JP7158145B2 - welding equipment - Google Patents

welding equipment Download PDF

Info

Publication number
JP7158145B2
JP7158145B2 JP2017254211A JP2017254211A JP7158145B2 JP 7158145 B2 JP7158145 B2 JP 7158145B2 JP 2017254211 A JP2017254211 A JP 2017254211A JP 2017254211 A JP2017254211 A JP 2017254211A JP 7158145 B2 JP7158145 B2 JP 7158145B2
Authority
JP
Japan
Prior art keywords
welded
welding
current
electrode
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017254211A
Other languages
Japanese (ja)
Other versions
JP2019118923A (en
Inventor
圭一郎 木許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2017254211A priority Critical patent/JP7158145B2/en
Publication of JP2019118923A publication Critical patent/JP2019118923A/en
Application granted granted Critical
Publication of JP7158145B2 publication Critical patent/JP7158145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、被溶接材を溶接する溶接装置に関する。 The present invention relates to a welding device for welding materials to be welded.

複数枚の板材等の被溶接材を重ねた溶接対象を接合する場合、スポット溶接により接合される場合がある。スポット溶接は、抵抗発熱を利用して金属の接合を行う抵抗溶接法の一種である。スポット溶接の内のインダイレクト溶接では、被溶接材を重ね合わせた状態で、電極により溶接対象を加圧し、さらに電極から溶接対象を介してアースに電流を流し、溶接部を抵抗発熱によって加熱して局部的に溶接対象を溶融させて、溶接対象を冶金的に接合する。スポット溶接において、溶融凝固した部分は、「ナゲット」と称され、ナゲットにおいて溶接対象が接合される。 When joining objects to be welded in which a plurality of plate materials or other materials to be welded are piled up, they may be joined by spot welding. Spot welding is a type of resistance welding method that uses resistance heating to join metals. In indirect welding, which is a type of spot welding, the welding target is pressed with an electrode while the materials to be welded are placed on top of each other, and current is passed from the electrode to the ground through the welding target to heat the welded part by resistance heat generation. to locally melt the object to be welded, thereby metallurgically joining the object to be welded. In spot welding, the melted and solidified portion is called a "nugget", and the object to be welded is joined at the nugget.

インダイレクト溶接に用いられる溶接装置は、電極と、溶接対象に接続されるアースと、電極に電流を印加するトランスと、電極を移動させるロボットとを備える。電極は、溶接対象の表面に接するように配置され、溶接対象を加圧可能な構成である。また、電極は、圧接される溶接対象に任意の電流を印加することが可能な構成である。アースは、電極が配置される溶接対象の表面に対する裏面に接続される。溶接対象の表裏面それぞれに電極またはアースが接続され、電極に電流を印加することにより、電極からアースに向けて溶接対象を介して電流が流れる。そして、溶接対象に電流を流すことにより、溶接部を加熱・溶融させて、溶接対象を接合する。 A welding apparatus used for indirect welding includes an electrode, a ground connected to an object to be welded, a transformer for applying current to the electrode, and a robot for moving the electrode. The electrode is arranged so as to be in contact with the surface of the object to be welded, and is configured to pressurize the object to be welded. Moreover, the electrode is configured to be able to apply an arbitrary current to the object to be welded under pressure. A ground is connected to the back side to the surface of the object to be welded on which the electrode is placed. An electrode or ground is connected to each of the front and back surfaces of the object to be welded, and by applying a current to the electrode, the current flows from the electrode to the ground through the object to be welded. Then, by applying an electric current to the objects to be welded, the welded portion is heated and melted to join the objects to be welded.

このように、従来のインダイレクト溶接は、重ね合わせた複数の被溶接材からなる溶接対象に、電極とアースを接続し、溶接対象に所定の通電時間で所定の電流値の電流を流すことにより、被溶接材間を溶融接合するものである。 In this way, in conventional indirect welding, an electrode and a ground are connected to an object to be welded, which is made up of a plurality of superimposed materials to be welded. , to fuse and join the materials to be welded.

特開2013-158776号公報JP 2013-158776 A

しかしながら、従来のインダイレクト溶接では、接合される被溶接材間における隙間の有無や、被溶接材間の接触面積が異なると、溶接時に流れる電流の電流密度が異なる。接触面積や電流密度が異なることにより、被溶接材間の溶接品質が安定しない場合があった。そして、溶接品質が安定しないことにより、過剰な強度で接合された場合は溶接が行われた製品等に強度ばらつきが生じたり製品の外観不良が生じたり、接合強度が不足した場合は接合不良が生じる場合があった。 However, in the conventional indirect welding, the current density of the current flowing during welding varies depending on the presence or absence of a gap between the welded materials to be joined and the contact area between the welded materials. Due to differences in contact areas and current densities, the quality of welding between materials to be welded may not be stable. In addition, due to unstable welding quality, if the welding is performed with excessive strength, the strength of the welded product may vary and the appearance of the product may be defective. sometimes occurred.

例えば、被溶接材に反りがある場合や被溶接材の接合面の平坦性が低い場合、溶接部において被溶接材間に隙間が生じる。また、溶接対象に対して複数箇所に溶接を行う場合、先の溶接の影響で被溶接材間に隙間が生じる場合がある。溶接対象の1カ所にインダイレクト溶接を行う場合、電極が溶接対象を加圧しながら溶接を行うため、電極が圧接される被溶接材の周囲が反る場合がある。そのため、先の溶接箇所の周囲において、被溶接材間に隙間が生じる。 For example, when the materials to be welded are warped or the joint surfaces of the materials to be welded have low flatness, a gap is generated between the materials to be welded at the welded portion. Moreover, when welding is performed at a plurality of locations on the object to be welded, gaps may occur between the materials to be welded due to the influence of previous welding. When indirect welding is performed on one part of the object to be welded, welding is performed while the electrode presses the object to be welded, so that the periphery of the material to be welded to which the electrode is pressed may warp. Therefore, a gap is generated between the materials to be welded around the previously welded portion.

以上のように、被溶接材間の隙間の有無により、被溶接材間の接触面積が一定とならず、溶接品質が安定しない場合がある。 As described above, depending on the presence or absence of gaps between the materials to be welded, the contact area between the materials to be welded may not be constant, and the welding quality may not be stable.

本発明の溶接装置は、上記問題点を解決するために、溶接品質を安定させることを目的とする。 An object of the welding apparatus of the present invention is to stabilize welding quality in order to solve the above problems.

ここで、本発明者らが鋭意検討したところ、溶接対象を電流が流れる通電経路の抵抗値に着目することにより、被溶接材間の接触面積の大きさ等、被溶接材間の接触状況を推測し、溶接の品質向上に貢献できることを見いだした。しかしながら、さらに鋭意検討を重ねたところ、稀なケースではあるかも知れないが、溶接予定箇所以外の場所において溶接対象である被溶接材同士が接触しているケース等においては、接合箇所における接触面積が予定された面積に達していないにもかかわらず、抵抗値のみが所定の値以下になる現象が起こりうるのではないかとの知見に至った。そのため、溶接を開始するための開始条件として、前述した抵抗値に関する条件に加え、溶接予定箇所以外の場所において被溶接材同士が接触することによる抵抗値の低下現象を考慮に入れた溶接開始条件も検討すれば、接合箇所における接触面積が予定された面積に達しているか否かをより一層正確に推測して溶接を行えるようになり、ひいては溶接品質のさらなる向上に貢献できるのではないかとの考察を得た。 Here, the inventors of the present invention conducted extensive studies and found that by focusing on the resistance value of the energization path through which the current flows through the object to be welded, the contact state between the objects to be welded, such as the size of the contact area between the objects to be welded, can be determined. Inferred, it was found that it can contribute to the improvement of welding quality. However, as a result of further intensive studies, although it may be a rare case, in cases such as the case where the welding target materials to be welded are in contact with each other at a place other than the planned welding place, the contact area at the joint has not reached the planned area, only the resistance value may be reduced to a predetermined value or less. Therefore, as the start conditions for starting welding, in addition to the conditions related to the resistance value described above, the welding start conditions that take into consideration the phenomenon of the decrease in resistance value due to the contact between the welded materials at places other than the intended welding location. If we also consider this, it will be possible to more accurately estimate whether or not the contact area at the joint has reached the planned area before welding, which in turn contributes to the further improvement of welding quality. Got an insight.

かかる考察のもと、さらに検討を行ったところ、溶接の開始条件として、上述した溶接対象を電流が流れる通電経路の抵抗値に関する条件に加え、溶接に備えて溶接対象を加圧している間における電極の変位量に基づく開始条件を加えるのが良いのではないかとの知見に至った。具体的には、溶接予定箇所において被溶接材同士が十分な接触面積で接触した状態になった場合には、溶接に備えて溶接対象を加圧している間に電極が所定量以上変位するのに対し、溶接予定箇所以外の場所において溶接対象である被溶接材同士が接触しているケースでは前述したような電極の変位量の変化が起こりにくいとの知見を得た。そのため、溶接対象を電流が流れる通電経路の抵抗値に関する開始条件と、電極の変位量に関する開始条件の少なくとも双方を満足することを溶接の開始条件とすれば、より一層確実に接合箇所における接触面積が予定された面積に達した状態で溶接を開始できるようになり、良好な溶接品質が得られる溶接装置を提供できると考えられる。 Based on these considerations, further investigations were carried out. As a result of further investigation, in addition to the conditions regarding the resistance value of the current flow path through which the current flows through the object to be welded, the conditions for starting welding were as follows: We have come to the conclusion that it is better to add a starting condition based on the amount of electrode displacement. Specifically, when the materials to be welded come into contact with each other with a sufficient contact area at the planned welding location, the electrode is displaced by a predetermined amount or more while the welding target is being pressurized in preparation for welding. On the other hand, it has been found that in the case where the welded materials to be welded are in contact with each other at a location other than the intended welding location, the displacement of the electrode is less likely to change as described above. Therefore, if the starting condition for welding is to satisfy at least both the starting condition for the resistance value of the current-carrying path through which the current flows through the object to be welded and the starting condition for the amount of displacement of the electrode, the contact area at the joint can be more reliably achieved. It is considered possible to provide a welding apparatus capable of starting welding in a state in which a predetermined area has been reached, thereby obtaining good welding quality.

かかる知見に基づいて提供される本発明の溶接装置は、溶接対象を加圧すると共に前記溶接対象に電流を印加する電極と、前記電極を駆動させる駆動装置と、前記電極に電流を印加する電源供給装置と、前記溶接対象における通電経路の抵抗値を測定する抵抗測定器と、前記電極が前記溶接対象を加圧する際に前記電極が前記溶接対象の板厚方向に移動した変位量を測定する変位量測定器と、前記駆動装置および前記電源供給装置の動作を制御する制御装置とを有し、前記制御装置は、前記抵抗値が一定の値以下になり、かつ前記変位量が一定の値以上になった後に、溶接を行うように前記電源供給装置の動作を制御することを特徴とする。 A welding apparatus of the present invention provided based on such knowledge includes an electrode that pressurizes an object to be welded and applies current to the object to be welded, a driving device that drives the electrode, and a power supply that applies the current to the electrode. A device, a resistance measuring device for measuring the resistance value of the energized path in the object to be welded, and a displacement for measuring the amount of displacement that the electrode moves in the plate thickness direction of the object to be welded when the electrode presses the object to be welded. and a control device for controlling the operation of the drive device and the power supply device, wherein the control device controls the resistance value to be below a certain value and the displacement amount to be above a certain value. It is characterized by controlling the operation of the power supply device so as to perform welding after the welding is completed.

かかる構成によれば、確実に接合箇所における接触面積が予定された面積に達した状態で溶接を開始でき、良好な溶接品質が得られる溶接装置を提供できる。 According to such a configuration, it is possible to provide a welding apparatus that can start welding in a state where the contact area at the joint reaches a predetermined area without fail, and obtain good welding quality.

また、本発明の溶接装置は、前記制御装置が、前記溶接時の電流の印加時間を制御することが好ましい。 Further, in the welding device of the present invention, it is preferable that the control device controls the application time of the current during the welding.

このように、電極が一定以上の変位量移動し、通電経路の抵抗値が所定の値以下になったことにより、電極から印加する電流の量や電流を印加する時間を最適に調整するように制御装置が電源供給装置を制御する。これにより、被溶接材の接触面積に応じて最適な電流の電流密度で最適な時間電流の印加を行うことができ、溶接品質を安定させることができる。 In this way, when the electrode moves by a certain amount or more and the resistance value of the energization path becomes equal to or less than a predetermined value, the amount of current applied from the electrode and the time for applying the current are optimally adjusted. A controller controls the power supply. As a result, it is possible to apply the current at the optimum current density for the optimum time according to the contact area of the material to be welded, and to stabilize the welding quality.

また、本発明の溶接装置は、第1の電流値の電流を前記電極から印加した状態で前記抵抗値を測定し、前記電極の変位量が一定の値以上となり、かつ、前記通電経路の抵抗値が一定値以下になった後、前記第1の電流値と異なる第2の電流値の電流を所定の時間印加するように、前記制御装置が、前記電源供給装置を制御しても良い。 Further, the welding apparatus of the present invention measures the resistance value while a current of a first current value is applied from the electrode, and the displacement amount of the electrode is equal to or greater than a certain value, and the resistance of the energization path is The control device may control the power supply device so as to apply a current having a second current value different from the first current value for a predetermined time after the value becomes equal to or less than a predetermined value.

かかる構成によれば、被溶接材間の接触面積が所定の面積になってから、本格的な溶接作業を行うことができる。その結果、適切な電流の印加条件で溶接を行うことができるため、溶接品質を安定させることができる。 According to this configuration, full-scale welding work can be performed after the contact area between the materials to be welded reaches a predetermined area. As a result, welding can be performed under appropriate current application conditions, so that welding quality can be stabilized.

また、本発明の溶接装置は、所定の電流値の電流を前記電極から印加し、前記変位量が一定の値となった際に前記抵抗値を測定し、前記測定値に応じた印加条件で電流を印加するように、前記制御装置が、前記電源供給装置を制御しても良い。 Further, the welding apparatus of the present invention applies a current of a predetermined current value from the electrode, measures the resistance value when the displacement amount becomes a constant value, and applies the current under the application condition according to the measured value. The controller may control the power supply to apply current.

このように、まず、所定の電流値の電流を印加し、変位量が所定の値となった際の抵抗値を測定する。その後、測定された抵抗値に応じた印加条件で電流の印加を行う。これにより、被溶接材間の接触面積が溶接に適した面積に近い状態で、被溶接材間の接触面積に応じた最適な電流の印加条件で溶接作業を行うことができる。その結果、適切な電流の印加条件で溶接を行うことができるため、溶接品質を安定させることができる。 Thus, first, a current of a predetermined current value is applied, and the resistance value is measured when the amount of displacement reaches a predetermined value. After that, a current is applied under an application condition corresponding to the measured resistance value. As a result, the welding operation can be performed under the optimum current application conditions according to the contact area between the welded materials while the contact area between the welded materials is close to the area suitable for welding. As a result, welding can be performed under appropriate current application conditions, so that welding quality can be stabilized.

以上のように、本発明によれば、被溶接材間の隙間の有無や被溶接材同士の接触状況に起因する溶接不良を最小限に抑制し、高品質で安定した溶接品質で溶接可能な溶接装置を提供できる。 As described above, according to the present invention, welding defects caused by the presence or absence of gaps between the materials to be welded and the state of contact between the materials to be welded can be minimized, and welding can be performed with high quality and stable welding quality. We can provide welding equipment.

本発明の溶接装置の概略構成を例示する図1 is a diagram illustrating a schematic configuration of a welding device of the present invention; FIG. 本発明の溶接装置における電極部分の構成と電極の変位について説明する図FIG. 4 is a diagram for explaining the configuration of the electrode portion and the displacement of the electrode in the welding device of the present invention; 溶接対象の構成を例示する断面図Sectional view illustrating the configuration of the object to be welded 被溶接材間の隙間の有無と接触面積との関係を説明する図Diagram explaining the relationship between the presence or absence of gaps between welded materials and the contact area 複数回の溶接を行った際の通電経路と抵抗値の変化を示す模式図Schematic diagram showing current path and change in resistance value when welding is performed multiple times 複数回の溶接を行った際の通電経路と抵抗値の変化を詳細に示す模式図Schematic diagram showing in detail the energization path and changes in resistance when welding is performed multiple times 実施例1における溶接中の抵抗値の変化と電流の印加条件との関係を示す図4 is a diagram showing the relationship between changes in resistance during welding and current application conditions in Example 1. FIG. 実施例1における溶接方法の工程を示すフロー図FIG. 2 is a flowchart showing steps of the welding method in Example 1. FIG. 実施例2における溶接中の抵抗値の変化と電流の印加条件との関係を示す図FIG. 7 is a diagram showing the relationship between changes in resistance during welding and current application conditions in Example 2; 実施例2における溶接方法の工程を示すフロー図Flow chart showing the steps of the welding method in Example 2

まず、図1,図3を用いて本発明の溶接装置の構成例について説明する。 First, a configuration example of a welding apparatus according to the present invention will be described with reference to FIGS. 1 and 3. FIG.

図1は本発明の溶接装置の概略構成を例示する図、図3は本発明の溶接装置における電極部分の構成と電極の変位について説明する図である。 FIG. 1 is a diagram illustrating the schematic configuration of the welding apparatus of the present invention, and FIG. 3 is a diagram illustrating the configuration of the electrode portion and displacement of the electrodes in the welding apparatus of the present invention.

図1に例示するように、本発明の溶接装置1は、電極4と、電極4と対をなすアース6と、電極4を保持して稼働自在なロボットアーム20を備えるロボット8と、電極4とアース6との間に電流を印加するトランス10と、トランス10に供給する電流を制御するタイマー12と、溶接対象18を流れる電流の抵抗を測定する抵抗測定器14と、電極4が所定の位置から溶接対象18の板厚方向に移動した距離である変位量を測定する変位量測定器15と、タイマー12およびロボット8の動作を制御する制御装置16とを備える。 As illustrated in FIG. 1, a welding apparatus 1 of the present invention includes an electrode 4, a ground 6 paired with the electrode 4, a robot 8 having a robot arm 20 capable of holding and moving the electrode 4; and ground 6, a timer 12 for controlling the current supplied to the transformer 10, a resistance measuring device 14 for measuring the resistance of the current flowing through the object 18 to be welded, and the electrode 4 having a predetermined A displacement amount measuring device 15 for measuring a displacement amount, which is a distance moved in the plate thickness direction of the object to be welded 18 from a position, and a control device 16 for controlling the operation of the timer 12 and the robot 8 are provided.

溶接装置1において、電極4は、溶接対象18を加圧すると共に溶接対象18に所定の電流を印加することで、電極4から溶接対象18を通ってアース6に電流を流す。溶接対象18は、複数の被溶接材が重ねられたものである(詳細の構成例は後述する)。溶接対象18において、隣り合う被溶接材間が溶接により接合される。電極4は、溶接対象18を加圧すると共に、溶接対象18に所定の電流を流すことにより、電極4とアース6との間の溶接対象18を加熱・溶融させて溶接対象18を溶接する。電極4に印加される電流の電流値は、溶接対象18の厚さや、被溶接材それぞれの厚さ、必要な溶接強度等に応じて定めることができ、トランス10によって調整される。 In the welding device 1 , the electrode 4 presses the object to be welded 18 and applies a predetermined current to the object to be welded 18 , thereby causing the current to flow from the electrode 4 through the object to be welded 18 to the ground 6 . The object to be welded 18 is formed by stacking a plurality of materials to be welded (a detailed configuration example will be described later). In the object to be welded 18, adjacent welded materials are joined by welding. The electrode 4 applies pressure to the object 18 to be welded and applies a predetermined current to the object 18 to be welded, thereby heating and melting the object 18 between the electrode 4 and the ground 6 to weld the object 18 to be welded. The current value of the current applied to the electrode 4 can be determined according to the thickness of the object 18 to be welded, the thickness of each material to be welded, the required welding strength, etc., and is adjusted by the transformer 10 .

トランス10は、タイマー12を介して供給された電流を、所定の電流値に変換した上、変換された電流を電極4に印加する。例えば、タイマー12を介して供給された400Vで数Aの電流を、3~5Vで15000Aの電流に変換して電極4に印加する。タイマー12は、トランス10を介して電極4に電流を供給するタイミングを制御する。トランス10は、制御装置16により制御され、制御装置16はタイマー12を介してトランス10を制御することもできる。 The transformer 10 converts the current supplied via the timer 12 into a predetermined current value and applies the converted current to the electrodes 4 . For example, a current of 400 V and several A supplied via the timer 12 is converted into a current of 15000 A at 3 to 5 V and applied to the electrode 4 . A timer 12 controls the timing of supplying current to the electrodes 4 via the transformer 10 . Transformer 10 is controlled by controller 16 , which may also control transformer 10 via timer 12 .

ロボット8は、電極4およびロボットアーム20を含んで構成される。ロボット8はロボットアーム20により、電極4を所定の範囲内で任意の位置に移動させることが可能な構成であり、電極4を所定の溶接位置に移動させる。 The robot 8 comprises an electrode 4 and a robot arm 20 . The robot 8 is configured to be able to move the electrode 4 to any position within a predetermined range by the robot arm 20, and moves the electrode 4 to a predetermined welding position.

ロボット8は、一定の空間座標を認識しており、あらかじめ教示された座標に電極4が移動するようにプログラムされる。例えば、溶接を開始する際には、電極4の先端が、溶接対象18の溶接箇所から一定の距離だけ離れた座標や、溶接対象18の溶接箇所に接すると予定される座標等が仮溶接開始座標として教示される。次に教示される座標として、溶接箇所において、被溶接材間が適切な接触面積で接すると想定される本溶接開始座標が教示される。そして、ロボット8は、この順で電極4を教示された座標に移動させる。 The robot 8 is aware of certain spatial coordinates and is programmed to move the electrodes 4 to previously taught coordinates. For example, when starting welding, the tip of the electrode 4 is set to the coordinates at which the tip of the electrode 4 is separated from the welding location of the welding target 18 by a certain distance, or the coordinate at which the tip of the electrode 4 is expected to come into contact with the welding location of the welding target 18, and the like. Taught as coordinates. As the coordinates to be taught next, the main welding start coordinates are taught that are assumed to bring the materials to be welded into contact with each other with an appropriate contact area at the welding location. Then, the robot 8 moves the electrodes 4 to the taught coordinates in this order.

変位量測定器15は、電極4が仮溶接開始座標に移動してから、溶接対象18を加圧中に電極4が移動する変位量を測定する。 The displacement amount measuring device 15 measures the amount of displacement of the electrode 4 while the object 18 to be welded is being pressed after the electrode 4 has moved to the temporary welding start coordinates.

ここで、図2を用いて、電極4の周辺の構成と、溶接対象18を加圧する際の電極の変位について説明する。 Here, the configuration around the electrode 4 and the displacement of the electrode when the object 18 to be welded is pressurized will be described with reference to FIG.

まず、図2(a)に示すように、電極4は、シリンダー21を介してロボットアーム20に接続される。シリンダー21は、シリンダー本体17とシリンダーヘッド19とから構成される。シリンダー本体17はロボットアーム20に固定され、シリンダーヘッド19に電極4が固定される。シリンダーヘッド19は伸縮可能な構成であり、シリンダー本体17からの距離が可変である。このような構成により、電極4は、シリンダー本体17から離間し、またシリンダー本体17に近接する方向に移動可能である。溶接対象18を加圧する際には、ロボットアーム20による電極4の移動、またはシリンダー21の伸縮、あるいはこの両方により、溶接対象18を加圧する。また、シリンダー21により、電極4による溶接対象18への加圧力が調整される。 First, the electrode 4 is connected to the robot arm 20 via the cylinder 21, as shown in FIG. 2(a). The cylinder 21 is composed of a cylinder body 17 and a cylinder head 19 . A cylinder body 17 is fixed to a robot arm 20 and an electrode 4 is fixed to a cylinder head 19 . The cylinder head 19 has a telescopic structure, and the distance from the cylinder body 17 is variable. With such a configuration, the electrode 4 can be moved away from the cylinder body 17 and in a direction toward the cylinder body 17 . When pressurizing the object 18 to be welded, the object 18 to be welded is pressurized by movement of the electrode 4 by the robot arm 20, expansion and contraction of the cylinder 21, or both. Further, the pressure applied by the electrode 4 to the object 18 to be welded is adjusted by the cylinder 21 .

また、上述のようにロボット8は、あらかじめ教示された座標に電極4を移動させる。溶接の際には、まず、仮溶接開始座標に電極4を移動させる。仮溶接開始座標は、図2(b)に示すように、溶接対象18の被溶接材22と一定の距離を隔てると想定される座標23や、溶接箇所において被溶接材22と接すると想定される座標25である。この仮溶接開始座標から、電極4により溶接対象18の加圧が開始される。 Also, as described above, the robot 8 moves the electrode 4 to coordinates taught in advance. During welding, first, the electrode 4 is moved to the temporary welding start coordinates. As shown in FIG. 2B, the temporary welding start coordinates are coordinates 23 assumed to be at a certain distance from the material 22 to be welded of the object 18 to be welded, and coordinates 23 assumed to be in contact with the material 22 to be welded at the welding location. is coordinate 25. From this temporary welding start coordinate, the electrode 4 starts pressurizing the object 18 to be welded.

次に、図2(c),(d)に示すように、仮溶接開始座標から本溶接開始座標に電極4を移動させるか、仮溶接開始座標からシリンダー21を伸長されるか、あるいはこの両方を行うことにより、電極4で被溶接材22を加圧し、被溶接材22と被溶接材24とを適切な接触面積で接触させる。 Next, as shown in FIGS. 2(c) and 2(d), the electrode 4 is moved from the temporary welding start coordinates to the final welding start coordinates, or the cylinder 21 is extended from the temporary welding start coordinates, or both. , the electrode 4 presses the material to be welded 22, and the material to be welded 22 and the material to be welded 24 are brought into contact with each other with an appropriate contact area.

この際、変位量測定器15は、溶接対象18への加圧が開始されてから電極4が溶接対象18の板厚方向に移動した変位量を測定する。このように仮溶接開始座標である座標23または座標25から電極4が変位量Δx移動した場合に、被溶接材22と被溶接材24との接触面積が溶接に適した面積となると想定される。 At this time, the displacement measuring device 15 measures the amount of displacement of the electrode 4 in the plate thickness direction of the object 18 to be welded after the start of pressurization of the object 18 to be welded. In this way, when the electrode 4 moves by a displacement amount Δx from the coordinates 23 or 25, which are the temporary welding start coordinates, it is assumed that the contact area between the weld material 22 and the weld material 24 becomes an area suitable for welding. .

このようなロボット8を備える溶接装置1における制御装置16は、ロボット8の動作を制御すると同時に、タイマー12の動作を制御する。制御装置16は、抵抗測定器14から測定された抵抗値を受信すると共に、変位量測定器15から変位量を受信する。そして、制御装置16は、受信した抵抗値と変位量とに応じてタイマー12を制御する。タイマー12は、制御装置16の指示により電極4から溶接対象18に印加する電流を制御するように、トランス10を制御する。 The control device 16 in the welding apparatus 1 having such a robot 8 controls the operation of the robot 8 and the operation of the timer 12 at the same time. The control device 16 receives the measured resistance value from the resistance measuring device 14 and the displacement amount from the displacement measuring device 15 . The control device 16 then controls the timer 12 according to the received resistance value and displacement amount. The timer 12 controls the transformer 10 so as to control the current applied from the electrode 4 to the object 18 to be welded according to instructions from the control device 16 .

ここで、詳細な説明は後段に譲るが、抵抗溶接において、被溶接材間に隙間等があると、溶接中において被溶接材間の接触面積等の接触状況が変化し、安定した接合が行われない。例えば、被溶接材間の接触面積が大きいと、電流密度が小さくなって、溶接箇所が十分に加熱されず、ナゲットの形成が阻害される。ナゲットが十分な大きさに成長しないと、溶接強度が不足し、溶接不良となる。さらに、被溶接材間の隙間や、被溶接材間の接触面積等の接触状況に起因して、溶接箇所における接触面積が所定の面積になっていなかったり、溶接箇所以外に予定外の箇所で被溶接材間が接触したりし、溶接対象18の溶接箇所を流れる電流の電流密度が一定の値にならない場合がある。電流密度が高いと溶接部の発熱量が大きくなり溶融接合が促進され、電流密度が低いと溶接部の発熱量が小さくなり溶融接合が低減される。そのため、想定された電流密度に比べて、電流密度が高すぎると接合力が基準より過多になり、電流密度が低すぎると接合力が不足し、接合品質が不安定になる。また、溶接対象18を流れる電流の電流密度は、通電経路の抵抗値に比例する。 Here, a detailed explanation will be given later, but in resistance welding, if there is a gap or the like between the materials to be welded, the contact state such as the contact area between the materials to be welded changes during welding, and stable joining is performed. can't break For example, if the contact area between the materials to be welded is large, the current density will be small, the welded portion will not be heated sufficiently, and nugget formation will be hindered. If the nugget does not grow to a sufficient size, the welding strength will be insufficient, resulting in poor welding. Furthermore, due to contact conditions such as gaps between the materials to be welded and the contact area between the materials to be welded, the contact area at the welding location may not be the specified area, or at an unplanned location other than the welding location. The materials to be welded may come into contact with each other, and the current density of the current flowing through the welded portion of the object to be welded 18 may not be a constant value. When the current density is high, the amount of heat generated at the welded portion increases and fusion bonding is promoted, and when the current density is low, the amount of heat generated at the welded portion decreases and fusion bonding is reduced. Therefore, if the current density is too high, the bonding strength will be excessive compared to the assumed current density, and if the current density is too low, the bonding strength will be insufficient and the bonding quality will be unstable. Further, the current density of the current flowing through the object to be welded 18 is proportional to the resistance value of the energization path.

そのため、本発明の溶接装置1では、仮溶接として、抵抗測定器14により通電経路の抵抗値を測定し、抵抗値から被溶接材間の接触状況(以下、本実施形態では接触面積を例として説明する)を求める。同時に、変位量測定器15により、溶接対象18を加圧中の電極4の変異量を測定する。そして、制御装置16は、被溶接材間の接触面積が溶接に適した接触面積となるために最低限必要な変位量以上となり、かつ、抵抗値が適切な被溶接材間の接触面積に対応する値以下となった際に、本溶接を開始する。本溶接では、電極4から溶接対象18に印加する電流の電流値や電流の印加時間等の印加条件が、溶接に最適な条件となるように、タイマー12およびトランス10を介して制御する。 Therefore, in the welding apparatus 1 of the present invention, the resistance value of the current path is measured by the resistance measuring device 14 as temporary welding, and the contact state between the welded materials (hereinafter, in this embodiment, the contact area is taken as an example) is measured from the resistance value. explain). At the same time, the displacement measuring device 15 measures the amount of displacement of the electrode 4 during pressurization of the object 18 to be welded. Then, the controller 16 controls the contact area between the materials to be welded to be equal to or larger than the minimum necessary displacement amount for the contact area to be suitable for welding, and to correspond to the contact area between the materials to be welded having an appropriate resistance value. When it becomes less than or equal to the value that In the main welding, the application conditions such as the current value of the current applied from the electrode 4 to the welding object 18 and the current application time are controlled via the timer 12 and the transformer 10 so as to be the optimum conditions for welding.

このように、本発明の溶接装置1では、仮溶接において、溶接対象18を通電経路の抵抗値を測定すると共に、電極4の移動量を測定する。そして、抵抗値が所定の値以下となり、かつ変位量が所定の値以上となることにより、溶接箇所における接触面積が溶接に適切な接触面積となったとして本溶接を開始する。そのため、被溶接材間の接触面積が溶接に適した状態になってから、その接触面積に対応した最適な電流の印加条件で溶接作業を行うことができ、安定した溶接品質で溶接を行うことができる。 As described above, in the welding apparatus 1 of the present invention, the resistance value of the energization path of the object 18 to be welded is measured and the amount of movement of the electrode 4 is measured in the temporary welding. Then, when the resistance value becomes equal to or less than a predetermined value and the amount of displacement becomes equal to or more than a predetermined value, the contact area at the welded portion becomes an appropriate contact area for welding, and main welding is started. Therefore, after the contact area between the materials to be welded becomes suitable for welding, welding can be performed under the optimum current application conditions corresponding to the contact area, and welding can be performed with stable welding quality. can be done.

なお、溶接装置1は、さらに冷却装置を有することが好ましい。冷却装置は、電極4を冷却する装置であり、電極4から溶接対象18に電流を印加する際に電極4を冷却する。溶接の際には、電極4に電流が流れるので、電極4が加熱されて軟化する。この際、電極4は溶接対象18を加圧しているので、軟化された電極4は溶接対象18からの力を受ける。そのため、電極4の先端は、溶接を繰り返すことにより、変形したり破損したりする。電極4の先端形状は、溶接対象18と接する面積により、溶接対象18に供給される電流の電流密度や溶接対象18への加圧力に影響を及ぼす。電流密度や加圧力は溶接精度に影響を及ぼすため、溶接中に電極4を冷却している。冷却は、例えば、電極4中に冷却水を流通させることにより行うことができる。 In addition, it is preferable that the welding device 1 further includes a cooling device. The cooling device is a device that cools the electrode 4 and cools the electrode 4 when current is applied from the electrode 4 to the object 18 to be welded. During welding, an electric current flows through the electrode 4, so that the electrode 4 is heated and softened. At this time, since the electrode 4 presses the object 18 to be welded, the softened electrode 4 receives force from the object 18 to be welded. Therefore, the tip of the electrode 4 is deformed or damaged by repeated welding. The shape of the tip of the electrode 4 affects the current density of the current supplied to the object 18 to be welded and the pressure applied to the object 18 to be welded, depending on the area in contact with the object 18 to be welded. Since current density and applied pressure affect welding accuracy, the electrode 4 is cooled during welding. Cooling can be performed, for example, by circulating cooling water through the electrode 4 .

また、図1では、電極4への電流の供給に係るタイマー12と、制御装置16等とを、別の電源から電力を供給する構成として例示しているが、共通の電源から電力を供給しても良く、また、各機器それぞれが、必要に応じて別電源から電力の供給を受けても良い。 Further, in FIG. 1, the timer 12 related to the current supply to the electrode 4, the control device 16, and the like are illustrated as being configured to supply power from separate power sources, but power is supplied from a common power source. Alternatively, each device may be supplied with power from another power source as needed.

また、電極4の駆動は、制御装置16の指示を受けてロボット8が駆動装置として機能して行われる。 Further, the electrode 4 is driven by the robot 8 functioning as a driving device in response to instructions from the control device 16 .

また、タイマー12およびトランス10は、電極4に電流を供給する電源供給装置として機能する。電源供給装置は、電極4に所定の印加条件の電流を供給できれば、これ以外の構成とすることもできる。また、制御装置16にタイマー12の機能を持たせて、タイマー12がない構成とすることもできる。 Also, the timer 12 and the transformer 10 function as a power supply device that supplies current to the electrodes 4 . The power supply device may have other configurations as long as it can supply current to the electrode 4 under predetermined application conditions. Alternatively, the control device 16 may be provided with the function of the timer 12 so that the timer 12 is not provided.

次に、図3を用いて本発明の溶接装置によって溶接される溶接対象の構成例について説明する。 Next, an example of the configuration of objects to be welded by the welding apparatus of the present invention will be described with reference to FIG.

図3は溶接対象の構成を例示する断面図である。 FIG. 3 is a cross-sectional view illustrating the configuration of objects to be welded.

前述したように、溶接対象18は複数の被溶接材を重ね合わせたものである。図3で示した例では、溶接対象18は、被溶接材22と被溶接材24とから構成され、被溶接材22と被溶接材24とが、溶接箇所26にて溶接により接合される。例えば、被溶接材22は平板である。被溶接材24は、立体的に形成され、同じく立体的に形成された被溶接材28の一面が解放された空間内部に接合されている。そして、溶接箇所26において、被溶接材24の被溶接材22と接する面に対する裏面は、被溶接材28と被溶接材24とで形成される空間内に閉じられている。溶接に際し、被溶接材28と被溶接材24とで形成される空間内に電極4を設けることができないため、被溶接材22と被溶接材24とはインダイレクト溶接により接合される。インダイレクト溶接では、溶接箇所26において、被溶接材22の被溶接材24と接する面に対する裏面側に電極4が配置され、被溶接材24と電気的に導通するようにアース6が配置される。そして、電極4から所定の電流が印加され、被溶接材22、被溶接材24を介してアース6に至る通電経路30を通って電流が流れる。流れる電流により、溶接箇所26において、被溶接材22と被溶接材24とが接合される。 As described above, the object to be welded 18 is a stack of a plurality of welded materials. In the example shown in FIG. 3 , the object to be welded 18 is composed of a material to be welded 22 and a material to be welded 24 , and the material to be welded 22 and the material to be welded 24 are joined by welding at a welding point 26 . For example, the material to be welded 22 is a flat plate. The material 24 to be welded is three-dimensionally formed, and one surface of the material 28 to be welded, which is also three-dimensionally formed, is joined to the interior of the open space. At the welding point 26 , the back surface of the material to be welded 24 that is in contact with the material to be welded 22 is closed in a space formed by the material to be welded 28 and the material to be welded 24 . Since the electrode 4 cannot be placed in the space formed by the material to be welded 28 and the material to be welded 24 during welding, the material to be welded 22 and the material to be welded 24 are joined by indirect welding. In indirect welding, the electrode 4 is arranged on the back side of the surface of the material to be welded 22 that contacts the material to be welded 24 at the welding point 26 , and the ground 6 is arranged so as to be electrically connected to the material to be welded 24 . . Then, a predetermined current is applied from the electrode 4, and the current flows through the energization path 30 leading to the ground 6 via the materials 22 and 24 to be welded. The current that flows joins the material to be welded 22 and the material to be welded 24 at the welding point 26 .

次に、図4~図6を用いて、溶接の際の被溶接材間の接合面積と被溶接材間を流れる電流の通電経路における抵抗値の変化について説明する。 Next, with reference to FIGS. 4 to 6, a description will be given of the joining area between the materials to be welded during welding and the change in the resistance value in the path of the current flowing between the materials to be welded.

図4は被溶接材間の隙間の有無と接触面積との関係を説明する図であり、図4(a)は隙間がない場合、図4(b)は隙間がある場合、図4(c)は予定外の接触箇所を含む場合を示す。図5は複数回の溶接を行った際の通電経路と抵抗値の変化を示す模式図であり、図5(a)は先の溶接により隙間が生じた溶接対象に対してさらに溶接を行う様子を示す図、図5(b)はその際の抵抗値の変化を示す図、図5(c)は予定外の接触箇所を含む通電経路を示す図である。図6は複数回の溶接を行った際の通電経路と抵抗値の変化を詳細に示す模式図であり、先の溶接により隙間が生じた溶接対象に対してさらに溶接を行う様子と抵抗値の変化を経時的に示す図である。 4A and 4B are diagrams for explaining the relationship between the presence or absence of a gap between the materials to be welded and the contact area. ) indicates the case where an unplanned contact point is included. 5A and 5B are schematic diagrams showing current paths and changes in resistance values when welding is performed multiple times, and FIG. FIG. 5(b) is a diagram showing a change in resistance value at that time, and FIG. 5(c) is a diagram showing an energization path including an unexpected contact point. FIG. 6 is a schematic diagram showing in detail the energization path and changes in the resistance value when welding is performed a plurality of times. It is a figure which shows a change over time.

図4(a)に示すように、被溶接材22と被溶接材24との間に隙間がない場合、溶接の際に電極4を溶接対象18に加圧すると、電流が流れる被溶接材22と被溶接材24との接触面32が適正で、電流密度は適切となる。この状態で電極4からアース6に電流を流すと、接触面32近傍の被溶接材22および被溶接材24が溶融し、接触面32の周辺に十分な大きさのナゲット34が成長する。例えば、接触面32の接触面積が1000mm2であるとし、電極4から1000Aの電流を所定の時間印加した場合、接触面32を流れる電流の電流密度は1.0A/mm2となる。このような条件の場合に、適切にナゲット34が成長し、被溶接材22と被溶接材24とが最適に接合されるとする。 As shown in FIG. 4( a ), when there is no gap between the material to be welded 22 and the material to be welded 24 , when the electrode 4 is pressed against the object to be welded 18 during welding, current flows through the material to be welded 22 . and the contact surface 32 with the material to be welded 24 is appropriate, and the current density is appropriate. When a current is passed from the electrode 4 to the ground 6 in this state, the materials 22 and 24 to be welded in the vicinity of the contact surface 32 are melted, and a sufficiently large nugget 34 grows around the contact surface 32 . For example, if the contact area of the contact surface 32 is 1000 mm 2 and a current of 1000 A is applied from the electrode 4 for a predetermined time, the current density of the current flowing through the contact surface 32 is 1.0 A/mm 2 . Under such conditions, it is assumed that the nugget 34 grows appropriately and the weld material 22 and the weld material 24 are optimally joined.

これに対して、図4(b)に示すように、被溶接材22と被溶接材24との間に隙間tがある場合、溶接の際に、電極4を溶接対象18に押しつけて被溶接材22をたわませることにより初めて、被溶接材22と被溶接材24とが接触する。電極4による加圧力は一定であるので、電流が流れる被溶接材22と被溶接材24との接触面38は、隙間がない場合の接触面32に比べて狭くなる。この状態で電極4からアース6に電流を流すと、隙間がない場合の接触面32に比べて接触面38が狭くなり、電流密度が過大になる。そのため、ナゲット40が大きくなり過ぎて溶接箇所が溶け落ちたり割れたりし、溶接不良が生じる場合がある。例えば、接触面38の接触面積が100mm2であるとし、電極4から1000Aの電流を所定の時間印加した場合、接触面38を流れる電流の電流密度は10A/mm2となる。このような条件の場合に、接触面38の接触面積は、想定された接触面積より小さいため電流密度が想定以上に高くなり、ナゲット40が大きくなり過ぎて溶接箇所が溶け落ちたり割れたりし、溶接不良となる。また、接触面38の接触面積が想定された面積より大きくなると、接触面38を流れる電流の電流密度が想定以上に小さくなる。この場合、被溶接材22または被溶接材24が薄板の場合、ナゲット40が被溶接材22または被溶接材24に届かずに接合強度が不足し、溶接不良が生じる場合がある。 On the other hand, as shown in FIG. 4B, when there is a gap t between the material to be welded 22 and the material to be welded 24, the electrode 4 is pressed against the object to be welded 18 during welding. The material to be welded 22 and the material to be welded 24 come into contact with each other only when the material 22 is bent. Since the pressure applied by the electrode 4 is constant, the contact surface 38 between the material to be welded 22 and the material to be welded 24 through which the current flows is narrower than the contact surface 32 when there is no gap. If a current is passed from the electrode 4 to the ground 6 in this state, the contact surface 38 becomes narrower than the contact surface 32 in the case of no gap, resulting in an excessive current density. As a result, the nugget 40 becomes too large, and the welded portion may melt down or crack, resulting in poor welding. For example, if the contact area of the contact surface 38 is 100 mm 2 and a current of 1000 A is applied from the electrode 4 for a predetermined time, the current density of the current flowing through the contact surface 38 is 10 A/mm 2 . In the case of such conditions, the contact area of the contact surface 38 is smaller than the assumed contact area, so the current density becomes higher than expected, the nugget 40 becomes too large, and the welded portion burns down or cracks. Poor welding. Moreover, when the contact area of the contact surface 38 becomes larger than the assumed area, the current density of the current flowing through the contact surface 38 becomes smaller than expected. In this case, if the material to be welded 22 or the material to be welded 24 is a thin plate, the nugget 40 may not reach the material to be welded 22 or the material to be welded 24, resulting in insufficient joint strength and poor welding.

さらに、図4(c)に示すように、溶接箇所における接触面38の接触面積が適切な面積になっていないにもかかわらず、予定外の箇所で被溶接材間が接触して接触面39が形成される場合がある。このとき、溶接箇所における接触面38の接触面積は十分でないため、被溶接材間の接合面積が不足し、溶接不良となる場合がある。また、予定外の通電経路に電流が分散され、溶接箇所における電流密度に過不足を生じ、適切な溶接が行われない場合がある。 Furthermore, as shown in FIG. 4(c), although the contact area of the contact surface 38 at the welding location is not an appropriate area, the materials to be welded come into contact with each other at an unexpected location and the contact surface 39 is broken. may be formed. At this time, since the contact area of the contact surface 38 at the welding location is not sufficient, the joint area between the materials to be welded may be insufficient, resulting in poor welding. In addition, the current may be dispersed in unplanned energization paths, resulting in excess or deficiency in the current density at the welding location, resulting in inadequate welding.

以上のように、従来の溶接装置において、被溶接材間に隙間がないことを前提として、被溶接材間が適切に接触している場合に最適な溶接が行われるように、電極4に印加される電流の印加条件があらかじめ定められている。なお、あらかじめ定められる印加条件については、後段で詳細に説明する。ここで、被溶接材間の隙間の有無は接触面積に影響を及ぼし、接触面積に比例して流れる電流の電流密度が変化する。電流の電流密度は、印加された電流の電流値が一定の場合、通電経路における抵抗値に比例する。これに対応して、まず、本発明の溶接装置1(図1参照)は、通電経路の抵抗値を測定し、測定された抵抗値から被溶接材間の接触面積が適切な接触面積となったことを確認する。この場合においても、上述のように、溶接箇所における接触面積が適切な面積になっていないにもかかわらず、予定外の箇所で被溶接材間が接触し、その部分にも電流が流れることにより、抵抗値が下がる場合がある。そのため、本発明の溶接装置1(図1参照)は、さらに、電極4の変位量により、溶接箇所における接触面積が十分に確保されるだけ加圧が行われていることを確認する。そして、変位量が適切な値以上になった状態において、抵抗値が適切な値以下となった場合に限り、本溶接を行う。このように、被溶接材間の接触状況が適切になってから溶接を行うことで、安定した溶接品質の溶接を行うことができる。 As described above, in the conventional welding apparatus, on the premise that there is no gap between the materials to be welded, the voltage applied to the electrode 4 is such that optimum welding is performed when the materials to be welded are in proper contact with each other. The application condition of the current to be applied is determined in advance. Note that the predetermined application conditions will be described in detail later. Here, the presence or absence of a gap between the materials to be welded affects the contact area, and the current density of the flowing current changes in proportion to the contact area. The current density of the current is proportional to the resistance value in the conducting path when the current value of the applied current is constant. In response to this, first, the welding apparatus 1 (see FIG. 1) of the present invention measures the resistance value of the energization path, and from the measured resistance value, the contact area between the materials to be welded becomes the appropriate contact area. Confirm that Even in this case, as described above, even though the contact area at the welding point is not the appropriate area, the welded materials come into contact with each other at an unplanned point, and current also flows through that part. , the resistance may decrease. Therefore, the welding apparatus 1 (see FIG. 1) of the present invention further confirms, based on the amount of displacement of the electrode 4, that pressure is being applied to ensure a sufficient contact area at the welding location. Then, only when the resistance value becomes equal to or less than an appropriate value in a state where the amount of displacement becomes equal to or greater than an appropriate value, final welding is performed. In this manner, by performing welding after the contact state between the materials to be welded becomes appropriate, it is possible to perform welding with stable welding quality.

また、図5(a)に示すように、溶接対象18の複数箇所に溶接を行う場合、先の溶接により被溶接材22がたわみ、被溶接材22と被溶接材24との間に隙間が形成される。そのため、溶接の初期の段階では、電極4が配置される溶接箇所の近傍において、被溶接材22と被溶接材24とが接触しない。被溶接材22と被溶接材24とが接触しない状態で電極4から電流が印加されると、溶接対象18を流れる電流は、主に電極4から、被溶接材22、先の溶接により形成された溶接部42、被溶接材24を順に流れてアース6に至る、通電経路Aを流れる。その後、電極4による被溶接材22の加圧が進むと、被溶接材22がたわんで被溶接材24に接触する。被溶接材22と被溶接材24とが接触することにより、溶接対象18を流れる電流は、通電経路Aに加えて、電極4から、被溶接材22と被溶接材24との接触箇所を通って、被溶接材22および被溶接材24をまっすぐ通り、アース6に至る通電経路Bを流れる。このように、電流が通電経路Aに加えて通電経路Bを流れるようになるため、電極4からアース6に電流が流れる通電経路における抵抗値は、図5(b)に示すように、通電経路Aのみを流れる溶接の初期段階に比べて小さくなる。 Further, as shown in FIG. 5A, when welding is performed at a plurality of locations on the object 18 to be welded, the material 22 to be welded is bent by the previous welding, and a gap is formed between the material 22 to be welded and the material 24 to be welded. It is formed. Therefore, in the initial stage of welding, the materials to be welded 22 and the materials to be welded 24 do not come into contact in the vicinity of the welding location where the electrode 4 is arranged. When the current is applied from the electrode 4 while the material to be welded 22 and the material to be welded 24 are not in contact with each other, the current flowing through the object to be welded 18 is mainly formed by the electrode 4, the material to be welded 22, and the previous welding. The electric current flows through the welding portion 42 , the material to be welded 24 and the ground 6 in this order. After that, as the electrode 4 presses the material to be welded 22 , the material to be welded 22 bends and comes into contact with the material to be welded 24 . Due to the contact between the materials to be welded 22 and the materials to be welded 24, the current flowing through the object to be welded 18 passes from the electrode 4 through the contact points between the materials to be welded 22 and the materials to be welded 24 in addition to the current path A. Then, it flows straight through the material to be welded 22 and the material to be welded 24 and flows through the current path B to the ground 6 . In this way, since the current flows through the conducting path B in addition to the conducting path A, the resistance value of the conducting path through which the current flows from the electrode 4 to the ground 6 is as shown in FIG. It will be smaller than in the early stages of the weld flowing through A only.

あらためて、複数箇所に溶接を行う場合について、図6を用いて詳細に説明する。 Again, the case of welding at a plurality of locations will be described in detail with reference to FIG.

上述のように、溶接対象18は先の溶接により被溶接材22が反り、被溶接材22と被溶接材24との間に隙間が形成されている。この状態で溶接を開始すると、溶接部である電極4の配置位置において、被溶接材22と被溶接材24とは接触していない。そのため、電極4からアース6に至る通電経路は通電経路Aのみとなる。そして、この際の溶接対象18を電流が流れる通電経路の抵抗値は比較的高い状態となる(図6のIの状態)。 As described above, in the object to be welded 18 , the material to be welded 22 warps due to previous welding, and a gap is formed between the material to be welded 22 and the material to be welded 24 . When welding is started in this state, the material to be welded 22 and the material to be welded 24 are not in contact with each other at the placement position of the electrode 4, which is the welded portion. Therefore, the current path from the electrode 4 to the ground 6 is only the current path A. At this time, the resistance value of the energization path through which the current flows through the object to be welded 18 is in a relatively high state (state I in FIG. 6).

次に、電極4による被溶接材22への加圧が進むと、被溶接材22がたわんでいき、被溶接材22と被溶接材24とが接触する。被溶接材22と被溶接材24とが接触することにより、溶接対象18を流れる電流は、通電経路Aに加えて、電極4から、被溶接材22と被溶接材24との接触箇所を通って、電極4の直下において被溶接材22および被溶接材24をまっすぐ通り、アース6に至る通電経路Bを流れる。被溶接材22と被溶接材24とが接触した瞬間においては、被溶接材22と被溶接材24との接触面32の接触面積は比較的狭い。接触面32が狭いため、接触面32における抵抗値は高く、通電経路は通電経路Aが支配的である。その後、電極4による被溶接材22への加圧がさらに進むと、被溶接材22と被溶接材24との接触面38は接触面32に比べて面積が大きくなる。接触面38の面積が大きくなるにつれて通電経路Bを流れる電流が増大していき、通電経路Aと通電経路Bとを合わせて溶接対象18を電流が流れる通電経路の抵抗値が下がっていく(図6のIIの状態)。 Next, as the electrode 4 presses the material 22 to be welded, the material 22 to be welded bends, and the material 22 to be welded and the material 24 to be welded come into contact with each other. Due to the contact between the materials to be welded 22 and the materials to be welded 24, the current flowing through the object to be welded 18 passes from the electrode 4 through the contact points between the materials to be welded 22 and the materials to be welded 24 in addition to the current path A. Then, directly below the electrode 4 , the current flows straight through the materials to be welded 22 and 24 to reach the ground 6 . At the moment when the material to be welded 22 and the material to be welded 24 contact each other, the contact area of the contact surface 32 between the material to be welded 22 and the material to be welded 24 is relatively small. Since the contact surface 32 is narrow, the resistance value at the contact surface 32 is high, and the current-carrying path A is dominant. After that, as the electrode 4 presses the material to be welded 22 further, the contact surface 38 between the material to be welded 22 and the material to be welded 24 becomes larger than the contact surface 32 . As the area of the contact surface 38 increases, the current flowing through the energization path B increases, and the resistance value of the energization path through which the current flows through the welding target 18 decreases by combining the energization path A and the energization path B (Fig. 6 II condition).

そして、接触面38の面積が十分に大きくなると、通電経路Aと通電経路Bとを流れる電流が均一化され、溶接対象18を電流が流れる通電経路の抵抗値は一定となる(図6のIIIの状態)。 When the area of the contact surface 38 is sufficiently large, the currents flowing through the energization paths A and B are made uniform, and the resistance value of the energization path through which the current flows through the object to be welded 18 becomes constant (see III in FIG. 6). state).

また、図5(c)に示すように、電極4により被溶接材22を加圧することにより被溶接材22が被溶接材24に接触するのに加え、別の箇所でも被溶接材22と被溶接材24とが接触することがある。この場合、溶接対象18を流れる電流は、通電経路Aと通電経路Bとに加えて、通電経路Cを流れる。このような状況において、溶接箇所では被溶接材22と被溶接材24との接触面積は適切な接触面積となっていないにもかかわらず、通電経路A,B,Cを電流が流れるため、測定された抵抗値が低下する場合がある。 Further, as shown in FIG. 5(c), by pressurizing the material to be welded 22 by the electrode 4, the material to be welded 22 is brought into contact with the material to be welded 24, and in addition, the material to be welded 22 and the material to be welded are also in contact with each other. contact with the welding material 24 may occur. In this case, the current flowing through the object to be welded 18 flows through the energization path C in addition to the energization path A and the energization path B. In such a situation, although the contact area between the material to be welded 22 and the material to be welded 24 is not an appropriate contact area at the welding point, the current flows through the current paths A, B, and C. may reduce the applied resistance.

以上のように、被溶接材間の隙間の有無や、被溶接材間の接触面積によって、電流が流れる通電経路の抵抗値が変化する。抵抗値の変化は、通電経路を流れる電流の電流密度に依存する。電流密度は、溶接の強度や溶接範囲、被溶接材22または被溶接材24の表面状態等の溶接品質に影響を与える。電流の印加条件は、想定される被溶接材間の接触状況や、要求される溶接品質に応じてあらかじめ設定されている。そのため、被溶接材間に想定外の隙間が生じていたり、溶接箇所における被溶接材間の接触が不十分である等の想定外の状態になったような場合、溶接品質を確保できない場合がある。そのため、本発明の溶接装置1(図1参照)は、電流が流れる通電経路の抵抗値を測定し、測定された抵抗値により、被溶接材間が接触したことを検出する。さらに、図5(c)のように溶接箇所の接触面積が不足しているにもかかわらず他の箇所で被溶接材間が接触することにより抵抗値が所定の値以下になった状態を排除するため、電極4の変位量を測定する。そして、抵抗値が所定の値以下になったとしても、電極4の変位量が所定の値に達していない場合は、溶接箇所の接触面積が適切な面積に達していないとして本溶接を開始しない。抵抗値が所定の値以下になり、かつ、電極4の変位量が所定の値以上になって初めて、適切な電流の印加条件で本溶接を開始する。このように、通電経路の抵抗値と電極4の変位量とで、溶接箇所の被溶接材間の接触面積が適切な面積になったことを判断し、最適な電流の印加条件で本溶接を開始することで、安定した溶接品質の溶接を行うことができる。なお、最適な電流の印加条件は、例えば、電流の電流値や電流の導通時間、あるいはこれらの両方等を最適化することにより行われる。また、電流の電流値を多段階に変化させても良い。 As described above, the resistance value of the energization path through which the current flows varies depending on the presence or absence of gaps between the welded materials and the contact area between the welded materials. A change in the resistance value depends on the current density of the current flowing through the conducting path. The current density affects the welding quality such as the strength of welding, the welding range, and the surface condition of the material 22 to be welded or the material 24 to be welded. Current application conditions are set in advance according to the assumed contact state between the materials to be welded and the required welding quality. Therefore, in the event of unexpected conditions such as an unexpected gap between the welded materials or insufficient contact between the welded materials at the welding point, the welding quality may not be ensured. be. Therefore, the welding apparatus 1 (see FIG. 1) of the present invention measures the resistance value of the current-carrying path through which the current flows, and detects contact between the materials to be welded from the measured resistance value. Furthermore, as shown in Fig. 5(c), even though the contact area of the welded portion is insufficient, the state where the resistance value falls below a predetermined value due to contact between the welded materials at other locations is eliminated. Therefore, the amount of displacement of the electrode 4 is measured. Even if the resistance value becomes equal to or less than the predetermined value, if the displacement amount of the electrode 4 does not reach the predetermined value, the contact area of the welded portion does not reach an appropriate area, and the main welding is not started. . Only when the resistance value becomes equal to or less than a predetermined value and the amount of displacement of the electrode 4 becomes equal to or more than a predetermined value, final welding is started under appropriate current application conditions. In this way, it is judged that the contact area between the materials to be welded at the welding point has become an appropriate area based on the resistance value of the energization path and the amount of displacement of the electrode 4, and the main welding is performed under the optimum current application conditions. By starting, welding with stable welding quality can be performed. Note that the optimum current application condition is achieved by optimizing, for example, the current value of the current, the conduction time of the current, or both of them. Also, the current value of the current may be changed in multiple steps.

以下、本発明の溶接装置における、具体的な実施例について説明する。 Specific examples of the welding apparatus of the present invention will be described below.

(実施例1)
図1および図7,図8を用いて、実施例1における溶接装置の溶接動作について説明する。
(Example 1)
Welding operation of the welding apparatus according to the first embodiment will be described with reference to FIGS. 1, 7, and 8. FIG.

図7は実施例1における溶接中の抵抗値の変化と電流の印加条件との関係を示す図であり、図7(a)は隙間に応じた抵抗値の変化を示すグラフ、図7(b),(c)は隙間に応じた電流の印加条件を示すグラフである。図8は実施例1における溶接方法の工程を示すフロー図である。 7A and 7B are graphs showing the relationship between changes in resistance value during welding and current application conditions in Example 1, FIG. ) and (c) are graphs showing current application conditions according to gaps. FIG. 8 is a flowchart showing steps of the welding method in Example 1. FIG.

実施例1における溶接装置の溶接動作では、まず、仮溶接として、電極4から溶接対象18に一定の電流値I0の電流を印加しながら、抵抗測定器14により溶接対象18を電流が流れる通電経路の抵抗値を測定する。同時に、電極4の変位量を測定する。そして、電極4の変位量が所定の値Δx以上となり、かつ抵抗値がR0以下となることを検出するまで電流値I0の電流を印加する。抵抗値R0は、被溶接材間が接触し、接触面の接触面積があらかじめ定められた面積になった場合に想定される抵抗値である。また、所定の変位量Δxは、接触面の接触面積があらかじめ定められた面積になると想定される電極4の変位量である。仮溶接は、実際に被溶接材間を接合する本溶接の電流値に比べて低い電流値I0の電流を印加して行われ、被溶接材間の接触面積が所定の面積になることを検出するために行うものである。 In the welding operation of the welding apparatus in Example 1, first, as temporary welding, a current of a constant current value I0 is applied from the electrode 4 to the object 18 to be welded. Measure the resistance of At the same time, the amount of displacement of the electrode 4 is measured. Then, the current of the current value I0 is applied until it is detected that the displacement of the electrode 4 is equal to or greater than a predetermined value Δx and the resistance value is equal to or less than R0. The resistance value R0 is a resistance value assumed when the materials to be welded come into contact with each other and the contact area of the contact surfaces becomes a predetermined area. Further, the predetermined displacement amount Δx is the displacement amount of the electrode 4 that is assumed to have a predetermined contact area of the contact surface. Temporary welding is performed by applying a current value I0 that is lower than the current value of the main welding that actually joins the welded materials, and it is detected that the contact area between the welded materials reaches a predetermined area. It is done in order to

例えば、被溶接材間に隙間がない場合、図7(a)の抵抗変化44に示すように、電流を印加し始めてからすぐに抵抗値が低下し、通電時間T1において抵抗値がR0となる。また、被溶接材間に隙間がある場合、図7(a)の抵抗変化46に示すように、電流を印加し始めた後しばらくは抵抗値が一定で、抵抗値が下がり始めてからも、被溶接材間に隙間がない場合と比べて抵抗値の低下速度が遅い。そのため、T1より遅い通電時間T2において抵抗値がR0となる。これは、被溶接材間に隙間がある間は抵抗値が一定となり、被溶接材間が接触しても、電極4によって溶接対象18が加圧されて被溶接材間の接触面積が所定の面積になるまで時間を要するためである。同時に電極4の変位量を確認することにより、予定外の箇所で被溶接材間が接触して抵抗値のみが低下している状態を排除し、より確実に、被溶接材間の接触面積が所定の面積になることを検出することができる。 For example, when there is no gap between the materials to be welded, as shown in the resistance change 44 in FIG. . Further, when there is a gap between the materials to be welded, as shown in the resistance change 46 in FIG. The rate of decrease in resistance value is slower than when there is no gap between weld metals. Therefore, the resistance value becomes R0 at the energization time T2, which is later than T1. This is because the resistance value is constant while there is a gap between the welded materials, and even if the welded materials are in contact with each other, the welding target 18 is pressed by the electrode 4 and the contact area between the welded materials is kept constant. This is because it takes time to reach the area. At the same time, by confirming the amount of displacement of the electrode 4, it is possible to eliminate the situation where only the resistance value is reduced due to the contact between the welded materials at an unexpected point, and the contact area between the welded materials is more reliably increased. A predetermined area can be detected.

次に、抵抗値がR0となると、本溶接を行う。本溶接においては、上述の所定の面積で、被溶接材間が接触している場合に適切な溶接が行われるように、あらかじめ定められた印加条件で、電極4から溶接対象18に電流が印加される。 Next, when the resistance value reaches R0, main welding is performed. In the main welding, current is applied from the electrode 4 to the welding target 18 under predetermined application conditions so that appropriate welding is performed when the materials to be welded are in contact with each other over the above-mentioned predetermined area. be done.

例えば、被溶接材間に隙間がない場合、図7(b)に示すように、電極4の変位量が所定の値Δx以上となり、かつ抵抗値がR0となって所定の面積で被溶接材間が接触した時点である通電時間T1から、あらかじめ定められた印加条件で電極4から溶接対象18に電流が印加される。また、被溶接材間に隙間がある場合、図7(c)に示すように、電極4の変位量が所定の値Δx以上となり、かつ抵抗値がR0となって所定の面積で被溶接材間が接触する通電時間T2まで電流値I0での電流の印加を継続し、通電時間T2からあらかじめ定められた印加条件で電極4から溶接対象18に電流が印加される。 For example, when there is no gap between the materials to be welded, as shown in FIG. A current is applied from the electrode 4 to the object to be welded 18 under predetermined application conditions from the current application time T1, which is the time point when the electrodes 4 come into contact with each other. Further, when there is a gap between the materials to be welded, as shown in FIG. The application of the current at the current value I0 is continued until the energization time T2 when the electrodes are in contact with each other, and from the energization time T2, the current is applied from the electrode 4 to the object to be welded 18 under predetermined application conditions.

次に、実施例1における溶接装置の動作フローを整理する。 Next, the operation flow of the welding device in Example 1 will be organized.

まず、仮溶接として、電極4は、溶接対象18を所定の力で加圧しながら、溶接対象18に電流値I0の電流を印加し始める(図8のステップ1)。次に、電流値I0の電流が印加された状態で、変位量測定器15により、仮溶接開始座標から電極4が移動した変位量を測定する(図8のステップ2)。 First, as temporary welding, the electrode 4 starts to apply a current value I0 to the object 18 to be welded while pressing the object 18 to be welded with a predetermined force (step 1 in FIG. 8). Next, while the current of the current value I0 is being applied, the displacement measuring device 15 measures the displacement of the electrode 4 from the temporary welding start coordinates (step 2 in FIG. 8).

次に、制御装置16は、測定された変位量を確認し、変位量があらかじめ定められたΔx以上であるか否かを判断する(図8のステップ3)。変位量がΔx以上である場合はステップ4に処理を移行し、変位量がΔx以上でない場合は、変位量がΔx以上となるまで、変位量がΔx以上であるか否かの判断を繰り返す。 Next, the control device 16 confirms the measured displacement amount and determines whether or not the displacement amount is equal to or greater than a predetermined Δx (step 3 in FIG. 8). If the displacement is Δx or more, the process proceeds to step 4. If the displacement is not Δx or more, the determination of whether the displacement is Δx or more is repeated until the displacement is Δx or more.

次に、電流値I0の電流が印加された状態で、抵抗測定器14により溶接対象18を電流が流れる通電経路の抵抗値を測定する(図8のステップ4)。そして、制御装置16は、測定された抵抗値を確認し、抵抗値がR0以下であるか否かを判断する(図8のステップ5)。抵抗値がR0以下である場合はステップ6に処理を移行し、抵抗値がR0以下でない場合は、抵抗値がR0以下となるまで、抵抗の測定と抵抗値がR0以下であるか否かの判断を繰り返す。抵抗値がR0以下となった時点で、電極4からの加圧を制御し、電極4から溶接対象18に加わる圧力を一定とすることが好ましい。これにより、以後被溶接材間の接触面積が変化することを抑制することができる。 Next, while the current of current value I0 is being applied, the resistance value of the energization path through which the current flows through the object 18 to be welded is measured by the resistance measuring device 14 (step 4 in FIG. 8). Then, the control device 16 confirms the measured resistance value and determines whether the resistance value is equal to or less than R0 (step 5 in FIG. 8). If the resistance value is R0 or less, the process proceeds to step 6. If the resistance value is not R0 or less, the resistance is measured and whether the resistance value is R0 or less is checked until the resistance value becomes R0 or less. Repeat judgment. It is preferable to control the pressure applied from the electrode 4 and keep the pressure applied from the electrode 4 to the object to be welded 18 constant when the resistance value becomes equal to or less than R0. As a result, it is possible to suppress the subsequent change in the contact area between the materials to be welded.

次に、抵抗値がR0以下となった時点で本溶接を行う。制御装置16は、タイマー12を制御して、あらかじめ定められた印加条件で電極4から溶接対象18に電流を印加させる。具体的には、制御装置16は、通電時間T1から電流値I1の電流を時間Taの間印加させる(図8のステップ6)。その後、制御装置16は、電流値I2の電流を時間Tbの間印加させる(図8のステップ7)。 Next, main welding is performed when the resistance value becomes R0 or less. The control device 16 controls the timer 12 to apply current from the electrode 4 to the object to be welded 18 under predetermined application conditions. Specifically, the control device 16 applies the current of the current value I1 for the time Ta from the energization time T1 (step 6 in FIG. 8). After that, the control device 16 applies the current of the current value I2 for the time Tb (step 7 in FIG. 8).

このように、実施例1における溶接装置では、被溶接材間の接触面積が所定の面積である場合の電流の印加条件をあらかじめ定めておく。また、所定の接触面積において、あらかじめ定めた一定の電流値の電流が溶接対象18を流れた場合の抵抗値を求めておく。さらに、被溶接材間の接触面積が所定の面積となるのに必要な電極4の変位量をあらかじめ想定しておく。そして、仮溶接にて一定の電流値の電流を流して、電極4の変位量が所定の値以上となり、かつ抵抗値が所定の抵抗値以下になる通電時間を検出し、この時間に被溶接材間の接触面積が所定の面積になったと想定する。この時間以後、あらかじめ定められた電流の印加条件で、電極4から溶接対象18に電流を印加する。これにより、被溶接材間の接触面積が所定の面積になったことを検出し、この接触面積に適した印加条件の電流を印加して溶接を行うため、常に適切な電流の印加条件で溶接を行うことができ、溶接品質を安定させることができる。 As described above, in the welding apparatus according to the first embodiment, the current application condition is determined in advance when the contact area between the materials to be welded is a predetermined area. Also, a resistance value is obtained in the case where a predetermined constant current value flows through the object 18 to be welded in a predetermined contact area. Furthermore, the amount of displacement of the electrode 4 necessary for the contact area between the welded materials to reach a predetermined area is assumed in advance. Then, a current of a constant current value is passed through temporary welding, and the energization time during which the displacement of the electrode 4 becomes equal to or greater than a predetermined value and the resistance value becomes equal to or less than a predetermined resistance value is detected. Assume that the contact area between the materials has reached a predetermined area. After this time, a current is applied from the electrode 4 to the object 18 to be welded under predetermined current application conditions. As a result, it is detected that the contact area between the materials to be welded has reached a predetermined area, and welding is performed by applying a current under suitable conditions for this contact area. can be performed, and the welding quality can be stabilized.

なお、実施例1における説明では、電極4の変位量が所定の値以上となることを確認してから、抵抗値が所定の値以下となることを確認したが、変位量の測定と抵抗値の測定の順番は任意である。また、本溶接を、電流値I1の電流を時間Taの間印加し、電流値I2の電流を時間Tbの間印加させて2段階の溶接を行ったが、本溶接の電流の印加条件は任意である。例えば、一定の電流値の電流を一定時間印加するだけでも良いし、断続的に3段階や7段階等の、多段階の溶接を行っても良く、あるいは連続的に電流値を変化させて溶接を行っても良い。
(実施例2)
In the description of Example 1, it was confirmed that the displacement of the electrode 4 was equal to or greater than a predetermined value, and then that the resistance was equal to or less than a predetermined value. can be measured in any order. Further, the main welding was performed in two stages by applying a current of current value I1 for time Ta and applying a current of current value I2 for time Tb. is. For example, a current with a constant current value may be applied for a certain period of time, or multi-stage welding such as three or seven stages may be performed intermittently, or welding may be performed by continuously changing the current value. may be performed.
(Example 2)

図1および図9,図10を用いて、実施例2における溶接装置の溶接動作について説明する。 Welding operation of the welding apparatus according to the second embodiment will be described with reference to FIGS. 1, 9, and 10. FIG.

図9は実施例2における溶接中の抵抗値の変化と電流の印加条件との関係を示す図であり、図9(a)は隙間に応じた抵抗値の変化を示すグラフ、図9(b),(c)は隙間に応じた電流の印加条件を示すグラフである。図10は実施例2における溶接方法を示すフロー図である。 9A and 9B are graphs showing the relationship between changes in resistance value during welding and current application conditions in Example 2. FIG. 9A is a graph showing changes in resistance value according to the gap. ) and (c) are graphs showing current application conditions according to gaps. FIG. 10 is a flowchart showing a welding method in Example 2. FIG.

実施例2における溶接装置の溶接動作では、まず、仮溶接として、電極4から溶接対象18に一定の電流値I0の電流を印加しながら、電極4の変位量を測定する。そして、変位量があらかじめ定めた変位量Δxとなった時点で、抵抗測定器14により溶接対象18を電流が流れる通電経路の抵抗値を測定する。変位量Δxとなった通電時間をT0とする。ここで、溶接対象18における通電経路の抵抗値は、電流の電流値が一定の場合、電流の電流密度に比例し、電流密度は被溶接材間の接触面の接触面積に比例する。そのため、あらかじめ、通電経路の抵抗値と被溶接材間の接触面の接触面積との関係を求めておくことにより、通電時間T0における抵抗値を求めて、その時点での被溶接材間の接触面の接触面積を算出することができる。なお、変位量Δxは、被溶接材間が接触して、溶接をかいしするのに最適な接触面積となると想定される電極4の変位量である。仮溶接は、実際に被溶接材間を接合する際の電流値に比べて低い電流値I0の電流を印加して行われ、通電時間T0における被溶接材間の実際の接触面の接触面積を求めるために行うものである。 In the welding operation of the welding apparatus in Example 2, first, as temporary welding, the amount of displacement of the electrode 4 is measured while applying a constant current value I0 from the electrode 4 to the object 18 to be welded. Then, when the amount of displacement reaches a predetermined amount of displacement Δx, the resistance value of the energization path through which the current flows through the object 18 to be welded is measured by the resistance measuring device 14 . The energization time at which the displacement amount Δx is reached is assumed to be T0. Here, when the current value of the current is constant, the resistance value of the energization path in the object to be welded 18 is proportional to the current density of the current, and the current density is proportional to the contact area of the contact surface between the welded materials. Therefore, by obtaining the relationship between the resistance value of the energization path and the contact area of the contact surface between the welded materials in advance, the resistance value at the energization time T0 can be obtained, and the contact between the welded materials at that time can be calculated. The contact area of the faces can be calculated. The amount of displacement Δx is the amount of displacement of the electrode 4 that is assumed to provide the optimum contact area for welding by contact between the materials to be welded. Temporary welding is performed by applying a current value I0 that is lower than the current value for actually joining the materials to be welded. It is done in order to seek.

例えば、被溶接材間に隙間がない場合、図9(a)の抵抗変化44に示すように、電流を印加し始めてからすぐに抵抗値が低下していく。また、被溶接材間に隙間がある場合、図9(a)の抵抗変化46に示すように、電流を印加し始めた後しばらくは抵抗値が一定で、抵抗値が下がり始めてからも、被溶接材間に隙間がない場合と比べて抵抗値の低下速度が遅い。そのため、通電時間T0においては、被溶接材間に隙間がある場合の方が被溶接材間に隙間がある場合より抵抗値が高くなる。これは、被溶接材間に隙間がある間は抵抗値が一定となり、被溶接材間が接触しても、電極4によって溶接対象18が加圧されて被溶接材間の接触面積が拡大するのに時間を要するためである。 For example, when there is no gap between the materials to be welded, the resistance value decreases immediately after the current is applied, as shown by the resistance change 44 in FIG. 9(a). Further, when there is a gap between the materials to be welded, as shown in the resistance change 46 in FIG. The rate of decrease in resistance value is slower than when there is no gap between weld metals. Therefore, at the energization time T0, the resistance value is higher when there is a gap between the welded materials than when there is a gap between the welded materials. This is because the resistance value is constant while there is a gap between the materials to be welded, and even if the materials to be welded come into contact with each other, the electrode 4 presses the object 18 to be welded and the contact area between the materials to be welded increases. This is because it takes time to

次に、測定された抵抗値から求められる被溶接材間の接触面積に応じて、本溶接を行う。本溶接においては、被溶接材間の接触面積に応じて、それぞれに最適な電流の印加条件があらかじめ規定されている。そして、測定された抵抗値に応じて最適な電流の印加条件が選択され、選択された印加条件で、電極4から溶接対象18に電流が印加される。 Next, final welding is performed according to the contact area between the welded materials obtained from the measured resistance value. In the main welding, the optimum current application conditions are defined in advance according to the contact area between the materials to be welded. Then, an optimum current application condition is selected according to the measured resistance value, and the current is applied from the electrode 4 to the welding target 18 under the selected application condition.

例えば、被溶接材間に隙間がない場合、図9(b)に示すように、通電時間T0において抵抗値がR1であるので、抵抗値がR1である場合に最適な電流の印加条件で電極4から溶接対象18に電流が印加される。具体的には、通電時間T3から通電時間T4まで電流値I3の電流を印加し、通電時間T4から通電時間T5まで電流値I4の電流を印加する。また、被溶接材間に隙間がある場合、図9(c)に示すように、通電時間T0において抵抗値がR2であるので、抵抗値がR2である場合に最適な電流の印加条件で電極4から溶接対象18に電流が印加される。具体的には、通電時間T6から通電時間T7まで電流値I5の電流を印加し、通電時間T7から通電時間T8まで電流値I6の電流を印加する。 For example, when there is no gap between the materials to be welded, as shown in FIG. 9B, the resistance value is R1 at the energization time T0. A current is applied from 4 to the object to be welded 18 . Specifically, a current of current value I3 is applied from energization time T3 to energization time T4, and a current of current value I4 is applied from energization time T4 to energization time T5. When there is a gap between the materials to be welded, as shown in FIG. 9(c), the resistance value is R2 at the current application time T0. A current is applied from 4 to the object to be welded 18 . Specifically, a current of current value I5 is applied from the energization time T6 to the energization time T7, and a current of the current value I6 is applied from the energization time T7 to the energization time T8.

次に、実施例2における溶接装置の動作フローを整理する。 Next, the operation flow of the welding device in Example 2 will be organized.

まず、仮溶接として、電極4は、溶接対象18を所定の力で加圧しながら、溶接対象18に電流値I0の電流を印加する(図10のステップ1)。次に、電流値I0の電流が印加された状態で、変位量測定器15により、仮溶接開始座標から電極4が移動した変位量を測定する(図10のステップ2)。 First, as temporary welding, the electrode 4 applies a current value I0 to the object 18 to be welded while pressurizing the object 18 to be welded with a predetermined force (step 1 in FIG. 10). Next, while the current of the current value I0 is being applied, the displacement measuring device 15 measures the displacement of the electrode 4 from the temporary welding start coordinates (step 2 in FIG. 10).

次に、制御装置16は、測定された変位量を確認し、変位量があらかじめ定められたΔxであるか否かを判断する(図10のステップ3)。変位量がΔxである場合はステップ4に処理を移行し、変位量がΔxでない場合は、変位量がΔxとなるまで、変位量がΔxであるか否かの判断を繰り返す。ここで、変位量がΔxとなった通電時間を通電時間T0とする。 Next, the control device 16 confirms the measured displacement amount and determines whether or not the displacement amount is a predetermined Δx (step 3 in FIG. 10). If the displacement is .DELTA.x, the process proceeds to step 4, and if the displacement is not .DELTA.x, the determination of whether the displacement is .DELTA.x is repeated until the displacement is .DELTA.x. Here, the energization time at which the displacement amount becomes Δx is defined as the energization time T0.

次に、制御装置16は、抵抗測定器14により測定された抵抗値を確認し(図10のステップ4)、測定された抵抗値に応じて最適な電流の印加条件を選択する(図10のステップ5)。制御装置16は、あらかじめ定められた複数の印加条件から、測定された抵抗値における印加条件として最適な印加条件を選択する。通電時間T0となった時点で、電極4からの加圧を制御し、電極4から溶接対象18に加わる圧力を一定とすることが好ましい。これにより、以後被溶接材間の接触面積が変化することを抑制することができる。 Next, the control device 16 confirms the resistance value measured by the resistance measuring device 14 (step 4 in FIG. 10), and selects the optimum current application condition according to the measured resistance value ( step 5). The controller 16 selects the optimum application condition for the measured resistance value from a plurality of predetermined application conditions. It is preferable to control the pressurization from the electrode 4 and keep the pressure applied from the electrode 4 to the object to be welded 18 constant at the time when the energization time T0 is reached. As a result, it is possible to suppress the subsequent change in the contact area between the materials to be welded.

次に、選択された電流の印加条件で本溶接を行う。制御装置16は、タイマー12を制御して、選択された印加条件で、電極4から溶接対象18に電流を印加させる(図10のステップ6)。 Next, final welding is performed under the selected current application conditions. The control device 16 controls the timer 12 to apply current from the electrode 4 to the object 18 to be welded under the selected application conditions (step 6 in FIG. 10).

このように、実施例2における溶接装置では、複数の被溶接材間の接触面積それぞれに対応する最適な電流の印加条件を、測定された抵抗値と紐付けてあらかじめ定めておく。さらに、被溶接材間の接触面積が所定の面積となるのに必要な電極4の変位量をあらかじめ想定しておく。そして、仮溶接にて、一定の電流値の電流を流して、電極4の変位量が一定の値となった時点における抵抗値を測定し、測定された抵抗値に対応する電流の印加条件を選択する。その後、選択された電流の印加条件で、電極4から溶接対象18に電流を印加する。これにより、電極4の変位量が所定の値となって、被溶接材間の接触面積が溶接に適した面積に近い状態における通電経路の抵抗値を測定し、抵抗値に対応する被溶接材間の接触面積に対して最適となる印加条件で電流を印加し、溶接を行うため、常に適切な電流の印加条件で溶接を行うことができ、溶接品質を安定させることができる。 As described above, in the welding apparatus according to the second embodiment, the optimum current application conditions corresponding to the respective contact areas between the plurality of welded materials are determined in advance in association with the measured resistance values. Furthermore, the amount of displacement of the electrode 4 necessary for the contact area between the welded materials to reach a predetermined area is assumed in advance. Then, in temporary welding, a current of a constant current value is passed through, the resistance value is measured at the time when the displacement amount of the electrode 4 reaches a constant value, and the current application condition corresponding to the measured resistance value is determined. select. After that, a current is applied from the electrode 4 to the object 18 to be welded under the selected current application conditions. As a result, the displacement of the electrode 4 becomes a predetermined value, and the resistance value of the energization path is measured in a state where the contact area between the welded materials is close to the area suitable for welding. Since welding is performed by applying current under the optimum application conditions for the contact area between them, welding can always be performed under appropriate current application conditions, and welding quality can be stabilized.

なお、実施例2における説明では、抵抗値を複数想定し、それぞれの抵抗値に対応する電流の印加条件をあらかじめ定めた構成としたが、制御装置16が、測定された抵抗値に応じた最適な電流の印加条件をその都度自動的に設計する構成としても良い。例えば、制御装置16に、測定された抵抗値に応じた最適な電流の印加条件を設計するプログラムを備えても良い。測定された抵抗値に応じた最適な電流の印加条件をその都度自動的に設計することにより、測定された抵抗値に応じたより最適な電流の印加条件で溶接を行うことができる。そのため、より安定した溶接品質の溶接を行うことが可能となる。 In the description of the second embodiment, a plurality of resistance values are assumed, and the current application conditions corresponding to the respective resistance values are determined in advance. A configuration may be adopted in which the current application condition is automatically designed on a case-by-case basis. For example, the control device 16 may be provided with a program for designing optimum current application conditions according to the measured resistance value. By automatically designing the optimum current application condition according to the measured resistance value each time, welding can be performed under the more optimum current application condition according to the measured resistance value. Therefore, it is possible to perform welding with more stable welding quality.

また、本溶接として、2段階の溶接を行ったが、本溶接の電流の印加条件は任意である。例えば、一定の電流値の電流を一定時間印加するだけでも良いし、3段階や7段階等の、印加時間と電流値の組合せを複数設ける多段階の溶接を行っても良い。
なお、以上の説明は、インダイレクト溶接を例に説明したが、ダイレクト溶接やシリーズ溶接等の、他の抵抗溶接においても実施することができる。
In addition, two-step welding was performed as the main welding, but the current application conditions for the main welding are arbitrary. For example, a constant current value may be applied for a certain period of time, or multi-stage welding may be performed by providing a plurality of combinations of application time and current value, such as 3 stages or 7 stages.
In the above description, indirect welding has been described as an example, but other resistance welding such as direct welding and series welding can also be implemented.

溶接装置
4 電極
6 アース
14 抵抗測定器
15 変位量測定器
16 制御装置
17 シリンダー本体
19 シリンダーヘッド
21 シリンダー
22 被溶接材
23 座標
24 被溶接材
25 座標
26 溶接箇所
28 被溶接材
39 接触面
1 welding device 4 electrode 6 ground 14 resistance measuring device 15 displacement measuring device 16 control device 17 cylinder body 19 cylinder head 21 cylinder 22 material to be welded 23 coordinates 24 material to be welded 25 coordinates 26 welding point 28 material to be welded 39 contact surface

Claims (1)

溶接対象を加圧すると共に前記溶接対象に電流を印加する電極と、
前記電極を駆動させる駆動装置と、
前記電極に電流を印加する電源供給装置と、
前記溶接対象における通電経路の抵抗値を測定する抵抗測定器と、
前記電極が前記溶接対象を加圧する際に前記電極が前記溶接対象の板厚方向に移動した変位量を測定する変位量測定器と、
前記駆動装置および前記電源供給装置の動作を制御する制御装置と
を有し、
前記制御装置は、測定された抵抗値に応じた印加条件で電流を印加するものであり、第1の電流値の電流を前記電極から印加しながら前記抵抗値の測定及び前記変位量の測定を行うことにより仮溶接を行い、前記仮溶接により前記抵抗値が一定の値以下になり、かつ、前記変位量が一定の値以上になった後に、測定された前記抵抗値に応じて最適な電流の印加条件により、前記第1の電流値と異なる第2の電流値の電流を所定の時間印加して本溶接を行う溶接動作を行うように前記電源供給装置の動作を制御するものであり、
前記仮溶接に連続して前記本溶接が行われることを特徴とする溶接装置。
an electrode that pressurizes the object to be welded and applies a current to the object to be welded;
a driving device for driving the electrodes;
a power supply device that applies current to the electrodes;
a resistance measuring instrument for measuring the resistance value of the current path in the object to be welded;
a displacement measuring device that measures the amount of displacement that the electrode moves in the plate thickness direction of the object to be welded when the electrode presses the object to be welded;
a control device for controlling the operation of the driving device and the power supply device;
The control device applies a current under an application condition corresponding to the measured resistance value, and measures the resistance value and the displacement amount while applying a current of a first current value from the electrodes. Temporary welding is performed by performing temporary welding, and after the resistance value becomes a certain value or less by the temporary welding, and the displacement amount becomes a certain value or more, the optimum current according to the measured resistance value The operation of the power supply device is controlled so as to perform a welding operation for performing final welding by applying a current of a second current value different from the first current value for a predetermined time according to the application condition of
A welding device , wherein the final welding is performed continuously with the temporary welding .
JP2017254211A 2017-12-28 2017-12-28 welding equipment Active JP7158145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017254211A JP7158145B2 (en) 2017-12-28 2017-12-28 welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017254211A JP7158145B2 (en) 2017-12-28 2017-12-28 welding equipment

Publications (2)

Publication Number Publication Date
JP2019118923A JP2019118923A (en) 2019-07-22
JP7158145B2 true JP7158145B2 (en) 2022-10-21

Family

ID=67306775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017254211A Active JP7158145B2 (en) 2017-12-28 2017-12-28 welding equipment

Country Status (1)

Country Link
JP (1) JP7158145B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045597A1 (en) 2003-08-25 2005-03-03 Pei-Chung Wang Resistance welding control method
JP2006055893A (en) 2004-08-20 2006-03-02 Suzuki Motor Corp Spot welding judgment system and judgment method
JP2006095572A (en) 2004-09-30 2006-04-13 Daihen Corp Resistance welding control method
JP2013111633A (en) 2011-11-30 2013-06-10 Honda Motor Co Ltd One-side spot welding equipment and one-side spot welding method
JP2013121616A (en) 2011-12-12 2013-06-20 Dengensha Mfg Co Ltd Resistance welding machine and resistance welding method
JP2014057979A (en) 2012-09-18 2014-04-03 Nec Corp Resistance-welding device and resistance-welding method
JP2014147964A (en) 2013-02-04 2014-08-21 Nippon Avionics Co Ltd Welding device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949124U (en) * 1972-08-05 1974-04-30
US4447700A (en) * 1982-06-07 1984-05-08 General Electric Company Resistance spot welder adaptive control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045597A1 (en) 2003-08-25 2005-03-03 Pei-Chung Wang Resistance welding control method
JP2006055893A (en) 2004-08-20 2006-03-02 Suzuki Motor Corp Spot welding judgment system and judgment method
JP2006095572A (en) 2004-09-30 2006-04-13 Daihen Corp Resistance welding control method
JP2013111633A (en) 2011-11-30 2013-06-10 Honda Motor Co Ltd One-side spot welding equipment and one-side spot welding method
JP2013121616A (en) 2011-12-12 2013-06-20 Dengensha Mfg Co Ltd Resistance welding machine and resistance welding method
JP2014057979A (en) 2012-09-18 2014-04-03 Nec Corp Resistance-welding device and resistance-welding method
JP2014147964A (en) 2013-02-04 2014-08-21 Nippon Avionics Co Ltd Welding device

Also Published As

Publication number Publication date
JP2019118923A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
US8253056B2 (en) Resistance welding method and resistance welding apparatus
KR101831081B1 (en) Resistance spot welding method
WO2014136507A1 (en) Resistive spot welding method
US20110233173A1 (en) Seam welding method and machine therefor
JPH0815669B2 (en) Control device for resistance welding
WO2017212916A1 (en) Resistance spot welding method
WO2013172202A1 (en) Switching electrode and resistance welding device using same, spot welding device and spot welding method
JP6665140B2 (en) Resistance welding method and resistance welding equipment
JP2019155389A (en) Resistance spot welding method and resistance spot welding device
JP2021079416A (en) Resistance spot welding method
KR101820514B1 (en) Flash butt welding method using control servo press
CA2923798A1 (en) Seam welding method and seam welding device
JP7158144B2 (en) welding equipment
WO2019160141A1 (en) Resistance spot welding method and method for manufacturing welded member
JP7158145B2 (en) welding equipment
JP2009226467A (en) Spot welding method of dissimilar plates, and its apparatus
JP2004098107A (en) Aluminum material resistance spot welding method
WO2016013212A1 (en) Resistance spot welding method
KR101221052B1 (en) Resistance spot welding method
JP2019147187A (en) Spot welding method
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
JP2002028790A (en) Resistance welding equipment
JP2019150833A (en) Resistance-welding method
JP5789445B2 (en) Resistance welding method
JP7058064B2 (en) Welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7158145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150