30 minutes), and if the slope of the power receiving point power curve D is small, the period T1 (30 minutes ), only one charge (FIG. 5) is performed. In either case, power reception and discharge are not performed once each as shown in FIG. Therefore, the number of charging/discharging cycles of the storage battery is reduced, resulting in a longer life.

また、充電制御又は放電制御されない区間ではPCS164でのコンバータ動作が行われない。このため、スイッチング損失を減少させることが出来、装置全体の消費電力を小さく出来る。 Also, the converter operation in the PCS 164 is not performed in the section where the charge control or the discharge control is not performed. Therefore, the switching loss can be reduced, and the power consumption of the entire device can be reduced.

なお、受電点電力カーブDが、電力指令値Cと交差しないような時間帯や受電点電力カーブDから算出される傾きが小さい時間帯、すなわち、電力需要が大きく変化しない日中や夜間の時間帯では、受電点電力カーブDが電力指令値C未満の場合は充電のみが行われ、受電点電力カーブDが電力指令値C以上の場合は放電のみが行われる。 It should be noted that there is a time zone in which the power curve D at the receiving point does not intersect with the power command value C and a time zone in which the slope calculated from the power curve D at the receiving point is small, that is, during the daytime and at night when the power demand does not change significantly. In the band, when the power curve D at the power receiving point is less than the power command value C, only charging is performed, and when the power curve D at the power receiving point is greater than or equal to the power command value C, only discharging is performed.

図6は、パワーコントローラー162で実行される上記の動作を示すフローチャートである。 FIG. 6 is a flowchart illustrating the above operations performed by power controller 162 .

ST1において、時刻t1で電力指令値Cと受電点電力カーブDを上位サーバー100から受信すると、受電点電力カーブDの傾きを算出し内部に設定する。また、電力指令値Cも内部に設定する。電力指令値Cと受電点電力カーブDは上位サーバー100において設定される。電力指令値Cは、例えば、上流側の発電量の増減や下流側のエネルギーリソースの増減などにより設定される。受電点電力カーブDは、過去の受電点電力の実績に基づいて設定されるもので、現在の受電点電力カーブを予測するものである。 In ST1, when the power command value C and the power curve D at the power receiving point are received from the host server 100 at time t1, the slope of the power curve D at the power receiving point is calculated and set inside. Also, the power command value C is set internally. The power command value C and the power receiving point power curve D are set in the host server 100 . The power command value C is set, for example, according to an increase or decrease in the amount of power generated on the upstream side or an increase or decrease in energy resources on the downstream side. The power receiving point power curve D is set based on the past performance of the power receiving point, and predicts the current power receiving point curve.

ST2において、電力指令値Cと受電点電力カーブDとから、時刻t1~時刻t3の期間T1(30分間)に必要とされる、計算上の充放電量の全積算値K(all)を算出する。ST3で、全積算値K(all)がプラス(「0」以上)であればST4以下の放電制御(図4)、マイナス(「0」未満)であればST10以下の充電制御(図5)に移行する。 In ST2, from the power command value C and the power receiving point power curve D, the total integrated value K (all) of the charge/discharge amount required for the period T1 (30 minutes) from time t1 to time t3 is calculated. do. In ST3, if the total integrated value K (all) is positive (“0” or more), discharge control is performed in ST4 or less (Fig. 4), and if negative (less than “0”), charge control is performed in ST10 or less (Fig. 5). transition to

放電制御では、ST4において、時刻ST2~時刻ST4の区間で、積算値K1(マイナス値)+積算値K2´(プラス値)=0となる積算値K2´の時刻t4を求める。ST5に進んで時刻(t4+T2)の時刻t5から時刻t3まで、期間T2(1分間)毎に放電制御を行う。時刻t4までは、蓄電池15への充放電制御を行わず、時刻t5から時刻t3まで、期間T2(1分間)毎に放電制御を行う。 In the discharge control, in ST4, the time t4 of the integrated value K2' where the integrated value K1 (negative value)+integrated value K2' (positive value)=0 is obtained in the section from time ST2 to time ST4. Proceeding to ST5, discharge control is performed every period T2 (one minute) from time t5 of time (t4+T2) to time t3. Until time t4, charging/discharging control of the storage battery 15 is not performed, and discharging control is performed every period T2 (one minute) from time t5 to time t3.

充電制御では、ST10において、時刻t1~時刻t2の区間で、積算値K1´(マイナス値)+積算値K2(プラス値)=0となる積算値K1´の時刻t6を求める。ST5に進んで時刻(t6+T2)の時刻t7から時刻t2まで、期間T2(1分間)毎に充電制御を行う。時刻t1~時刻t6、時刻t2~時刻t3までは、蓄電池15への充放電制御を行わず、時刻t7(t6+T2)から時刻t2まで、期間T2(1分間)毎に充電制御を行う。 In the charging control, in ST10, the time t6 of the integrated value K1' where the integrated value K1' (negative value)+integrated value K2 (positive value)=0 is obtained in the section from time t1 to time t2. In ST5, charging control is performed every period T2 (one minute) from time t7 of time (t6+T2) to time t2. From time t1 to time t6 and from time t2 to time t3, charging/discharging control of the storage battery 15 is not performed, and charging control is performed every period T2 (one minute) from time t7 (t6+T2) to time t2.

なお、図6は、図4、図5のように受電点電力カーブDと電力指令値Cが交差する時間帯での制御を示しているが、これらが交差しない日中や夜間では、放電または充電のみが行われる。例えば、期間T1(30分間)において、受電点電力カーブDが電力指令値C未満の時間帯では、充電のみが連続で行われ、受電点電力カーブDが電力指令値C以上の時間帯では、放電のみが連続で行われる。 FIG. 6 shows the control in the time period when the receiving point power curve D and the power command value C intersect as shown in FIGS. Only charging takes place. For example, in the period T1 (30 minutes), when the power curve D of the receiving point is less than the power command value C, only charging is performed continuously, and when the power curve D of the receiving point is greater than or equal to the power command value C, Only discharge is performed continuously.

また、図4では、時刻t5~時刻t3までの区間で放電制御するようにしているが、時刻t2~時刻t3の区間のどの範囲で放電制御しても良い。例えば、図7のような区間での放電制御も可能である。また、同様に、図5の充電制御においても、図8の様な区間での充電制御が可能である。 Further, in FIG. 4, the discharge is controlled in the section from time t5 to time t3, but the discharge may be controlled in any range in the section from time t2 to time t3. For example, discharge control in a section as shown in FIG. 7 is also possible. Similarly, in the charging control shown in FIG. 5, charging control can be performed in sections such as those shown in FIG.

また、受電点電力カーブDと電力指令値Cが、期間T1(30分間)において2回以上交差する場合は、図4又は図5と同様に、全積算値K(all)を積算した後、その積算値がプラスの場合はそのプラス分だけ放電する区間を求めて放電制御する。また、その積算値がマイナスの場合はそのマイナス分だけ充電する区間を求めて充電制御する。 Further, when the power receiving point power curve D and the power command value C cross each other twice or more in the period T1 (30 minutes), as in FIG. 4 or 5, after integrating the total integrated value K (all), When the integrated value is positive, the discharge is controlled by finding a section in which the positive amount is discharged. Also, if the integrated value is negative, the charging control is performed by finding a section in which the battery is charged by the negative amount.

本実施形態では、上位サーバー100が受電点電力カーブDを設定するとしたが、パワーコントローラー162自身が設定することも可能である。この場合、パワーコントローラー162が、受電点で過去に受電した実績を記憶しておき、この値から受電点電力カーブDを予測して設定する。 In this embodiment, the host server 100 sets the power receiving point power curve D, but it is also possible for the power controller 162 itself to set it. In this case, the power controller 162 stores the record of power reception in the past at the power receiving point, and predicts and sets the power curve D at the power receiving point based on this value.

また、PLC163は、蓄電池15からのSOV信号により蓄電池15の充電状態を監視しているため、上記充放電制御は過充電や過放電とならないように制限される。 In addition, since the PLC 163 monitors the state of charge of the storage battery 15 based on the SOV signal from the storage battery 15, the charge/discharge control is limited so as not to overcharge or overdischarge.

12-受電点
15-蓄電池
16-電力制御装置
162-パワーコントローラー
12-power receiving point 15-storage battery 16-power control device 162-power controller

Claims (5)

外部電力系統から電力が入力する受電点と、
前記受電点に入力する受電点電力の電力指令値を、期間T1毎に上位サーバーから受信する通信端子と、
期間T1毎に予測した受電点電力カーブを設定する手段を備え、前記受電点電力が前記期間T1経過時に前記電力指令値となるように蓄電池に対する充放電制御を行う、パワーコントローラーとを備え、
前記パワーコントローラーは、前記受電点の電力指令値が前記受電点電力カーブの値よりも大きい場合は充電制御、前記受電点の電力指令値が前記受電点電力カーブの値よりも小さい場合は放電制御を、前記期間T1よりも短い期間T2単位で行い、
前記通信端子に前記電力指令値を受信したときに、前記期間T1において前記受電点電力カーブと前記電力指令値との差の積算値を求め、
前記受電点電力が前記期間T1経過時に前記電力指令値となるように、前記積算値に基づいて放電制御または充電制御のいずれか一方のみ設定し、さらに充電制御の場合は、前記蓄電池への充電量と充電開始時間と充電期間を設定して前記充電制御を前記期間T1内で前記期間T2毎に行い、放電制御の場合は、前記蓄電池からの放電量と放電開始時間と放電期間を設定して放電制御を前記期間T1内で前記期間T2毎に行う、電力制御装置。
a power receiving point to which power is input from an external power system;
a communication terminal that receives a power command value of power at the power receiving point to be input to the power receiving point from a host server every period T1;
A power controller that includes means for setting a predicted power receiving point power curve for each period T1 , and performs charging and discharging control of a storage battery so that the power at the receiving point reaches the power command value when the period T1 elapses,
The power controller performs charging control when the power command value of the power receiving point is greater than the value of the power receiving point power curve, and discharge control when the power command value of the power receiving point is smaller than the value of the power receiving point power curve. is performed in units of a period T2 shorter than the period T1,
obtaining an integrated value of a difference between the power receiving point power curve and the power command value in the period T1 when the power command value is received at the communication terminal;
Only one of discharge control and charge control is set based on the integrated value so that the power receiving point power reaches the power command value when the period T1 elapses, and in the case of charge control, the storage battery is charged. The charging control is performed every period T2 within the period T1 by setting the amount, the charging start time, and the charging period. and performing discharge control every period T2 within the period T1 .
前記パワーコントローラーは、前記期間T2毎に前記受電点電力を実測し、前記期間T2毎に前記放電量または前記充電量を補正する、請求項記載の電力制御装置。 2. The power control apparatus according to claim 1 , wherein said power controller actually measures said receiving point power every said period T2, and corrects said discharge amount or said charge amount every said period T2. 前記受電点電力カーブは、過去の電力需要量に基づいて設定される、請求項1~2のいずれかに記載の電力制御装置。 3. The power control device according to claim 1, wherein said power receiving point power curve is set based on past power demand. 前記受電点電力カーブは前記上位サーバーから前記通信端子に入力する、請求項1~3のいずれかに記載する電力制御装置。 4. The power control device according to claim 1, wherein said power receiving point power curve is input from said host server to said communication terminal. 前記受電点電力カーブは前記パワーコントローラーで設定される、請求項1~4のいずれかに記載する電力制御装置。 5. The power control device according to claim 1, wherein said power receiving point power curve is set by said power controller.
JP2018139242A 2018-07-25 2018-07-25 power controller Active JP7161331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018139242A JP7161331B2 (en) 2018-07-25 2018-07-25 power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018139242A JP7161331B2 (en) 2018-07-25 2018-07-25 power controller

Publications (2)

Publication Number Publication Date
JP2020018082A JP2020018082A (en) 2020-01-30
JP7161331B2 true JP7161331B2 (en) 2022-10-26

Family

ID=69580846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018139242A Active JP7161331B2 (en) 2018-07-25 2018-07-25 power controller

Country Status (1)

Country Link
JP (1) JP7161331B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258176A (en) 2000-03-13 2001-09-21 Sanyo Electric Co Ltd Power consumption control system
JP2012249458A (en) 2011-05-30 2012-12-13 Sony Corp Power supply apparatus and power supply control method
WO2015037307A1 (en) 2013-09-11 2015-03-19 株式会社東芝 Power storage control device, management system, power storage control method, power storage control program, and memory medium
WO2015146200A1 (en) 2014-03-27 2015-10-01 京セラ株式会社 Power management system, power management method, and control device
JP2015204698A (en) 2014-04-14 2015-11-16 京セラ株式会社 Energy management apparatus, energy management method, and energy management system
JP2017229137A (en) 2016-06-21 2017-12-28 大阪瓦斯株式会社 Power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031283A (en) * 2011-07-28 2013-02-07 Sanyo Electric Co Ltd Demand controller
JP6605416B2 (en) * 2016-08-26 2019-11-13 三菱電機ビルテクノサービス株式会社 Power management system, power management method, aggregator system, consumer power management system, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258176A (en) 2000-03-13 2001-09-21 Sanyo Electric Co Ltd Power consumption control system
JP2012249458A (en) 2011-05-30 2012-12-13 Sony Corp Power supply apparatus and power supply control method
WO2015037307A1 (en) 2013-09-11 2015-03-19 株式会社東芝 Power storage control device, management system, power storage control method, power storage control program, and memory medium
WO2015146200A1 (en) 2014-03-27 2015-10-01 京セラ株式会社 Power management system, power management method, and control device
JP2015204698A (en) 2014-04-14 2015-11-16 京セラ株式会社 Energy management apparatus, energy management method, and energy management system
JP2017229137A (en) 2016-06-21 2017-12-28 大阪瓦斯株式会社 Power supply system

Also Published As

Publication number Publication date
JP2020018082A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
JP6070773B2 (en) Power control system and method
JP6304008B2 (en) Power supply system
CN108028546B (en) Power generation facility and power generation control device
WO2016185661A1 (en) Distributed power system, and control method of distributed power system
WO2011016273A1 (en) Energy system
US20160126741A1 (en) Storage battery equipment
WO2016067341A1 (en) Storage battery system
US8723359B2 (en) Method for controlling sodium-sulfur battery
CN109936127B (en) Power distribution method, device, equipment and system of data center
JP7259923B2 (en) power management system
JP7203551B2 (en) power supply system
JP7161331B2 (en) power controller
CN106058899B (en) Monitoring system of energy storage system
JP5722075B2 (en) Power demand management system
KR102335059B1 (en) Battery management system and method for variable capacity dividing of battery pack using thereof
WO2015052824A1 (en) Distributed power management system
JP2016103890A (en) Power control unit and power control system
JP7073639B2 (en) Power control instruction generator, computer program and power control instruction generation method
JP7406436B2 (en) Power interchange system
CN115004501A (en) Power supply management device and power supply management method
JP7283858B2 (en) power supply
Abe et al. An optimal scheduling of battery output and load control for loss minimizing islanding operation of distribution networks in emergency
JP7181036B2 (en) power supply system
JP7003509B2 (en) Processing device, control device, PCS, processing method, control method and program
JP2023104900A (en) Power supply management system, fuel cell device, and charging/discharging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7161331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150