JP7159861B2 - Double-headed grinding method - Google Patents

Double-headed grinding method Download PDF

Info

Publication number
JP7159861B2
JP7159861B2 JP2018245302A JP2018245302A JP7159861B2 JP 7159861 B2 JP7159861 B2 JP 7159861B2 JP 2018245302 A JP2018245302 A JP 2018245302A JP 2018245302 A JP2018245302 A JP 2018245302A JP 7159861 B2 JP7159861 B2 JP 7159861B2
Authority
JP
Japan
Prior art keywords
grinding
ground
thickness
wafer
nanotopography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018245302A
Other languages
Japanese (ja)
Other versions
JP2020104211A (en
Inventor
好信 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2018245302A priority Critical patent/JP7159861B2/en
Priority to TW108140396A priority patent/TWI702115B/en
Priority to KR1020217018567A priority patent/KR102517771B1/en
Priority to DE112019006452.5T priority patent/DE112019006452T5/en
Priority to PCT/JP2019/043882 priority patent/WO2020137187A1/en
Priority to CN201980086217.XA priority patent/CN113396030B/en
Publication of JP2020104211A publication Critical patent/JP2020104211A/en
Application granted granted Critical
Publication of JP7159861B2 publication Critical patent/JP7159861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • B24B7/17Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for simultaneously grinding opposite and parallel end faces, e.g. double disc grinders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/03Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent according to the final size of the previously ground workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、両頭研削方法に関する。 The present invention relates to a double-headed grinding method.

従来、被研削物を回転させるとともに当該被研削物の両主面に研削液を供給し、研削ホイールの砥石を被研削物の両主面にそれぞれ当接させることによって、被研削物を研削する両頭研削方法が知られている(例えば、特許文献1参照)。
特許文献1に記載の方法は、砥石の高さが減少するにしたがって、研削液の供給量を少なくすることで、被研削物と砥石との間のハイドロプレーニング効果の低減を図り、各被研削物の研削状態を一定にしている。
Conventionally, the object to be ground is ground by rotating the object to be ground, supplying a grinding fluid to both main surfaces of the object to be ground, and bringing the grindstones of the grinding wheel into contact with both main surfaces of the object to be ground. A double-headed grinding method is known (see Patent Document 1, for example).
The method described in Patent Document 1 reduces the amount of grinding fluid supplied as the height of the grindstone decreases, thereby reducing the hydroplaning effect between the object to be ground and the grindstone. It keeps the grinding condition of the object constant.

特開2009-16842号公報JP 2009-16842 A

しかしながら、特許文献1のような方法では、研削液の流量の変化によって加工雰囲気の温度が変化し、厚さなどの品質の変動を招くおそれがある。 However, in the method disclosed in Patent Document 1, the temperature of the working atmosphere changes due to changes in the flow rate of the grinding fluid, which may lead to fluctuations in quality such as thickness.

本発明の目的は、ナノトポグラフィが良好でかつ所望の厚さの被研削物を得られる両頭研削方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a double-headed grinding method capable of obtaining a workpiece having a desired thickness and excellent nanotopography.

本発明の両頭研削方法は、被研削物を回転させるとともに当該被研削物の両主面に研削液を供給し、研削ホイールの砥石を前記被研削物の両主面にそれぞれ当接させることによって、前記被研削物を研削する研削手段と、前記被研削物の厚さを計測する厚さ計測手段とを備える両頭研削装置を用い、前記厚さ計測手段の計測結果に基づいて、前記被研削物の厚さが所定厚さになるまで研削を行う両頭研削方法であって、第1の被研削物の両主面に所定量の研削液を供給しつつ、前記第1の被研削物の厚さが前記所定厚さになるまで研削を行う第1の研削工程と、前記第1の被研削物のナノトポグラフィを計測するナノトポグラフィ計測工程と、前記ナノトポグラフィ計測工程の計測結果に基づいて、第2の被研削物のナノトポグラフィが0に近づくように研削条件を調整して、前記第2の被研削物の厚さが前記所定厚さになるまで研削を行う第2の研削工程とを備え、前記第2の研削工程は、前記第1の研削工程における研削液の総供給量を維持しつつ、前記第2の被研削物の一方の主面に対する研削液の供給量と他方の主面に対する研削液の供給量との比率を調整して、前記第2の被研削物を研削することを特徴とする。 In the double-headed grinding method of the present invention, an object to be ground is rotated, a grinding liquid is supplied to both main surfaces of the object to be ground, and grindstones of a grinding wheel are brought into contact with both main surfaces of the object to be ground. using a double-sided grinding machine comprising grinding means for grinding the object to be ground and thickness measuring means for measuring the thickness of the object to be ground, and measuring the thickness of the object to be ground based on the measurement result of the thickness measuring means; A double-headed grinding method for grinding an object until the thickness of the object reaches a predetermined thickness, wherein a predetermined amount of grinding fluid is supplied to both main surfaces of the first object to be ground, and the first object to be ground is A first grinding step of grinding until the thickness reaches the predetermined thickness, a nanotopography measuring step of measuring the nanotopography of the first ground object, and based on the measurement results of the nanotopography measuring step a second grinding step of adjusting the grinding conditions so that the nanotopography of the second object to be ground approaches 0, and grinding until the thickness of the second object to be ground reaches the predetermined thickness; In the second grinding step, while maintaining the total amount of grinding fluid supplied in the first grinding step, the amount of grinding fluid supplied to one main surface of the second object to be ground and the other The second object to be ground is ground by adjusting the ratio of the amount of grinding liquid supplied to the main surface.

本発明の両頭研削方法において、前記厚さ計測手段として、前記被研削物の両主面にそれぞれ接触する一対の接触子を有し、当該一対の接触子の位置に応じた信号を出力することで前記被研削物の厚さを計測する差動トランス型変位計を用いることが好ましい。 In the double-headed grinding method of the present invention, the thickness measuring means has a pair of contactors that respectively contact both main surfaces of the object to be ground, and outputs a signal corresponding to the position of the pair of contactors. It is preferable to use a differential transformer type displacement gauge for measuring the thickness of the object to be ground.

本発明の両頭研削方法において、前記第2の研削工程は、前記第1の被研削物の前記ナノトポグラフィ計測工程の計測結果に基づいて、前記第2の被研削物における前記第1の被研削物の凹んでいる側の主面に対する研削液の供給量を、もう一方の主面に対する研削液の供給量よりも多くなるように前記比率を調整することが好ましい。 In the double-headed grinding method of the present invention, the second grinding step includes measuring the first object to be ground on the second object to be ground based on the measurement result of the nanotopography measurement step of the first object to be ground. It is preferable to adjust the ratio so that the supply amount of the grinding fluid to the main surface of the concave side of the object is larger than the supply amount of the grinding fluid to the other main surface.

本発明によれば、ナノトポグラフィが良好でかつ所望の厚さの被研削物を得られる。 According to the present invention, it is possible to obtain an object to be ground having good nanotopography and a desired thickness.

本発明の関連技術および一実施形態に係る両頭研削装置の模式図。BRIEF DESCRIPTION OF THE DRAWINGS The related technology of this invention and the schematic diagram of the double-disc grinding apparatus which concerns on one Embodiment. 前記両頭研削装置の部分拡大図Partially enlarged view of the double-headed grinding machine 前記両頭研削装置の制御系のブロック図。FIG. 2 is a block diagram of a control system of the double-headed grinding machine; 本発明を導くための実験1の結果であり、第1,第2の主面のそれぞれに対する研削液の供給量とウェーハ中心のナノトポグラフィとの関係を示すグラフ。10 is a graph showing the results of Experiment 1 for leading the present invention and showing the relationship between the amount of grinding fluid supplied to each of the first and second main surfaces and the nanotopography at the center of the wafer. 前記実験1で得られたウェーハの第1,第2の主面のそれぞれに対する研削液の供給量とウェーハ中心の厚さとの関係を示すグラフ。4 is a graph showing the relationship between the amount of grinding fluid supplied to each of the first and second main surfaces of the wafer and the thickness of the center of the wafer obtained in Experiment 1; 本発明を導くための実験2の結果であり、差動トランス型変位計の計測環境温度と計測値との関係を示すグラフ。10 is a result of Experiment 2 for leading the present invention, and is a graph showing the relationship between the measurement environment temperature of the differential transformer type displacement gauge and the measured value. 本発明を導くための実験3の結果であり、第1,第2の主面のそれぞれに対する研削液の供給比率とウェーハ中心のナノトポグラフィとの関係を示すグラフ。FIG. 10 is a result of Experiment 3 for leading the present invention, and is a graph showing the relationship between the supply ratio of the grinding fluid to each of the first and second main surfaces and the nanotopography at the center of the wafer; 前記実験3の結果であり、第1,第2の主面のそれぞれに対する研削液の供給比率とウェーハ中心の厚さとの関係を示すグラフ。10 is a graph showing the results of Experiment 3 and showing the relationship between the supply ratio of the grinding liquid to each of the first and second main surfaces and the thickness of the center of the wafer; 前記一実施形態に係る両頭研削方法のフローチャート。4 is a flowchart of a double-headed grinding method according to the embodiment;

[本発明の関連技術]
まず、本発明の関連技術を説明する。
〔両頭研削装置の構成〕
図1~図3に示すように、両頭研削装置1は、研削手段2と、厚さ計測手段としての差動トランス型変位計3と、加工室4と、制御手段5とを備えている。
[Related technology of the present invention]
First, the technology related to the present invention will be described.
[Structure of Double Disc Grinding Device]
As shown in FIGS. 1 to 3, the double-sided grinding apparatus 1 includes grinding means 2, a differential transformer type displacement gauge 3 as thickness measuring means, a processing chamber 4, and control means 5. As shown in FIGS.

研削手段2は、キャリアリング21と、ウェーハ回転手段22と、第1,第2の研削ホイール23,24と、第1,第2のホイール回転手段25,26と、第1,第2のホイール進退手段27,28と、研削液供給手段29とを備えている。 The grinding means 2 includes a carrier ring 21, wafer rotating means 22, first and second grinding wheels 23 and 24, first and second wheel rotating means 25 and 26, and first and second wheels. Equipped with advancing/retreating means 27 and 28 and grinding liquid supply means 29 .

キャリアリング21は、円環状に形成され、その内部でウェーハWを保持する。
ウェーハ回転手段22は、制御手段5によって制御され、キャリアリング21をウェーハWの中心を中心にして回転させる。
The carrier ring 21 has an annular shape and holds the wafer W therein.
The wafer rotating means 22 is controlled by the control means 5 to rotate the carrier ring 21 around the center of the wafer W. As shown in FIG.

第1,第2の研削ホイール23,24は、略円板状のホイールベース23A,24Aと、このホイールベース23A,24Aの一面の外縁に沿って所定間隔で設けられた複数の砥石23B,24Bとを備えている。ホイールベース23A,24Aの中央には、当該ホイールベース23A,24Aの両面を貫通する研削液供給孔23C,24Cが設けられている。
第1,第2のホイール回転手段25,26は、先端でそれぞれ第1,第2の研削ホイール23,24を保持するスピンドル25A,26Aと、制御手段5によって制御され、スピンドル25A,26Aをそれぞれ回転させる回転用モータ25B,26Bとを備えている。第1のホイール回転手段25は、ウェーハWに対して図1における左側に設けられ、第2のホイール回転手段26は、右側に設けられている。
第1,第2のホイール進退手段27、28は、制御手段5によって制御され、第1,第2のホイール回転手段25,26をウェーハWに対して進退させる。
The first and second grinding wheels 23 and 24 are composed of substantially disk-shaped wheel bases 23A and 24A and a plurality of grindstones 23B and 24B provided at predetermined intervals along the outer edge of one surface of the wheel bases 23A and 24A. and Grinding liquid supply holes 23C and 24C are provided in the centers of the wheel bases 23A and 24A so as to penetrate both sides of the wheel bases 23A and 24A.
The first and second wheel rotating means 25, 26 are controlled by spindles 25A, 26A which hold the first and second grinding wheels 23, 24 at their distal ends, respectively, and the control means 5 to rotate the spindles 25A, 26A, respectively. Rotation motors 25B and 26B for rotating are provided. The first wheel rotating means 25 is provided on the left side of the wafer W in FIG. 1, and the second wheel rotating means 26 is provided on the right side.
The first and second wheel advancing/retreating means 27 and 28 are controlled by the control means 5 to advance/retreat the first and second wheel rotating means 25 and 26 with respect to the wafer W. As shown in FIG.

研削液供給手段29は、制御手段5によって制御され、第1,第2の研削ホイール23,24の研削液供給孔23C,24Cを介して、第1,第2の研削ホイール23,24内に、研削液を供給する。 Grinding fluid supply means 29 is controlled by control means 5 and supplies grinding fluid into first and second grinding wheels 23 and 24 via grinding fluid supply holes 23C and 24C of first and second grinding wheels 23 and 24. , supply the grinding fluid.

差動トランス型変位計3は、一対の信号出力手段31と、各信号出力手段31から下方に延びるアーム32と、各アーム32の先端に設けられた接触子33とを備えている。一対の接触子33は、それぞれウェーハWの第1,第2の主面W1,W2に接触し、ウェーハWの厚みに応じて移動するように設けられている。信号出力手段31は、各接触子33の位置に応じた信号を制御手段5に出力する。 The differential transformer type displacement meter 3 includes a pair of signal output means 31 , arms 32 extending downward from each signal output means 31 , and contacts 33 provided at the ends of each arm 32 . A pair of contactors 33 are provided so as to contact the first and second main surfaces W1 and W2 of the wafer W, respectively, and move according to the thickness of the wafer W. As shown in FIG. The signal output means 31 outputs signals corresponding to the positions of the contactors 33 to the control means 5 .

加工室4は、少なくともウェーハWと、第1,第2の研削ホイール23,24と、差動トランス型変位計3とを内部に配置可能な箱状に形成されており、研削液や研削屑が当該加工室4の外部に飛散することを防止する。 The processing chamber 4 is formed in the shape of a box in which at least the wafer W, the first and second grinding wheels 23 and 24, and the differential transformer type displacement gauge 3 can be arranged. is prevented from scattering to the outside of the processing chamber 4.

制御手段5は、図示しないメモリに接続され、メモリに記憶された各種条件に基づいて、ウェーハWの研削を行う。 The control means 5 is connected to a memory (not shown), and grinds the wafer W based on various conditions stored in the memory.

〔関連技術の両頭研削方法〕
次に、上述の両頭研削装置1を用いた関連技術の両頭研削方法について説明する。
まず、図1に実線で示す位置に第1,第2の研削ホイール23,24が位置し、差動トランス型変位計3の各接触子33がウェーハWの第1,第2の主面W1,W2に接触している状態において、制御手段5は、ウェーハ回転手段22、第1,第2のホイール回転手段25,26、第1,第2のホイール進退手段27、28、研削液供給手段29を制御して、図1に二点鎖線で示すように、ウェーハWの第1,第2の主面W1,W2にそれぞれ第1,第2の研削ホイール23,24を押し当てるとともに、第1,第2の研削ホイール23,24内に研削液を供給し、キャリアリング21および第1,第2の研削ホイール23,24を回転させることで、ウェーハWを研削する。
[Double-headed grinding method of related technology]
Next, a related double-sided grinding method using the above-described double-sided grinding apparatus 1 will be described.
First, the first and second grinding wheels 23 and 24 are positioned at the positions indicated by solid lines in FIG. , W2, the control means 5 controls the wafer rotation means 22, the first and second wheel rotation means 25 and 26, the first and second wheel advance/retreat means 27 and 28, and the grinding fluid supply means. 29 to press the first and second grinding wheels 23 and 24 against the first and second main surfaces W1 and W2 of the wafer W, respectively, as indicated by the two-dot chain line in FIG. The wafer W is ground by supplying a grinding liquid into the first and second grinding wheels 23 and 24 and rotating the carrier ring 21 and the first and second grinding wheels 23 and 24 .

このとき、図2に示すように、制御手段5は、ウェーハWおよび第2の研削ホイール24を同図の左側から見て時計回り方向(右回り方向)に回転させるとともに、第1の研削ホイール23を反時計回り方向(左回り方向)に回転させる。また、制御手段5は、第1の主面W1および第2の主面W2に同じ量の研削液を供給する。なお、第1,第2の研削ホイール23,24の回転方向は、上述の方向に限られない。
そして、制御手段5は、差動トランス型変位計3から出力される信号に基づいてウェーハWの厚さを管理し、ウェーハWが予め設定された所定厚さまで研削されたと判断すると、第1,第2の研削ホイール23,24をウェーハWから離して研削を終了する。
At this time, as shown in FIG. 2, the control means 5 rotates the wafer W and the second grinding wheel 24 in the clockwise direction (right-hand direction) as viewed from the left side of the figure, and rotates the first grinding wheel 23 is rotated counterclockwise (counterclockwise direction). Further, the control means 5 supplies the same amount of grinding liquid to the first main surface W1 and the second main surface W2. The rotating directions of the first and second grinding wheels 23 and 24 are not limited to the directions described above.
Then, the control means 5 manages the thickness of the wafer W based on the signal output from the differential transformer displacement gauge 3, and when it determines that the wafer W has been ground to a predetermined thickness, the first, The second grinding wheels 23, 24 are separated from the wafer W to finish grinding.

[本発明を導くに至った経緯]
本発明者は、鋭意研究を重ねた結果、以下の知見を得た。
〔実験1〕
上述の関連技術の両頭研削方法で得られたウェーハWのナノトポグラフィを計測したところ、第1の主面W1側から見てウェーハWの中心が凹み方向のうねりを持っていることを確認した。なお、ナノトポグラフィとは、ウェーハWを非吸着または弱吸着で載置したときのミリメータ周期に存在する、ナノメーターレンジのうねりであり、広義には平坦度に包含される。
本発明者は、このような現象の発生原因について考察し、研削液流量や砥石23B,24Bの品質のわずかな差や、ウェーハW表面の状態などによって、第1,第2の研削ホイール23,24の摩耗や切れ刃の状態に差が生じ、第1,第2の研削ホイール23,24が研削中に常時接するウェーハWの中心部において、表裏取り代量差が特に顕著に現れ、中央部分に凹みまたは凸の癖が生じるものと推測した。
そこで、本発明者は、考察を行ったところ、研削液の供給量を調整することで、ウェーハWのナノトポグラフィを改善できる可能性があると考え、以下の実験を行った。
[Circumstances leading to the present invention]
The present inventor has obtained the following knowledge as a result of earnest research.
[Experiment 1]
When the nanotopography of the wafer W obtained by the double-sided grinding method of the related art was measured, it was confirmed that the center of the wafer W had undulations in the concave direction when viewed from the first main surface W1 side. Note that nanotopography is undulation in the nanometer range that exists in a period of millimeters when the wafer W is placed with non-adsorption or weak adhesion, and is included in flatness in a broad sense.
The inventor of the present invention considered the cause of such a phenomenon, and found that the first and second grinding wheels 23 24, a difference occurs in the state of wear and the cutting edge, and the front and back removal amount difference appears particularly remarkably in the central portion of the wafer W, which is always in contact with the first and second grinding wheels 23 and 24 during grinding, and the central portion It was speculated that a concave or convex habit occurs in the
Therefore, the present inventors considered that it is possible to improve the nanotopography of the wafer W by adjusting the supply amount of the grinding liquid, and conducted the following experiment.

まず、両頭研削装置1(光洋機械工業株式会社製 型式:DXSG320)を準備した。そして、第1の主面W1および第2の主面W2に1.2L/minずつの研削液を供給しながら、上記関連技術の両頭研削方法を実施して、直径が300mmのウェーハWを所定厚さになるまで研削した(実験例1-1)。
また、第1の主面W1および第2の主面W2に対する研削液の供給量を、1.5L/minずつ(実験例1-2)、1.8L/minずつ(実験例1-3)にしたこと以外は、実験例1と同じ条件で10枚のウェーハWを研削した。
First, a double-headed grinding machine 1 (manufactured by Koyo Machine Industries Co., Ltd., model: DXSG320) was prepared. Then, while supplying a grinding fluid of 1.2 L/min each to the first main surface W1 and the second main surface W2, the double-sided grinding method of the related art is performed to obtain a wafer W having a diameter of 300 mm. It was ground to a thickness (Experimental Example 1-1).
Further, the supply amount of the grinding fluid to the first main surface W1 and the second main surface W2 was set to 1.5 L/min each (Experimental Example 1-2) and 1.8 L/min each (Experimental Example 1-3). 10 wafers W were ground under the same conditions as in Experimental Example 1 except that the wafers W were

実験例1-1~1-3の研削方法で、それぞれ10枚ずつのウェーハWを研削し、ナノトポグラフィ計測機(株式会社溝尻光学工業所製 型式:FT-300U)で第1の主面W1のナノトポグラフィを計測した。このときのナノトポグラフィは、第1の主面W1の最外周部の位置を0nmとした場合における、第1の主面W1の表面形状の凹凸のプロファイルを計測するものであり、第1の主面W1の中心のナノトポグラフィを計測し、ウェーハWの中心を通るクロスセクションのプロファイルデータを取得し、そのプロファイルにおけるウェーハWの中央部の数値を評価指標とした。なお、最外周部の値を基準(0nm)とする。その結果を、図4に示す。
図4では、ナノトポグラフィの値が0未満の場合、第1の主面W1の中心が凹んでいることを表し、0を超える場合、中心が突出していることを表す。また、ナノトポグラフィの絶対値が大きいほど、凹み量や突出量が大きいことを表す。
Ten wafers W were each ground by the grinding methods of Experimental Examples 1-1 to 1-3, and the first main surface W1 was measured with a nanotopography measuring machine (manufactured by Mizojiri Kogaku Kogyo Co., Ltd., model: FT-300U). We measured the nanotopography of The nanotopography at this time measures the unevenness profile of the surface shape of the first main surface W1 when the position of the outermost periphery of the first main surface W1 is 0 nm. The nanotopography of the center of the surface W1 was measured to obtain cross-sectional profile data passing through the center of the wafer W, and the numerical value of the central portion of the wafer W in the profile was used as an evaluation index. Note that the value of the outermost periphery is taken as a reference (0 nm). The results are shown in FIG.
In FIG. 4, when the value of nanotopography is less than 0, it means that the center of the first main surface W1 is recessed, and when it exceeds 0, it means that the center protrudes. Also, the larger the absolute value of the nanotopography, the larger the amount of depression or protrusion.

図4に示すように、研削液の供給量を調整することで、ナノトポグラフィが変化することが確認できた。
このことから、第1の主面W1および第2の主面W2に対する研削液の供給量を調整することで、ウェーハWのナノトポグラフィを改善できる可能性があることを知見した。
As shown in FIG. 4, it was confirmed that the nanotopography changed by adjusting the supply amount of the grinding fluid.
From this, it was found that there is a possibility that the nanotopography of the wafer W can be improved by adjusting the supply amount of the grinding liquid to the first main surface W1 and the second main surface W2.

〔実験2〕
本発明者は、上記実験1の結果から、研削液の供給量を調整することでウェーハWのナノトポグラフィを改善できる可能性があることを知見したが、実験例1-1,1-3のウェーハWの中心の厚さを計測すると、図5に示すように、実験例1-1の方が実験例1-3よりも1μm程度厚いことが確認できた。
ウェーハWのナノトポグラフィを改善できても、厚さが狙い値と異なってしまうことは好ましくない。
そこで、本発明者は、考察を行ったところ、研削液の供給量調整によって加工室4の温度が変化してしまい、この温度変化に伴い差動トランス型変位計3の計測誤差が生じた結果、ウェーハWの厚さが狙い値と異なってしまった可能性があると考え、以下の実験を行った。
[Experiment 2]
The present inventor found that the nanotopography of the wafer W could be improved by adjusting the supply amount of the grinding fluid from the results of Experiment 1 above. When the thickness of the center of the wafer W was measured, as shown in FIG. 5, it was confirmed that Experimental Example 1-1 was thicker than Experimental Example 1-3 by about 1 μm.
Even if the nanotopography of the wafer W can be improved, it is undesirable for the thickness to differ from the target value.
Therefore, the inventor of the present invention conducted a study and found that the temperature of the processing chamber 4 changed due to the adjustment of the supply amount of the grinding fluid, and the measurement error of the differential transformer type displacement gauge 3 was caused due to this temperature change. , the thickness of the wafer W may have been different from the target value, and the following experiment was conducted.

まず、差動トランス型変位計3の計測環境温度と計測値との関係を調べた。
差動トランス型変位計3(株式会社東京精密製 型式:PULCOMシリーズ)を準備し、当該差動トランス型変位計3の信号出力手段31の筐体に温度センサ(T&D社製 型式:TR-52i)を取り付けた。所定厚さのウェーハWに接触子33を接触させ、計測環境温度を変化させながら、厚さを計測した。その計測結果を、図6に示す。
図6に示すように、環境温度が上がるほど差動トランス型変位計3の計測値が小さくなることが確認できた。
このことから、差動トランス型変位計3を用いて同じ厚さを狙って研削を行う場合、加工室4内の温度が高いほど、研削が進行していない段階で、ウェーハWが狙い値に到達したとの計測結果が得られるため、ウェーハWが厚くなると推定できる。
First, the relationship between the measurement environment temperature of the differential transformer type displacement meter 3 and the measured value was investigated.
A differential transformer type displacement gauge 3 (manufactured by Tokyo Seimitsu Co., Ltd., model: PULCOM series) is prepared, and a temperature sensor (manufactured by T&D, model: TR-52i) is attached to the housing of the signal output means 31 of the differential transformer type displacement gauge 3. ) was attached. The contactor 33 was brought into contact with a wafer W having a predetermined thickness, and the thickness was measured while changing the measurement environment temperature. The measurement results are shown in FIG.
As shown in FIG. 6, it was confirmed that the measured value of the differential transformer type displacement meter 3 decreased as the environmental temperature increased.
From this fact, when the same thickness is targeted for grinding using the differential transformer type displacement gauge 3, the higher the temperature in the processing chamber 4, the higher the wafer W reaches the target value before the grinding progresses. Since a measurement result indicating that the thickness has been reached is obtained, it can be estimated that the thickness of the wafer W is increased.

次に、研削液の供給量と加工室4内の温度との関係を調べた。
上記温度センサを信号出力手段31に取り付けた両頭研削装置1を準備し、研削液の供給量を上記実験例1-1と同じにした条件でウェーハWを研削し、研削中の加工室4の温度変化を1秒ごとに計測した(実験例2-1)。
また、研削液の供給量を上記実験例1-3と同じにしたこと以外は、実験例2-1と同じ条件でウェーハWを研削し、研削中の温度変化を計測した(実験例2-2)。
計測結果の平均値を表1に示す。
表1に示すように、実験例2-2の温度が実験例2-1よりも約0.7℃低くなった。これは、研削液が多いほど、研削時のウェーハWの冷却効果が高まり、その結果、供給量が多い実験例2-2における加工室4の温度が低くなったと考えられる。
Next, the relationship between the supply amount of the grinding fluid and the temperature inside the processing chamber 4 was examined.
The double-sided grinding apparatus 1 having the temperature sensor attached to the signal output means 31 was prepared, and the wafer W was ground under the same conditions as in Experimental Example 1-1 with the same amount of grinding fluid supply as in Experimental Example 1-1. A change in temperature was measured every second (Experimental Example 2-1).
In addition, the wafer W was ground under the same conditions as in Experimental Example 2-1 except that the amount of the grinding fluid supplied was the same as in Experimental Example 1-3, and the temperature change during grinding was measured (Experimental Example 2- 2).
Table 1 shows the average values of the measurement results.
As shown in Table 1, the temperature of Experimental Example 2-2 was about 0.7° C. lower than that of Experimental Example 2-1. It is considered that the larger the amount of grinding liquid, the higher the cooling effect of the wafer W during grinding, and as a result, the temperature of the processing chamber 4 became lower in Experimental Example 2-2 in which the amount of supply was large.

Figure 0007159861000001
Figure 0007159861000001

図5と表1の結果から、加工室4の温度が高いほど、研削後のウェーハWが厚くなると考えられ、これは、上述の図6の結果に基づく推定と一致する。
このことから、研削液の供給量を調整すると、差動トランス型変位計3の計測誤差が生じ、研削後のウェーハWの厚さが狙い値と異なってしまうことが確認できた。
From the results of FIG. 5 and Table 1, it is considered that the higher the temperature of the processing chamber 4, the thicker the wafer W after grinding.
From this, it was confirmed that the thickness of the wafer W after grinding differs from the target value due to the measurement error of the differential transformer type displacement gauge 3 when the supply amount of the grinding liquid is adjusted.

〔実験3〕
実験1の結果から、第1の主面W1および第2の主面W2に対する研削液の供給量を調整することで、ウェーハWのナノトポグラフィを改善できる可能性があることを知見した。また、実験2の結果から、研削液の供給量を調整すると、研削後のウェーハWの厚さが狙い値と異なってしまうことが確認できた。
本発明者は、実験1,2の結果を踏まえ、鋭意研究を重ねた結果、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を調整することで、ウェーハWのナノトポグラフィを改善しつつ、所望の厚さのウェーハWを得られる可能性があると考え、以下の実験を行った。
[Experiment 3]
From the results of Experiment 1, it was found that there is a possibility that the nanotopography of the wafer W can be improved by adjusting the supply amount of the grinding liquid to the first main surface W1 and the second main surface W2. Further, from the result of Experiment 2, it was confirmed that the thickness of the wafer W after grinding was different from the target value when the supply amount of the grinding liquid was adjusted.
Based on the results of Experiments 1 and 2, the inventor of the present invention, as a result of extensive research, found that while maintaining the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2, the first main surface W1 By adjusting the ratio of the supply amount of the grinding liquid to the second main surface W2 and the supply amount of the grinding liquid to the second main surface W2, it is possible to obtain a wafer W with a desired thickness while improving the nanotopography of the wafer W. Therefore, the following experiment was conducted.

実験2と同じ両頭研削装置1と、厚さが約870μmかつ直径が300mmのウェーハWを準備した。そして、以下の表2に示す条件に基づいて、上記関連技術と同じ処理内容の両頭研削方法を実施し、それぞれ10枚ずつのウェーハWを研削するとともに、研削中の加工室4の温度変化を1秒ごとに計測した(実験例3-1~3-3)。
すなわち、実験例3-1~3-3では、第1,第2の主面W1,W2に対する研削液の総供給量を2.8L/minで固定し、各主面W1,主面W2に対する供給量の比率を調整した。
A double-headed grinding machine 1 identical to Experiment 2 and a wafer W having a thickness of about 870 μm and a diameter of 300 mm were prepared. Then, based on the conditions shown in Table 2 below, a double-sided grinding method having the same processing content as the related art is performed, and 10 wafers W are each ground, and the temperature change in the processing chamber 4 during grinding is measured. It was measured every second (Experimental Examples 3-1 to 3-3).
That is, in Experimental Examples 3-1 to 3-3, the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2 was fixed at 2.8 L/min, and Adjusted the feed rate.

Figure 0007159861000002
Figure 0007159861000002

表3に、加工室4内の温度の計測結果の平均値を示す。
表3に示すように、実験例3-1~3-3の最大温度差は0.1℃であり、研削液の総供給量が同じであれば、第1,第2の主面W1,W2に対する供給量の比率を変更しても、加工室4内の温度はほとんど変化しないことが確認できた。
Table 3 shows the average values of the measurement results of the temperature inside the processing chamber 4 .
As shown in Table 3, the maximum temperature difference in Experimental Examples 3-1 to 3-3 is 0.1°C. It was confirmed that the temperature in the processing chamber 4 hardly changed even when the ratio of the supply amount to W2 was changed.

Figure 0007159861000003
Figure 0007159861000003

図7に、第1の主面W1の最外周部の位置を0nmとした場合における、第1の主面W1の中心のナノトポグラフィの算出結果を示す。
図7に示すように、第1,第2の主面W1,W2に対する研削液の総供給量を維持したままでも、第1,第2の主面W1,W2に対する供給量の比率を変更することで、ナノトポグラフィを調整できることが確認できた。特に、凹んでいる側の第1の主面W1に対する研削液の供給量を、もう一方の第2の主面W2に対する研削液の供給量よりも多くなるように比率を調整することで、ナノトポグラフィを0nmに近づけられることが確認できた。
FIG. 7 shows the calculation result of the nanotopography at the center of the first principal surface W1 when the position of the outermost periphery of the first principal surface W1 is set to 0 nm.
As shown in FIG. 7, while maintaining the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2, the ratio of the supply amount to the first and second main surfaces W1 and W2 is changed. Therefore, it was confirmed that nanotopography can be adjusted. In particular, by adjusting the ratio so that the supply amount of the grinding fluid to the recessed first main surface W1 is larger than the supply amount of the grinding fluid to the other second main surface W2, It was confirmed that the topography could be brought close to 0 nm.

図8に、ウェーハWの中心の厚さとその平均値とを示す。
図8に示すように、第1,第2の主面W1,W2に対する供給量の比率を変更しても、第1,第2の主面W1,W2に対する研削液の総供給量が同じであれば、ウェーハWの厚さがほとんど変わらないことが確認できた。
FIG. 8 shows the center thickness of the wafer W and its average value.
As shown in FIG. 8, even if the ratio of the supply amount to the first and second main surfaces W1 and W2 is changed, the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2 remains the same. It has been confirmed that the thickness of the wafer W is almost unchanged if there is.

図7および図8に示す結果から、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を調整することで、ウェーハWのナノトポグラフィを改善しつつ、所望の厚さのウェーハWを得られることが確認できた。 From the results shown in FIGS. 7 and 8, while maintaining the total amount of grinding fluid supplied to the first and second main surfaces W1 and W2, the amount of grinding fluid supplied to the first main surface W1 and the second main surface W1 It was confirmed that a wafer W having a desired thickness can be obtained while improving the nanotopography of the wafer W by adjusting the ratio of the amount of grinding liquid supplied to the surface W2.

[実施形態]
次に、本発明の一実施形態に係る両頭研削方法について説明する。
まず、関連技術の両頭研削装置1と、第1の被研削物としての第1のウェーハWtと、第2の被研削物としての第2のウェーハWpを準備する。第1のウェーハWtと第2のウェーハWpとは、材質、形状がほぼ同じであり、例えば、1本のシリコン単結晶インゴットから、あるいは、同じ製造条件で製造された異なるシリコン単結晶インゴットから、それぞれ切り出されたものである。
[Embodiment]
Next, a double-headed grinding method according to an embodiment of the present invention will be described.
First, a related art double-sided grinding machine 1, a first wafer Wt as a first object to be ground, and a second wafer Wp as a second object to be ground are prepared. The first wafer W t and the second wafer W p are substantially the same in material and shape, for example, from one silicon single crystal ingot, or different silicon single crystal ingots manufactured under the same manufacturing conditions. are extracted from each.

そして、キャリアリング21に第1のウェーハWtがセットされた後、制御手段5は、図9に示すように、当該第1のウェーハWtの研削を行う(ステップS1:第1の研削工程)。第1の研削工程で用いる第1のウェーハWtは、予備研削用のダミーウェーハであってもよいし、前ロットの製品用ウェーハであってもよい。
この第1の研削工程において、差動トランス型変位計3は、第1のウェーハWtの厚さを計測し、この計測結果に応じた信号を制御手段5に出力する。制御手段5は、第1のウェーハWtの第1,第2の主面W1,W2に所定量の研削液を供給しつつ、差動トランス型変位計3からの信号に基づき第1のウェーハWtの厚さが所定厚さまで研削されたと判断すると、研削を終了する。この第1の研削工程における第1,第2の主面W1,W2に対する研削液の供給量は、同じであってもよいし、異なっていてもよいが、第1の研削工程における総供給量が後述する第2の研削工程における総供給量と同じになるように設定されている。
After the first wafer Wt is set on the carrier ring 21, the control means 5 grinds the first wafer Wt as shown in FIG. 9 (step S1: first grinding step ). The first wafer Wt used in the first grinding process may be a dummy wafer for pre-grinding or a product wafer of the previous lot.
In this first grinding process, the differential transformer type displacement gauge 3 measures the thickness of the first wafer Wt and outputs a signal corresponding to the measurement result to the control means 5 . The control means 5 supplies a predetermined amount of grinding fluid to the first and second main surfaces W1 and W2 of the first wafer Wt , and moves the first wafer Wt based on the signal from the differential transformer type displacement gauge 3. When it is determined that the thickness of Wt has been ground to a predetermined thickness, the grinding is terminated. The amount of grinding fluid supplied to the first and second main surfaces W1 and W2 in the first grinding process may be the same or different, but the total supply amount in the first grinding process is set to be the same as the total supply amount in the second grinding process described later.

次に、作業者が図示しないナノトポ計測器を用いて、第1のウェーハWtのナノトポグラフィを計測する(ステップS2:ナノトポグラフィ計測工程)。
その後、制御手段5は、キャリアリング21にセットされた第2のウェーハWpの研削を行う(ステップS3:第2の研削工程)。
この第2の研削工程では、まず、作業者は、ナノトポグラフィ計測工程での計測結果に基づいて、第2のウェーハWpのナノトポグラフィが0に近づくような研削条件を設定する。具体的には、作業者は、ウェーハWの中心のナノトポグラフィに基づいて、第2のウェーハWpにおける中心のナノトポグラフィが0に近づくように、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を設定する。
例えば、第1の主面W1に対する供給量の比率を高くするほど、第1の主面W1の凹み量が小さくなるという傾向がわかっており、第1のウェーハWtの第1の主面W1の中心が凹んでいる場合、作業者は、第1の主面W1に対する供給量の比率を高くし、第1の主面W1の中心が突出している場合、第1の主面W1に対する供給量の比率を低くする。逆に言えば、第1のウェーハWtの第2の主面W2の中心が凹んでいる場合、作業者は、第2の主面W2に対する比率を高くし、第2の主面W2の中心が突出している場合、第2の主面W2に対する比率を低くする。すなわち、中央が凹んでいる主面に対する供給量の比率を高くすればよい。このとき、研削液の供給比率は、比率が高い方の供給量を低い方の供給量で除した値が200%以下となることが好ましく、例えば、比率が高い方の供給量が2L/min、低い方の供給量が1L/minとなることが好ましい。
Next, the operator measures the nanotopography of the first wafer Wt using a nanotopography measuring instrument (not shown) (step S2: nanotopography measurement step).
Thereafter, the control means 5 grinds the second wafer Wp set on the carrier ring 21 (step S3: second grinding step).
In this second grinding process, first, the operator sets grinding conditions such that the nanotopography of the second wafer Wp approaches zero based on the measurement results in the nanotopography measurement process. Specifically, based on the nanotopography of the center of the wafer W, the operator performs the While maintaining the total supply amount of the grinding liquid, the ratio between the supply amount of the grinding liquid to the first main surface W1 and the supply amount of the grinding liquid to the second main surface W2 is set.
For example, it is known that the higher the ratio of the supply amount to the first main surface W1, the smaller the recess amount of the first main surface W1 . When the center of is recessed, the operator increases the ratio of the supply amount to the first main surface W1, and when the center of the first main surface W1 protrudes, the supply amount to the first main surface W1 reduce the ratio of Conversely, when the center of the second main surface W2 of the first wafer Wt is recessed, the operator increases the ratio of the second main surface W2 to the center of the second main surface W2. protrudes, the ratio to the second main surface W2 is reduced. In other words, it is sufficient to increase the ratio of the amount of supply to the main surface having a recessed center. At this time, as for the supply ratio of the grinding fluid, the value obtained by dividing the supply amount of the higher ratio by the supply amount of the lower one is preferably 200% or less. For example, the supply amount of the higher ratio is 2 L/min. , the lower feed rate is preferably 1 L/min.

そして、制御手段5は、作業者の設定に基づいて、第1,第2の主面W1,W2に対する研削液の供給比率以外は、予備研削工程と同じ研削条件で、第2のウェーハWpの研削を行う。 Then, the control means 5 controls the second wafer W p under the same grinding conditions as in the pre-grinding step, except for the supply ratio of the grinding liquid to the first and second main surfaces W1 and W2, based on the setting of the operator. grinding.

[実施形態の作用効果]
上記実施形態によれば、第2の研削工程において、第1のウェーハWtのナノトポグラフィに基づいて、第1,第2の主面W1,W2に対する研削液の総供給量を維持しつつ、第1,第2の主面W1,W2に対する研削液の供給比率を調整する。このように、研削液の供給比率を調整することで、ナノトポグラフィを改善しつつ、研削液の総供給量を維持することで、第2のウェーハWpの厚さを第1のウェーハWtとほぼ同じにすることができる。したがって、ナノトポグラフィが良好な所望の厚さの第2のウェーハWpを得ることができる。
特に、研削液の総供給量を維持しつつ、供給比率を変更するため、第1の研削工程と第2の研削工程とにおける加工室4内の温度をほぼ同じにすることができる。このため、環境温度によって計測誤差が生じる差動トランス型変位計3を用いても、第1の研削工程と第2の研削工程との両方において、ウェーハWの厚さを狙い値とほぼ同じにすることができる。差動トランス型変位計3の測定精度は高いため、より高精度に厚さが調整された第2のウェーハWpを得ることができる。
[Action and effect of the embodiment]
According to the above embodiment, in the second grinding step, while maintaining the total amount of grinding liquid supplied to the first and second main surfaces W1 and W2 based on the nanotopography of the first wafer Wt, The supply ratio of the grinding fluid to the first and second main surfaces W1, W2 is adjusted. In this way, by adjusting the supply ratio of the grinding liquid, the nanotopography is improved and the total supply amount of the grinding liquid is maintained. can be made almost the same as Therefore, it is possible to obtain a second wafer Wp having a desired thickness with good nanotopography.
In particular, since the supply ratio is changed while maintaining the total supply amount of the grinding liquid, the temperature in the processing chamber 4 can be made substantially the same between the first grinding process and the second grinding process. Therefore, even if the differential transformer type displacement meter 3, which causes measurement errors due to the environmental temperature, is used, the thickness of the wafer W can be made substantially equal to the target value in both the first grinding process and the second grinding process. can do. Since the differential transformer type displacement meter 3 has a high measurement accuracy, the second wafer Wp whose thickness is adjusted with higher accuracy can be obtained.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
[Modification]
The present invention is not limited to the above-described embodiments, and various improvements and design changes are possible without departing from the scope of the present invention.

例えば、被研削物としては、シリコン以外のウェーハでもよいし、セラミックスや石材など、ウェーハW以外の円板状のものを対象としてもよい。 For example, the object to be ground may be a wafer other than silicon, or a disk-shaped object other than the wafer W, such as ceramics or stone.

作業者の設定に基づいて第2の研削工程を行ったが、以下のようにしてもよい。
まず、メモリに、第1,第2の主面W1,W2に対する研削液の総供給量を所定量に維持した状態において、第1の主面W1に対する研削液の供給量と第2の主面W2に対する研削液の供給量との比率を調整した場合に、ナノトポグラフィがどのように変化するのかを示す供給比率調整情報を記憶させておく。例えば、実験3で得られた結果のように、第1の主面W1に対する供給量の比率を高くするほど、第1の主面W1の凹み量が小さくなるという供給比率調整情報を記憶させておく。このとき、ウェーハWの材質やサイズや研削後の狙い厚さ、あるいは、研削液の総供給量、さらには、ウェーハWと第1,第2の研削ホイール23,24との回転方向の関係ごとに、内容が異なる供給比率調整情報を記憶させておくことが好ましい。供給比率調整情報は、両頭研削装置1を用いた実験結果に基づいて作成されたものであってもよいし、シミュレーションで作成されたものであってもよい。
そして、制御手段5が第1のウェーハWtのナノトポグラフィと供給比率調整情報とに基づいて、第2のウェーハWpのナノトポグラフィが0に近づくような供給量の比率を調整してもよい。
Although the second grinding process was performed based on the operator's settings, the following may be performed.
First, in a state in which the total supply amount of the grinding fluid to the first and second main surfaces W1 and W2 is maintained at a predetermined amount, the amount of the grinding fluid supplied to the first main surface W1 and the second main surface are stored in the memory. Supply ratio adjustment information is stored that indicates how the nanotopography changes when the ratio of the supply amount of the grinding fluid to W2 is adjusted. For example, as in the result obtained in Experiment 3, the supply ratio adjustment information is stored such that the higher the ratio of the supply amount to the first main surface W1, the smaller the recess amount of the first main surface W1. back. At this time, the relationship between the material and size of the wafer W, the target thickness after grinding, the total supply amount of the grinding liquid, and the rotation direction of the wafer W and the first and second grinding wheels 23 and 24 It is preferable to store the supply ratio adjustment information with different contents in the second. The supply ratio adjustment information may be created based on experimental results using the double-headed grinding machine 1, or may be created by simulation.
Then, based on the nanotopography of the first wafer Wt and the supply ratio adjustment information, the control means 5 may adjust the supply ratio so that the nanotopography of the second wafer Wp approaches zero. .

1…両頭研削装置、2…研削手段、3…差動トランス型変位計(厚さ計測手段)、23,24…第1,第2の研削ホイール、23B,24B…砥石、33…接触子、W…ウェーハ(被研削物)、Wt…第1のウェーハ(第1の被研削物)、Wp…第1のウェーハ(第2の被研削物)、W1…第1の主面(一方の主面)、W2…第2の主面(他方の主面)。 REFERENCE SIGNS LIST 1 double-headed grinding device, 2 grinding means, 3 differential transformer type displacement gauge (thickness measuring means), 23, 24 first and second grinding wheels, 23B, 24B grindstone, 33 contactor, W... Wafer (object to be ground), Wt ... First wafer (first object to be ground), Wp ... First wafer (second object to be ground), W1... First main surface (one main surface), W2 . . . second main surface (the other main surface).

Claims (3)

被研削物を回転させるとともに当該被研削物の両主面に研削液を供給し、研削ホイールの砥石を前記被研削物の両主面にそれぞれ当接させることによって、前記被研削物を研削する研削手段と、前記被研削物の厚さを計測する厚さ計測手段とを備える両頭研削装置を用い、前記厚さ計測手段の計測結果に基づいて、前記被研削物の厚さが所定厚さになるまで研削を行う両頭研削方法であって、
第1の被研削物の両主面に所定量の研削液を供給しつつ、前記第1の被研削物の厚さが前記所定厚さになるまで研削を行う第1の研削工程と、
前記第1の被研削物のナノトポグラフィを計測するナノトポグラフィ計測工程と、
第2の被研削物の両主面に前記所定量の研削液を供給しつつ、前記第2の被研削物の厚さが前記所定厚さになるまで研削を行う第2の研削工程とを備え、
前記第2の研削工程は、前記ナノトポグラフィ計測工程の計測結果に基づいて前記第2の被研削物のナノトポグラフィが0に近づくように作業者又は制御手段により調整された、前記第2の被研削物の一方の主面に対する研削液の供給量と他方の主面に対する研削液の供給量との比率により、前記研削液を供給することを特徴とする両頭研削方法。
The object to be ground is ground by rotating the object to be ground, supplying a grinding liquid to both main surfaces of the object to be ground, and bringing the grindstones of the grinding wheel into contact with both main surfaces of the object to be ground. A double-headed grinding machine comprising grinding means and thickness measuring means for measuring the thickness of the object to be ground is used, and the thickness of the object to be ground is determined to be a predetermined thickness based on the measurement result of the thickness measuring means. A double-headed grinding method for grinding until
a first grinding step of performing grinding until the thickness of the first object to be ground reaches the predetermined thickness while supplying a predetermined amount of grinding fluid to both main surfaces of the first object to be ground;
a nanotopography measuring step of measuring the nanotopography of the first object to be ground;
a second grinding step of performing grinding until the thickness of the second object to be ground reaches the predetermined thickness while supplying the predetermined amount of grinding liquid to both main surfaces of the second object to be ground; prepared,
In the second grinding step, the nanotopography of the second object to be ground is adjusted by an operator or a control means so that the nanotopography of the second object to be ground approaches 0 based on the measurement result of the nanotopography measurement step. A double-sided grinding method, characterized in that the grinding liquid is supplied according to the ratio of the amount of the grinding liquid supplied to one main surface of the workpiece to the amount of the grinding liquid supplied to the other main surface.
請求項1に記載の両頭研削方法において、
前記厚さ計測手段として、前記被研削物の両主面にそれぞれ接触する一対の接触子を有し、当該一対の接触子の位置に応じた信号を出力することで前記被研削物の厚さを計測する差動トランス型変位計を用いることを特徴とする両頭研削方法。
In the double-headed grinding method according to claim 1,
The thickness measuring means has a pair of contactors that contact both main surfaces of the object to be ground, respectively, and outputs a signal corresponding to the position of the pair of contactors to measure the thickness of the object to be ground. A double-headed grinding method characterized by using a differential transformer type displacement gauge for measuring.
請求項1または請求項2に記載の両頭研削方法において、
前記第2の研削工程は、前記第1の被研削物の前記ナノトポグラフィ計測工程の計測結果に基づいて、前記第2の被研削物における前記第1の被研削物の凹んでいる側の主面に対する研削液の供給量を、もう一方の主面に対する研削液の供給量よりも多くなるように前記比率を調整することを特徴とする両頭研削方法。
In the double-headed grinding method according to claim 1 or claim 2,
In the second grinding step, based on the measurement result of the nanotopography measurement step of the first object to be ground, the main part of the recessed side of the first object to be ground in the second object to be ground is ground. A double-sided grinding method, wherein the ratio is adjusted so that the amount of grinding fluid supplied to one surface is larger than the amount of grinding fluid supplied to the other main surface.
JP2018245302A 2018-12-27 2018-12-27 Double-headed grinding method Active JP7159861B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018245302A JP7159861B2 (en) 2018-12-27 2018-12-27 Double-headed grinding method
TW108140396A TWI702115B (en) 2018-12-27 2019-11-07 Method of double-headed polishing
KR1020217018567A KR102517771B1 (en) 2018-12-27 2019-11-08 Double head grinding method
DE112019006452.5T DE112019006452T5 (en) 2018-12-27 2019-11-08 DOUBLE GRINDING PROCESS
PCT/JP2019/043882 WO2020137187A1 (en) 2018-12-27 2019-11-08 Double grinding method
CN201980086217.XA CN113396030B (en) 2018-12-27 2019-11-08 Double-end grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245302A JP7159861B2 (en) 2018-12-27 2018-12-27 Double-headed grinding method

Publications (2)

Publication Number Publication Date
JP2020104211A JP2020104211A (en) 2020-07-09
JP7159861B2 true JP7159861B2 (en) 2022-10-25

Family

ID=71128947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245302A Active JP7159861B2 (en) 2018-12-27 2018-12-27 Double-headed grinding method

Country Status (6)

Country Link
JP (1) JP7159861B2 (en)
KR (1) KR102517771B1 (en)
CN (1) CN113396030B (en)
DE (1) DE112019006452T5 (en)
TW (1) TWI702115B (en)
WO (1) WO2020137187A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024892A (en) 1998-07-15 2000-01-25 Nippei Toyama Corp Duplex head flat surface grinding device
JP2009016842A (en) 2007-07-04 2009-01-22 Siltronic Ag Method for grinding semiconductor wafer
JP5439217B2 (en) 2010-02-15 2014-03-12 信越半導体株式会社 Ring-shaped holder for double-head grinding machine and double-head grinding machine
JP5494552B2 (en) 2011-04-15 2014-05-14 信越半導体株式会社 Double-head grinding method and double-head grinding apparatus
JP6040947B2 (en) 2014-02-20 2016-12-07 信越半導体株式会社 Double-head grinding method for workpieces
WO2017061486A1 (en) 2015-10-09 2017-04-13 株式会社Sumco Carrier ring, grinding device, and grinding method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256018A (en) * 1975-11-05 1977-05-09 Kouka Kuroomu Kougiyou Kk Method of manufacturing continuous casting mould for steel
JP2006040947A (en) * 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP4752475B2 (en) * 2005-12-08 2011-08-17 信越半導体株式会社 Semiconductor wafer double-head grinding apparatus, hydrostatic pad and double-head grinding method using the same
KR101247065B1 (en) * 2006-01-30 2013-03-25 엠이엠씨 일렉트로닉 머티리얼즈, 인크. Double side wafer grinder and methods for assessing workpiece nanotopology
CN100467219C (en) * 2006-07-10 2009-03-11 中芯国际集成电路制造(上海)有限公司 Chemical and mechanical grinding method
JP4985451B2 (en) * 2008-02-14 2012-07-25 信越半導体株式会社 Double-head grinding apparatus for workpiece and double-head grinding method for workpiece
JP5463570B2 (en) * 2008-10-31 2014-04-09 Sumco Techxiv株式会社 Double-head grinding apparatus for wafer and double-head grinding method
JP5357672B2 (en) * 2009-09-07 2013-12-04 株式会社ディスコ Grinding method
DE102009048436B4 (en) * 2009-10-07 2012-12-20 Siltronic Ag Method for grinding a semiconductor wafer
CN101722477B (en) * 2009-10-16 2011-09-14 青岛理工大学 Process for grinding nanometer fluid
US8712575B2 (en) * 2010-03-26 2014-04-29 Memc Electronic Materials, Inc. Hydrostatic pad pressure modulation in a simultaneous double side wafer grinder
DE102010013520B4 (en) * 2010-03-31 2013-02-07 Siltronic Ag Process for double-sided polishing of a semiconductor wafer
DE102010013519B4 (en) * 2010-03-31 2012-12-27 Siltronic Ag Method for polishing a semiconductor wafer
DE102011082777A1 (en) * 2011-09-15 2012-02-09 Siltronic Ag Method for double-sided polishing of semiconductor wafer e.g. silicon wafer, involves forming channel-shaped recesses in surface of polishing cloth of semiconductor wafer
JP5724958B2 (en) * 2012-07-03 2015-05-27 信越半導体株式会社 Double-head grinding apparatus and double-head grinding method for workpiece
SG2012096699A (en) * 2012-12-31 2014-07-30 Agency Science Tech & Res Amphiphilic linear peptide/peptoid and hydrogel comprising the same
JP2014204092A (en) * 2013-04-10 2014-10-27 株式会社岡本工作機械製作所 Method of grinding work piece
JP6316652B2 (en) * 2014-05-14 2018-04-25 株式会社ディスコ Grinding equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024892A (en) 1998-07-15 2000-01-25 Nippei Toyama Corp Duplex head flat surface grinding device
JP2009016842A (en) 2007-07-04 2009-01-22 Siltronic Ag Method for grinding semiconductor wafer
JP5439217B2 (en) 2010-02-15 2014-03-12 信越半導体株式会社 Ring-shaped holder for double-head grinding machine and double-head grinding machine
JP5494552B2 (en) 2011-04-15 2014-05-14 信越半導体株式会社 Double-head grinding method and double-head grinding apparatus
JP6040947B2 (en) 2014-02-20 2016-12-07 信越半導体株式会社 Double-head grinding method for workpieces
WO2017061486A1 (en) 2015-10-09 2017-04-13 株式会社Sumco Carrier ring, grinding device, and grinding method

Also Published As

Publication number Publication date
KR102517771B1 (en) 2023-04-03
CN113396030A (en) 2021-09-14
KR20210089770A (en) 2021-07-16
DE112019006452T5 (en) 2021-09-09
TW202037456A (en) 2020-10-16
JP2020104211A (en) 2020-07-09
TWI702115B (en) 2020-08-21
WO2020137187A1 (en) 2020-07-02
CN113396030B (en) 2023-07-21

Similar Documents

Publication Publication Date Title
Xie et al. Study on ductile-mode mirror grinding of SiC ceramic freeform surface using an elliptical torus-shaped diamond wheel
CN108369906B (en) Wafer polishing method and polishing device
JP6300968B2 (en) Finish grinding apparatus and finish grinding method
Chen et al. On-machine precision form truing of arc-shaped diamond wheels
KR101908359B1 (en) Double-headed grinding device and method for double-headed grinding of workpieces
CN101456150B (en) Chemical mechanical polishing method
JP2010034479A (en) Polishing method of wafer
JP2010021394A (en) Method of manufacturing semiconductor wafer
JP7159861B2 (en) Double-headed grinding method
CN101733697A (en) Silicon chip polishing method
CN103029035B (en) Polishing pad and loss detecting method during polishing by using same
JP2001062718A (en) Double head grinding device and grinding wheel position correcting method
Huo et al. A new kinematics for ultra precision grinding of conical surfaces using a rotary table and a cup wheel
JP2002166357A (en) Wafer polishing method
TWI467645B (en) Chemical mechanical polishing method and system
JPH09272049A (en) Method and device for flat-surface grinding double-headed work
CN113547446A (en) Method for correcting grinding rate
JP2005081461A (en) Polishing method and device of wafer or the like
Gao et al. Research on Elliptic Vibration Dressing of Large-Grit Bronze-Bonded Diamond Grinding Wheel
JP2001162532A (en) Dresser, polishing device, and method of manufacturing article
JPH0262040A (en) Mirror face processing of si wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7159861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150