JP7158624B2 - 異常検知装置 - Google Patents

異常検知装置 Download PDF

Info

Publication number
JP7158624B2
JP7158624B2 JP2022510985A JP2022510985A JP7158624B2 JP 7158624 B2 JP7158624 B2 JP 7158624B2 JP 2022510985 A JP2022510985 A JP 2022510985A JP 2022510985 A JP2022510985 A JP 2022510985A JP 7158624 B2 JP7158624 B2 JP 7158624B2
Authority
JP
Japan
Prior art keywords
state transition
unit
state
time
series data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022510985A
Other languages
English (en)
Other versions
JPWO2022054256A1 (ja
Inventor
敬純 小部
隆彦 増崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022054256A1 publication Critical patent/JPWO2022054256A1/ja
Application granted granted Critical
Publication of JP7158624B2 publication Critical patent/JP7158624B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Description

本開示は異常検知装置に関する。
製造機械などの各種装置の異常を検出する技術が知られている。例えば、特許文献1では、ある特定の製造機械に関連するセンサから取得された物理量データと、その製造機械の動作の異常の有無を示す情報である動作状態データとの相関性に基づいて異常の予兆を学習し、この学習結果を用いて異常の予兆を検知する異常検出器が提案されている。製造機械が正常に動作しているか否かの推定結果は、例えば、製造機械が正常に動作している確率を出力することにより行われる。
特開2019-204155号公報
一般に、複数の動作状態を取り得る製造機械について、その複数の動作状態からなるプロセスの流れが異常である場合、その製造機械は異常であると考えられる。しかしながら、特許文献1の技術によれば、個別の動作状態についての学習結果に基づいて製造機械の異常の有無を判定しているだけであり、プロセスの流れは考慮されていない。そのため、プロセスの流れを考慮して異常を検知することができないという問題があった。
本開示は、このような問題を解決するためになされたものであり、複数の動作状態からなるプロセスの流れを考慮して異常検知を行うことが可能な異常検知装置を提供することを目的とする。
実施形態による異常検知装置の一側面は、対象装置の時系列データを受け付けて、前記時系列データの特徴量を抽出する特徴量抽出部と、前記抽出された特徴量から前記対象装置の動作状態を特定するとともに、複数の動作状態間の状態遷移パターンを規定した状態遷移パターン情報を参照して前記抽出された特徴量から前記対象装置の状態遷移を推定する状態遷移推定部と、前記状態遷移パターン情報及び各動作状態についての正常範囲を規定した正常範囲情報を参照して、前記特定された動作状態、前記推定された状態遷移、及び前記抽出された時系列データの特徴量から、前記時系列データが異常かどうかを判定する異常検知部と、を備える。
上記の異常検知装置の前記一側面によれば、状態遷移パターン情報及び正常範囲情報を参照して異常判定がなされるので、異常判定を状態遷移の段階と各動作状態の段階の2段階で行うことができる。したがって、複数の動作状態からなるプロセスの流れを考慮して異常検知を行うことができる。
実施の形態1による異常検知装置及び異常検知装置システムの構成を示すブロック図である。 実施の形態1による異常検知装置の詳細な構成を示すブロック図である。 実施の形態1による異常検知装置のハードウェア構成例を示すブロック図である。 実施の形態1による異常検知装置の他のハードウェア構成例を示すブロック図である。 時系列データの全体の正規化を示す図である。 時系列データの各動作状態への分割の例を示す図である。 時系列データの各動作状態での正規化を示す図である。 状態遷移のパターンの算出の例を示す図である。 起こりうる状態遷移を表した図である。 起こりうる状態遷移に含まれるパターン1を表した図である。 起こりうる状態遷移に含まれるパターン2を表した図である。 ある時系列データのタイムチャートである。 図6Aの時系列データの動作状態の状態確率を表した図である。 図6Aの時系列データの異常度の判定を示す図である。 ある時系列データのタイムチャートである。 図7Aの時系列データの動作状態の状態確率を表した図である。 図7Aの時系列データの異常度の判定を示す図である。 実施の形態1における異常検知装置の異常検知処理のフローチャートである。 実施の形態1の異常検知装置が用いる推定モデルを学習するための学習装置の構成図である。 学習装置の学習処理を示すフローチャートである。
以下、本開示の実施形態について、添付の図面を参照しつつ説明する。なお、実施形態を説明するための全ての図面において、同一の構成部には同一符号を付すことにより、重複する説明は省略する。
実施の形態1.
<推論フェーズ>
(異常検知システム1000)
図1を参照して、異常検知装置100を備えた異常検知システム1000の全体的構成について説明する。図1は、実施の形態1における異常検知装置100、及び異常検知装置100を備えた異常検知システム1000の構成を示すブロック図である。図1に示すように、異常検知システム1000は、監視対象であるn台(nは1以上の整数)の対象装置OD1、OD2、・・・、ODnと、これら対象装置OD1、OD2、・・・,ODnの各々から配信された時系列データを、通信ネットワークNWを介して受信する異常検知装置100と、ユーザによる各種設定を受け付け又は異常検知装置100による出力結果を表示する外部装置200とで構成される。ここで言う対象装置は、単一の装置でもよいし、一群の複数の装置が含まれたシステム又は機器でもよい。
対象装置ODn又はその近傍には、対象装置ODnの動作に関するデータ又は対象装置ODnの動作環境に関するデータを取得するための不図示のセンサが配置されている。1つの対象装置に対して配置されるセンサの数は1つであってもよいし、複数であってもよい。複数のセンサを配置する場合、複数のセンサは同種であってもよいし(例えば、軸方向、水平方向、及び鉛直方向の3つの加速度センサ)、異種であってもよい(例えば、電圧センサと電流センサ)。取得するデータは、時系列データとして取得できるものであれば特に限定されない。時系列データの例には、電流、電圧、電力、速度、加速度、角速度、圧力、磁力、トルク、温度、湿度、生産数、出荷数、株価、及びインターネットのトラフィックデータが含まれる。時系列データは、センサの検出値それ自体でもよいし、検出値の統計値(例えば、平均、最大、最小)でもよいし、複数のセンサの検出値の演算値(例えば、電力)でもよい。対象装置ODn又はその近傍から取得された時系列データは、機種や設置場所などの対象装置ODnの識別情報と関連付けられて、有線又は無線の通信ネットワークNWを介して異常検知装置100に配信される。
異常検知装置100は、対象装置OD1、OD2、・・・、又はODnから受信した時系列データに基づいて、時系列データが受信された対象装置について状態遷移推定及び異常検知を行う。また、異常検知装置100は、状態遷移推定及び異常検知の結果と対象装置の識別情報とを関連付けて記憶部4に蓄積し、外部装置200からの入力に応じて、取得済みのセンサ値の時系列データ(例えば、電流値の時系列データ、インターネットのトラフィックデータの時系列データ)を記憶部4から検索して、ある観測時刻におけるセンサ値、ある観測期間に亘るセンサ値の時系列データ、対象装置の設置場所などの情報を取得する。
(異常検知装置100)
異常検知装置100は、受信部1、時系列データ分析部2、データ記録制御部3、記憶部4、インターフェース部5、及び時系列データ照合部6を備える。
(受信部1)
受信部1は、対象装置OD1、OD2、・・・、ODnから配信された配信データD1を受信し、受信した配信データD1から、センサ値の種類数、センサ値の時系列データ、センサ項目、及び対象装置の使用環境データを含む対象装置情報D2を抽出する。受信部1は、抽出された対象装置情報D2を、時系列データ分析部2とデータ記録制御部3に出力する。
ここで、センサ値の種類数とは、対象装置に搭載されたセンサから取得されたセンサデータの種類数を意味する。1つのセンサが取得できるデータの種類が1つだけ、例えば電圧だけの場合、センサデータの種類は1である。1つのセンサが取得できるデータの種類が2つの場合、例えば電圧と電流の場合、センサデータの種類は2である。なお、同種のセンサデータであっても、物理的に異なるセンサから取得される場合には、センサの数に応じて種類数を数えるものとする。例えば、軸方向、水平方向、及び鉛直方向の3つの加速度センサを用いてデータが取得される場合、センサデータの種類数は3と数える。
センサ値の時系列データとは、センサから取得された時系列でのセンサデータを意味する。また、センサ項目とは、センサから取得するセンサデータの種類やセンサの設置場所など、対象装置に搭載されたセンサを識別するための項目を意味する。センサデータの種類には、電流、電圧、トルク、温度等の対象装置の稼働に関する項目や、生産数や出荷数等の対象装置が製造する製品に関する項目が含まれる。
(時系列データ分析部2)
時系列データ分析部2は、受信部1から受け付けた対象装置情報D2に対して時系列データ分析処理を行う。時系列データ分析部2は、対象装置情報D2の分析結果D3をデータ記録制御部3に出力する。分析結果D3には、項目分類情報、及び後述するセンサ値の特徴量が含まれる。時系列データ分析部2の詳細については後述する。
(データ記録制御部3)
データ記録制御部3は、受信部1から入力された対象装置情報D2と、時系列データ分析部2から入力された分析結果D3とを対応付けて記憶部4に格納することにより、データベースを構築する。ここで、1つの対象装置情報D2に複数のセンサ値が含まれる場合には、センサ値の項目毎に分析結果D3(D3-1、D3-2、D3-3、・・・)を生成し、1つの対象装置情報D2に複数の分析結果D3(D3-1、D3-2、D3-3、・・・)を対応付けるようにしてもよい。例えば、1つの対象装置情報D2に電圧値、及び電流値が含まれる場合は、電圧値の分析結果D3-1、電流値の分析結果D3-2を生成し、1つの対象装置情報D2に複数の分析結果D3-1及びD3-2を対応付けるようにしてもよい。あるいは、複数のセンサ値の加工データを1つの分析結果D3としてまとめて、1つの対象装置情報D2に1つの分析結果D3を対応付けるようにしてもよい。
(記憶部4)
記憶部4は、各種データを記憶する。実施の形態1において、記憶部4は、対象装置情報D2と分析結果D3とを対応付けて記憶する。また、実施の形態1において、記憶部4は、後述する時系列データ照合部6が用いる学習済みの推定モデルD4を記憶する。
学習済みの推定モデルD4には、複数のセンサ値の項目ごとの特徴量と対応付けられた、複数のセンサ値の項目ごとの動作状態の正常範囲(正常範囲情報)及び状態遷移パターン(状態遷移パターン情報)が含まれる。動作状態の正常範囲は、複数の動作状態の各々について定められる。
動作状態の正常範囲としては、例えば、回帰、ベイズ推定、統計手法による信頼区間、状態空間モデル、3σ法、CNN等の機械学習による手法で学習した範囲を用いる。あるいは、異常検知装置100のユーザが、各動作状態の正常範囲を定義してもよい。
状態遷移パターンとしては、例えば、因果推論、多変量解析、CNN等の機械学習による分類手法等で学習した範囲を用いる。あるいは、対象装置の状態遷移パターンが、例えば対象装置の仕様書により予め分かっている場合には、異常検知装置100のユーザが状態遷移パターンを定義してもよい。状態遷移パターンは複数であってもよい。
また、実施の形態1においては、記憶部4が対象装置情報D2及び分析結果D3を記憶する構成を示したが、他の構成を採用することもできる。例えば、記憶部4に替えて、通信ネットワークNW上に配置された単数又は複数のネットワークストレージ装置(不図示)が対象装置情報D2及び分析結果D3を記憶し、そのネットワークストレージ装置にデータ記録制御部3がアクセスするように構成してもよい。これにより、データ記録制御部3が対象装置情報D2と分析結果D3とを、外部のネットワークストレージ装置に蓄積し、異常検知装置100の外部にデータベースを構築することができる。また、時系列データ照合部6が用いる学習済みの推定モデルD4も、記憶部4でなく外部のネットワークストレージ装置に記憶するように構成してもよい。
(インターフェース部5)
インターフェース部5は、外部装置200と異常検知装置100の各部とを接続して、交信や各種制御を可能にする。異常検知装置100のユーザは、外部装置200を用いて、監視データ取得部61が時系列データを検索する監視条件D5を設定することができる。また、ユーザは、外部装置200を用いて、時系列データ照合部6の照合結果D6を確認することができる。
(時系列データ照合部6)
時系列データ照合部6は、複数のセンサ値の時系列データの状態遷移推定及び異常検知の照合を行う。実施の形態1において、時系列データ照合部6は、記憶部4から学習済みの推定モデルD4を取得するとともに、インターフェース部5から入力された監視条件D5に基づき、記憶部4から対象装置情報D2及び分析結果D3を取得し、センサ値の照合を行う。また、時系列データ照合部6はセンサ値の照合結果D6をインターフェース部5に出力し、照合結果D6は外部装置200を介してユーザに伝達される。
次に、時系列データ分析部2と時系列データ照合部6の詳細な構成について、図2を参照して説明する。図2は、異常検知装置100の詳細な構成を示す構成図である。
(時系列データ分析部2の詳細説明)
実施の形態1において、時系列データ分析部2は、センサ項目検出部21、特徴量抽出部22、及びセンサ項目分類部23を備える。
(センサ項目検出部21)
センサ項目検出部21は、受信部1から入力された対象装置情報D2のセンサ項目に関するデータ、及び対象装置の使用環境データを参照して、対象装置情報D2に現れる対象装置の使用環境毎のセンサ項目を検出する。
(特徴量抽出部22)
特徴量抽出部22は、対象装置情報の時系列データから、現在の動作状態と現在の動作状態から遷移し得る次の動作状態への状態遷移とを把握するためのセンサ値の特徴量を抽出する。ここで、センサ値の特徴量には、センサ値の波形の長時間又は短時間での傾向、波形の長さ、周波数、センサ値の更新頻度、及びある波形(時系列データ)に含まれる複数の部分波形間の類似度などの指標が含まれるが、これらに限定されない。センサ値の特徴量は、対象装置情報が追加で取得される度に一定の時間幅を定めて移動平均のように連続して算出してもよいし、任意の時点又は区間を指定して算出してもよい。ここで、傾向とは、最大値若しくは最小値、平均値、分散若しくは標準偏差、相関、傾き、又は誤差若しくは残差等、データの特徴を示す指標である。特徴量は、周波数領域から抽出されてもよい。
(センサ項目分類部23)
センサ項目分類部23は、抽出されたセンサ値の特徴量を、センサ項目に従って分類する。実施の形態1において、センサ項目分類部23は、センサ項目検出部21が検出した対象装置の使用環境毎のセンサ項目と、特徴量抽出部22が抽出したセンサ値の特徴量とに基づいて、センサ値の特徴量をセンサ項目に従って分類する。
(時系列データ照合部6の詳細説明)
次に、時系列データ照合部6の詳細な構成について説明する。時系列データ照合部6は、複数のセンサ値の時系列データについて照合を行い、動作状態ごとのセンサ値の時系列データの観測値が正常か否かを判定する。時系列データ照合部6は、記憶部4の対象装置情報D2及び分析結果D3が更新されるたびに、学習済みの推定モデルD4を使用して異常を分析し、異常を検出すると異常を検出した旨の結果を出力する。また、インターフェース部5を介して外部装置200から監視条件D5が設定されると、監視条件D5に従った分析結果を出力する。ここで、監視条件D5には、例えば、監視対象とするエリア情報、検索対象とする時刻情報、検索対象とするセンサ項目、及び検索対象とするセンサ値の特徴量が含まれる。実施の形態1において、時系列データ照合部6は、監視データ取得部61、加工部62、状態遷移推定部63、及び異常検知部64を備える。以下、各構成部について説明する。
(監視データ取得部61)
監視データ取得部61は、照合する1つ又は複数の対象装置の対象装置情報D2と、対象装置情報D2に対応付けられた分析結果D3と、学習済みの推定モデルD4とを取得する。実施の形態1において、監視データ取得部61は、外部装置200により設定された監視条件D5に合致するセンサ項目と、このセンサ項目に紐づくセンサ値の時系列データ及び特徴量を記憶部4から検索し、該当する対象装置情報D2及び分析結果D3を取得する。
(状態遷移推定部63)
状態遷移推定部63は、監視データ取得部61で取得した対象装置情報D2及び分析結果D3と、記憶部4から取得した学習済みの推定モデルD4とを対応させて、動作中の対象装置の動作状態を特定するとともに、状態遷移を推定する。状態遷移は、例えば、ある動作状態から他の動作状態へ遷移する確率である状態遷移確率により表される。実施の形態1において、状態遷移推定部63は、対象装置情報D2に含まれるセンサ値の時系列データ、センサ項目、及び対象装置の使用環境データ、並びに分析結果D3に含まれるセンサ値の特徴量から、現在の動作状態(第1の動作状態)を特定する。また、状態遷移推定部63は、学習済みの推定モデルD4に含まれる状態遷移のパターンを参照し、センサ値の特徴量を用いて、現在の動作状態(第1の動作状態)から次の動作状態(第2の動作状態)への状態遷移確率を算出する。現在の動作状態から遷移する次の動作状態(第2の動作状態)は、1つの場合もあれば複数の場合もある。状態遷移のパターンは、異常検知装置100のユーザが定義してもよい。状態遷移のパターンは、例えば、複数の動作状態と複数の動作状態との遷移関係を表した状態遷移表として保持される。状態遷移推定部63は、監視データ取得部61から取得した対象装置情報D2及び分析結果D3、記憶部4から取得した学習済みの推定モデルD4、並びに状態遷移推定部63が行った処理の結果(特定結果又は推定結果)を、加工部62へ引き渡す。なお、対象装置情報D2及び分析結果D3は、監視データ取得部61から加工部62へ引き渡されてもよい。
(加工部62)
加工部62は、入力された対象装置情報D2と、対象装置情報D2に対応する分析結果D3に含まれるセンサ値の特徴量と、状態遷移の確率などの状態遷移推定部63が行った処理の結果とを取得する。また、加工部62は、学習済みの推定モデルD4も取得する。加工部62は、これらの取得したデータ又は情報と学習済みの推定モデルD4とを対応させて、対象装置情報D2に現れる動作中の対象装置のセンサ値の時系列データについて、一定確率以上の動作状態の時系列データをそれぞれの動作状態とみなして、正規化、動作状態単位への分割、及び状態遷移のパターンの算出を実施する。加工部62は、これらの処理を、図4A~図4Dに示されているようにして行う。
正規化の処理は、図4Aに示されているように一連のセンサ値の時系列データ全体に対して実施することもできるし、図4Cに示されているように動作状態ごとに実施することもできる。時系列データの大きさに違いがある場合には正規化を実施した方が良い場合があるが、正規化を省略することも可能である。データの正規化の例には、例えば、数式(1)で表されるmin-max正規化、数式(2)で表されるz正規化、数式(3)で表されるレベル正規化が含まれる。min-max正規化は、部分列の値域を0~1に変換する。z正規化は、部分列の値域を平均0、標準偏差1とする変換である。レベル正規化は、部分列の平均を0とする変換である。

Figure 0007158624000001

Figure 0007158624000002

Figure 0007158624000003
但し、時系列データTを正規化した結果の時系列データをTと表記した。また、i=1,...,nであり、関数min、max、mean、stdは、それぞれTi,wの最小値、最大値、平均値、標準偏差である。
図4Bに示されているように、加工部62は、センサ値の時系列データに対して正規化を行わなかった場合には、センサ値の時系列データに基づいて、センサ値の時系列データを各動作状態A~Dへ分割する。図4Cに示されているように、加工部62は、センサ値の時系列データに対して正規化を行った場合には、正規化されたセンサ値の時系列データに基づいて、正規化されたセンサ値の時系列データを各動作状態A~Dへ分割する。分割された動作状態は3つ以下でも、5つ以上でもよい。図4Dに示されているように、加工部62は、分割された動作状態A~Dに基づいて状態遷移のパターンの算出を実施する。
(異常検知部64)
異常検知部64は、入力された対象装置情報D2と、加工部62で加工した動作中の対象装置のセンサ値の動作状態と、状態遷移推定部63で推定した状態遷移及び状態遷移確率とを用いて、動作中の対象装置のセンサ値の異常を判定する。実施の形態1において、異常検知部64は、状態遷移逸脱度算出部641、動作状態逸脱度算出部642、及び判定部643を備える。
(状態遷移逸脱度算出部641)
状態遷移逸脱度算出部641は、監視データ取得部61で取得した対象装置情報D2、状態遷移推定部63で推定した状態遷移及び状態遷移確率、分析結果D3、及び学習済みの推定モデルD4を対応させて、動作中の対象装置のセンサ値の状態遷移での正常からの逸脱度を算出する。実施の形態1において、状態遷移逸脱度算出部641は、対象装置情報D2に含まれるセンサ値の時系列データ、センサ項目、及び対象装置の使用環境データと、状態遷移推定部63で推定した状態遷移及び状態遷移確率と、分析結果D3に含まれるセンサ値の特徴量と、学習済みの推定モデルD4に含まれる状態遷移パターン及び複数のセンサ値のセンサ項目ごとの特徴量とを用いて、状態遷移での正常からの逸脱度を算出する。この逸脱度の指標としては、状態遷移推定部63で推定される(特定された直前の動作状態から)現在の動作状態への遷移確率と、学習済みの推定モデルD4に含まれる状態遷移パターンにおける遷移確率とを比較し、正常とは異なる状態遷移をしている遷移確率が高くなるに従って高くなるような指標を使用する。「推定される現在の動作状態への遷移確率」との表現は、直前の動作状態は確定しているが、現在の動作状態は未確定であるとの意味を含む。一般的に表現すると、第1の動作状態は確定しているが、第1の動作状態に時間的に後続する第2の動作状態は未確定であるということである。したがって、「推定される現在の動作状態への遷移確率」との表現は、「特定された現在の動作状態から、推定される次の動作状態への遷移確率」と表現してもよい。なお、状態遷移パターンは、学習済みの推定モデルD4に替えて、異常検知装置100のユーザが設定してもよい。
(動作状態逸脱度算出部642)
動作状態逸脱度算出部642は、監視データ取得部61で取得した対象装置情報D2と、加工部62で加工した動作中の対象装置のセンサ値の波形データ及び動作状態と、分析結果D3と、状態遷移推定部63で推定した状態遷移と、学習済みの推定モデルD4とを対応させて、動作中の対象装置のセンサ値の動作状態の正常からの逸脱度を算出する。実施の形態1において、動作状態逸脱度算出部642は、対象装置情報D2に含まれるセンサ値の時系列データ、センサ項目、及び対象装置の使用環境データと、分析結果D3に含まれるセンサ値の特徴量と、状態遷移推定部63で推定した状態遷移に対応する学習済みの推定モデルD4に含まれる各動作状態の正常範囲、状態遷移パターン、及び複数のセンサ値の項目ごとの特徴量とを用いて、動作状態の正常からの逸脱度を算出する。この逸脱度の指標としては、1)検知対象から逐次取得される波形データそのものと、この逐次取得される波形データを基にして状態遷移推定部63で推定した状態遷移に対応する学習済みの推定モデルD4に含まれる各動作状態の正常範囲とを比較し、又は2)検知対象から逐次取得される波形データを基にして加工部62が加工した動作中の対象装置のセンサ値の波形データと、検知対象から逐次取得される波形データを基にして加工部62が加工した動作状態に対応する学習済みの推定モデルD4に含まれる波形の正常範囲とを比較し、正常範囲からの乖離の度合いが高くなるに従って高くなるような指標を使用する。なお、各動作状態の正常範囲は、学習済みの推定モデルD4に替えて、異常検知装置100のユーザが設定してもよい。
(判定部643)
判定部643は、状態遷移逸脱度算出部641と動作状態逸脱度算出部642での算出結果を用いて、対象装置の異常の有無を判定する。実施の形態1において、判定部643は、状態遷移逸脱度算出部641と動作状態逸脱度算出部642での算出結果を用いて、対象装置の異常の有無を判定する。判定方法は、状態遷移逸脱度算出部641と動作状態逸脱度算出部642でのそれぞれの算出結果について、AND条件、OR条件等の論理演算を行って正常又は異常の2値で算出してもよいし、正常からの距離を計算する等して異常度として数値で算出してもよい。
図5A~図5C、図6A~図6C、及び図7A~図7Cは、判定部643による判定の具体例を示す図である。学習済みの推定モデルD4には、対象装置について起こりうる状態遷移として、図5Aの状態遷移図の関係が保持されているとする。図5Aの状態遷移図には、対象装置について起こりうる状態遷移のパターンとして、図5Bのパターン1と図5Cのパターン2が含まれている。パターン1は、動作状態が、動作状態A→動作状態B→動作状態C→動作状態D→動作状態Aと遷移するパターンである。パターン2は、動作状態が、動作状態A→動作状態C→動作状態D→動作状態Aと遷移するパターンである。
図6A~図6Cは、状態遷移での異常の例である異常検知例1を説明するための図である。図6Aの実線で表されている時系列データが取得されたとする。この時系列データの分析の結果、動作状態A→動作状態Cの状態遷移があったことが判明し、現在は動作状態Cに続いて時系列データが取得されている途中である。なお、本開示の実施形態による異常検知では、直前の動作状態が分かっていればよいので、動作状態Cであることが判明していれば足り、動作状態A→動作状態Cの状態遷移があったことが判明していることは必要でない。パターン1とパターン2のいずれにおいても、動作状態Cの後に取りうる動作状態は動作状態Dである。動作状態Dは、図6Aでは破線で示されている。しかしながら、現在取得されている途中の時系列データは、動作状態Aの波形を追従するような立ち上がりを見せている。動作状態Aであること自体は、対象装置の取りうる動作状態のうちの1つであるので、動作状態Aであること自体は異常ではない。しかしながら、動作状態Aは学習された状態遷移パターンでは動作状態Cの後に取りうる動作状態でないので、動作状態Cの後に動作状態Aが続くことは異常であると判定できる。より具体的には、動作状態Cの後に続く現在の時系列データが動作状態Dの波形から所定の乖離を確認できた時点で、異常であると判定できる。異常の判定は、図6Bのような各動作状態の状態確率を用いてもよいし、図6Cのような現在の時系列データの異常度を用いてもよい。異常検知例1では、対象装置の起こりうる状態遷移のパターンである、パターン1とパターン2いずれにも該当しない遷移である確率(例えば、動作状態Aへの遷移確率)が動作状態Dへの遷移確率より高くなったため、遷移として異常であると判定される。
図7A~図7Cは、ある動作状態での異常の例である異常検知例2を説明するための図である。図7Aの実線で表されている時系列データが取得されたとする。この時系列データの分析の結果、現在の時系列データの直前の動作状態が動作状態Aであることが判明し、現在は破線で表された動作状態Bの波形と破線で表された動作状態Cの波形の間のデータが取得されている途中である。学習済みの推定モデルD4には各動作状態について正常と判定される範囲が定義されているので、時系列データが、動作状態Bの波形について正常と判定される範囲又は動作状態Cの波形について正常と判定される範囲の何れかに属すれば、動作状態B又は動作状態Cとして正常であると判定できる。また、図7Aの現在の時系列データが、これらの何れの範囲内でもないと確認できた時点で、異常であると判定できる。異常の判定は、図7Bのような各動作状態の状態確率を用いてもよいし、図7Cのような現在の時系列データの異常度を用いてもよい。異常検知例2では、状態遷移としては、対象装置の起こりうる状態遷移のパターンであるパターン1とパターン2のどちらかであると判定されるが、センサ値の時系列データの波形が、パターン1とパターン2いずれの動作状態の正常範囲からも逸脱しているため、動作状態の異常であると判定される。
このように、異常検知部64は、状態遷移パターン及び各動作状態についての正常範囲を学習した推定モデルD4を参照して、加工部62により加工された動作状態、状態遷移推定部63により特定された動作状態、状態遷移推定部63により推定された状態遷移、及び抽出された時系列データの特徴量から、時系列データが異常かどうかを判定する。状態遷移推定部63により推定された状態遷移確率が用いられてもよい。異常検知部64は、状態遷移パターン(状態遷移パターン情報)及び各動作状態についての正常範囲(正常範囲情報)を参照して異常判定を行うので、異常判定を状態遷移の段階と各動作状態の段階の2段階で行うことができる。したがって、実施の形態1による異常検知装置100によれば、複数の動作状態からなるプロセスの流れを考慮して異常検知を行うことができる。
また、このような2段階の各々における判断結果を統合することにより、現在の動作状態から遷移する次の動作状態が未確定の場合であっても、対象装置の異常を検知することができる。すなわち、学習された状態遷移パターンを参照して現在の動作状態から遷移する次の動作状態が推定されるとともに、学習された正常範囲を参照してその推定された次の動作状態の正常な範囲も推定されるので、時系列データがその推定された次の動作状態の正常な範囲から逸脱した時点で、時系列データは異常であると判定できる。
また、動作状態及び状態遷移の確率を算出することにより異常度を定量的又は視覚的に提示することが可能となるので、異常検知装置100のユーザの意思決定をより適切に支援することが可能となる。
学習済みの推定モデルD4に替えて、異常検知装置100のユーザが定義した状態遷移パターン及び各動作状態についての正常範囲を用いた場合であっても、これらの利点は同様に得られる。
次に、図3A及び図3Bを参照して、異常検知装置100のハードウェア構成について説明する。一例として、図3Aに示されているように、異常検知装置100は、例えば、受信インターフェース101と、入出力インターフェース102と、処理回路103とにより実現される。受信インターフェース101が受信部1を実現し、入出力インターフェース102がインターフェース部5を実現し、処理回路103が時系列データ分析部2、データ記録制御部3、記憶部4、及び時系列データ照合部6を実現する。このようなハードウェア構成により異常検知装置100が実現される場合、後述する図8のフローチャートのステップS1~S9、及び図10のフローチャートのステップS21~S23は、処理回路103が実行する。処理回路103は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組合せである。時系列データ分析部2、データ記録制御部3、記憶部4、及び時系列データ照合部6の機能を別個の処理回路で実現してもよく、これらの機能をまとめて1つの処理回路で実現してもよい。
別の例として、図3Bに示されているように、異常検知装置100は、例えば、受信インターフェース101と、入出力インターフェース102と、プロセッサ104と、メモリ105とにより実現される。受信インターフェース101が受信部1を実現し、入出力インターフェース102がインターフェース部5を実現する。また、メモリ105に格納されたプログラムがプロセッサ104に読み出されて実行されることにより、時系列データ分析部2、データ記録制御部3、及び時系列データ照合部6が実現される。記憶部4はメモリ105により実現される。このようなハードウェア構成により異常検知装置100が実現される場合、後述する図8のフローチャートのステップS1~S9、及び図10のフローチャートのステップS21~S23はプロセッサ104が実行する。プログラムは、ソフトウェア、ファームウェア又はソフトウェアとファームウェアとの組合せとして実現される。メモリ105の例には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically-EPROM)などの不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDが含まれる。
時系列データ分析部2、データ記録制御部3、記憶部4、及び時系列データ照合部6の機能について、一部を処理回路で実現し、一部をソフトウェア又はファームウェアと協働したプロセッサで実現してもよい。例えば、データ記録制御部3を処理回路で実現し、時系列データ分析部2及び時系列データ照合部6をプロセッサ104がメモリ105に記憶されたプログラムを読み出して実行することによって実現し、記憶部4をメモリ105が実現する。このように、時系列データ分析部2、データ記録制御部3、記憶部4、及び時系列データ照合部6の機能は、処理回路、ソフトウェア若しくはファームウェアと協働するプロセッサ、又はこれらの組み合わせにより実現される。
2.動作
次に、異常検知装置100及び異常検知システム1000の動作について、図8を参照しながら説明する。図8は、実施の形態1における異常検知装置100の異常検知処理を示すフローチャートである。
(ステップS1)
ステップS1で、異常検知装置100のユーザにより外部装置200を介して監視条件D5が設定される。異常検知装置100は、インターフェース部5を介して設定された監視条件D5を外部装置200から取得し、取得した監視条件D5を時系列データ照合部6に引き渡す。時系列データ照合部6の監視データ取得部61は、受け取った監視条件D5に基づいて異常検出を行う対象装置を決定する。この決定に基づいて、異常検知装置100は異常検出を行う対象装置ODnから時系列データを取得し、特徴量抽出部22は対象装置ODnの時系列データからセンサ値の特徴量を抽出して分析結果D3を記録制御部に出力し、データ記録制御部3は分析結果D3を記憶部に出力する。
(ステップS2)
ステップS2で、監視データ取得部61は、特徴量抽出部22で算出された記憶部4内の分析結果D3と、記憶部4内の学習済みの推定モデルD4とを用いて、監視条件D5に従った特徴量を取得する。
(ステップS3)
ステップS3で、状態遷移推定部63は、ステップS2で監視データ取得部61が取得した特徴量をもとに、監視条件D5に基づく分析結果D3について遷移確率を算出する。
(ステップS4)
ステップS4で、状態遷移推定部63は、ステップS2で監視データ取得部61が取得した特徴量をもとに、監視条件D5に基づく分析結果D3について波形の類似度を算出する。
(ステップS5)
ステップS5で、異常検知部64は、ステップS3で算出した遷移確率をもとに、監視条件D5に基づく分析結果D3について遷移の異常度を算出する。
(ステップS6)
ステップS6で、異常検知部64は、ステップS4で算出した波形の類似度をもとに、監視条件D5に基づく分析結果D3について波形の異常度を算出する。
(ステップS7)
ステップS7で、異常検知部64は、ステップS5及びステップS6で算出した遷移の異常度と波形の異常度とを統合する。
(ステップS8)
ステップS8で、異常検知部64は、ステップS7で統合した異常度をもとに、分析結果D3について異常の有無を判定する。
(ステップS9)
ステップS9で、異常検知部64はステップS8で判定した判定結果を出力し、判定結果はインターフェース部5を介して外部装置200に表示される。
<学習フェーズ>
図6は異常検知装置100が用いる推定モデルを学習するための学習装置300の構成図である。学習装置300は、学習用データ取得部301及びモデル生成部302を備える。
(学習用データ取得部301)
学習用データ取得部301は、対象装置の電圧や電流などのセンサ項目ごとのセンサ値の時系列データと、センサ項目ごとの特徴量とが関連付けられた学習用データD11を取得する。時系列データは、センサの検出値それ自体でもよいし、検出値の統計値(例えば、平均、最大、最小)でもよいし、複数のセンサの検出値の演算値(例えば、電力)でもよい。
(モデル生成部302)
モデル生成部302は、学習用データ取得部301により取得された学習用データD11に基づいて、対象装置が取り得る複数の動作状態間の遷移の仕方又は順序を表した状態遷移パターンと、各動作状態における時系列データの正常範囲とを学習する。
この学習を行うため、モデル生成部302は、時系列データを分析して、時系列データ(以下、「波形」ということがある。)を、複数の動作状態に対応した複数の波形(以下、「部分波形」ということがある。)に分割する。ここで、動作状態とは、対象装置の動作を大局的に分類した際における、対象装置が取り得る動作の状態を意味する。一例として、アクチュエータの動作状態であれば、例えば、アクチュエータを駆動する電流の立ち上がり、ピーク継続、及び立ち下がりなどの状態である。時系列データの分析には、例えば、データの波形の変異点を示すイベントデータを取得することにより行う。変異点の検出には、例えば、Ramer-Douglas-Peucker(RDP)アルゴリズムを用いることができる。また、自己相関や動的時間伸縮法(Dynamic Time Warping:DTW)等の手法、主成分分析や判別分析等の多変量解析、あるいはサポートベクターマシン(SVM)等の推定手法を使用してもよい。
状態遷移のパターンの学習には、動作状態の変異点を示すイベントデータを取得してもよいし、因果推論、多変量解析、CNN等の機械学習による分類手法等を使用してもよい。また、動作状態の出現順序を可視化して異常検知装置100のユーザに提示し、ユーザが状態遷移パターンを定義してもよい。
一例として、状態遷移のパターンを学習するため、モデル生成部302は、分割された部分波形に対して、先ずは動作状態を識別するための動作状態ID(例えば、A、B、C、D等)を割り当てる。製品製造データでは、同一又は類似の製品を連続して製造するため、同一動作での部分波形の形状は類似すると考えられる。そこで、動作状態IDの割当てはクラスタリング問題として捉えることができる。製造機械の動作の順序が一定でなく複数の状態遷移パターンに従った動作をする場合も考えられるので、動作状態ごとに、すなわち部分波形の形状ごとにクラスタリングしてもよい。具体的には、教師無し学習の一手法であるk-means法を利用することができる。この手法を用いることにより、部分波形を類似形状ごとにクラスタリングし、類似形状ごとに動作状態IDを附番することができる。
このようにして動作状態IDが附番されることにより、複数の動作状態間の状態遷移パターン、及びある動作状態から他の動作状態への状態遷移の確率も自動で学習することが可能になる。
動作状態IDだけでなく状態遷移も併せて学習することによって、ある部分波形がある動作状態を表す部分波形としては正常である場合であっても、動作状態の遷移の仕方として異常であること、即ちその動作状態を取っているということ自体が異常であることを検知することが可能になる。
動作状態ごとの正常範囲の学習には、回帰や、ベイズ推定や統計手法による信頼区間、状態空間モデル、3σ法やCNN等の機械学習による手法を使用してもよい。一例として、分割して得られた各動作状態の部分波形について、各時刻でのデータ分布を求め、発生確率がα%(例えば、α=1%)以上になる部分が正常範囲であると学習する。学習の結果、全ての動作状態について正常範囲は発生確率がα=1%以上になる部分であると学習されてもよいし、ある動作状態については正常範囲は発生確率がα=1%以上になる部分であって、別の動作状態については正常範囲は発生確率がα=2%以上になる部分であると学習されてもよい。データの分布の様子は動作状態ごとに異なるので、各動作状態について統計量として同一の正常範囲が定義されたとしても、物理量としては動作状態ごとに別々の範囲が設定されることになる。このように、動作状態ごとに正常範囲を学習することにより、動作状態ごとの動作の特徴に応じた正常範囲を設定することが可能になり、高精度の異常検知が可能になる。
例えば、ある動作状態1については正常範囲がR1であって、別の動作状態2については正常範囲がR2であって、R1の方がR2よりも狭い場合を想定する。
もし、両動作状態について正常範囲が一律にR1と定義されると、動作状態1については適切に異常判定ができるが、動作状態2については適切に異常判定ができない。動作状態2については、正常と判定される範囲が本来のR2よりも狭く設定されているからである(動作状態2について正常範囲過少)。そのため、動作状態2については、正常の動作をしているにもかかわらず、異常と判定される場合が生じる。
逆に、両動作状態について正常範囲が一律にR2と定義されると、動作状態2については適切に異常判定ができるが、動作状態1については適切に異常判定ができない。動作状態1については、正常と判定される範囲が本来のR1の場合よりも広く設定されているからである(動作状態1について正常範囲過大)。そのため、動作状態1については、異常の動作をしているにもかかわらず、正常と判定される場合が生じる。
このように、複数の動作状態について正常範囲を一律に設定しようとする場合、ある動作状態についての正常範囲と別の動作状態についての正常範囲との間でトレードオフが生じ、複数の動作状態の全てについて正常範囲を設定することが困難である。
本開示の実施の形態1のように、複数の動作状態の各々について正常範囲を個別に学習することにより、そのようなトレードオフを解決して、複数の動作状態の全てについて正常範囲を適切に設定することが可能となる。
なお、学習装置300は、異常検知装置100が用いる学習モデルを学習するために使用されるが、例えば、ネットワークを介して異常検知装置100に接続され、この異常検知装置100とは別個の装置であってもよい。あるいは、学習装置300は、異常検知装置100に内蔵されていてもよい。
モデル生成部302は、以上のような学習を実行することにより、状態遷移パターン(状態遷移パターン情報)及び動作状態ごとの正常範囲(正常範囲情報)の学習結果である学習済みの推定モデルD12を生成し、異常検知装置100の記憶部4に出力する。
(記憶部4)
記憶部4は、モデル生成部302から出力された学習済みの推定モデルD12を記憶する。
次に、図10を用いて、学習装置300の学習処理について説明する。図10は学習装置300の学習処理を示すフローチャートである。
(ステップS21)
ステップS21において、学習用データ取得部301は、対象装置のセンサ項目ごとのセンサ値の時系列データと、センサ項目ごとの特徴量とが関連付けられた学習用データD11を取得する。
(ステップS22)
ステップS22において、モデル生成部302は、学習用データ取得部301により取得された学習用データD11に基づいて、対象装置のセンサ項目ごとのセンサ値の時系列データを分析し、時系列データを複数の動作状態へ分割し、分割された動作状態間の状態遷移パターンと、各動作状態における時系列データの正常範囲とを学習して推定モデルを生成する。
(ステップS23)
ステップS23において、記憶部4は、モデル生成部302が生成した学習済みの推定モデルD12を記憶する。
<変形例>
状態遷移推定及び異常検知において、時系列データ照合部6が照合する時系列データは、リアルタイムに取得されているデータでもよいし、過去に取得済みのデータであってもよい。また、取得したセンサ値の時系列データのすべてに対して異常検知を行ってもよい。
<付記>
以下、実施形態の一部の側面について整理する。
(付記1)
異常検知装置(100)は、対象装置の時系列データを受け付けて、前記時系列データの特徴量を抽出する特徴量抽出部(22)と、前記抽出された特徴量から前記対象装置の動作状態を特定するとともに、複数の動作状態間の状態遷移パターンを規定した状態遷移パターン情報を参照して前記抽出された特徴量から前記対象装置の状態遷移を推定する状態遷移推定部(63)と、前記状態遷移パターン情報及び各動作状態についての正常範囲を規定した正常範囲情報を参照して、前記特定された動作状態、前記推定された状態遷移、及び前記抽出された時系列データの特徴量から、前記時系列データが異常かどうかを判定する異常検知部(64)とを備える。
(付記2)
付記2の異常検知装置は、付記1に記載された異常検知装置であって、前記状態遷移推定部は前記状態遷移の推定を状態遷移確率を算出することにより行う。
(付記3)
付記3の異常検知装置は、付記2に記載された異常検知装置であって、前記異常検知部は、前記状態遷移パターン情報を参照して、前記特定された動作状態から遷移する動作状態を取得し、前記推定された状態遷移の状態遷移確率が前記取得された動作状態へ遷移する確率よりも高くなった場合に、前記推定された状態遷移が異常であると判定する。
(付記4)
付記4の異常検知装置は、付記1から3の何れか1つに記載された異常検知装置であって、前記異常検知部は、前記正常範囲情報を参照して、前記特定された動作状態における正常範囲を取得し、前記時系列データの前記特定された動作状態に対応する波形が前記正常範囲から逸脱した場合に、前記時系列データが波形データとして異常であると判定する。
(付記5)
付記5の異常検知装置は、付記1から4の何れか1つに記載された異常検知装置であって、前記異常検知部は、前記推定された状態遷移の正常な状態遷移からの状態遷移逸脱度を算出する状態遷移逸脱度算出部(641)と、前記特定された動作状態における前記時系列データの波形の正常範囲からの動作状態逸脱度を算出する動作状態逸脱度算出部(642)と、前記状態遷移逸脱度及び前記動作状態逸脱度に基づき、前記対象装置が異常か否かを判定する判定部と、を備える。
(付記6)
付記6の異常検知装置は、付記1から5の何れか1つに記載された異常検知装置であって、前記状態遷移パターン情報及び前記正常範囲情報は機械学習による学習済みの推定モデルとして得られた情報である。
(付記7)
付記7の異常検知装置は、付記6に記載された異常検知装置であって、前記推定モデルを学習する学習装置(300)を更に備え、前記学習装置は、時系列データの特徴量から、状態遷移パターン及び動作状態ごとの正常範囲を算出するモデル生成部(302)を備える。
なお、実施形態の組合せや変形を行ってもよく、任意の構成部を省略してもよい。
本開示の異常検知装置は、時系列データの異常を検知することができるので、例えば、工場やプラントでの生産システムの予防保全のための装置、鉄道や駅などの社会インフラで利用されるシステムや装置の予防保全のための装置、株価等の経済指標の監視装置として用いることができる。
1 受信部、2 時系列データ分析部、3 データ記録制御部、4 記憶部、5 インターフェース部、6 時系列データ照合部、21 センサ項目検出部、22 特徴量抽出部、23 センサ項目分類部、61 監視データ取得部、62 加工部、63 状態遷移推定部、64 異常検知部、100 異常検知装置、101 受信インターフェース、102 入出力インターフェース、103 処理回路、104 プロセッサ、105 メモリ、200 外部装置、300 学習装置、301 学習用データ取得部、302 モデル生成部、641 状態遷移逸脱度算出部、642 動作状態逸脱度算出部、643 判定部、1000 異常検知システム

Claims (7)

  1. 対象装置の時系列データを受け付けて、前記時系列データの特徴量を抽出する特徴量抽出部と、
    複数の動作状態の正常範囲を規定した正常範囲情報を参照して前記抽出された特徴量から前記対象装置の動作状態を特定するとともに、複数の動作状態間の状態遷移パターンを規定した状態遷移パターン情報を参照して前記抽出された特徴量から前記対象装置の状態遷移を推定する状態遷移推定部と、
    前記推定された状態遷移が、前記抽出された時系列データの特徴量に基づく前記特定された動作状態から前記状態遷移パターン情報を参照して得られる遷移しうる動作状態への遷移から逸脱するか否か、または前記時系列データが、前記遷移しうる動作状態について前記正常範囲情報を参照して得られる前記遷移しうる動作状態についての正常範囲から逸脱するか否かを判定することにより、前記時系列データが異常かどうかを判定する異常検知部と、
    を備えた異常検知装置。
  2. 前記状態遷移推定部は前記状態遷移の推定を状態遷移確率を算出することにより行う、請求項1に記載の異常検知装置。
  3. 前記異常検知部は、
    前記状態遷移パターン情報を参照して、前記特定された動作状態から遷移する動作状態を取得し、
    前記推定された状態遷移の状態遷移確率が前記取得された動作状態へ遷移する確率よりも高くなった場合に、前記推定された状態遷移が異常であると判定する、
    請求項2に記載の異常検知装置。
  4. 前記異常検知部は、
    前記正常範囲情報を参照して、前記特定された動作状態における正常範囲を取得し、
    前記時系列データの前記特定された動作状態に対応する波形が前記正常範囲から逸脱した場合に、前記時系列データが波形データとして異常であると判定する、
    請求項3に記載の異常検知装置。
  5. 前記異常検知部は、
    前記推定された状態遷移の正常な状態遷移からの状態遷移逸脱度を算出する状態遷移逸脱度算出部と、
    前記特定された動作状態における前記時系列データの波形の正常範囲からの動作状態逸脱度を算出する動作状態逸脱度算出部と、
    前記状態遷移逸脱度及び前記動作状態逸脱度に基づき、前記対象装置が異常か否かを判定する判定部と、
    を備えた、請求項1に記載の異常検知装置。
  6. 前記状態遷移パターン情報及び前記正常範囲情報は機械学習による学習済みの推定モデルとして得られた情報である、請求項1から5の何れか1項に記載の異常検知装置。
  7. 前記推定モデルを学習する学習装置を更に備え、
    前記学習装置は、時系列データの特徴量から、状態遷移パターン及び動作状態ごとの正常範囲を算出するモデル生成部を備える、請求項6に記載の異常検知装置。
JP2022510985A 2020-09-11 2020-09-11 異常検知装置 Active JP7158624B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/034581 WO2022054256A1 (ja) 2020-09-11 2020-09-11 異常検知装置

Publications (2)

Publication Number Publication Date
JPWO2022054256A1 JPWO2022054256A1 (ja) 2022-03-17
JP7158624B2 true JP7158624B2 (ja) 2022-10-21

Family

ID=80631449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022510985A Active JP7158624B2 (ja) 2020-09-11 2020-09-11 異常検知装置

Country Status (3)

Country Link
JP (1) JP7158624B2 (ja)
TW (1) TW202210977A (ja)
WO (1) WO2022054256A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023218550A1 (ja) * 2022-05-11 2023-11-16
WO2024047694A1 (ja) * 2022-08-29 2024-03-07 三菱電機株式会社 運転支援装置、運転支援システム、および運転支援方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030984A1 (ja) 2011-08-31 2013-03-07 株式会社日立エンジニアリング・アンド・サービス 設備状態監視方法およびその装置
WO2015145865A1 (ja) 2014-03-24 2015-10-01 日本電気株式会社 監視装置、監視システム、監視方法及びプログラム
JP2019522297A (ja) 2016-12-12 2019-08-08 三菱電機株式会社 時系列内の前兆部分列を発見する方法及びシステム
JP2019204155A (ja) 2018-05-21 2019-11-28 ファナック株式会社 異常検出器
WO2019244203A1 (ja) 2018-06-18 2019-12-26 三菱電機株式会社 診断装置、診断方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030984A1 (ja) 2011-08-31 2013-03-07 株式会社日立エンジニアリング・アンド・サービス 設備状態監視方法およびその装置
WO2015145865A1 (ja) 2014-03-24 2015-10-01 日本電気株式会社 監視装置、監視システム、監視方法及びプログラム
JP2019522297A (ja) 2016-12-12 2019-08-08 三菱電機株式会社 時系列内の前兆部分列を発見する方法及びシステム
JP2019204155A (ja) 2018-05-21 2019-11-28 ファナック株式会社 異常検出器
WO2019244203A1 (ja) 2018-06-18 2019-12-26 三菱電機株式会社 診断装置、診断方法及びプログラム

Also Published As

Publication number Publication date
WO2022054256A1 (ja) 2022-03-17
TW202210977A (zh) 2022-03-16
JPWO2022054256A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
US20180239345A1 (en) Abnormality predictor diagnosis system and abnormality predictor diagnosis method
EP2905665B1 (en) Information processing apparatus, diagnosis method, and program
JP5538597B2 (ja) 異常検知方法及び異常検知システム
US20180231969A1 (en) Abnormality predictor diagnosis system and abnormality predictor diagnosis method
WO2012032812A1 (ja) 異常検知方法及びそのシステム
US20070239629A1 (en) Cluster Trending Method for Abnormal Events Detection
US11580629B2 (en) System and method for determining situation of facility by imaging sensing data of facility
JP2004531815A (ja) 予測的状態監視のための診断システムおよび方法
JP7158624B2 (ja) 異常検知装置
JP2010191556A (ja) 異常検知方法及び異常検知システム
JP2015181072A (ja) 設備状態監視方法およびその装置
US20230385699A1 (en) Data boundary deriving system and method
US20190265088A1 (en) System analysis method, system analysis apparatus, and program
JP7012888B2 (ja) 異常要因推定装置、異常要因推定方法、及びプログラム
US11378944B2 (en) System analysis method, system analysis apparatus, and program
WO2020230422A1 (ja) 異常診断装置及び方法
JP6898607B2 (ja) 異常予兆検出システムおよび異常予兆検出方法
JP6896380B2 (ja) 故障予兆判定方法、故障予兆判定装置および故障予兆判定プログラム
EP4033219B1 (en) Anomaly determination device and anomaly determination method
US20230102000A1 (en) Time-series pattern explanatory information generating apparatus
US11954131B2 (en) Time-series data processing method
Manca et al. Identification of industrial alarm floods using time series classification and novelty detection
Manca et al. Convolutional kernel-based transformation and clustering of similar industrial alarm floods
Maleki et al. A one-class clustering technique for novelty detection and isolation in sensor networks
WO2023209774A1 (ja) 異常診断方法、異常診断装置、および、異常診断プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7158624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150