JP7156500B2 - Steel plate and its manufacturing method - Google Patents

Steel plate and its manufacturing method Download PDF

Info

Publication number
JP7156500B2
JP7156500B2 JP2021507720A JP2021507720A JP7156500B2 JP 7156500 B2 JP7156500 B2 JP 7156500B2 JP 2021507720 A JP2021507720 A JP 2021507720A JP 2021507720 A JP2021507720 A JP 2021507720A JP 7156500 B2 JP7156500 B2 JP 7156500B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
content
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021507720A
Other languages
Japanese (ja)
Other versions
JPWO2021117382A1 (en
Inventor
祐也 佐藤
圭治 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2021117382A1 publication Critical patent/JPWO2021117382A1/en
Application granted granted Critical
Publication of JP7156500B2 publication Critical patent/JP7156500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、例えば液化ガス貯槽用タンク等の、極低温環境下で使用される構造用鋼に供して好適な、特に耐応力腐食割れ性に優れる鋼板およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a steel sheet particularly excellent in stress corrosion cracking resistance suitable for structural steel used in cryogenic environments such as liquefied gas storage tanks, and a method for producing the same.

液化ガス貯槽用構造物に熱間圧延鋼板が用いられる際には、使用環境が極低温となるため、鋼板の強度のみならず、極低温での靱性が要求される。例えば、液化天然ガスの貯槽に熱間圧延鋼板が使用される場合は、液化天然ガスの沸点である-164℃以下で優れた靱性を確保する必要がある。鋼材の低温靱性が劣ると、極低温貯槽用構造物としての安全性を維持できなくなる虞があるため、適用される鋼板に対する低温靱性向上の要求は強い。この要求に対して、従来は、7%Ni鋼板や9%Ni鋼板が使用されている。 When a hot-rolled steel sheet is used for a structure for a liquefied gas storage tank, the use environment is extremely low, so not only the strength of the steel sheet but also toughness at extremely low temperatures is required. For example, when a hot-rolled steel plate is used in a liquefied natural gas storage tank, it is necessary to ensure excellent toughness at −164° C. or below, which is the boiling point of liquefied natural gas. If the low-temperature toughness of the steel material is poor, the safety of the cryogenic storage tank structure may not be maintained. Conventionally, 7% Ni steel sheets and 9% Ni steel sheets have been used to meet this requirement.

例えば、特許文献1、2および3には、9%より低いNi含有量にて9%Ni鋼板と同等以上の性能を有する低温用鋼板について提案されている。 For example, Patent Literatures 1, 2 and 3 propose low-temperature steel sheets having performance equal to or higher than that of 9% Ni steel sheets with a Ni content lower than 9%.

国際公開第2007/034576号WO2007/034576 国際公開第2007/080646号WO2007/080646 特開2011-241419号公報JP 2011-241419 A

しかしながら、特許文献1、2および3に記載のNi含有鋼材は、低温靱性に優れるものの、水素起因の応力腐食割れについて言及されておらず、未だ検討の余地があった。すなわち、例えば船舶用LNGタンクの場合は、その使用環境に硫化物や塩化物が含まれることから、水素起因の応力腐食割れが発生する可能性が高いために、応力腐食割れに対する耐久性である、耐応力腐食割れ性も兼備することが求められている。 However, although the Ni-containing steel materials described in Patent Documents 1, 2 and 3 are excellent in low-temperature toughness, they do not mention stress corrosion cracking caused by hydrogen, and there is still room for investigation. For example, in the case of LNG tanks for ships, the use environment contains sulfides and chlorides, so there is a high possibility that hydrogen-induced stress corrosion cracking will occur. It is also required to have stress corrosion cracking resistance.

本発明は係る問題に鑑みなされたものであり、特に低温環境下での使用に適合する、耐応力腐食割れ性に優れる鋼板を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a steel sheet that is suitable for use in a low-temperature environment and has excellent resistance to stress corrosion cracking.

本発明者らは、上記課題を解決するため、鋼板の成分組成および組織に関して鋭意研究を行い、以下の知見を得た。
(1)Coを添加することによって、鋼板表面で腐食が進行した際に鋼板表面にCoが濃化し、鋼中への水素侵入を低減し、水素脆化によるき裂進展を低減できる。
In order to solve the above problems, the present inventors conducted extensive research on the chemical composition and structure of steel sheets, and obtained the following findings.
(1) By adding Co, when corrosion progresses on the steel sheet surface, Co concentrates on the steel sheet surface, hydrogen penetration into the steel can be reduced, and crack propagation due to hydrogen embrittlement can be reduced.

(2)熱間圧延後の冷却、もしくは熱処理(焼入または2相域焼入)後の冷却における、冷却速度を1℃/s以上とすることによって、鋼板表面下1mmまでの組織は、方位差15°以上の大角粒界で囲まれた結晶粒の径が5μm以下である微細組織となる。そして、この微細組織が水素のトラップサイトを分散させることにより、水素脆化によるき裂進展を軽減できる。 (2) By setting the cooling rate to 1°C/s or more during cooling after hot rolling or cooling after heat treatment (quenching or two-phase region quenching), the structure up to 1 mm below the surface of the steel sheet is A fine structure is obtained in which the diameter of crystal grains surrounded by large-angle grain boundaries with a difference of 15° or more is 5 μm or less. This microstructure disperses the hydrogen trap sites, thereby reducing crack growth due to hydrogen embrittlement.

(3)鋼板表層における残留オーステナイトの最大円相当径を1μm以下とすることにより、残留オーステナイトへの水素トラップの局所集中を分散でき、水素脆化によるき裂進展を軽減できる。 (3) By setting the maximum equivalent circle diameter of retained austenite in the surface layer of the steel sheet to 1 μm or less, the local concentration of hydrogen traps in the retained austenite can be dispersed, and crack propagation due to hydrogen embrittlement can be reduced.

本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は以下のとおりである。
1.質量%で、
C:0.01%以上0.15%以下、
Si:0.01%以上1.00%以下、
Mn:0.10%以上3.00%以下、
Al:0.002%以上0.100%以下、
Ni:5.0%以上10.0%以下、
N:0.0010%以上0.0080%以下、
Co:0%超1.50%以下、
P:0.030%以下および
S:0.0050%以下
を含有し、残部Feおよび不可避的不純物である成分組成を有し、
鋼板の表面から深さが1mmの位置までの組織は、方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径が5μm以下、かつ残留オーステナイト粒の最大円相当径が1μm以下である鋼板。
The present invention was made by further studying the above findings, and the gist thereof is as follows.
1. in % by mass,
C: 0.01% or more and 0.15% or less,
Si: 0.01% or more and 1.00% or less,
Mn: 0.10% or more and 3.00% or less,
Al: 0.002% or more and 0.100% or less,
Ni: 5.0% or more and 10.0% or less,
N: 0.0010% or more and 0.0080% or less,
Co: more than 0% and 1.50% or less,
P: 0.030% or less and S: 0.0050% or less, with the balance being Fe and unavoidable impurities,
In the structure from the surface of the steel sheet to a position 1 mm deep, the average equivalent circle diameter of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more is 5 μm or less, and the maximum equivalent circle diameter of retained austenite grains is 1 μm. Steel plate which is below.

2.前記成分組成は、さらに質量%で、
Nb:0.001%以上0.030%以下、
V:0.01%以上0.10%以下、
Ti:0.003%以上0.050%以下、
B:0.0003%以上0.0100%以下、
Cu:0.01%以上1.00%以下、
Cr:0.01%以上1.50%以下、
Sn:0.01%以上0.50%以下、
Sb:0.01%以上0.50%以下、
Mo:0.03%以上1.00%以下および
W:0.05%以上2.00%以下
から選択される1種または2種以上を含有する前記1に記載の鋼板。
2. The component composition is further mass %,
Nb: 0.001% or more and 0.030% or less,
V: 0.01% or more and 0.10% or less,
Ti: 0.003% or more and 0.050% or less,
B: 0.0003% or more and 0.0100% or less,
Cu: 0.01% or more and 1.00% or less,
Cr: 0.01% or more and 1.50% or less,
Sn: 0.01% or more and 0.50% or less,
Sb: 0.01% or more and 0.50% or less,
2. The steel sheet according to 1 above, containing one or more selected from Mo: 0.03% or more and 1.00% or less and W: 0.05% or more and 2.00% or less.

3.前記成分組成は、さらに質量%で、
Ca:0.0005%以上0.0050%以下、
Zr:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0050%以下および
REM:0.0010%以上0.0100%以下
から選択される1種または2種以上を含有する前記1または2に記載の鋼板。
3. The component composition is further mass %,
Ca: 0.0005% or more and 0.0050% or less,
Zr: 0.0005% or more and 0.0050% or less,
3. The steel sheet according to 1 or 2 above, containing one or more selected from Mg: 0.0005% or more and 0.0050% or less and REM: 0.0010% or more and 0.0100% or less.

4.前記1から3のいずれかに記載の成分組成を有する鋼素材を加熱し、熱間圧延を施した後に冷却処理を行う鋼板の製造方法において、前記冷却処理における600℃以下200℃以上の温度域での平均冷却速度を1℃/s以上とする、鋼板の製造方法。 4. In the method for manufacturing a steel sheet, the steel material having the chemical composition according to any one of 1 to 3 is heated, hot-rolled, and then cooled, wherein the temperature range in the cooling treatment is 600 ° C. or lower and 200 ° C. or higher. A method for manufacturing a steel sheet, wherein the average cooling rate at is 1 ° C / s or more.

5.前記1から3のいずれかに記載の成分組成を有する鋼素材を加熱し、熱間圧延を施し、さらに熱処理を施した後に冷却処理を行う鋼板の製造方法において、前記冷却処理における600℃以下200℃以上の温度域での平均冷却速度を1℃/s以上とする、鋼板の製造方法。 5. 3. A steel sheet manufacturing method comprising heating a steel material having the chemical composition according to any one of 1 to 3, hot rolling, further heat-treating, and then cooling, wherein A method for producing a steel sheet, wherein the average cooling rate in a temperature range of °C or higher is 1 °C/s or higher.

本発明によれば、水素による応力腐食割れに対して高い耐久性を有する、鋼板を提供することができる。この鋼板を、液化ガス貯槽用タンク等の、低温環境で使用される鋼構造物に供することによって、該鋼構造物の安全性が向上することができ、産業上格段の効果をもたらす。 ADVANTAGE OF THE INVENTION According to this invention, the steel plate which has high durability with respect to the stress corrosion cracking by hydrogen can be provided. By applying this steel plate to a steel structure used in a low-temperature environment, such as a liquefied gas storage tank, the safety of the steel structure can be improved, resulting in significant industrial effects.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
[成分組成]
まず、本発明の鋼板の成分組成と、その限定理由について説明する。本発明では、優れた耐食性を確保するため、以下のように鋼板の成分組成を規定する。なお、成分組成における%表示は、特に断らない限り質量%を意味するものとする。
Embodiments of the present invention will be described below. In addition, this invention is not limited to the following embodiment.
[Component composition]
First, the chemical composition of the steel sheet of the present invention and the reasons for its limitation will be described. In the present invention, in order to ensure excellent corrosion resistance, the chemical composition of the steel sheet is specified as follows. In addition, % display in a component composition shall mean the mass % unless otherwise indicated.

C:0.01%以上0.15%以下
Cは、高強度化に有効であり、その効果を得るためには、Cを0.01%以上にて含有する必要がある。一方、0.15%を超えて含有すると、低温靱性が低下する。このため、Cは0.01%以上0.15%以下とする。好ましくは、0.03%以上とする。好ましくは、0.10%以下とする。
C: 0.01% or more and 0.15% or less C is effective in increasing the strength, and in order to obtain this effect, it is necessary to contain C in an amount of 0.01% or more. On the other hand, when the content exceeds 0.15%, the low temperature toughness is lowered. Therefore, C should be 0.01% or more and 0.15% or less. Preferably, it is 0.03% or more. Preferably, it is 0.10% or less.

Si:0.01%以上1.00%以下
Siは、脱酸剤として作用し、製鋼上必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。この効果を得るためには、Siを0.01%以上にて含有する必要がある。一方、1.00%を超えて含有すると、低温靱性が劣化する。このため、Siは0.01%以上1.00%以下とする。好ましくは、0.03%以上とする。好ましくは、0.5%以下とする。
Si: 0.01% or more and 1.00% or less Si acts as a deoxidizing agent and is not only necessary for steelmaking, but also dissolves in steel and has the effect of increasing the strength of the steel sheet by solid solution strengthening. . In order to obtain this effect, it is necessary to contain Si at 0.01% or more. On the other hand, when the content exceeds 1.00%, the low temperature toughness deteriorates. Therefore, Si should be 0.01% or more and 1.00% or less. Preferably, it is 0.03% or more. Preferably, it is 0.5% or less.

Mn:0.10%以上3.00%以下
Mnは、鋼の焼き入れ性を高め、鋼板の高強度化に有効な元素である。その効果を得るためには、Mnは0.01%以上の含有を必要とする。一方、3.00%を超えて含有すると、耐腐食割れ性が低下する。このため、Mnは0.10%以上3.00%以下の範囲とする。好ましくは、0.20%以上とする。好ましくは、2.00%以下、より好ましくは1.00%以下とする。
Mn: 0.10% or more and 3.00% or less Mn is an element effective in increasing the hardenability of steel and increasing the strength of the steel sheet. In order to obtain the effect, Mn needs to be contained in an amount of 0.01% or more. On the other hand, when the content exceeds 3.00%, corrosion cracking resistance is lowered. Therefore, Mn should be in the range of 0.10% or more and 3.00% or less. Preferably, it is 0.20% or more. It is preferably 2.00% or less, more preferably 1.00% or less.

Al:0.002%以上0.100%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成し固溶N低減による靱性劣化を抑制する効果を有する。一方、0.100%を超えて含有すると、靱性を劣化させるため、0.100%以下とする。好ましくは、0.010%以上とする。好ましくは、0.070%以下とする。より好ましくは0.020%以上とする。より好ましくは、0.060%以下とする。
Al: 0.002% or more and 0.100% or less Al acts as a deoxidizing agent and is most commonly used in the molten steel deoxidizing process for steel sheets. In addition, it has the effect of fixing solute N in the steel to form AlN and suppressing deterioration of toughness due to the reduction of solute N. On the other hand, if the content exceeds 0.100%, the toughness deteriorates, so the content is made 0.100% or less. Preferably, it is 0.010% or more. Preferably, it is 0.070% or less. More preferably, it is 0.020% or more. More preferably, it is 0.060% or less.

Ni:5.0%以上10.0%以下
Niは、鋼板の低温靭性の向上に極めて有効な元素である。一方で、高価な元素であるため、その含有量が高くなるにつれて鋼板コストが高騰する。従って、本発明においては、Ni含有量を10.0%以下とする。但し、Ni含有量が5.0%未満になると、鋼板強度が低下するほか、低温で安定した残留オーステナイトが得られなくなる結果、鋼板の低温靭性や強度が低下する。従って、Ni含有量を5.0%以上10.0%以下とする。好ましくは、9.5%以下とする。好ましくは、6.0%以上とする。
Ni: 5.0% or more and 10.0% or less Ni is an element extremely effective in improving the low temperature toughness of the steel sheet. On the other hand, since it is an expensive element, the steel sheet cost rises as the content increases. Therefore, in the present invention, the Ni content is set to 10.0% or less. However, if the Ni content is less than 5.0%, the strength of the steel sheet is lowered, and as a result of not being able to obtain stable retained austenite at low temperatures, the low-temperature toughness and strength of the steel sheet are lowered. Therefore, the Ni content is made 5.0% or more and 10.0% or less. Preferably, it is 9.5% or less. Preferably, it is 6.0% or more.

N:0.0010%以上0.0080%以下
Nは、鋼中で析出物を形成し、その含有量が0.0080%を超えると、鋼板を溶接して溶接構造物とした際、母材および溶接熱影響部の靭性低下の原因となる。但し、Nは、AlNを形成することにより母材の細粒化に寄与する元素でもあり、このような効果はN含有量を0.0010%以上とすることにより得られる。したがって、N含有量は0.0010%以上0.0080%以下とする。好ましくは0.0020%以上とする。より好ましくは0.0060%以下とする。
N: 0.0010% or more and 0.0080% or less N forms precipitates in steel. and a decrease in the toughness of the weld heat-affected zone. However, N is also an element that contributes to grain refinement of the base metal by forming AlN, and such an effect can be obtained by setting the N content to 0.0010% or more. Therefore, the N content should be 0.0010% or more and 0.0080% or less. It is preferably 0.0020% or more. More preferably, it is 0.0060% or less.

Co:0%超1.50%以下
Coは、腐食環境下で鋼板の表層に濃化し、水素の侵入を低減することによって腐食割れを抑制するのに寄与する重要な元素である。従って、0%を超えて含有している必要がある。好ましくは、Co量を0.05%以上、より好ましくは0.1%以上とする。しかし、1.50%を超えて含有しても効果は飽和する上に、Coは高価な元素であることから、最大添加量は1.50%とする。
Co: more than 0% and 1.50% or less Co is an important element that concentrates in the surface layer of the steel sheet in a corrosive environment and contributes to suppressing corrosion cracking by reducing the entry of hydrogen. Therefore, the content must exceed 0%. Preferably, the Co content is 0.05% or more, more preferably 0.1% or more. However, even if the content exceeds 1.50%, the effect is saturated, and Co is an expensive element, so the maximum addition amount is set to 1.50%.

P:0.030%以下
Pは、0.030%を超えて含有すると、耐腐食割れ性を低下させる。そのため、0.030%を上限とし、可能なかぎり低減することが望ましい。したがって、Pは0.030%以下とする。Pは含有量が少ないほど特性が向上するため、好ましくは0.025%以下とし、より好ましくは0.020%以下とする。なお、Pの含有量は0%でよいことは勿論であるが、脱Pには高コストを要するため、コストの観点からは0.002%以上とすることが好ましい。
P: 0.030% or less When the P content exceeds 0.030%, the corrosion cracking resistance is lowered. Therefore, it is desirable to set the upper limit to 0.030% and reduce it as much as possible. Therefore, P is set to 0.030% or less. Since the smaller the P content, the better the properties, the P content is preferably 0.025% or less, more preferably 0.020% or less. Of course, the P content may be 0%, but since removal of P requires a high cost, it is preferably 0.002% or more from the viewpoint of cost.

S:0.0050%以下
Sは、鋼中でMnSを形成し低温靭性を著しく劣化させるため、0.0050%を上限とし、可能なかぎり低減することが望ましい。好ましくは0.0020%以下とする。なお、Sの含有量は0%でよいことは勿論であるが、脱Sには高コストを要するため、コストの観点からは0.0005%以上とすることが好ましい。
S: 0.0050% or less S forms MnS in the steel and significantly deteriorates the low temperature toughness. It is preferably 0.0020% or less. The S content may of course be 0%, but it is preferable to set the S content to 0.0005% or more from the viewpoint of cost, because high cost is required for removing S.

以上の各元素を含み、残部がFeおよび不可避不純物である成分組成を基本とする。
本発明では、強度および低温靱性をさらに向上させることを目的として、上記の必須元素に加えて、必要に応じて下記の元素を含有することができる。
The basic component composition includes the above elements and the balance is Fe and unavoidable impurities.
In the present invention, for the purpose of further improving strength and low-temperature toughness, in addition to the essential elements described above, the following elements can be contained as necessary.

Nb:0.001%以上0.030%以下
Nbは、鋼板の強度の向上に有効な元素である。このような効果を得るためには、Nbを0.001%以上で添加することが好ましい。一方、0.030%を超えて含有すると、粗大な炭窒化物が析出し、母材靱性を劣化させることがある。このため、Nbを含有する場合は、0.001%以上0.030%以下とする。好ましくは0.005%以上、より好ましくは0.007%以上とする。好ましくは0.025%以下、より好ましくは0.022%以下とする。
Nb: 0.001% or more and 0.030% or less Nb is an element effective in improving the strength of the steel sheet. In order to obtain such effects, it is preferable to add 0.001% or more of Nb. On the other hand, if the content exceeds 0.030%, coarse carbonitrides may precipitate and deteriorate the toughness of the base material. Therefore, when Nb is contained, the content should be 0.001% or more and 0.030% or less. It is preferably 0.005% or more, more preferably 0.007% or more. It is preferably 0.025% or less, more preferably 0.022% or less.

V:0.01%以上0.10%以下
Vは、鋼板の強度向上に有効な元素である。このような効果を得るためには、Vを0.01%以上で添加することが好ましい。一方、0.10%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となることがある。また、析出物が粗大化し、母材靱性を劣化させることがある。このため、Vを含有する場合は、0.01%以上0.10%以下とする。好ましくは0.02%以上、より好ましくは0.03%以上とする。好ましくは0.09%以下、より好ましくは0.08%以下とする。
V: 0.01% or more and 0.10% or less V is an element effective in improving the strength of the steel sheet. In order to obtain such effects, it is preferable to add V in an amount of 0.01% or more. On the other hand, when the content exceeds 0.10%, coarse carbonitrides precipitate and may become starting points of fracture. In addition, precipitates may become coarse and deteriorate the toughness of the base material. Therefore, when V is contained, it should be 0.01% or more and 0.10% or less. It is preferably 0.02% or more, more preferably 0.03% or more. It is preferably 0.09% or less, more preferably 0.08% or less.

Ti:0.003%以上0.050%以下
Tiは、窒化物もしくは炭窒化物として析出し、鋼板の強度向上に有効な元素である。このような効果を得るためには、Tiを0.003%以上で添加することが好ましい。一方、0.050%を超えて含有すると、析出物が粗大化し、母材靱性を劣化させることがある。また、粗大な炭窒化物が析出し、破壊の起点となることがある。このため、Tiを含有する場合は、0.003%以上0.050%以下とする。好ましくは0.005%以上、より好ましくは0.007%以上とする。好ましくは0.035%以下、より好ましくは0.032%以下とする。
Ti: 0.003% to 0.050% Ti is an element that precipitates as a nitride or carbonitride and is effective in improving the strength of the steel sheet. In order to obtain such effects, it is preferable to add Ti in an amount of 0.003% or more. On the other hand, when the content exceeds 0.050%, the precipitates become coarse, which may deteriorate the toughness of the base metal. In addition, coarse carbonitrides may precipitate and become starting points of fracture. Therefore, when Ti is contained, it is made 0.003% or more and 0.050% or less. It is preferably 0.005% or more, more preferably 0.007% or more. It is preferably 0.035% or less, more preferably 0.032% or less.

B:0.0003%以上0.0100%以下
Bは、鋼板の強度向上に有効な元素である。このような効果を得るためには、Bを0.0003%以上で添加することが好ましい。一方、0.0100%を超えて含有すると、粗大なB析出物を生成し、靭性が低下することがある。このため、Bは0.0003%以上0.0100%以下の範囲とする。好ましくは、0.0030%以下である。
B: 0.0003% or more and 0.0100% or less B is an element effective in improving the strength of the steel sheet. In order to obtain such effects, it is preferable to add B in an amount of 0.0003% or more. On the other hand, when the content exceeds 0.0100%, coarse B precipitates may be formed and the toughness may be lowered. Therefore, B should be in the range of 0.0003% or more and 0.0100% or less. Preferably, it is 0.0030% or less.

Cu:0.01%以上1.00%以下
Cuは、焼入れ性向上により鋼板強度を高めるのに有効な元素であるが、その含有量が1.00%を超えると、鋼板の低温靭性が低下するおそれがある。したがって、Cuを含有させる場合には、その含有量を1.00%以下とすることが好ましい。一方、0.01%未満では、強度を高める効果が得られないため、添加する場合は0.01%以上とすることが好ましい。より好ましくは、0.10%以上0.30%以下とする。
Cu: 0.01% or more and 1.00% or less Cu is an element effective in increasing the strength of the steel sheet by improving the hardenability, but when the content exceeds 1.00%, the low-temperature toughness of the steel sheet decreases. There is a risk of Therefore, when Cu is contained, the content is preferably 1.00% or less. On the other hand, if it is less than 0.01%, the effect of increasing the strength cannot be obtained. More preferably, it is 0.10% or more and 0.30% or less.

Cr:0.01%以上1.50%以下
Crは、高Mn鋼の低温靭性および耐食性向上に寄与する元素である。そのためには、Cr量を0.01%以上とすることが好ましい。一方、Crは圧延中に窒化物、炭化物、炭窒化物等の形態で析出する場合があり、このような析出物の形成により腐食や破壊の起点となって低温靭性が低下するため、上限を1.50%とすることが好ましい。より好ましくは、1.00%以下である。
Cr: 0.01% or more and 1.50% or less Cr is an element that contributes to improving the low-temperature toughness and corrosion resistance of high-Mn steel. For that purpose, it is preferable to set the amount of Cr to 0.01% or more. On the other hand, Cr may precipitate in the form of nitrides, carbides, carbonitrides, etc. during rolling. 1.50% is preferable. More preferably, it is 1.00% or less.

Mo:0.03%以上1.00%以下
Moは、鋼板の焼戻し脆化感受性を抑制するのに有効な元素であり、また、低温靭性を損なうことなく鋼板強度を高める元素でもある。このような効果を得るためには、Mo含有量を0.03%以上とすることが好ましい。一方、Moが1.00%を超えると、低温靭性が低下する、おそれがある。したがって、Moを含有させる場合には、その含有量を0.03%以上1.00%以下とする。より好ましくは0.05%超0.30%以下である。
Mo: 0.03% or more and 1.00% or less Mo is an element effective in suppressing the temper embrittlement susceptibility of the steel sheet, and is also an element that increases the strength of the steel sheet without impairing the low temperature toughness. In order to obtain such effects, it is preferable to set the Mo content to 0.03% or more. On the other hand, when Mo exceeds 1.00%, there is a possibility that the low-temperature toughness is lowered. Therefore, when Mo is contained, the content is made 0.03% or more and 1.00% or less. More preferably, it is more than 0.05% and 0.30% or less.

Sn:0.01%以上0.50%以下
Sb:0.01%以上0.50%以下
W:0.05%以上2.00%以下
Sn、SbおよびWは、耐食性向上に有効な元素である。これらの効果は、SnおよびSbが0.01%以上並びにWが0.05%以上にて発現する。しかし、いずれの元素も多く含有させると、溶接性や靱性を劣化させ、コストの観点からも不利になる、おそれがある。従って、Sn量は0.01%以上0.50%以下の範囲、Sb量は0.01%以上0.50%以下の範囲、W量は0.05%以上2.00%以下の範囲とする。好ましくは、Sn量は0.02%以上0.25%以下、Sb量は0.02%以上0.25%以下、W量は0.10%以上1.00%以下である。
Sn: 0.01% to 0.50% Sb: 0.01% to 0.50% W: 0.05% to 2.00% Sn, Sb and W are elements effective in improving corrosion resistance. be. These effects are exhibited when Sn and Sb are 0.01% or more and W is 0.05% or more. However, if any element is included in a large amount, the weldability and toughness may be deteriorated, which may be disadvantageous from the viewpoint of cost. Therefore, the Sn content is in the range of 0.01% to 0.50%, the Sb content is in the range of 0.01% to 0.50%, and the W content is in the range of 0.05% to 2.00%. do. Preferably, the Sn content is 0.02% or more and 0.25% or less, the Sb content is 0.02% or more and 0.25% or less, and the W content is 0.10% or more and 1.00% or less.

さらに、本発明では、必要に応じて次の元素を含有することができる。
Ca:0.0005%以上0.0050%以下、Zr:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下およびREM:0.0010%以上0.0100%以下の1種または2種以上
Ca、Zr、MgおよびREMは、MnS等の介在物の形態制御に有用な元素であり、必要に応じて添加できる。ここで、介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、靭性、耐硫化物応力腐食割れ性を向上させる。このような効果を得るためには、Ca、ZrおよびMgは0.0005%以上、REMは0.0010%以上にて含有することが好ましい。一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって低温靱性が低下する場合がある。このため、Ca、Zr、Mgを含有する場合には、それぞれ0.0005%以上0.0050%以下、REMを含有する場合には、0.0010%以上0.0100%以下とする。より好ましくは、Ca量を0.0010%以上0.0040%以下、Zr量を0.0010%以上0.0040%以下、Mg量を0.0010%以上0.0040%以下、REM量を0.0020%以上0.0100%以下とする。
Furthermore, in the present invention, the following elements can be contained as necessary.
Ca: 0.0005% to 0.0050%, Zr: 0.0005% to 0.0050%, Mg: 0.0005% to 0.0050% and REM: 0.0010% to 0.0100% One or more of the following Ca, Zr, Mg and REM are elements useful for controlling the morphology of inclusions such as MnS and can be added as necessary. Here, the morphology control of inclusions refers to turning expanded sulfide-based inclusions into granular inclusions. Through the morphology control of this inclusion, toughness and sulfide stress corrosion cracking resistance are improved. In order to obtain such effects, it is preferable to contain Ca, Zr and Mg at 0.0005% or more and REM at 0.0010% or more. On the other hand, if any element is included in a large amount, the amount of non-metallic inclusions increases, and the low temperature toughness may rather deteriorate. Therefore, when Ca, Zr, and Mg are contained, each content is 0.0005% or more and 0.0050% or less, and when REM is contained, the content is 0.0010% or more and 0.0100% or less. More preferably, the Ca content is 0.0010% or more and 0.0040% or less, the Zr content is 0.0010% or more and 0.0040% or less, the Mg content is 0.0010% or more and 0.0040% or less, and the REM content is 0 0.0020% or more and 0.0100% or less.

[表層組織]
次に、鋼板の表面から深さが1mmの位置までの組織(以下、表層組織ともいう)は、方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径が5μm以下、かつ残留オーステナイト粒の最大円相当径が1μm以下である、ことが肝要である。
まず、方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径を5μm以下とする必要がある。なぜなら、水素のトラップサイトとなる方位差15°以上の結晶粒界の量が増え、かつ分散させることになるため、水素脆化によるき裂進展を軽減できるからである。さらに、当該結晶粒の平均円相当径は、4μm以下であることが好ましく、さらに好ましくは3μm以下である。
[Surface structure]
Next, the structure from the surface of the steel sheet to a position at a depth of 1 mm (hereinafter also referred to as a surface layer structure) has an average equivalent circle diameter of 5 μm or less of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more. It is also important that the maximum equivalent circle diameter of the retained austenite grains is 1 μm or less.
First, it is necessary to set the average equivalent circle diameter of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more to 5 μm or less. This is because the amount of crystal grain boundaries with a misorientation of 15° or more, which serve as hydrogen trap sites, increases and disperses, so crack growth due to hydrogen embrittlement can be reduced. Furthermore, the average equivalent circle diameter of the crystal grains is preferably 4 μm or less, more preferably 3 μm or less.

なお、方位差15°以上の大角粒界で囲まれた結晶粒の特定並びに、該結晶粒の平均円相当径の特定は、後述する実施例における測定手法によって行うことができる。 The identification of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more and the identification of the average equivalent circle diameter of the crystal grains can be performed by the measurement method in the examples described later.

この方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径を5μm以下にするには、熱間圧延後または、熱間圧延後に熱処理を施す場合は該熱処理後に、所定温度域での平均冷却速度が1℃/s以上の冷却処理を行う。 In order to make the average circle equivalent diameter of the crystal grains surrounded by the large-angle grain boundaries with a misorientation of 15° or more to be 5 μm or less, after the hot rolling, or if the heat treatment is performed after the hot rolling, the heat treatment is performed at a predetermined temperature. Cooling treatment is performed with an average cooling rate of 1°C/s or more in the region.

さらに、表層組織において、残留オーステナイト粒の最大円相当径を1μm以下とする必要がある。なぜなら、前記最大円相当径を1μm以下とすることによって、残留オーステナイトへの水素トラップが分散されて水素トラップの局所集中が回避される結果、水素脆化によるき裂進展を軽減できるからである。なお、表層組織における残留オーステナイト量は、面積率で15%以下であることが好ましく、さらに好ましくは10%以下である。 Furthermore, in the surface layer structure, the maximum equivalent circle diameter of retained austenite grains must be 1 μm or less. This is because by setting the maximum equivalent circle diameter to 1 μm or less, hydrogen traps in retained austenite are dispersed and local concentration of hydrogen traps is avoided, thereby reducing crack propagation due to hydrogen embrittlement. The amount of retained austenite in the surface layer structure is preferably 15% or less, more preferably 10% or less in terms of area ratio.

なお、鋼板の組織は、マルテンサイトおよび/またはベイナイトであることが好ましい。その際、マルテンサイトおよび/またはベイナイトの面積率は80%以上であることが好ましい。 The structure of the steel sheet is preferably martensite and/or bainite. At that time, the area ratio of martensite and/or bainite is preferably 80% or more.

次に、本発明の鋼板を製造する条件について説明する。すなわち、上記した成分組成を有する鋼素材を加熱し、熱間圧延を施し冷却するか、あるいは熱間圧延後にさらに熱処理を施し冷却する、ことによって製造することができる。その際、熱間圧延後の冷却、あるいは熱間圧延後に熱処理を行う場合は該熱処理後の冷却、において所定温度域の平均冷却速度を1℃/s以上とすることが、上記した表層組織を得るために必要である。以下、製造条件について、工程順に説明する。なお、以下の説明において、温度(℃)は、板厚中心部における温度を意味するものとする。 Next, conditions for manufacturing the steel sheet of the present invention will be described. That is, it can be produced by heating a steel material having the chemical composition described above, followed by hot rolling and cooling, or by further heat-treating and cooling after hot rolling. At that time, when cooling after hot rolling, or when heat treatment is performed after hot rolling, cooling after the heat treatment, the average cooling rate in a predetermined temperature range is set to 1 ° C./s or more. necessary to obtain The manufacturing conditions will be described below in the order of steps. In the following description, the temperature (°C) means the temperature at the central portion of the sheet thickness.

まず、熱間圧延における鋼素材の再加熱温度は、1000℃以上1300℃以下とすることが好ましい。
[鋼素材の再加熱温度:1000℃以上1300℃以下]
鋼素材を1000℃以上に加熱するのは、組織中の析出物を固溶させ、結晶粒径等を均一化するためであり、加熱温度としては、1000℃以上1300℃以下とすることが好ましい。すなわち、加熱温度が900℃未満の場合、析出物が十分に固溶しない場合があるため、所望の特性が得られない、おそれがある。一方、1300℃を超えて加熱すると、結晶粒径の粗大化によって材質が劣化する場合があり、また製造に過剰なエネルギーが必要となり生産性が低下する、おそれがある。より好ましくは1050℃以上1250℃以下、さらには1100℃以上1250℃以下の範囲である。
First, the reheating temperature of the steel material in hot rolling is preferably 1000° C. or higher and 1300° C. or lower.
[Reheating temperature of steel material: 1000°C or higher and 1300°C or lower]
The reason why the steel material is heated to 1000° C. or higher is to dissolve precipitates in the structure and homogenize the crystal grain size, etc. The heating temperature is preferably 1000° C. or higher and 1300° C. or lower. . That is, if the heating temperature is less than 900° C., the precipitates may not be sufficiently solid-dissolved, so there is a possibility that the desired characteristics cannot be obtained. On the other hand, if the temperature exceeds 1300° C., the crystal grain size may be coarsened to deteriorate the quality of the material, and excessive energy may be required for manufacturing, resulting in a decrease in productivity. It is more preferably in the range of 1050° C. or higher and 1250° C. or lower, further preferably in the range of 1100° C. or higher and 1250° C. or lower.

[熱間圧延後の冷却]
鋼板の表層組織を好ましくはマルテンサイトおよび/またはベイナイトの組織とし、かつ該組織に含まれる大角粒界を増加させて、優れた耐応力腐食割れ性を確保するには、熱間圧延後に冷却処理を施し、表層組織における600℃以下200℃以上の温度域での平均冷却速度を1℃/s以上とする。すなわち、この冷却処理における冷却速度が1℃/s未満の場合、表層組織が上部ベイナイト組織となり、組織に含まれる大角粒界が減少し、組織が十分微細化されず、耐応力腐食割れ性を得られない。平均冷却速度の上限は特に制限する必要はない。
なお、熱間圧延後に後述の熱処理を施す場合は、この熱間圧延後の冷却における速度を1℃/s以上とする必要はない。
[Cooling after hot rolling]
The surface layer structure of the steel sheet is preferably a martensite and/or bainite structure, and in order to increase the large-angle grain boundaries contained in the structure and ensure excellent stress corrosion cracking resistance, a cooling treatment is performed after hot rolling. is applied, and the average cooling rate in the temperature range of 600° C. or lower and 200° C. or higher in the surface layer structure is set to 1° C./s or higher. That is, when the cooling rate in this cooling treatment is less than 1 ° C / s, the surface layer structure becomes an upper bainite structure, the large angle grain boundaries contained in the structure are reduced, the structure is not sufficiently refined, and the stress corrosion cracking resistance is reduced. I can't get it. There is no particular need to limit the upper limit of the average cooling rate.
In addition, when the heat treatment described later is performed after hot rolling, the cooling rate after this hot rolling need not be 1° C./s or more.

[熱間圧延後の熱処理]
熱間圧延後に冷却せずに以下の熱処理を施してもよい。上述の通り、鋼板の表層組織を好ましくはマルテンサイトおよび/またはベイナイトの組織とし、かつ該組織に含まれる大角粒界を増加させて、優れた耐応力腐食割れ性を確保するには、熱間圧延後に熱処理を施す場合は、熱間圧延後にAc3点以上900℃以下に加熱して焼入れ(一次焼入れ)することが好ましい。すなわち、加熱温度がAc3点未満あるいは900℃を超えると、大角粒界の円相当径が粗大となり、所望の特性が得られない、おそれがある。
[Heat treatment after hot rolling]
The following heat treatment may be performed without cooling after hot rolling. As described above, the surface layer structure of the steel sheet is preferably a martensite and/or bainite structure, and in order to increase the large angle grain boundaries contained in the structure and to ensure excellent stress corrosion cracking resistance, hot When heat treatment is performed after rolling, it is preferable to harden (primary hardening) by heating to Ac 3 point or more and 900° C. or less after hot rolling. That is, when the heating temperature is less than the Ac 3 point or exceeds 900° C., the equivalent circle diameter of the large-angle grain boundary becomes coarse, and the desired properties may not be obtained.

なお、熱間圧延後に上記した熱処理を施す場合は、この熱処理後の冷却における速度を制御する必要があるのは、上述のとおりである。すなわち、表層組織における600℃以下200℃以上の温度域での平均冷却速度を1℃/s以上とする。 As described above, when the above-described heat treatment is performed after hot rolling, it is necessary to control the cooling rate after the heat treatment. That is, the average cooling rate in the surface layer structure in the temperature range of 600° C. to 200° C. is set to 1° C./s or more.

さらに、熱間圧延後の熱処理として、上記した焼入れ(一次焼入れ)に替えて、または一次焼入れして冷却した後に、Ac1変態点以上Ac3変態点未満に加熱して冷却する熱処理(二次焼入れ)を施してもよい。この二次焼入れを行うことによって、母材低温靱性を向上させることができる。
なお、上記した熱処理(二次焼入れ)を施す場合は、この熱処理後の冷却における速度を制御する必要があるのは、上述のとおりである。すなわち、表層組織における600℃以下200℃以上の温度域での平均冷却速度を1℃/s以上とする。
Furthermore, as a heat treatment after hot rolling, instead of the above-described quenching ( primary quenching), or after cooling after primary quenching , heat treatment (secondary quenching) may be applied. By performing this secondary hardening, the low temperature toughness of the base material can be improved.
As described above, when the heat treatment (secondary quenching) is performed, it is necessary to control the cooling rate after the heat treatment. That is, the average cooling rate in the surface layer structure in the temperature range of 600° C. to 200° C. is set to 1° C./s or more.

高強度および優れた低温靭性などの特性を得るには、表層組織における残留オーステナイト粒を径が1μm以下の微細粒とすることが有効である。そのためには、上記の最終の冷却後に500℃以上650℃以下の温度に加熱して焼戻しすることが好ましい。すなわち、焼戻し温度が500℃未満では、低温靭性を確保することが難しくなる、おそれがある。一方、焼戻し温度が650℃を超えると、粗大な残留オーステナイトとなり、所望の特性が得られない、おそれがある。 In order to obtain properties such as high strength and excellent low-temperature toughness, it is effective to make the retained austenite grains in the surface layer structure fine grains with a diameter of 1 μm or less. For that purpose, it is preferable to temper by heating to a temperature of 500° C. or more and 650° C. or less after the final cooling. That is, if the tempering temperature is less than 500°C, it may become difficult to ensure low-temperature toughness. On the other hand, if the tempering temperature exceeds 650° C., coarse retained austenite may be formed, and desired properties may not be obtained.

表1に示したA~Wの鋼を溶製し、スラブとした後、表2に示す製造条件により板厚が30~50mmの鋼板(試料No.1~26)を製造し、各試料を以下のシャルピー衝撃試験および応力腐食割れ試験に供した。また、各試料について、表層組織における大角粒界の間隔および残留オーステナイト粒径を調査した。 After melting the steels A to W shown in Table 1 and making them into slabs, steel plates (Samples No. 1 to 26) with a thickness of 30 to 50 mm were produced under the production conditions shown in Table 2, and each sample was produced. It was subjected to the following Charpy impact test and stress corrosion cracking test. In addition, the interval of large-angle grain boundaries and the grain size of retained austenite in the surface layer structure of each sample were investigated.

大角粒界は、粒界方位差が15°以上の粒界と定義し、これを、EBSDを用いて特定した。そして、結晶粒径は、鋼板の表面から1mmの深さ位置における任意の500×500μmの範囲を測定し、大角粒界に囲まれる結晶粒の円相当径の平均値を求めた。なお、大角粒界に囲まれている範囲が0.1μm未満のものは計算から除外した。 A large-angle grain boundary is defined as a grain boundary with a grain boundary misorientation of 15° or more, and was identified using EBSD. Then, the crystal grain size was measured in an arbitrary range of 500×500 μm at a depth of 1 mm from the surface of the steel sheet, and the average value of the equivalent circle diameters of the crystal grains surrounded by the large-angle grain boundaries was obtained. In addition, those having a range of less than 0.1 μm surrounded by large-angle grain boundaries were excluded from the calculation.

また、残留オーステナイトの最大円相当径は、同様のEBSD測定領域において存在する残留オーステナイト粒を結晶構造から特定し、オーステナイトと認識された結晶粒のうちの最大のものの円相当径とした。 In addition, the maximum equivalent circle diameter of retained austenite was determined from the crystal structure of retained austenite grains present in the same EBSD measurement region, and was the maximum equivalent circle diameter of the crystal grains recognized as austenite.

[シャルピー衝撃試験(低温靭性)]
各試料について、JIS Z2242に規定のVノッチ試験片を準備し、試験温度:-196℃にてJIS Z2242に準拠してシャルピー衝撃試験を実施し、吸収エネルギーを測定した。各試料につき3本の試験片での試験を実施し、それらの平均値が34J以上である場合を合格とした。
[Charpy impact test (low temperature toughness)]
For each sample, a V-notch test piece specified in JIS Z2242 was prepared, and a Charpy impact test was carried out according to JIS Z2242 at a test temperature of -196°C to measure absorbed energy. Three test pieces were tested for each sample, and the average value of 34 J or more was considered acceptable.

[応力腐食割れ試験(耐応力腐食割れ性)]
NACE TM0177-96 2003版に準拠した、DCB( Double-Cantilever-Beam)試験を実施した。試験環境は、NACE TM0177 sol.A(初期pH2.7)×100%H2Sガス飽和(0.1MPa) 浸漬時間は336時間とした。浸漬終了後、Wedge load とcrack lengthからKISSCを導出した。各試料につき3本の試験片での試験を実施し、それらの平均値が25MPa√m以上である場合を合格とした。
以上により得られた結果を、表2に示す。
[Stress corrosion cracking test (stress corrosion cracking resistance)]
A DCB (Double-Cantilever-Beam) test was performed in accordance with NACE TM0177-96 2003 edition. The test environment was NACE TM0177 sol. A (initial pH 2.7)×100% H 2 S gas saturation (0.1 MPa), and the immersion time was 336 hours. After immersion, KISSC was derived from wedge load and crack length. Three test pieces were tested for each sample, and the average value of 25 MPa√m or more was considered acceptable.
Table 2 shows the results obtained as described above.

Figure 0007156500000001
Figure 0007156500000001

Figure 0007156500000002
Figure 0007156500000002

本発明に従う試料No.1~14、23、および26は、低温靭性が確保されるとともに、優れた耐応力腐食割れ性を有することが確認された。一方、本発明の範囲を外れる比較例(試料No.15~22および24、25)は、吸収エネルギーが34Jより低い、もしくはDCB試験が25MPa√m %未満となっており、上述の目標性能を満足できなかった。 Sample no. It was confirmed that Nos. 1 to 14, 23, and 26 ensure low-temperature toughness and have excellent resistance to stress corrosion cracking. On the other hand, the comparative examples (Sample Nos. 15 to 22, 24 and 25) outside the scope of the present invention had an absorbed energy lower than 34 J or a DCB test result of less than 25 MPa√m%, and the above target performance was not achieved. I wasn't satisfied.

Claims (5)

質量%で、
C:0.01%以上0.15%以下、
Si:0.01%以上1.00%以下、
Mn:0.10%以上3.00%以下、
Al:0.002%以上0.100%以下、
Ni:5.0%以上10.0%以下、
N:0.0010%以上0.0080%以下、
Co:0.05%以上1.50%以下、
P:0.030%以下および
S:0.0050%以下
を含有し、残部Feおよび不可避的不純物である成分組成を有し、
鋼板の表面から深さが1mmの位置までの組織は、方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径が5μm以下、かつ残留オーステナイト粒の最大円相当径が1μm以下である鋼板。
in % by mass,
C: 0.01% or more and 0.15% or less,
Si: 0.01% or more and 1.00% or less,
Mn: 0.10% or more and 3.00% or less,
Al: 0.002% or more and 0.100% or less,
Ni: 5.0% or more and 10.0% or less,
N: 0.0010% or more and 0.0080% or less,
Co: 0.05% or more and 1.50% or less,
P: 0.030% or less and S: 0.0050% or less, with the balance being Fe and unavoidable impurities,
In the structure from the surface of the steel sheet to a position 1 mm deep, the average equivalent circle diameter of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more is 5 μm or less, and the maximum equivalent circle diameter of retained austenite grains is 1 μm. Steel plate which is below.
前記成分組成は、さらに質量%で、
Nb:0.001%以上0.030%以下、
V:0.01%以上0.10%以下、
Ti:0.003%以上0.050%以下、
B:0.0003%以上0.0100%以下、
Cu:0.01%以上1.00%以下、
Cr:0.01%以上1.50%以下、
Sn:0.01%以上0.50%以下、
Sb:0.01%以上0.50%以下、
Mo:0.03%以上1.00%以下および
W:0.05%以上2.00%以下
から選択される1種または2種以上を含有する請求項1に記載の鋼板。
The component composition is further mass %,
Nb: 0.001% or more and 0.030% or less,
V: 0.01% or more and 0.10% or less,
Ti: 0.003% or more and 0.050% or less,
B: 0.0003% or more and 0.0100% or less,
Cu: 0.01% or more and 1.00% or less,
Cr: 0.01% or more and 1.50% or less,
Sn: 0.01% or more and 0.50% or less,
Sb: 0.01% or more and 0.50% or less,
The steel sheet according to claim 1, containing one or more selected from Mo: 0.03% or more and 1.00% or less and W: 0.05% or more and 2.00% or less.
前記成分組成は、さらに質量%で、
Ca:0.0005%以上0.0050%以下、
Zr:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0050%以下および
REM:0.0010%以上0.0100%以下
から選択される1種または2種以上を含有する請求項1または2に記載の鋼板。
The component composition is further mass %,
Ca: 0.0005% or more and 0.0050% or less,
Zr: 0.0005% or more and 0.0050% or less,
The steel sheet according to claim 1 or 2, containing one or more selected from Mg: 0.0005% or more and 0.0050% or less and REM: 0.0010% or more and 0.0100% or less.
請求項1から3のいずれかに記載の成分組成を有する鋼素材を加熱し、熱間圧延を施した後に冷却処理を行う鋼板の製造方法において、前記冷却処理における600℃以下200℃以上の平均冷却速度を1℃/s以上とする、鋼板の表面から深さが1mmの位置までの組織は、方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径が5μm以下、かつ残留オーステナイト粒の最大円相当径が1μm以下である鋼板の製造方法。 4. A method for manufacturing a steel sheet, wherein the steel material having the chemical composition according to any one of claims 1 to 3 is heated, hot-rolled, and then cooled, wherein an average temperature of 600 ° C. or less and 200 ° C. or more in the cooling process When the cooling rate is 1°C/s or more, the structure from the surface of the steel sheet to a depth of 1 mm has an average equivalent circle diameter of 5 μm or less of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or more. A method for producing a steel sheet in which the maximum equivalent circle diameter of retained austenite grains is 1 µm or less . 請求項1から3のいずれかに記載の成分組成を有する鋼素材を加熱し、熱間圧延を施し、さらに熱処理を施した後に冷却処理を行う鋼板の製造方法において、前記冷却処理における600℃以下200℃以上の平均冷却速度を1℃/s以上とする、鋼板の表面から深さが1mmの位置までの組織は、方位差15°以上の大角粒界で囲まれた結晶粒の平均円相当径が5μm以下、かつ残留オーステナイト粒の最大円相当径が1μm以下である鋼板の製造方法。
4. A method for manufacturing a steel sheet, wherein the steel material having the chemical composition according to any one of claims 1 to 3 is heated, hot-rolled, further heat-treated, and then cooled, wherein the cooling treatment is performed at 600 ° C. or less. When the average cooling rate at 200°C or higher is 1°C/s or higher, the structure from the surface of the steel sheet to a depth of 1 mm corresponds to an average circle of crystal grains surrounded by large-angle grain boundaries with a misorientation of 15° or higher. A method for producing a steel sheet having a diameter of 5 μm or less and a maximum circle equivalent diameter of retained austenite grains of 1 μm or less .
JP2021507720A 2019-12-12 2020-11-04 Steel plate and its manufacturing method Active JP7156500B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019224943 2019-12-12
JP2019224943 2019-12-12
PCT/JP2020/041265 WO2021117382A1 (en) 2019-12-12 2020-11-04 Steel sheet and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2021117382A1 JPWO2021117382A1 (en) 2021-12-09
JP7156500B2 true JP7156500B2 (en) 2022-10-19

Family

ID=76329748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021507720A Active JP7156500B2 (en) 2019-12-12 2020-11-04 Steel plate and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7156500B2 (en)
KR (1) KR20220048031A (en)
CN (1) CN114829646A (en)
WO (1) WO2021117382A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115717214B (en) * 2022-11-14 2023-07-14 鞍钢股份有限公司 Steel for coastal atmospheric environment refining pipeline and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034576A1 (en) 2005-09-21 2007-03-29 Sumitomo Metal Industries, Ltd. Steel product usable at low temperature and method for production thereof
WO2014203347A1 (en) 2013-06-19 2014-12-24 新日鐵住金株式会社 Steel material, process for producing same, and lng tank
JP2016176141A (en) 2015-03-18 2016-10-06 Jfeスチール株式会社 Steel material for low temperature and production method therefor
CN109280848A (en) 2018-10-17 2019-01-29 东北大学 A kind of low-nickel type LNG tank steel plate and preparation method thereof
WO2019087318A1 (en) 2017-10-31 2019-05-09 新日鐵住金株式会社 Nickel-containing steel sheet for low-temperature applications and tank using nickel-containing steel sheet for low-temperature applications

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957556B2 (en) 2006-01-13 2012-06-20 住友金属工業株式会社 Cryogenic steel
JP5513254B2 (en) 2010-05-17 2014-06-04 新日鐵住金株式会社 Low temperature steel plate and method for producing the same
JP6007847B2 (en) * 2013-03-28 2016-10-12 Jfeスチール株式会社 Wear-resistant thick steel plate having low temperature toughness and method for producing the same
JP6068314B2 (en) * 2013-10-22 2017-01-25 株式会社神戸製鋼所 Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
KR102075206B1 (en) * 2017-11-17 2020-02-07 주식회사 포스코 Low temperature steeel plate having excellent impact toughness property and method for manufacturing the same
JP6950518B2 (en) * 2017-12-25 2021-10-13 日本製鉄株式会社 Steel materials, steel pipes for oil wells, and manufacturing methods for steel materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034576A1 (en) 2005-09-21 2007-03-29 Sumitomo Metal Industries, Ltd. Steel product usable at low temperature and method for production thereof
WO2014203347A1 (en) 2013-06-19 2014-12-24 新日鐵住金株式会社 Steel material, process for producing same, and lng tank
JP2016176141A (en) 2015-03-18 2016-10-06 Jfeスチール株式会社 Steel material for low temperature and production method therefor
WO2019087318A1 (en) 2017-10-31 2019-05-09 新日鐵住金株式会社 Nickel-containing steel sheet for low-temperature applications and tank using nickel-containing steel sheet for low-temperature applications
CN109280848A (en) 2018-10-17 2019-01-29 东北大学 A kind of low-nickel type LNG tank steel plate and preparation method thereof

Also Published As

Publication number Publication date
CN114829646A (en) 2022-07-29
WO2021117382A1 (en) 2021-06-17
KR20220048031A (en) 2022-04-19
JPWO2021117382A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP6946332B2 (en) Methods for Producing Coated High-Strength Steel Sheets with Improved Ductility and Formability and Obtained Coated Steel Sheets
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP7161536B2 (en) Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
US9260771B2 (en) Ni-added steel plate and method of manufacturing the same
JP7147960B2 (en) Steel plate and its manufacturing method
JP4848966B2 (en) Thick-wall high-tensile steel plate and manufacturing method thereof
EP3080322A1 (en) Martensitic steel with delayed fracture resistance and manufacturing method
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
CN111492085B (en) High-strength steel material for polar environment having excellent fracture resistance at low temperature and method for producing same
JPWO2007080646A1 (en) Cryogenic steel
AU2018395571A1 (en) Steel reinforcing bar and production method therefor
JP2013014812A (en) Steel material for very low temperature use having excellent ctod property after strain application, and method for manufacturing the same
JP2016183387A (en) Thick steel plate for low temperature and production method therefor
JP6290074B2 (en) High-strength cold-rolled steel sheet and high-strength galvannealed steel sheet with excellent workability
JP6398452B2 (en) Steel for tank
JP7156500B2 (en) Steel plate and its manufacturing method
KR102106766B1 (en) Steel members and steel plates, and methods for manufacturing them
KR20140141839A (en) Steel for pressure vessel and method of manufacturing the steel
JP6398576B2 (en) Steel sheet with excellent toughness and method for producing the same
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP6398575B2 (en) Steel sheet with excellent toughness and method for producing the same
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
JP7323088B1 (en) Steel plate and its manufacturing method
WO2023162507A1 (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150