JP7159658B2 - 運動データ取得装置及び運動データ取得方法、運動データ取得プログラム - Google Patents

運動データ取得装置及び運動データ取得方法、運動データ取得プログラム Download PDF

Info

Publication number
JP7159658B2
JP7159658B2 JP2018131675A JP2018131675A JP7159658B2 JP 7159658 B2 JP7159658 B2 JP 7159658B2 JP 2018131675 A JP2018131675 A JP 2018131675A JP 2018131675 A JP2018131675 A JP 2018131675A JP 7159658 B2 JP7159658 B2 JP 7159658B2
Authority
JP
Japan
Prior art keywords
gravity
angular velocity
acceleration
data acquisition
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131675A
Other languages
English (en)
Other versions
JP2020006034A (ja
Inventor
将司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2018131675A priority Critical patent/JP7159658B2/ja
Publication of JP2020006034A publication Critical patent/JP2020006034A/ja
Application granted granted Critical
Publication of JP7159658B2 publication Critical patent/JP7159658B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、人体の運動状態を把握、解析するために用いられる運動データの取得装置、及び、当該運動データの取得方法、運動データの取得プログラムに関する。
近年、健康志向の高まり等を背景に、日常的にランニングやジョギング等の運動を行い、健康の維持、増進を図る人々が増えている。また、日常の運動を通して競技大会等への参加を目指す人々も増えている。そのため、自らの運動状態やその特徴を把握することに対して人々の関心が高くなっている。
人体の運動時の状態や特徴を把握、解析する方法としては様々な手法が知られている。例えば特許文献1には、身体の重心に近い腰背部中央に装着された加速度センサにより進行方向の加速度を検出して、歩行中の運動状態やその特徴(具体的には、歩数や歩行速度、歩行動作の左右バランス等)を把握する技術が記載されている。
特開2010-5033号公報
上述した特許文献に記載された技術においては、加速度センサにより検出された進行方向の加速度に基づいて、歩数や歩行速度等の指標を取得して運動状態を把握している。しかしながら、この技術においては、加速度センサが常時人体の進行方向を向いて装着されていることを前提にしており、運動中(例えば走行動作中)の人体の運動姿勢の変化については考慮されていなかった。そのため、運動中の移動速度を正確に検出することができず、運動状態やその特徴を的確に把握、解析することができない場合があった。
そこで、本発明は、人の運動状態を的確に把握、解析することができる運動データ取得装置及び運動データ取得方法、運動データ取得プログラムを提供することを利点とする。
本発明に係る運動データ取得装置は、
移動動作中の利用者の身体の動作状態に対応する加速度データを出力する加速度センサ及び角速度データを出力する角速度センサを有するモーションセンサと、
前記利用者が2地点間を移動した際に出力される、前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度センサにおける角速度の推定誤差範囲を規定する角度よりも小さい場合には、前記第4の重力方向を最終的な重力方向である第3の重力方向として設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定する重力方向推定部と、を備えることを特徴とする。
本発明に係る運動データ取得方法は、
モーションセンサにより、2地点間を移動動作中の利用者の身体の動作状態に対応する加速度データ及び角速度データを取得し、
前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記モーションセンサにおける角速度の推定誤差範囲を規定する角度よりも小さい場合には、前記第4の重力方向を最終的な重力方向である第3の重力方向として設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定する、
ことを特徴とする。
本発明に係る運動データ取得プログラムは、
コンピュータに、
モーションセンサにより、2地点間を移動動作中の利用者の身体の動作状態に対応する加速度データ及び角速度データを取得させ、
前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記モーションセンサにおける角速度の推定誤差範囲を規定する角度よりも小さい場合には、前記第4の重力方向を最終的な重力方向である第3の重力方向として設定させ、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定させる、
ことを特徴とする。
本発明によれば、人の運動状態を的確に把握、解析することができる。
本発明に係る運動データ取得装置の一実施形態を示す外観図である。 一実施形態に係る運動データ取得装置の人体への装着状態を示す概略図である。 一実施形態に係る運動データ取得装置の構成例を示す機能ブロック図である。 一実施形態に係る運動データ取得装置に適用されるモーションセンサにおける3軸方向を示す概略図である。 一実施形態に係る運動データ取得装置における運動データ取得方法を示す概略図である。 一実施形態に係る運動データ取得方法に適用される加速度推定処理を示す概念図である。 一実施形態に適用される加速度推定処理の一例を示すフローチャート(その1)である。 一実施形態に適用される加速度推定処理の一例を示すフローチャート(その2)である。 一実施形態に適用される加速度推定処理において実行される重力方向合成処理の第1の例を示すフローチャートである。 第1の例に係る重力方向合成処理を示す概念図である。 一実施形態に適用される加速度推定処理において実行される重力方向合成処理の第2の例を示すフローチャートである。 第2の例に係る重力方向合成処理を示す概念図である。
以下、本発明に係る運動データ取得装置及び運動データ取得方法、運動データ取得プログラムについて、実施形態を示して詳しく説明する。なお、以下の実施形態においては、本発明に係る運動データ取得装置を装着したユーザがランニングを行う場合について詳しく説明するが、比較的均一な動作を長い時間、周期的に繰り返して移動する運動であれば、ウォーキングやサイクリング等の他の運動に適用するものであってもよい。
(運動データ取得装置)
図1は、本発明に係る運動データ取得装置の一実施形態を示す外観図であり、図2は、本実施形態に係る運動データ取得装置の人体への装着状態を示す概略図である。また、図3は、本実施形態に係る運動データ取得装置の構成例を示す機能ブロック図であり、図4は、本実施形態に係る運動データ取得装置に適用されるモーションセンサ(加速センサ、角速度センサ)における3軸方向を示す概略図である。
本発明に係る運動データ取得装置100は、例えば図1(a)~(c)に示すように、後述する各種センサが内蔵された装置本体102と、装置本体102の一面側(図1(c)に示す背面側、又は、図1(b)の右方側)にヒンジ部106を介して回動可能に取り付けられたクリップ部104と、を有している。
このような運動データ取得装置100は、例えば図2に示すように、ユーザUSの背中側の腰部中央等の、人体の体幹に近い位置に密着して装着される。ここで、運動データ取得装置100は、内蔵されたモーションセンサ(詳しくは後述する)によりユーザUSの運動中の、体幹を含む胴体の動きを精度よく検出することができるものであれば、胸部や腹部の中央部、頸部等の人体の任意の位置に密着して装着されるものであってもよい。また、運動データ取得装置100の人体への装着方法は、図1(a)~(c)に示したようなクリップ機構により、ユーザUSが着用しているウェアやベルトに挟み込んで装着するものであってもよいし、接着テープ等によりウェア等に貼り付けるものであってもよい。
なお、本実施形態においては、運動データ取得装置100が独立したセンサデバイスの形態を有し、ユーザUSが運動の開始に際して身体に着脱可能に装着する場合について説明したが、本発明はこれに限定されるものではなく、後述する運動データ取得装置100の各機能の全て又は一部を、ウェアの生地に一体的に織り込んだり組み込んだりした形態を適用して、ユーザUSが当該ウェアを着用することにより人体に密着させるものであってもよい。
運動データ取得装置100は、例えば図3に示すように、加速度センサ110と、ジャイロセンサ(角速度センサ)120と、地磁気センサ130と、計時部140と、演算回路部150と、インターフェース部(以下、「I/F部」と略記する)160と、メモリ部170と、表示部180と、スイッチ部190と、電源供給部(図示を省略)と、を有している。
本実施形態に係る運動データ取得装置100は、ユーザUSの運動中の身体の動きや運動状態を測定するモーションセンサとして、少なくとも加速度センサ110とジャイロセンサ120とを有している。加速度センサ110は、3軸加速度センサを有し、互いに直交する3軸方向の加速度を検出することにより、ユーザUSの運動中の動作速度の変化を計測する。ジャイロセンサ120は、3軸角速度センサを有し、上記加速度を規定する3軸の各々を中心とする回転方向の角速度を検出することにより、ユーザUSの運動中の動作方向の変化を計測する。加速度センサ110により検出された加速度データ、及び、ジャイロセンサ120により検出された角速度データは、各々、後述する計時部140により計測される経過時間の時間データに関連付けられて後述するメモリ部170の所定の記憶領域に保存される。
なお、本実施形態においては、モーションセンサである加速度センサ110及びジャイロセンサ120の3軸方向について、例えば図4に示すように、ランニング等の運動中の人体の前後方向をy軸方向(ユーザUSの進行方向を+方向、その反対方向を-方向)とし、y軸に直交する人体の左右の体側面方向をx軸方向(ユーザUSの右手方向を+方向、その反対方向を-方向)とし、x-y平面に直交する人体の上下方向をz軸方向(ユーザUSの頭上方向を+方向、その反対方向を-方向)と規定する。また、各軸の+方向に向かって右回り方向に生じる角速度を+方向と規定する。
地磁気センサ130は、直交する2軸ないしは3軸方向の地磁気を検出するセンサであって、地球の磁場(磁界)を検出して磁気データ(又は、3次元の方向データ)として出力する。この磁気データは、後述する演算回路部150において運動データ取得装置100を基準とする方位(水平基準方向)を算出する際や、運動データ取得装置100の装着状態(姿勢)を推定する際に用いられる。地磁気センサ130により取得された磁気データは、計時部140により計測される経過時間の時間データに関連付けられてメモリ部170の所定の記憶領域に保存される。
また、地磁気センサ130は、加速度センサ110やジャイロセンサ120のセンシングデータの出力誤差を推定し、出力誤差を相殺するように調整するために用いられる。ここで、出力誤差の調整は、運動データ取得装置100の製品出荷時に行われてもよいし、後述するように区間走行開始直前に行われてもよい。
計時部140は、加速度センサ110やジャイロセンサ120、地磁気センサ130におけるセンシング動作により各種のデータ(センシングデータ)を取得する際の、経過時間を計測して時間データとして出力する。ここで、計時部140は、例えば電波時計の機能を有して、送信局から送信される標準電波や、GPS(全地球測位システム)の機能を有して、GPS衛星から送信される時刻情報に基づいて、ユーザUSの運動中の経過時間を高い精度で計測する。なお、計時部140の機能は、演算回路部150に内蔵されている計時機能(水晶デバイス等)により生成される基本クロックを用いて、上記経過時間を計測するものであってもよい。
演算回路部150は、CPU(中央演算処理装置)やMPU(マイクロプロセッサ)等の演算処理装置(コンピュータ)であって、所定の制御プログラムを実行することにより、加速度センサ110やジャイロセンサ120、地磁気センサ130におけるセンシング動作や、計時部140における経過時間の計測動作、後述するメモリ部170における各種のデータ等の保存及び読出し動作、I/F部160における外部機器(詳しくは後述する)200への運動データの出力動作等の、運動データ取得装置100全体の動作を制御する。
また、演算回路部150は、加速度センサ110やジャイロセンサ120、地磁気センサ130によりユーザUSの運動中に検出された各種のデータに基づいて、ユーザUSの運動状態を把握、解析するための運動データや指標を算出又は推定する。ここで、演算回路部150により算出又は推定される運動データや指標については詳しく後述するが、例えば運動中の正確な進行方向の加速度や移動速度、運動姿勢、上下動、着地タイミング等が取得される。
メモリ部170は、上述した加速度センサ110やジャイロセンサ120、地磁気センサ130において取得された各種のデータを、経過時間の時間データに関連付けて所定の記憶領域に保存する。また、メモリ部170は、演算回路部150により算出又は推定される、ユーザUSの運動状態を把握、解析するための運動データや指標を所定の記憶領域に保存する。また、メモリ部170は、演算回路部150において実行される制御プログラムを保存する。なお、この制御プログラムは、演算回路部150に予め組み込まれているものであってもよい。また、メモリ部170は、その一部又は全部が、例えばメモリカード等のリムーバブル記憶媒体としての形態を有し、運動データ取得装置100に対して着脱可能に構成されているものであってもよい。
I/F部160は、運動データ取得装置100の外部の機器(外部機器)200に対して、ユーザUSの運動中に取得した各種のデータや、当該データに基づいて算出又は推定された、ユーザUSの運動状態を把握、解析するための運動データや指標等を出力する。ここで、I/F部160は、例えばブルートゥース(登録商標)(Bluetooth(登録商標))やワイファイ(WiFi(登録商標))等の各種の無線通信方式を適用して外部機器200にデータ等を出力することができる。また、I/F部160は、例えばUSB(Universal Serial Bus)規格等の通信ケーブルや、上述したメモリ部170に示したメモリカード等のリムーバブル記憶媒体を介して、外部機器200にデータ等を出力する手法を適用するものであってもよい。
表示部180は、上述した加速度センサ110やジャイロセンサ120、地磁気センサ130により取得された各種のデータや、演算回路部150により算出又は推定された運動データや指標に関する情報を表示する。また、表示部180は、運動データ取得装置100の動作状態(電源オン、オフ状態やエラー状態)や、計時部140により計測される経過時間に関する情報を表示する。なお、上述したI/F部160を介して出力されるデータ等が外部機器200に備えられた表示部(図示を省略)に表示される場合には、運動データ取得装置100は表示部180を備えていない形態であってもよい。
スイッチ部190は、スライドスイッチや押しボタン等の操作スイッチや、表示部180に設けられたタッチパネル等であって、ユーザUSにより運動データ取得装置100における動作状態(電源オン、オフ状態や各種設定)の切替え操作や、計時部140における経過時間の計測(開始タイミング及び終了タイミング)操作の際に使用される。なお、常時又は一定の時間間隔、或いは、所定のタイミングで、上述した加速度センサ110やジャイロセンサ120がセンシング動作を行うことによりユーザUSの運動状態を監視して、運動データ取得装置100が運動中の各種のデータを取得する動作モードに切替わる仕様を有する場合には、運動データ取得装置100はスイッチ部190を備えていない形態であってもよい。
(外部機器)
外部機器200は、上述した運動データ取得装置100からI/F部160を介して出力された、ユーザUSの運動中に取得された各種のデータや、演算回路部150により算出又は推定された運動データや指標に関する情報を受信して表示する。また、外部機器200は、これらのデータや情報に基づいて、ユーザUSの運動状態を解析してその結果を、所定の表示形態で表示する。
ここで、外部機器200は、例えばパーソナルコンピュータやスマートフォン、タブレット機器、腕時計型のリスト端末、専用端末、ネットワーク上のサーバ機器等を適用することができる。すなわち、外部機器200は、ユーザUSが運動中に携帯又は身体に装着しているものであってもよいし、ユーザUSが携帯することなく、運動データ取得装置100とは別個に設置されているものであってもよい。なお、外部機器200としてスマートフォンやリスト端末のような、ユーザUSが運動中に携帯又は装着することができるものを適用する場合には、運動データ取得装置100のI/F部160を介して双方向に信号やデータを送受信できる形態を適用して、外部機器200に上記表示部180やスイッチ部190の機能を持たせるようにしてもよい。
(運動データ取得方法)
次に、本実施形態に係る運動データ取得装置における制御方法(運動データ取得方法)について、図面を参照して説明する。ここで、以下に示す一連の運動データ取得方法は、上述した演算回路部150において所定の制御プログラムを実行することにより実現される。
まず、本実施形態に係る運動データ取得装置100における運動データ取得方法の概略について説明する。
図5は、本実施形態に係る運動データ取得装置における運動データ取得方法を示す概略図である。
本実施形態に係る運動データ取得方法においては、図2に示したように、ユーザUSが上述した運動データ取得装置100を、背中側の腰部中央等の体幹に近い位置に密着して装着した状態で走行動作を行い、当該動作中の移動速度を計測する。具体的には、予め距離が判明している特定の地点間(区間)を走行した場合の経過時間を、運動データ取得装置100の計時部140により計測して、演算回路部150により当該区間における平均移動速度(区間速度)を算出する。これにより、図5(a)に示すように各区間A、B、C、・・・における区間速度データが得られる。
ここで、平均移動速度(区間速度)の計測対象となる特定の地点間(区間)は、例えば競技場やグラウンドのトラックコースの直線部分や、マラソンコースの距離ポイント(5kmや10km等)間や休憩ポイント間等の、始点と終点となる2地点間の距離が予め判明している区間に設定される。
また、区間走行時の経過時間の計測は、当該区間の始点と終点となる各地点において、ユーザUSが運動データ取得装置100のスイッチ部190を操作することにより、電波時計やGPSの機能を有する計時部140をストップウォッチ(すなわち、手動の計時手段)として利用する手法を適用することができる。なお、計時部140がGPS機能を有し、かつ、上記区間がGPS衛星からの信号を良好に受信可能な環境にある場合には、ユーザUSがスイッチ部190を操作することなく、GPS衛星から送信される、当該区間の始点と終点における時刻情報及び位置情報に基づいて、演算回路部150により平均移動速度(区間速度)を自動的に算出するものであってもよい。
次いで、本実施形態に係る運動データ取得方法においては、図5(b)に示すように、ユーザUSの走行動作の際に取得された上記の区間速度データに対して、進行方向の加速度データを用いて補完処理を実行する。これにより、図5(c)に示すように各区間A、B、C、・・・において、時間的に密な(例えば、1秒以下の短い時間単位毎の)移動速度が推定される。
ここで、区間速度データに対して補完処理を実行する際には、ユーザUSの走行動作中に加速度センサ110により検出された加速度データ、及び、ジャイロセンサ120により検出された角速度データに基づいて、ユーザUSの進行方向の加速度を推定する加速度推定処理と、当該加速度推定処理により推定された進行方向の加速度を用いて上記の区間速度データを補完する区間速度補完処理とが順次実行される。
以下に、本実施形態に係る運動データ取得方法において実行される加速度推定処理及び区間速度補完処理について詳しく説明する。
(加速度推定処理)
図6は、本実施形態に係る運動データ取得方法に適用される加速度推定処理を示す概念図であり、図7、図8は、本実施形態に適用される加速度推定処理の一例を示すフローチャートである。図9は、本実施形態に適用される加速度推定処理において実行される重力方向合成処理の第1の例を示すフローチャートであり、図10は、第1の例に係る重力方向合成処理を示す概念図である。
本実施形態に係る運動データ取得方法において実行される加速度推定処理においては、ユーザUSが身体に装着した運動データ取得装置100に内蔵されたモーションセンサ(加速度センサ110及びジャイロセンサ120)の特定方向の軸を、ユーザUSの走行動作における進行方向に一致させる補正処理を行う。
一般に、人体の体幹又はその近傍に装着されたモーションセンサ(加速度センサやジャイロセンサ等)の向きは、ランニング等の走行動作中の上体の揺れや傾きの影響を受け、初期状態から経時的にずれを生じる。そのため、モーションセンサにより検出される人体の上下方向(図4に示したz軸方向)の軸と本来(真)の重力方向の軸との間、また、モーションセンサにより検出される人体の進行方向(図4に示したy軸方向)の軸と本来の進行方向の軸との間に差異が生じることになる。そこで、モーションセンサにより取得された加速度データ及び角速度データの値に基づいて、時刻ごとに異なる上記の各軸方向の差異成分を相殺する補正を行う必要がある。
本実施形態においては、運動データ取得装置100のモーションセンサの姿勢が図6(a)の状態から図6(b)の状態に変換するように補正処理を行うことで、モーションセンサ(加速度センサ110及びジャイロセンサ120)のz軸の+方向を真の重力方向に一致させ、さらに、図6(b)の状態から図6(c)の状態に変換するように補正処理を行うことで、モーションセンサのy軸の+方向をユーザUSの走行動作における進行方向に一致させる。ここで、モーションセンサのz軸を重力方向に一致させる重力方向の補正処理は、図7に示すフローチャートに沿って実行され、モーションセンサのy軸をユーザUSの進行方向に一致させる水平進行方向の補正処理は、図8に示すフローチャートに沿って実行される。
<1>重力方向の補正処理
重力方向の補正処理においては、図7に示すように、まず、演算回路部150は、モーションセンサ(加速度センサ110及びジャイロセンサ120)により検出された加速度データ及び角速度データに基づいて、運動データ取得装置100の静止状態を検出する。演算回路部150は、このとき(時刻[t]とする)の加速度センサ110により検出される加速度の方向を初期重力方向として設定し(ステップS102)、メモリ部170の所定の記憶領域に時刻[t]と初期重力方向とを関連付けて保存する。また、演算回路部150は、後述する重力方向合成処理(ステップS114)において算出される重力方向、及び、当該重力方向合成処理に用いられる加速度平均値を、そのときの時刻と関連付けてメモリ部170の所定の記憶領域に随時保存する。直近の時刻に保存された重力方向(上記の初期重力方向を含む)及び加速度平均値は、前回の重力方向及び加速度平均値として読み出されて(ステップS104)、次回の重力方向合成処理に用いられる。
次いで、演算回路部150は、所定の時間が経過した時刻[t+1]における重力方向を、ジャイロセンサ120により検出された角速度データに基づいて推定される「角速度推定重力方向」(第1の重力方向)と、加速度センサ110により検出された加速度データに基づいて算出される「加速度平均重力方向」(第2の重力方向)とを合成することにより最終的な重力方向(第3の重力方向)を決定する(ステップS114、S116)。
角速度推定重力方向は、図10(a)に示すように、演算回路部150によりメモリ部170から読み出された、前回算出された重力方向(時刻[t]の初期重力方向を含む)に対して、時刻[t+1]においてジャイロセンサ120により検出された角速度データの値に応じた回転を付与することにより算出される(ステップS106、S108)。算出された角速度推定重力方向は、時刻[t+1]に関連付けられてメモリ部170の所定の記憶領域に保存される。ここで、角速度推定重力方向は、比較的短い期間(数秒以下)では重力方向の回転を規定する角速度の誤差が小さく収まるが、比較的長い期間(数十秒以上)では、角速度の誤差が蓄積される(積算誤差)場合があるという特徴を有している。
また、加速度平均重力方向は、図10(a)に示すように、時刻[t+1]において加速度センサ110により検出された加速度データの平均値を算出することにより設定される(ステップS110、S112)。算出された加速度平均重力方向は、時刻[t+1]に関連付けられてメモリ部170の所定の記憶領域に保存される。ここで、加速度平均重力方向は、長期的に観測した場合には、真の重力方向に近似又は追随した方向を示すが、短期的に加速度が急変した場合(加速度急変時)には、真の重力方向から大きく乖離する場合があるという特徴を有している。
角速度推定重力方向と加速度平均重力方向とを合成する処理(ステップS114)においては、上記の各重力方向が有する特徴に鑑みて、図9のフローチャートに示すような一連の処理が実行される。すなわち、上述した角速度推定重力方向を算出する際に生じる角速度の積算誤差については、例えば、誤差のある観測値を用いて特定の動的システムの状態を推定、制御するための一般的な計算手法であるカルマンフィルタを適用することにより、その影響を軽減又は抑制することができる。
そこで、演算回路部150は、通常のカルマンフィルタを適用して、上記の角速度推定重力方向と加速度平均重力方向とを、カルマンゲインを用いた寄与率に応じて合成することにより、図10(b)に示すように、重力方向を決定する(ステップS212)。ここで、カルマンフィルタを適用して合成された重力方向を、便宜的に「カルマン重力方向」(第4の重力方向)と表記する。
このカルマンフィルタを適用した手法においては、上記の角速度推定重力方向を算出する際に生じる角速度の積算誤差の影響を軽減又は抑制することができるが、加速度が急変した場合(加速度急変時)には、依然として上記の加速度平均重力方向が真の重力方向から大きく乖離する場合があるため、上記の角速度推定重力方向と加速度平均重力方向とが合成されたカルマン重力方向においても真の重力方向から乖離する可能性がある。
そこで、本実施形態に適用される重力方向合成処理の第1の例(図9)においては、角速度推定重力方向を算出する際に生じる角速度の積算誤差について、ジャイロセンサ120が有する固有の出力誤差に基づいて、当該重力方向の算出に先立って事前に推定することができることに着目する。ここで、ジャイロセンサ120の固有の出力誤差は、センサの製造ばらつきや搭載される運動データ取得装置100の特性等に起因するものであるので、運動データ取得装置100の出荷時やユーザUSの走行動作の開始に先立つ静止状態において事前に計測することにより、推定される角速度の最大誤差範囲である角速度の推定誤差範囲を取得することができる。或いは、ジャイロセンサ120の固有の出力誤差の統計的な分布範囲を最大誤差として、角速度の推定誤差範囲を事前に設定することができる。角速度の推定誤差範囲は、図10(c)に示すように、角速度推定重力方向に対して或る角度θ内の絶対値だけ回転した方向の範囲であり、角速度推定重力方向を軸とした円錐の頂点と底面の任意の一点とを通る方向の全てを含んでいる。なお、地磁気センサ130を用いて出力誤差を相殺するよう予め或いは逐次調整が行われているが、センシング条件によって誤差の程度は変動するため、出力誤差を常に正確に把握することは困難であり、推定誤差範囲を設定している。
演算回路部150は、上述したカルマン重力方向を算出した後、角速度推定重力方向とカルマン重力方向との間の角度と、上記の角速度の推定誤差範囲を規定する角度との大小関係を比較する(ステップS214)。角速度推定重力方向とカルマン重力方向との間の角度が、角速度の推定誤差範囲を規定する角度よりも小さい(すなわち、誤差範囲内である)場合には、演算回路部150は、上記のカルマン重力方向をそのまま最終的な重力方向として決定する(ステップS218、S116)。
一方、角速度推定重力方向とカルマン重力方向との間の角度が、角速度の推定誤差範囲を規定する角度よりも大きい(すなわち、誤差範囲外である)場合には、演算回路部150は、図10(c)に示すように、角速度推定重力方向を、カルマン重力方向に向けて、事前に計測しておいた上記の角速度の推定誤差範囲(図中、点線で示す円錐)における最大値、つまり角速度推定重力方向に対して角度θだけ傾ける(回転させる)修正を実行する(ステップS216)。そして、演算回路部150は、この修正された角速度推定重力方向(第5の重力方向)を最終的な重力方向として決定する(ステップS116)。これにより、加速度平均重力方向が真の重力方向から大きく乖離した場合であっても、その影響を最小限(すなわち、角速度の推定誤差範囲内)に抑制することができる。
次いで、演算回路部150は、上述した一連の重力方向合成処理により合成された重力方向を、最終的な重力方向に決定した後、図6(a)、(b)に示すように、モーションセンサのz軸を当該重力方向に一致させる補正処理を実行する(ステップS118)。すなわち、この補正処理は、決定された重力方向を(gx gy gz)とした場合、上述した合成処理に基づいて決定されたモーションセンサのz軸方向(0 0 1)を当該重力方向(gx gy gz)に一致させるように回転させる処理である。具体的には、両者(決定された重力方向とモーションセンサのz軸方向)の外積を回転の軸とし、両者のなす角回転量として、回転処理を行うことにより実現される。
このように、図7に示した一連の重力方向の補正処理により、モーションセンサのz軸の+方向の加速度を真の重力方向に一致させることができる。
<2>水平進行方向の補正処理
本実施形態に係る運動データ取得方法においては、まず、モーションセンサのy軸方向が、概ね、ユーザUSの走行動作における進行方向に一致又は近似するように、運動データ取得装置100がユーザUSの体幹に密着するように装着されているものとする。この状態で、ユーザUSが走行動作を行った場合、モーションセンサのy軸が正確に進行方向に一致するタイミングは、ユーザの走行動作に係る走行周期(例えば特定の足(右足)が着地後、離地を経て再び着地するまでの周期)の半分の周期(例えば右足の着地から左足の着地までの経過時間)における略中間のタイミングに相当することになる。
そこで、水平進行方向の補正処理においては、図8に示すように、上述したステップS118後に、演算回路部150は、ユーザUSの走行動作において、モーションセンサのy軸が進行方向に略一致するタイミング(便宜的に、「中間時点」と記す)からの経過時間をカウントするとともに、ジャイロセンサ120から逐次出力される角速度データに基づいて中間時点からのz軸の角速度の総和を算出する処理を実行し(ステップS140)、中間時点からの経過時間が、走行周期の半分の時間(走行周期/2)に到達したか否かを判定する(ステップS142)。
中間時点からの経過時間が走行周期/2に到達したと判定された場合(ステップS142のYes)には、演算回路部150は、中間時点からの経過時間を「0」に設定(リセット)する。また、このとき、演算回路部150は、リセットされた前回の中間時点から今回の中間時点までのz軸の角速度の総和(z軸周りの角速度の積分値)を「0」に設定(リセット)する(ステップS144)。
引き続き、演算回路部150は、ユーザUSの走行動作において、経過時間が走行周期の切り替わり(特定の走行周期から次の走行周期への移行)タイミングに到達したか否かを判定する(ステップS146)。ここで、走行周期は、例えば、ジャイロセンサ120により検出された角速度データを図6(c)で示す処理で補正した値に基づいて導き出された、符号(正負)が経時的に反転するz軸周りの角速度の値がp度目の「0」となるタイミング及び(p+2)度目の「0」となるタイミング(pは正の整数)の時間差や、加速度センサ110により検出された加速度データによって求められる特定の足(例えば右足)がq度目に着地するタイミング及び(q+1)度目に着地するタイミング(qは正の整数)の時間差によって推定することができる。
走行周期の切り替わりタイミングに到達したと判定された場合(ステップS146のYes)には、演算回路部150は、現時点での走行周期をメモリ部170に記憶する(ステップS148)。ここで、記憶された走行周期は、上述したステップS142における経過時間の判定処理を次回実行する際に適用されて、走行周期が更新される。
ステップS148において走行周期を記憶した後、又はステップS146において走行周期の切り替わりタイミングに到達していないと判定された場合(ステップS146のNo)には、演算回路部150は、図8に示した水平進行方向の補正処理を終了して、図7に示したステップS102に戻る。
一方、ステップS142において、中間時点からの経過時間が走行周期/2に到達していないと判定された場合(ステップS142のNo)には、演算回路部150は、ステップS140において算出された、中間時点からのz軸の角速度の総和(z軸周りの角速度の積分値)を用いて、図6(b)、(c)に示すように、モーションセンサのy軸を、z軸を中心にして回転させる補正処理を実行する(ステップS150)。その後、演算回路部150は、図8に示した水平進行方向の補正処理を終了して、図7に示したステップS102に戻る。ここで、上述した一連の加速度推定処理(重力方向の補正処理及び水平進行方向の補正処理)は、継続的に繰り返し実行される。
このように、図8に示した一連の水平進行方向の補正処理により、モーションセンサのy軸の+方向の加速度をユーザUSの走行動作における進行方向の加速度に一致させることができる。
(区間速度補完処理)
本実施形態に係る運動データ取得方法において実行される区間速度補完処理においては、ユーザUSの走行動作中に計測された移動速度について、ある区間における移動速度(区間速度)の初期値(初速)がv_1km/h、その区間における平均値(平均移動速度)がv_m km/h、モーションセンサにより検出され、上述した加速度推定処理により推定された進行方向の加速度がacc={acc_1, acc_2, acc_3…, acc_n}である時、加速度accの相対値(加速度の絶対値間の相対的な関係)を保ったまま、v_1、v_mの制約を満たすように区間速度の補完処理を行う。
具体的には、次の(11)式に示すように、進行方向加速度accに所定の補正値hを乗算した値h×accを用いることにより、区間Aの移動速度は、次の(12)式のように表すことができる。
h×acc={h×acc_1, h×acc_2, h×acc_3,…, h×acc_n} ・・・(11)
v_a={v_1, v_1+h×acc_1, v_1+h×acc_1+h×acc_2,…,
v_1+h×acc_1+h×acc_2+…+h×acc_n} ・・・(12)
ここで、(12)式に示した区間Aの移動速度v_aは、初速v_1を元に補正済み速度変化h×acc を積分したものに相当する。
また、(11)式に適用した補正値hは、次のようにして算出される。
まず、区間Aの移動速度の総和v_sumは次の(13)式のように表すことができる。
v_sum=sum(v_a)
=v_1+(v_1+h×acc_1)+(v_1+h×acc_1+h×acc_2)+…
+(v_1+h×acc_1+h×acc_2+…+h×acc_n)
=v_1×(n+1)+h×{acc_1×(n)+acc_2×(n-1)+…+acc_n×(1)}・・・(13)
これにより、移動速度の平均値v_mは、(14)式に示すように、(13)式に示した移動速度の総和v_sumを加速度情報数で除算したものになる。
v_m=v_sum/(n+1)
={v_1×(n+1)+h×{acc_1×(n)+acc_2×(n-1)+…
+acc_n×(1)}/(n+1) ・・・(14)
(14)式より、補正値hは、次の(15)式のように表すことができる。
h=(n+1)(v_m-v_1)/ {acc_1×(n)+acc_2×(n-1)+…
+acc_n×(1)} ・・・(15)
この(15)式によれば、(11)式に示したh×accを用いた区間速度の補完処理が、初速がv_1かつ区間Aの移動速度の平均値がv_m、速度変化の相対値がモーションセンサから得られた進行方向加速度accと一致することを示している。なお、区間Bの移動速度の初期値は、区間Aの最後の移動速度となる。これにより、各区間A、B、C、・・・において、移動速度を補完することにより、図5(c)に示すような時間的に密な速度データを推定することができる。
このように、本実施形態においては、まず、3軸加速度センサ及び3軸角速度センサを有するモーションセンサを内蔵した運動データ取得装置100をユーザUSの体幹に近い位置に装着した状態で走行動作を行う。次いで、ジャイロセンサ120が有する角速度の誤差範囲を考慮した加速度方向の補正処理を行い、モーションセンサを内蔵した運動データ取得装置のz軸を重力方向に補正する。さらに、モーションセンサのz軸周りの回転(角速度の積分値)により、走行中の進行方向の加速度を推定する。そして、進行方向の加速度の相対的な変化を用いて、走行中に取得された区間速度データを補完して、時間的に密な移動速度を推定する。
これにより、本実施形態によれば、加速度センサ及びジャイロセンサを有する簡易な構成の運動データ取得装置において、ユーザUSの走行中の速度変化を密に取得することができるので、人の運動状態やその特徴を的確に把握、解析することができる。また、この場合、加速度センサ及びジャイロセンサを有するモーションセンサのz軸及びy軸がそれぞれ重力方向及び進行方向に一致するように補正されるので、モーションセンサの向きを正確に重力方向や進行方向に設定する必要がなく、運動データ取得装置の装着を簡単に行うことができる。
また、本実施形態によれば、モーションセンサの3軸方向を重力方向、進行方向、体側面方向(右手方向又は左手方向)に設定することができるので、モーションセンサにより検出される加速度データ及び角速度データに基づいて、走行中の運動姿勢や上下動、着地タイミング、或いは、これらの変化等の解析指標を高精度に推定することができる。
(重力方向合成処理の第2の例)
次に、上述した実施形態に適用される加速度推定処理において実行される重力方向合成処理の第2の例について説明する。
図11は、本実施形態に適用される加速度推定処理において実行される重力方向合成処理の第2の例を示すフローチャートであり、図12は、第2の例に係る重力方向合成処理を示す概念図である。
上述した実施形態においては、重力方向合成処理の第1の例としてカルマンフィルタを適用した手法を示したが、本発明はカルマンフィルタを適用しない手法であってもよい。すなわち、上述した第1の例においては、速度推定重力方向からの誤差範囲が擬似的に固定的なカルマンゲインの役割を果たしていると言うことができる。
そこで、重力方向合成処理の第2の例においては、この概念に基づいて、カルマンフィルタによる寄与率の計算を行わず、ジャイロセンサ120における角速度の誤差の範囲内で、角速度推定重力方向を加速度平均重力方向に向けて直接傾ける修正(回転)を実行する。
すなわち、演算回路部150は、まず、上述した実施形態と同様に、図7のフローチャートにおいて、ステップS102~S112の一連の処理により角速度推定重力方向及び加速度平均重力方向を算出した後、ステップS114において、角速度推定重力方向と加速度平均重力方向との合成処理を実行する。ここで、重力方向合成処理の第2の例においては、図11のフローチャートに示すように、演算回路部150は、角速度推定重力方向と加速度平均重力方向との間の角度と、角速度の推定誤差範囲を規定する角度θとの大小関係を比較する(ステップS222)。角速度推定重力方向と加速度平均重力方向との間の角度が、角速度の推定誤差範囲を規定する角度θよりも小さい(すなわち、誤差範囲内である)場合には、演算回路部150は、上記の加速度平均重力方向をそのまま最終的な重力方向として決定する(ステップS226、S116)。
一方、角速度推定重力方向と加速度平均重力方向との間の角度が、角速度の推定誤差範囲を規定する角度θよりも大きい(すなわち、誤差範囲外である)場合には、演算回路部150は、図12に示すように、角速度推定重力方向を加速度平均重力方向に向けて、事前に計測しておいた上記の角速度の推定誤差範囲(図中、点線で示す円錐)における最大値、つまり角速度推定重力方向に対して角度θだけ傾ける(回転させる)修正を実行する(ステップS224)。そして、演算回路部150は、この修正された角速度推定重力方向(第6の重力方向)を最終的な重力方向として決定する(ステップS116)。これにより、加速度平均重力方向が真の重力方向から大きく乖離した場合であっても、その影響を最小限(すなわち、角速度の誤差範囲内)に抑制することができる。また、カルマンフィルタに係る演算処理が省略されるので、演算回路部150における計算コスト(処理負担)を削減することができる。
以上、本発明のいくつかの実施形態について説明したが、本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲に記載された発明とその均等の範囲を含むものである。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
(付記)
[1]
移動動作中の利用者の身体の動作状態に対応する加速度データを出力する加速度センサ及び角速度データを出力する角速度センサを有するモーションセンサと、
前記利用者が2地点間を移動した際に出力される、前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、設定された条件を満たした場合に、前記角速度センサにおける角速度の推定誤差範囲に基づいて合成し、第3の重力方向を設定する重力方向推定部と、
を備えることを特徴とする運動データ取得装置。
[2]
前記重力方向推定部は、
前記第1の重力方向と前記第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、
前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定し、
前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしていない場合には、前記第4の重力方向を前記第3の重力方向として設定することを特徴とする[1]に記載の運動データ取得装置。
[3]
前記重力方向推定部は、
前記第1の重力方向と前記第2の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第2の重力方向に向けて前記角速度の推定誤差範囲分回転させた第6の重力方向を前記第3の重力方向として設定し、
前記第1の重力方向と前記第2の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしていない場合には、前記第2の重力方向を前記第3の重力方向として設定することを特徴とする[1]に記載の運動データ取得装置。
[4]
前記移動動作中の経過時間を計測する計時部を備え、
前記計時部により、前記2地点間の始点と終点においてそれぞれ計測される時刻に基づいて、前記2地点間の平均移動速度が算出されることを特徴とする[1]乃至[3]のいずれかに記載の運動データ取得装置。
[5]
前記モーションセンサの第1の軸を前記第3の重力方向に補正する重力方向補正部と、
前記利用者の移動動作中の周期に基づいて、前記モーションセンサの第2の軸を前記第1の軸周りに回転させて、前記利用者の進行方向に補正する進行方向補正部と、
前記加速度センサから出力される前記進行方向の加速度の相対的な変化を用いて、前記2地点間内において前記2地点間より距離が短い2点間の移動速度を算出する移動速度算出部と、
を備え、
前記2地点間より距離が短い2点間の移動速度を、前記運動データ取得装置の外部に設けられた外部機器に出力するインターフェース部を備えていることを特徴とする[1]乃至[4]のいずれかに記載の運動データ取得装置。
[6]
モーションセンサにより、2地点間を移動動作中の利用者の身体の動作状態に対応する加速度データ及び角速度データを取得し、
前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、設定された条件を満たした場合に、前記モーションセンサにおける角速度の推定誤差範囲に基づいて合成し、第3の重力方向を設定する、
ことを特徴とする運動データ取得方法。
[7]
コンピュータに、
モーションセンサにより、2地点間を移動動作中の利用者の身体の動作状態に対応する加速度データ及び角速度データを取得させ、
前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、設定された条件を満たした場合に、前記モーションセンサにおける角速度の推定誤差範囲に基づいて合成し、第3の重力方向を設定させる、
ことを特徴とする運動データ取得プログラム。
100 運動データ取得装置
110 加速度センサ
120 ジャイロセンサ(角速度センサ)
130 地磁気センサ
140 計時部
150 演算回路部(重力方向推定部、重力方向補正部、進行方向補正部、移動速度算出部)
160 I/F部
170 メモリ部
180 表示部
190 スイッチ部
200 外部機器

Claims (6)

  1. 移動動作中の利用者の身体の動作状態に対応する加速度データを出力する加速度センサ及び角速度データを出力する角速度センサを有するモーションセンサと、
    前記利用者が2地点間を移動した際に出力される、前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度センサにおける角速度の推定誤差範囲を規定する角度よりも小さい場合には、前記第4の重力方向を最終的な重力方向である第3の重力方向として設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定する重力方向推定部と、
    を備えることを特徴とする運動データ取得装置。
  2. 前記移動動作中の経過時間を計測する計時部を備え、
    前記計時部により、前記2地点間の始点と終点においてそれぞれ計測される時刻に基づいて、前記2地点間の平均移動速度が算出されることを特徴とする請求項1に記載の運動データ取得装置。
  3. 前記モーションセンサの第1の軸を前記第3の重力方向に補正する重力方向補正部と、
    前記利用者の移動動作中の周期に基づいて、前記モーションセンサの第2の軸を前記第1の軸周りに回転させて、前記利用者の進行方向に補正する進行方向補正部と、
    前記加速度センサから出力される前記進行方向の加速度の相対的な変化を用いて、前記2地点間内において前記2地点間より距離が短い2点間の移動速度を算出する移動速度算出部と、
    を備え、
    前記2地点間より距離が短い2点間の移動速度を、前記運動データ取得装置の外部に設けられた外部機器に出力するインターフェース部を備えていることを特徴とする請求項1または2に記載の運動データ取得装置。
  4. 移動動作中の利用者の身体の動作状態に対応する加速度データを出力する加速度センサ及び角速度データを出力する角速度センサを有するモーションセンサと、
    重力方向推定部と、を備え、
    前記重力方向推定部は、
    前記利用者が2地点間を移動した際に出力される、前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向との間の角度が、前記角速度センサにおける角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第2の重力方向に向けて前記角速度の推定誤差範囲分回転させた重力方向を最終的な重力方向である第3の重力方向として設定し、
    前記第1の重力方向と前記第2の重力方向との間の角度が、前記推定誤差範囲を規定する角度よりも大きいという条件を満たしていない場合には、前記第2の重力方向を前記第3の重力方向として設定することを特徴とする運動データ取得装置。
  5. モーションセンサにより、2地点間を移動動作中の利用者の身体の動作状態に対応する加速度データ及び角速度データを取得し、
    前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記モーションセンサにおける角速度の推定誤差範囲を規定する角度よりも小さい場合には、前記第4の重力方向を最終的な重力方向である第3の重力方向として設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定する、
    ことを特徴とする運動データ取得方法。
  6. コンピュータに、
    モーションセンサにより、2地点間を移動動作中の利用者の身体の動作状態に対応する加速度データ及び角速度データを取得させ、
    前記角速度データに応じて設定される第1の重力方向と前記加速度データに応じて設定される第2の重力方向とを、カルマンフィルタによる寄与率に応じて合成し、第4の重力方向を設定し、前記第1の重力方向と前記第4の重力方向との間の角度が、前記モーションセンサにおける角速度の推定誤差範囲を規定する角度よりも小さい場合には、前記第4の重力方向を最終的な重力方向である第3の重力方向として設定させ、前記第1の重力方向と前記第4の重力方向との間の角度が、前記角速度の推定誤差範囲を規定する角度よりも大きいという条件を満たしている場合には、前記第1の重力方向を前記第4の重力方向に向けて前記角速度の推定誤差範囲分回転させた第5の重力方向を前記第3の重力方向として設定させる、
    ことを特徴とする運動データ取得プログラム。
JP2018131675A 2018-07-11 2018-07-11 運動データ取得装置及び運動データ取得方法、運動データ取得プログラム Active JP7159658B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018131675A JP7159658B2 (ja) 2018-07-11 2018-07-11 運動データ取得装置及び運動データ取得方法、運動データ取得プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131675A JP7159658B2 (ja) 2018-07-11 2018-07-11 運動データ取得装置及び運動データ取得方法、運動データ取得プログラム

Publications (2)

Publication Number Publication Date
JP2020006034A JP2020006034A (ja) 2020-01-16
JP7159658B2 true JP7159658B2 (ja) 2022-10-25

Family

ID=69149765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131675A Active JP7159658B2 (ja) 2018-07-11 2018-07-11 運動データ取得装置及び運動データ取得方法、運動データ取得プログラム

Country Status (1)

Country Link
JP (1) JP7159658B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027015A1 (ja) 2008-09-05 2010-03-11 国立大学法人東京大学 モーションキャプチャ装置
US20150032408A1 (en) 2012-03-08 2015-01-29 Commissariat Al'energie Atomique Et Aux Energies Alternatives System for capturing movements of an articulated structure
JP2015058167A (ja) 2013-09-19 2015-03-30 カシオ計算機株式会社 運動支援装置及び運動支援方法、運動支援プログラム
JP2015186515A (ja) 2014-03-26 2015-10-29 本田技研工業株式会社 上体運動計測システム及び上体運動計測方法
JP2016150193A (ja) 2015-02-19 2016-08-22 高知県公立大学法人 運動解析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027015A1 (ja) 2008-09-05 2010-03-11 国立大学法人東京大学 モーションキャプチャ装置
US20150032408A1 (en) 2012-03-08 2015-01-29 Commissariat Al'energie Atomique Et Aux Energies Alternatives System for capturing movements of an articulated structure
JP2015058167A (ja) 2013-09-19 2015-03-30 カシオ計算機株式会社 運動支援装置及び運動支援方法、運動支援プログラム
JP2015186515A (ja) 2014-03-26 2015-10-29 本田技研工業株式会社 上体運動計測システム及び上体運動計測方法
JP2016150193A (ja) 2015-02-19 2016-08-22 高知県公立大学法人 運動解析装置

Also Published As

Publication number Publication date
JP2020006034A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US10789708B1 (en) Athletic performance and technique monitoring
EP3161779B1 (en) Automatic reset of physical performance information
US10289902B2 (en) Data analysis device, data analysis method and storage medium
EP3194890B1 (en) Methods and apparatus for power expenditure and technique determination during bipedal motion
JP6565369B2 (ja) 運動支援装置及び運動支援方法、運動支援プログラム
US20150192413A1 (en) Motion Tracking with Reduced On-Body Sensors Set
US11291388B2 (en) Exercise support device, exercise support method and storage medium
WO2015146046A1 (ja) 相関係数補正方法、運動解析方法、相関係数補正装置及びプログラム
Cockcroft et al. A novel complimentary filter for tracking hip angles during cycling using wireless inertial sensors and dynamic acceleration estimation
CN103417217A (zh) 关节活动度量测装置及其量测方法
Sharp et al. Sensor-based dead-reckoning for indoor positioning
US20170273637A1 (en) Information processing device and information processing method
US20160030806A1 (en) Exercise ability evaluation method, exercise ability evaluation apparatus, exercise ability calculation method, and exercise ability calculation apparatus
JP2013188293A (ja) 運動情報表示システム、運動情報表示プログラムおよび運動情報表示方法
CN109725284B (zh) 用于确定物体的运动方向的方法和系统
JP7159658B2 (ja) 運動データ取得装置及び運動データ取得方法、運動データ取得プログラム
KR102253298B1 (ko) 골프 퍼팅라인 측정장치
Zhang et al. Human back movement analysis using bsn
JP2017059089A (ja) 歩数計測装置、歩数計測方法、およびプログラム
TWI687705B (zh) 用於跟蹤和確定物體位置的方法和系統
US20200405231A1 (en) Expenditure to overcome air resistance during bipedal motion
JP7494671B2 (ja) 電子機器、運動データ取得方法およびプログラム
Luttwak Human Motion Tracking and Orientation Estimation using inertial sensors and RSSI measurements
JP2021146025A (ja) 運動データ取得装置、運動データ取得方法およびプログラム
Gretton et al. Wearables

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7159658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150