JP7156030B2 - synthetic polyisoprene latex - Google Patents

synthetic polyisoprene latex Download PDF

Info

Publication number
JP7156030B2
JP7156030B2 JP2018550177A JP2018550177A JP7156030B2 JP 7156030 B2 JP7156030 B2 JP 7156030B2 JP 2018550177 A JP2018550177 A JP 2018550177A JP 2018550177 A JP2018550177 A JP 2018550177A JP 7156030 B2 JP7156030 B2 JP 7156030B2
Authority
JP
Japan
Prior art keywords
synthetic polyisoprene
latex
weight
parts
polyisoprene latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018550177A
Other languages
Japanese (ja)
Other versions
JPWO2018088327A1 (en
Inventor
順司 小出村
俊仁 相原
吉隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2018088327A1 publication Critical patent/JPWO2018088327A1/en
Application granted granted Critical
Publication of JP7156030B2 publication Critical patent/JP7156030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/28Articles or materials wholly enclosed in composite wrappers, i.e. wrappers formed by associating or interconnecting two or more sheets or blanks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、臭気が有効に抑えられており、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできる合成ポリイソプレンラテックス、ならびに、このような合成ポリイソプレンラテックスを用いたラテックス組成物、膜成形体および包装構造体に関する。 The present invention provides a synthetic polyisoprene latex capable of effectively suppressing odor, excellent in tensile strength and elongation, and capable of providing a film molded article such as a dip molded article having a soft feel, and such a synthetic polyisoprene latex. The present invention relates to a latex composition, film molded article and packaging structure using synthetic polyisoprene latex.

従来、天然ゴムのラテックスを含有するラテックス組成物を膜状に成形して得られる膜成形体が知られている。たとえば、膜成形体としては、天然ゴムのラテックスを含有するラテックス組成物をディップ成形して得られ、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が知られている。しかしながら、天然ゴムのラテックスは、人体にアレルギー症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。そのため、天然ゴムのラテックスではなく、合成ゴムのラテックスを用いる検討がされてきている。 BACKGROUND ART Conventionally, there has been known a film formed article obtained by forming a latex composition containing natural rubber latex into a film. For example, the film-formed article is obtained by dip-molding a latex composition containing natural rubber latex, and dip-formed articles used in contact with the human body, such as nipples, balloons, gloves, balloons, and sacks, are known. It is However, since natural rubber latex contains proteins that cause allergic symptoms in the human body, there are cases in which it is problematic as a dip-molded article that comes into direct contact with living mucous membranes or organs. Therefore, the use of synthetic rubber latex instead of natural rubber latex has been investigated.

たとえば、特許文献1には、ディップ成形に用いるラテックスとして、ロジン酸塩を界面活性剤として用いて得られた合成ポリイソプレンラテックスが開示されている。しかしながら、この特許文献1に開示された合成ポリイソプレンラテックスを用いて得られるディップ成形体は、臭気が強いという課題があり、そのため臭気が抑制されたディップ成形体などの膜成形体を与えることのできる合成ゴムのラテックスが望まれていた。 For example, Patent Document 1 discloses a synthetic polyisoprene latex obtained by using a rosinate as a surfactant as a latex used for dip molding. However, the dip-molded article obtained using the synthetic polyisoprene latex disclosed in Patent Document 1 has a problem that it has a strong odor. A synthetic rubber latex that can be

特表2009-531497号公報Japanese Patent Publication No. 2009-531497

本発明は、このような実状に鑑みてなされたものであり、臭気が有効に抑えられており、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできる合成ポリイソプレンラテックスを提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a film molded article such as a dip molded article which is effectively suppressed in odor, is excellent in tensile strength and elongation, and has a soft texture. It is an object of the present invention to provide a synthetic polyisoprene latex capable of

本発明者等は、上記目的を達成するために鋭意検討を行った結果、合成ポリイソプレンラテックス中に含まれるトールロジン系界面活性剤の量を特定の範囲とすることにより、このような合成ポリイソプレンラテックスを用いて得られるディップ成形体などの膜成形体を、臭気が有効に抑えられており、引張強度および伸びに優れ、しかも、柔軟な風合いをも備えるものとなることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors found that by setting the amount of tall rosin-based surfactant contained in the synthetic polyisoprene latex to a specific range, such a synthetic polyisoprene It was found that a film molded article such as a dip molded article obtained using latex effectively suppresses odor, is excellent in tensile strength and elongation, and also has a soft texture, and the present invention was established. I came to complete it.

すなわち、本発明によれば、合成ポリイソプレン100重量部に対して、トールロジン系界面活性剤を0.3~1.5重量部の割合で含有する合成ポリイソプレンラテックスが提供される。
本発明の合成ポリイソプレンラテックスにおいて、前記合成ポリイソプレンが、アニオン重合により重合されたものであることが好ましい。
本発明の合成ポリイソプレンラテックスにおいて、前記トールロジン系界面活性剤の含有量が、前記合成ポリイソプレン100重量部に対して、0.3~1.3重量部の割合であることが好ましい。
That is, according to the present invention, there is provided a synthetic polyisoprene latex containing 0.3 to 1.5 parts by weight of a tall rosin-based surfactant with respect to 100 parts by weight of synthetic polyisoprene.
In the synthetic polyisoprene latex of the present invention, the synthetic polyisoprene is preferably polymerized by anionic polymerization.
In the synthetic polyisoprene latex of the present invention, the content of the tall rosin-based surfactant is preferably 0.3 to 1.3 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene.

また、本発明によれば、上記合成ポリイソプレンラテックスを製造する方法であって、アニオン重合により重合された合成ポリイソプレンの重合体溶液を、トールロジン系界面活性剤の存在下で、水中で乳化する工程を備える合成ポリイソプレンラテックスの製造方法が提供される。
本発明の合成ポリイソプレンラテックスの製造方法において、前記重合体溶液が、有機溶媒を含むことが好ましい。
本発明の合成ポリイソプレンラテックスの製造方法は、水中で乳化する工程により得られた乳化液から、前記有機溶媒を除去する工程をさらに備えることが好ましい。
Further, according to the present invention, there is provided a method for producing the synthetic polyisoprene latex, wherein a polymer solution of synthetic polyisoprene polymerized by anionic polymerization is emulsified in water in the presence of a tall rosin surfactant. A method for making a synthetic polyisoprene latex is provided comprising a process.
In the method for producing a synthetic polyisoprene latex of the present invention, the polymer solution preferably contains an organic solvent.
The method for producing a synthetic polyisoprene latex of the present invention preferably further comprises a step of removing the organic solvent from the emulsion obtained by the step of emulsifying in water.

本発明によれば、上記の合成ポリイソプレンラテックスと、加硫剤および/または加硫促進剤とを含有するラテックス組成物が提供される。 According to the present invention, there is provided a latex composition containing the synthetic polyisoprene latex described above and a vulcanizing agent and/or a vulcanization accelerator.

また、本発明によれば、上記のラテックス組成物からなる膜成形体が提供される。
さらに、本発明によれば、第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とが、上記の合成ポリイソプレンラテックスからなる塗膜により接着積層されてなり、前記第1のシート基材と前記第2のシート基材との間に被包装物を収容可能な包装構造体が提供される。
Further, according to the present invention, there is provided a film molded article comprising the above latex composition.
Furthermore, according to the present invention, at least a portion of the first sheet substrate and at least a portion of the second sheet substrate are adhesively laminated with a coating film made of the above synthetic polyisoprene latex, A packaging structure is provided that can accommodate an item to be packaged between the first sheet substrate and the second sheet substrate.

本発明によれば、臭気が有効に抑えられており、引張強度および伸びに優れ、しかも、柔軟な風合いを備えるディップ成形体などの膜成形体を与えることのできる合成ポリイソプレンラテックスを提供することができる。 According to the present invention, there is provided a synthetic polyisoprene latex which is effectively suppressed in odor, excellent in tensile strength and elongation, and capable of giving a film molded article such as a dip molded article having a soft touch. can be done.

合成ポリイソプレンラテックス
本発明の合成ポリイソプレンラテックスは、合成ポリイソプレンのラテックスであり、ラテックス中含まれる合成ポリイソプレン100重量部に対して、トールロジン系界面活性剤を0.3~1.5重量部の割合で含有するものである。
Synthetic Polyisoprene Latex The synthetic polyisoprene latex of the present invention is a latex of synthetic polyisoprene. It contains at a ratio of

本発明の合成ポリイソプレンラテックスは、合成ポリイソプレン100重量部に対して、トールロジン系界面活性剤を0.3~1.5重量部の割合で含有するものであり、これにより、ディップ成形体などの膜成形体とした場合に、得られるディップ成形体などの膜成形体を、臭気が有効に抑えられており、引張強度および伸びに優れ、しかも、柔軟な風合いを有するものとすることができるものである。トールロジン系界面活性剤の含有量は、好ましくは0.3~1.3重量部の割合であり、より好ましくは0.3~1.1重量部である。トールロジン系界面活性剤の含有量が少なすぎると、合成ポリイソプレンの凝集物(コアギュラム)の発生が起こりやすくなり、ラテックスとして機械的安定性に劣るものとなってしまう。一方、トールロジン系界面活性剤の含有量が多すぎると、得られるディップ成形体などの膜成形体の臭気が悪化してしまう。 The synthetic polyisoprene latex of the present invention contains 0.3 to 1.5 parts by weight of tall rosin surfactant per 100 parts by weight of synthetic polyisoprene. In the case of the film molded product of (1), the resulting film molded product such as a dip molded product can effectively suppress odor, have excellent tensile strength and elongation, and have a flexible texture. It is. The content of the tall rosin surfactant is preferably 0.3 to 1.3 parts by weight, more preferably 0.3 to 1.1 parts by weight. If the content of the tall rosin-based surfactant is too low, synthetic polyisoprene aggregates (coagulum) tend to occur, resulting in a latex having poor mechanical stability. On the other hand, if the content of the tall rosin-based surfactant is too high, the odor of the resulting film-formed article such as a dip-formed article is deteriorated.

本発明の合成ポリイソプレンラテックスに含まれる合成ポリイソプレンとしては、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの膜成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。 The synthetic polyisoprene contained in the synthetic polyisoprene latex of the present invention may be a homopolymer of isoprene or a copolymer of isoprene and other ethylenically unsaturated monomers copolymerizable therewith. There may be. The content of the isoprene units in the synthetic polyisoprene is preferably 70% by weight or more based on the total monomer units, since it is easy to obtain a film molded product such as a dip molded product that is flexible and has excellent tensile strength. More preferably 90% by weight or more, still more preferably 95% by weight or more, and particularly preferably 100% by weight (isoprene homopolymer).

イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。 Other ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene, 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, α- ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth)acrylate (meaning "methyl acrylate and/or methyl methacrylate"; hereinafter , Ethyl (meth)acrylate, etc.), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; is mentioned. These other ethylenically unsaturated monomers copolymerizable with isoprene may be used singly or in combination.

合成ポリイソプレンは、従来公知の方法、配位重合やアニオン重合などいずれの様式で重合したものであってもよいが、たとえば、配位重合により重合する場合には、チーグラー系重合触媒を用い、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合することで、合成ポリイソプレンの重合体溶液を得る方法が好適である。チーグラー系重合触媒としては、特に限定されず、公知のものを用いることができるが、たとえば、四塩化チタンを有機アルミニウム化合物で還元し、さらに各種電子供与体および電子受容体で処理して得られた三塩化チタン組成物と有機アルミニウム化合物を組み合わせた触媒系、ハロゲン化マグネシウムに四塩化チタンと各種電子供与体とを接触させる担持型触媒系などが挙げられ、これらのなかでも、四塩化チタンおよび有機アルミニウム化合物を用いた触媒系が好ましく、四塩化チタンおよびトリアルキルアルミニウムを用いた触媒系が特に好ましい。 Synthetic polyisoprene may be polymerized by any method such as a conventionally known method, coordination polymerization or anionic polymerization. A preferred method is to obtain a synthetic polyisoprene polymer solution by solution polymerization of isoprene and optionally other copolymerizable ethylenically unsaturated monomers in an inert polymerization solvent. be. The Ziegler-based polymerization catalyst is not particularly limited, and a known one can be used. For example, titanium tetrachloride is reduced with an organoaluminum compound and further treated with various electron donors and electron acceptors. a catalyst system combining a titanium trichloride composition and an organoaluminum compound, and a supported catalyst system in which titanium tetrachloride and various electron donors are brought into contact with magnesium halide. Among these, titanium tetrachloride and Catalyst systems using organoaluminum compounds are preferred, with titanium tetrachloride and trialkylaluminum catalyst systems being particularly preferred.

また、アニオン重合により重合する場合には、有機アルカリ金属触媒を用いて、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合することで、合成ポリイソプレンの重合体溶液を得る方法が好適である。アニオン重合の重合触媒として、有機アルカリ金属触媒を用いることで、高いリビング性を持ってアニオン重合を進行させることができるため、重量平均分子量の高い合成ポリイソプレンを高い収率にて得ることができるため、好ましい。有機アルカリ金属触媒としては、特に限定されず、公知のものを用いることができるが、たとえば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機力リウム化合物;などが挙げられる。これらのなかでも、有機モノリチウム化合物を用いることが好ましく、n-ブチルリチウムを用いることがより好ましい。これらの有機アルカリ金属触媒は、それぞれ単独で、または2種以上を組み合わせて用いることができる。 In the case of anionic polymerization, isoprene and, if necessary, other copolymerizable ethylenically unsaturated monomers are mixed in an inert polymerization solvent using an organic alkali metal catalyst. A preferred method is to obtain a polymer solution of synthetic polyisoprene by solution polymerization. By using an organic alkali metal catalyst as a polymerization catalyst for anionic polymerization, anionic polymerization can proceed with high living properties, so that synthetic polyisoprene with a high weight-average molecular weight can be obtained at a high yield. Therefore, it is preferable. The organic alkali metal catalyst is not particularly limited, and known ones can be used. Monolithium compounds; organic polyvalent lithium such as dilithiomethane, 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris(lithiomethyl)benzene compounds; organic sodium compounds such as sodium naphthalene; organic lithium compounds such as potassium naphthalene; Among these, it is preferable to use an organic monolithium compound, and it is more preferable to use n-butyllithium. These organic alkali metal catalysts may be used alone or in combination of two or more.

なお、重合に用いる重合溶媒としては、有機溶媒を挙げることができ、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂肪族炭化水素溶媒が好ましく、ブタン、ヘキサン、ペンタンがより好ましく、ヘキサンがさらに好ましく、ノルマルヘキサンが特に好ましい。 Examples of the polymerization solvent used for polymerization include organic solvents, such as aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane and cyclohexene; Aliphatic hydrocarbon solvents such as butane, pentane, hexane and heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; Among these, aliphatic hydrocarbon solvents are preferred, butane, hexane and pentane are more preferred, hexane is still more preferred, and normal hexane is particularly preferred.

合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。 There are four types of isoprene units in synthetic polyisoprene, ie, cis bond units, trans bond units, 1,2-vinyl bond units, and 3,4-vinyl bond units, depending on the bonding state of isoprene. From the viewpoint of improving the tensile strength of the obtained dip molded product, the content of cis bond units in the isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more, more preferably 90% by weight, based on the total isoprene units. % or more, more preferably 95% by weight or more.

合成ポリイソプレンの重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、ディップ成形体などの膜成形体とした場合における、得られる膜成形体の引張強度が向上するとともに、合成ポリイソプレンラテックスが製造しやすくなる傾向がある。 The weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, and still more preferably 500,000 to 5,000,000 in terms of standard polystyrene by gel permeation chromatography analysis. is between 800,000 and 3,000,000. By setting the weight-average molecular weight of the synthetic polyisoprene within the above range, the tensile strength of the obtained film molded product is improved when the film molded product such as a dip molded product is obtained, and the synthetic polyisoprene latex can be easily produced. Tend.

合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。The polymer Mooney viscosity (ML 1+4 , 100° C.) of the synthetic polyisoprene is preferably 50-80, more preferably 60-80, even more preferably 70-80.

本発明の合成ポリイソプレンラテックスは、上記した配位重合あるいはアニオン重合により得られた合成ポリイソプレンの重合体溶液を用いて、たとえば、以下の方法により得ることができる。すなわち、(1)配位重合あるいはアニオン重合により得られた合成ポリイソプレンの重合体溶液から、一度凝固させた合成ポリイソプレンを有機溶媒に溶解または微分散させることで、合成ポリイソプレンの重合体溶液(溶液または微細懸濁液)を得て、合成ポリイソプレンの重合体溶液を、乳化剤としてのトールロジン系界面活性剤の存在下で、水中で乳化させることで合成ポリイソプレンラテックスを製造する方法、(2)配位重合あるいはアニオン重合により得られた合成ポリイソプレンの重合体溶液を、凝固させることなく、乳化剤としてのトールロジン系界面活性剤の存在下で、水中で直接乳化させることで合成ポリイソプレンラテックスを製造する方法が挙げられる。上記(1)、(2)の方法いずれを採用してもよいが、アニオン重合により得られた合成ポリイソプレンを用いる場合には、凝固等による熱履歴を低減でき、これにより、得られるディップ成形体などの膜成形体を、引張強度および伸びにより優れるものとすることができるという観点より、上記(2)の方法が好ましい。 The synthetic polyisoprene latex of the present invention can be obtained, for example, by the following method using the synthetic polyisoprene polymer solution obtained by the above-described coordination polymerization or anionic polymerization. That is, (1) from a polymer solution of synthetic polyisoprene obtained by coordination polymerization or anionic polymerization, synthetic polyisoprene once solidified is dissolved or finely dispersed in an organic solvent to obtain a polymer solution of synthetic polyisoprene. A method of producing a synthetic polyisoprene latex by obtaining a (solution or fine suspension) and emulsifying a synthetic polyisoprene polymer solution in water in the presence of a tall rosin-based surfactant as an emulsifier, ( 2) Synthetic polyisoprene latex by directly emulsifying a synthetic polyisoprene polymer solution obtained by coordination polymerization or anionic polymerization in water in the presence of a tall rosin-based surfactant as an emulsifier without coagulation. A method for producing the Either of the above methods (1) and (2) may be adopted, but when synthetic polyisoprene obtained by anionic polymerization is used, the heat history due to coagulation etc. can be reduced, thereby resulting in dip molding. The above method (2) is preferable from the viewpoint that a film molded article such as a body can be made more excellent in tensile strength and elongation.

上記(1)の製造方法で用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂肪族炭化水素溶媒が好ましく、ヘキサンがより好ましく、ノルマルヘキサンが特に好ましい。 Examples of the organic solvent used in the above production method (1) include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene; pentane, hexane, Aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; Among these solvents, aliphatic hydrocarbon solvents are preferred, hexane is more preferred, and normal hexane is particularly preferred.

なお、有機溶媒の使用量は、合成ポリイソプレン100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、さらに好ましくは500~1,500重量部である。 The amount of the organic solvent to be used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and still more preferably 500 to 1,500 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene. be.

また、本発明においては、上記(1)、(2)のいずれの方法においても、合成ポリイソプレンを乳化させるための乳化剤として、トールロジン系界面活性剤を使用するものであり、このような乳化剤として、トールロジン系界面活性剤を使用することにより、後の工程において有機溶媒を除去する際における、泡立ちを抑制することができ、さらには、得られる合成ポリイソプレンの凝集物(コアギュラム)の発生を抑制することでき、これにより、ラテックスとしての機械的安定性を向上させることもできる。さらには、トールロジン系界面活性剤を使用し、かつ、最終的に得られる合成ポリイソプレンラテックス中における含有量を、合成ポリイソプレン100重量部に対して、0.3~1.5重量部の割合に制御することにより、得られるディップ成形体などの膜成形体を、臭気が有効に抑えられており、引張強度および伸びに優れたものとすることができる。 In the present invention, in both methods (1) and (2) above, a tall rosin-based surfactant is used as an emulsifier for emulsifying the synthetic polyisoprene. , By using a tall rosin-based surfactant, it is possible to suppress foaming when removing the organic solvent in the subsequent step, and further suppress the generation of aggregates (coagulum) of the resulting synthetic polyisoprene. It is possible to improve the mechanical stability of the latex. Furthermore, a tall rosin-based surfactant is used, and the content in the finally obtained synthetic polyisoprene latex is 0.3 to 1.5 parts by weight per 100 parts by weight of the synthetic polyisoprene. By controlling the ratio to , the resulting film molded article such as a dip molded article can effectively suppress odor and have excellent tensile strength and elongation.

トールロジン系界面活性剤としては、粗トール油の精留により得られるトールロジンまたはこのようなトールロジンを原料とする誘導体であればよく、トールロジンを原料とする誘導体としては、トールロジンを構成する樹脂酸を金属塩化した、トールロジン酸ナトリウムなどのトールロジンの金属塩や、ヨウ素系触媒などの不均化触媒を用いることで不均化された不均化トールロジン、さらには、不均化トールロジンを構成する樹脂酸を金属塩化した、不均化トールロジン酸ナトリウムなどの不均化トールロジンの金属塩などが挙げられる。なお、トールロジンとしては、アビエチン酸33~48重量%、ネオアビエチン酸2~8重量%、パラストリン酸10~20重量%、ピマール酸3~8重量%、イソピマール酸4~10重量%、およびでヒドロアビエチン酸15~25重量%の割合で含有するものが好適である。また、不均化トールロジンは、上記成分のうち、アビエチン酸、ネオアビエチン酸、およびパラストリン酸のうち少なくとも一部が、不均化反応により、デヒドロアビエチン酸とされたものである。 The tall rosin-based surfactant may be a tall rosin obtained by rectification of crude tall oil or a derivative of such a tall rosin as a raw material. Chlorinated metal salts of tall rosin such as sodium tall rosinate, disproportionated tall rosin disproportionated by using a disproportionation catalyst such as an iodine-based catalyst, and resin acids constituting disproportionation tall rosin Metal salts of disproportionated tall rosin such as disproportionated sodium tall rosinate and the like are included. As tall rosin, 33 to 48% by weight of abietic acid, 2 to 8% by weight of neoabietic acid, 10 to 20% by weight of parastric acid, 3 to 8% by weight of pimaric acid, 4 to 10% by weight of isopimaric acid, and hydro Those containing 15 to 25% by weight of abietic acid are preferred. In the disproportionated tall rosin, at least part of abietic acid, neoabietic acid, and parastric acid among the above components is converted to dehydroabietic acid by a disproportionation reaction.

合成ポリイソプレンを乳化させる際における、乳化剤としてのトールロジン系界面活性剤の使用量は、合成ポリイソプレン100重量部に対して、好ましくは1~15重量部であり、より好ましく3~12重量部、さらに好ましくは5~10重量部である。トールロジン系界面活性剤の使用量が少なすぎると、乳化が不十分となってしまい、一方、トールロジン系界面活性剤の使用量が多すぎると、最終的に得られる合成ポリイソプレンラテックス中におけるトールロジン系界面活性剤の含有量が多くなり過ぎてしまい、臭気が悪化してしまう。 The amount of the tall rosin-based surfactant used as an emulsifier when emulsifying the synthetic polyisoprene is preferably 1 to 15 parts by weight, more preferably 3 to 12 parts by weight, based on 100 parts by weight of the synthetic polyisoprene. More preferably 5 to 10 parts by weight. If the amount of the tall rosin-based surfactant used is too small, emulsification will be insufficient. The content of the surfactant becomes too large, and the odor becomes worse.

合成ポリイソプレンを乳化させる際に使用する水の量は、合成ポリイソプレンの重合体溶液100重量部に対して、好ましくは10~200重量部、より好ましくは30~100重量部、最も好ましくは50~70重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。水の使用量が少なすぎると、乳化が不十分となってしまい、一方、多すぎると、生産性が低下してしまう。 The amount of water used when emulsifying the synthetic polyisoprene is preferably 10 to 200 parts by weight, more preferably 30 to 100 parts by weight, and most preferably 50 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene polymer solution. ~70 parts by weight. Types of water to be used include hard water, soft water, ion-exchanged water, distilled water, zeolite water, etc. Soft water, ion-exchanged water and distilled water are preferred. If the amount of water used is too small, emulsification will be insufficient, while if it is too large, the productivity will decrease.

合成ポリイソプレンの重合体溶液を、乳化剤としてのトールロジン系界面活性剤の存在下、水中で乳化する際には、一般に乳化機または分散機として市販されている乳化装置を特に限定されず使用できる。合成ポリイソプレンの重合体溶液に、トールロジン系界面活性剤を添加する方法としては、特に限定されず、予め、水もしくは合成ポリイソプレンの重合体溶液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。 When a synthetic polyisoprene polymer solution is emulsified in water in the presence of a tall rosin-based surfactant as an emulsifier, an emulsifier that is generally commercially available as an emulsifier or disperser can be used without particular limitation. The method of adding the tall rosin-based surfactant to the synthetic polyisoprene polymer solution is not particularly limited. It may be added to the emulsified liquid during the emulsification operation, may be added all at once, or may be added in portions.

乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等を用いることができる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。 Examples of emulsifying devices include batch-type emulsifiers such as the trade name "Homogenizer" (manufactured by IKA), the trade name "Polytron" (manufactured by Kinematica), and the trade name "TK Auto Homomixer" (manufactured by Tokushu Kika Kogyo Co., Ltd.). Machine; trade name "TK Pipeline Homo Mixer" (manufactured by Tokushu Kika Kogyo Co., Ltd.), trade name "Colloid Mill" (manufactured by Shinko Pantec Co., Ltd.), trade name "Slasher" (manufactured by Nippon Coke Kogyo Co., Ltd.), trade name " Trigonal wet pulverizer” (manufactured by Mitsui Miike Kakoki Co., Ltd.), trade name “Cavitron” (manufactured by Eurotech), trade name “Milder” (manufactured by Taiheiyo Kiko Co., Ltd.), trade name “Fine Flow Mill” (Taiheiyo Kiko Co., Ltd.) (manufactured by Mizuho Kogyo Co., Ltd.), trade name "Nanomizer" (manufactured by Nanomizer Co., Ltd.), trade name "APV Gaulin" (manufactured by Gaulin Co., Ltd.), etc. Membrane emulsifiers such as the trade name "Membrane Emulsifier" (manufactured by Reika Kogyo Co., Ltd.); Vibratory emulsifiers such as the trade name "Vibro Mixer" (manufactured by Reika Kogyo Co., Ltd.); Trade name "Ultrasonic Homogenizer" (Branson An ultrasonic emulsifier such as (manufactured by Co., Ltd.) can be used. The conditions for the emulsification operation by the emulsifying device are not particularly limited, and the treatment temperature, treatment time, etc. may be appropriately selected so as to obtain a desired dispersed state.

また、合成ポリイソプレンの重合体溶液を、乳化剤としてのトールロジン系界面活性剤の存在下、水中で乳化することにより得られた乳化液から、有機溶媒を除去することが望ましい。乳化液から有機溶媒を除去する方法としては、乳化液中における、有機溶媒(好ましくは脂肪族炭化水素溶媒)の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができるが、これらの中でも、有機溶媒を適切かつ効率的に除去できるという観点より、減圧蒸留が好ましい。 It is also desirable to remove the organic solvent from the emulsion obtained by emulsifying the synthetic polyisoprene polymer solution in water in the presence of a tall rosin surfactant as an emulsifier. As a method for removing the organic solvent from the emulsion, a method capable of reducing the content of the organic solvent (preferably an aliphatic hydrocarbon solvent) in the emulsion to 500 ppm by weight or less is preferable. Methods such as atmospheric distillation, steam distillation, and centrifugal separation can be employed, but among these, vacuum distillation is preferred from the viewpoint that the organic solvent can be removed appropriately and efficiently.

有機溶媒を除去した乳化液には、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。 Additives such as pH adjusters, antifoaming agents, preservatives, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc., are added to the emulsion after removing the organic solvent. You may Examples of pH adjusters include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogencarbonates such as sodium hydrogencarbonate; organic amine compounds such as trimethylamine and triethanolamine; and the like, but alkali metal hydroxides and ammonia are preferred.

また、有機溶媒を除去した後、必要に応じ、合成ポリイソプレンラテックス中の固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を行うことが望ましく、特に、合成ポリイソプレンラテックス中の固形分濃度を上げるとともに、合成ポリイソプレンラテックス中のトールロジン系界面活性剤の含有量を調整することができるという点より、遠心分離を行うことが好ましい。 In addition, after removing the organic solvent, it is desirable to carry out a concentration operation by a method such as vacuum distillation, normal pressure distillation, centrifugation, membrane concentration, etc., as necessary, in order to increase the solid content concentration in the synthetic polyisoprene latex. In particular, centrifugation is preferred because it can increase the solid content concentration in the synthetic polyisoprene latex and adjust the content of the tall rosin-based surfactant in the synthetic polyisoprene latex.

遠心分離は、たとえば、連続遠心分離機や回分式遠心分離機を用いて行うことができるが、合成ポリイソプレンラテックスの生産性に優れるという観点より、連続遠心分離機を用いて行うことが好ましい。遠心分離により乳化液を濃縮する場合には、遠心分離後の分散液から、その一部である軽液として、合成ポリイソプレンラテックスを得ることができる。そのため、遠心分離によれば、軽液としての合成ポリイソプレンラテックスを取り除いた後の残液中に、除去したい所望量のトールロジン系界面活性剤が含まれるようにすることにより、最終的に得られる合成ポリイソプレンラテックス中におけるトールロジン系界面活性剤の含有量を適切に調整できるものである。 Centrifugation can be performed using, for example, a continuous centrifuge or a batch centrifuge, but from the viewpoint of excellent productivity of the synthetic polyisoprene latex, it is preferable to use a continuous centrifuge. When the emulsion is concentrated by centrifugation, the synthetic polyisoprene latex can be obtained as a light liquid that is a part of the dispersed liquid after centrifugation. Therefore, according to centrifugation, the residual liquid after removing the synthetic polyisoprene latex as the light liquid contains the desired amount of tall rosin-based surfactant to be removed. It is possible to appropriately adjust the content of the tall rosin-based surfactant in the synthetic polyisoprene latex.

なお、遠心分離における条件としては、特に限定されず、最終的に得られる合成ポリイソプレンラテックス中におけるトールロジン系界面活性剤の含有量を、ラテックス中含まれる合成ポリイソプレン100重量部に対して、0.3~1.5重量部の範囲となる条件とすればよい。たとえば、遠心分離に用いる乳化液(遠心分離前の乳化液)の固形分濃度は、好ましくは5~11重量%、より好ましくは7~10.7重量%、さらに好ましくは9~10.5重量%である。遠心分離前の乳化液の固形分濃度を上記範囲とすることにより、遠心分離中に、合成ポリイソプレン等の凝集を防止することができ、これにより、乳化液の機械的安定性が向上するとともに、最終的に得られる合成ポリイソプレンラテックス中のトールロジン系界面活性剤の量を適切に所望の量に調整することができるため、好ましい。なお、遠心分離を行う際には、有機溶媒を除去した乳化液をそのまま用いてもよいし、あるいは、固形分濃度を調整した後に用いてもよい。 The conditions for centrifugation are not particularly limited, and the content of the tall rosin-based surfactant in the finally obtained synthetic polyisoprene latex is 0 per 100 parts by weight of the synthetic polyisoprene contained in the latex. .3 to 1.5 parts by weight. For example, the solid content concentration of the emulsion used for centrifugation (emulsion before centrifugation) is preferably 5 to 11% by weight, more preferably 7 to 10.7% by weight, and still more preferably 9 to 10.5% by weight. %. By setting the solid content concentration of the emulsion before centrifugation within the above range, it is possible to prevent aggregation of synthetic polyisoprene or the like during centrifugation, thereby improving the mechanical stability of the emulsion. is preferable because the amount of the tall rosin-based surfactant in the finally obtained synthetic polyisoprene latex can be appropriately adjusted to the desired amount. When centrifuging, the emulsion from which the organic solvent has been removed may be used as it is, or may be used after adjusting the solid content concentration.

また、遠心分離を行う際の条件としては、連続遠心分離機を使用する場合には、遠心加速度は、好ましくは5,000~11,000G、より好ましくは6,000~10,000G、さらに好ましくは7,000~9,500Gであり、連続遠心分離機への乳化液のフィード量は、好ましくは0.5~1.5m/時間、より好ましくは0.7~1.45m/時間、さらに好ましくは0.9~1.4m/時間であり、連続遠心分離機内での滞留時間が、好ましくは2.0~4.0分、より好ましくは2.5~3.0分、また、遠心分離機の背圧(ゲージ圧)は、好ましくは0.03~1.6MPaである。遠心分離の条件を上記の通りとすることにより、遠心分離中における、合成ポリイソプレン等の凝集を防止することができ、これにより、乳化液の機械的安定性が向上するとともに、最終的に得られる合成ポリイソプレンラテックス中のトールロジン系界面活性剤の量を適切に所望の量に調整することができるため、好ましい。As for the conditions for centrifugation, when a continuous centrifuge is used, the centrifugal acceleration is preferably 5,000 to 11,000 G, more preferably 6,000 to 10,000 G, further preferably is 7,000 to 9,500 G, and the feed amount of the emulsified liquid to the continuous centrifuge is preferably 0.5 to 1.5 m 3 /hour, more preferably 0.7 to 1.45 m 3 /hour. , more preferably 0.9 to 1.4 m 3 /hour, the residence time in the continuous centrifuge is preferably 2.0 to 4.0 minutes, more preferably 2.5 to 3.0 minutes, Further, the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa. By setting the conditions for centrifugation as described above, it is possible to prevent aggregation of synthetic polyisoprene or the like during centrifugation. It is preferable because the amount of the tall rosin-based surfactant in the synthetic polyisoprene latex obtained can be appropriately adjusted to the desired amount.

なお、上記においては、合成ポリイソプレン100重量部に対して、トールロジン系界面活性剤を0.3~1.5重量部の割合で含有する本発明の合成ポリイソプレンラテックスを得るための条件の一例を例示したが、このような条件に特に限定されるものではない。特に、本発明の合成ポリイソプレンラテックス中における、トールロジン系界面活性剤の量は、主として、合成ポリイソプレンの重合体溶液を水中で乳化させる際に用いる、トールロジン系界面活性剤の使用量、遠心分離前の乳化液の固形分濃度、および遠心分離を行う際の条件などを適宜組み合わせることにより調整することができ、これらを適切に組み合わせることにより、最終的に得られる合成ポリイソプレンラテックス中のトールロジン系界面活性剤の量が、本発明所定の範囲となるように、各条件を適宜調整すればよい。たとえば、合成ポリイソプレンの重合体溶液を水中で乳化させる際に用いる、トールロジン系界面活性剤の使用量が比較的少ない場合には、遠心分離により除去するトールロジン系界面活性剤の量が相対的に少なくなるため、連続遠心分離機における遠心加速度を上記した範囲よりも大きくしたり、連続遠心分離機への乳化液のフィード量を多くすることも可能となる場合があると考えられる。 In the above, an example of the conditions for obtaining the synthetic polyisoprene latex of the present invention containing 0.3 to 1.5 parts by weight of the tall rosin-based surfactant with respect to 100 parts by weight of the synthetic polyisoprene. was exemplified, but it is not particularly limited to such conditions. In particular, the amount of the tall rosin-based surfactant in the synthetic polyisoprene latex of the present invention is mainly determined by the amount of the tall rosin-based surfactant used when emulsifying the synthetic polyisoprene polymer solution in water, centrifugation, It can be adjusted by appropriately combining the solid content concentration of the previous emulsion and the conditions for centrifugation. Each condition may be appropriately adjusted so that the amount of the surfactant falls within the range specified by the present invention. For example, when the amount of tall rosin surfactant used for emulsifying a synthetic polyisoprene polymer solution in water is relatively small, the amount of tall rosin surfactant to be removed by centrifugation is relatively small. Therefore, it may be possible to make the centrifugal acceleration in the continuous centrifuge larger than the above range or to increase the feed amount of the emulsified liquid to the continuous centrifuge.

ラテックス組成物
本発明のラテックス組成物は、上述した本発明の合成ポリイソプレンラテックスに、加硫剤および/または加硫促進剤を配合してなるものである。
Latex Composition The latex composition of the present invention is obtained by blending the synthetic polyisoprene latex of the present invention with a vulcanizing agent and/or a vulcanization accelerator.

加硫剤としては、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノール・ジスルフィド、N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2)、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。加硫剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of vulcanizing agents include sulfur such as powdered sulfur, sulfur flowers, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, N,N'- Sulfur-containing compounds such as dithio-bis(hexahydro-2H-azepinone-2), phosphorus-containing polysulfides, polymeric polysulfides, and 2-(4′-morpholinodithio)benzothiazole can be mentioned. Among these, sulfur can be preferably used. A vulcanizing agent can be used individually by 1 type or in combination of 2 or more types.

加硫剤の含有量は、特に限定されないが、ラテックス中に含まれる合成ポリイソプレン100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~3重量部である。加硫剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。 The content of the vulcanizing agent is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 3 parts by weight, based on 100 parts by weight of the synthetic polyisoprene contained in the latex. . By setting the content of the vulcanizing agent within the above range, it is possible to further increase the tensile strength of the resulting film-formed article such as a dip-formed article.

加硫促進剤としては、ディップ成形などの膜成形体を得る方法において通常用いられるものが使用でき、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられるが、ジエチルジチオカルバミン酸亜鉛、2ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール亜鉛が好ましい。加硫促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 As the vulcanization accelerator, those commonly used in the method of obtaining a film molded article such as dip molding can be used. acids, dithiocarbamic acids such as dibenzyldithiocarbamic acid and zinc salts thereof; ) benzothiazole, 2-(N,N-diethylthio-carbylthio)benzothiazole, 2-(2,6-dimethyl-4-morpholinothio)benzothiazole, 2-(4'-morpholino-dithio)benzothiazole, 4- morphonylyl-2-benzothiazyl disulfide, 1,3-bis(2-benzothiazyl-mercaptomethyl)urea and the like, but zinc diethyldithiocarbamate, zinc 2-dibutyldithiocarbamate and zinc 2-mercaptobenzothiazole are preferred. A vulcanization accelerator can be used individually by 1 type or in combination of 2 or more types.

加硫促進剤の含有量は、ラテックス中に含まれる合成ポリイソプレン100重量部に対して、好ましくは0.05~5重量部であり、より好ましくは0.1~2重量部である。加硫促進剤の含有量を上記範囲とすることにより、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。 The content of the vulcanization accelerator is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, per 100 parts by weight of the synthetic polyisoprene contained in the latex. By setting the content of the vulcanization accelerator within the above range, it is possible to further increase the tensile strength of the obtained film-formed article such as a dip-formed article.

また、本発明のラテックス組成物は、さらに老化防止剤を含有していることが好ましい。老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、などの硫黄原子を含有しないフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。これらのなかでも、加硫反応を阻害する作用が小さく、酸化防止効果が大きいいため、フェノール系老化防止剤が好ましく、硫黄原子を含有しないフェノール系老化防止剤がより好ましい。 Moreover, the latex composition of the present invention preferably further contains an anti-aging agent. Antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl-α-dimethylamino-p-cresol, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, styrenated phenol, 2,2′-methylene-bis(6-α-methyl-benzyl-p-cresol), 4, 4′-methylenebis(2,6-di-t-butylphenol), 2,2′-methylene-bis(4-methyl-6-t-butylphenol), alkylated bisphenols, butylation of p-cresol and dicyclopentadiene Phenolic antioxidants containing no sulfur atoms such as reaction products; 2,2'-thiobis-(4-methyl-6-t-butylphenol), 4,4'-thiobis-(6-t-butyl- o-cresol), 2,6-di-t-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol and other thiobisphenol antioxidants; (nonylphenyl) phosphite, diphenylisodecyl phosphite, tetraphenyldipropylene glycol diphosphite and other phosphite ester antioxidants; sulfur ester antioxidants such as dilauryl thiodipropionate; phenyl-α-naphthylamine, Phenyl-β-naphthylamine, p-(p-toluenesulfonylamido)-diphenylamine, 4,4′-(α,α-dimethylbenzyl)diphenylamine, N,N-diphenyl-p-phenylenediamine, N-isopropyl-N′ -amine antioxidants such as phenyl-p-phenylenediamine and butyraldehyde-aniline condensates; quinoline antioxidants such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline;2, hydroquinone anti-aging agents such as 5-di-(t-amyl) hydroquinone; These antioxidants may be used singly or in combination of two or more. Among these, phenol-based anti-aging agents are preferable, and phenol-based anti-aging agents containing no sulfur atom are more preferable because they have a small effect of inhibiting the vulcanization reaction and have a high antioxidant effect.

老化防止剤の含有量は、ラテックス中に含まれる合成ポリイソプレン100重量部に対して、好ましくは0.1~10重量部、より好ましくは1~7重量部、さらに好ましくは3~6重量部である。老化防止剤の含有量をこの範囲とすることにより、加硫時における加硫反応を阻害することなく、十分な酸化防止効果を得ることができるため、好ましい。 The content of the antioxidant is preferably 0.1 to 10 parts by weight, more preferably 1 to 7 parts by weight, and still more preferably 3 to 6 parts by weight, based on 100 parts by weight of the synthetic polyisoprene contained in the latex. is. By setting the content of the anti-aging agent within this range, a sufficient anti-oxidation effect can be obtained without inhibiting the vulcanization reaction during vulcanization, which is preferable.

また、本発明のラテックス組成物は、さらに酸化亜鉛を含有することが好ましい。
酸化亜鉛の含有量は、特に限定されないが、ラテックス中に含まれる合成ポリイソプレン100重量部に対して、好ましくは0.1~5重量部、より好ましくは0.2~2重量部である。酸化亜鉛の含有量を上記範囲とすることにより、乳化安定性を良好なものとしながら、得られるディップ成形体などの膜成形体の引張強度をより高めることができる。
Moreover, the latex composition of the present invention preferably further contains zinc oxide.
The content of zinc oxide is not particularly limited, but is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 2 parts by weight, based on 100 parts by weight of the synthetic polyisoprene contained in the latex. By setting the content of zinc oxide within the above range, it is possible to improve the emulsion stability and further increase the tensile strength of the resulting film-formed article such as a dip-formed article.

本発明のラテックス組成物には、さらに、分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。 The latex composition of the present invention further contains compounding agents such as dispersants; reinforcing agents such as carbon black, silica and talc; fillers such as calcium carbonate and clay; UV absorbers; can be compounded.

本発明のラテックス組成物の調製方法は、特に限定されないが、たとえば、ボールミル、ニーダー、ディスパー等の分散機を用いて、合成ポリイソプレンラテックスに、加硫剤および/または加硫促進剤、ならびに、必要に応じて配合される老化防止剤などの各種配合剤を混合する方法や、このような分散機を用いて、合成ポリイソプレンラテックス以外の配合成分の水性分散液を調製した後、該水性分散液を合成ポリイソプレンラテックスに混合する方法などが挙げられる。 The method for preparing the latex composition of the present invention is not particularly limited. After preparing an aqueous dispersion of ingredients other than synthetic polyisoprene latex using a method of mixing various compounding agents such as anti-aging agents that are blended as necessary, or using such a disperser, the aqueous dispersion is prepared. A method of mixing the liquid with synthetic polyisoprene latex and the like can be mentioned.

本発明のラテックス組成物は、pHが7以上であることが好ましく、pHが7~13の範囲であることがより好ましく、pHが8~12の範囲であることがさらに好ましい。また、ラテックス組成物の固形分濃度は、15~65重量%の範囲にあることが好ましい。 The latex composition of the present invention preferably has a pH of 7 or higher, more preferably in the range of 7-13, and even more preferably in the range of 8-12. Also, the solid content concentration of the latex composition is preferably in the range of 15 to 65% by weight.

本発明のラテックス組成物は、得られるディップ成形体などの膜成形体の機械的特性をより高めるという観点より、ディップ成形などの成形に供する前に、熟成(前架橋)させることが好ましい。前架橋する時間は、特に限定されず、前架橋の温度にも依存するが、好ましくは1~14日間であり、より好ましくは1~7日間である。なお、前架橋の温度は、好ましくは20~40℃である。
そして、前架橋した後、ディップ成形などの成形に供されるまで、好ましくは10~30℃の温度で貯蔵することが好ましい。高温のまま貯蔵すると、得られるディップ成形体などの膜成形体の引張強度が低下する場合がある。
The latex composition of the present invention is preferably aged (pre-crosslinked) before being subjected to molding such as dip molding from the viewpoint of further enhancing the mechanical properties of the resulting film molded article such as dip molded article. The pre-crosslinking time is not particularly limited and depends on the pre-crosslinking temperature, but is preferably 1 to 14 days, more preferably 1 to 7 days. The pre-crosslinking temperature is preferably 20 to 40°C.
After pre-crosslinking, it is preferably stored at a temperature of 10 to 30° C. until it is subjected to molding such as dip molding. If stored at a high temperature, the tensile strength of the resulting film-formed article such as a dip-formed article may decrease.

膜成形体
本発明の膜成形体は、本発明のラテックス組成物からなる膜状の成形体である。本発明の膜成形体の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。
Film molded article The film molded article of the present invention is a film-like molded article made of the latex composition of the present invention. The film thickness of the film molded product of the present invention is preferably 0.03 to 0.50 mm, more preferably 0.05 to 0.40 mm, particularly preferably 0.08 to 0.30 mm.

本発明の膜成形体としては、特に限定されないが、本発明のラテックス組成物をディップ成形して得られるディップ成形体であることが好適である。ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。 Although the film molded article of the present invention is not particularly limited, it is preferably a dip molded article obtained by dip molding the latex composition of the present invention. Dip molding is a method in which a mold is immersed in a latex composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and the composition deposited on the surface of the mold is dried. be. The mold may be preheated before being immersed in the latex composition. A coagulant can also be used, if desired, before the mold is dipped into the latex composition or after the mold is lifted from the latex composition.

凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。 Specific examples of the method of using the coagulant include a method of immersing the mold before being immersed in the latex composition in a coagulant solution to adhere the coagulant to the mold (anodic coagulant dipping method), and a method of depositing the latex composition. Although there is a method of immersing the molded mold in a coagulant solution (Teeg adhesion dipping method), the anodic adhesion dipping method is preferable in that a dip molded article with little unevenness in thickness can be obtained.

凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。 Specific examples of coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; acetic acid such as barium acetate, calcium acetate and zinc acetate; salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; water-soluble polyvalent metal salts such as; Among them, calcium salts are preferred, and calcium nitrate is more preferred. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.

凝固剤は、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。 The coagulant is preferably used in the form of an aqueous solution. This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant. The concentration of the coagulant varies depending on the type of water-soluble polyvalent metal salt, but is preferably 5-50% by weight, more preferably 10-30% by weight.

型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。 After the mold is withdrawn from the latex composition, it is usually heated to dry the deposit formed on the mold. Drying conditions may be appropriately selected.

次いで、加熱して、型上に形成された沈着物を架橋させる。
架橋時の加熱条件は、特に限定されないが、好ましくは60~150℃、より好ましくは100~130℃の加熱温度で、好ましくは10~120分の加熱時間である。
加熱の方法は、特に限定されないが、オーブンの中で温風で加熱する方法、赤外線を照射して加熱する方法などがある。
Heating is then applied to crosslink the deposit formed on the mold.
The heating conditions for cross-linking are not particularly limited, but the heating temperature is preferably 60 to 150° C., more preferably 100 to 130° C., and the heating time is preferably 10 to 120 minutes.
The heating method is not particularly limited, but includes a method of heating with hot air in an oven, a method of heating by irradiating infrared rays, and the like.

また、ラテックス組成物を沈着させた型を加熱する前あるいは加熱した後に、水溶性不純物(たとえば、余剰の界面活性剤や凝固剤)を除去するために、型を水または温水で洗浄することが好ましい。用いる温水としては好ましくは40℃~80℃であり、より好ましくは50℃~70℃である。 Also, before or after heating the latex composition-deposited mold, the mold can be washed with water or hot water to remove water-soluble impurities (e.g., excess surfactant and coagulant). preferable. The hot water to be used is preferably 40°C to 80°C, more preferably 50°C to 70°C.

架橋後のディップ成形体は、型から脱着される。脱着方法の具体例は、手で型から剥がす方法、水圧または圧縮空気圧力により剥がす方法等が挙げられる。架橋途中のディップ成形体が脱着に対する十分な強度を有していれば、架橋途中で脱着し、引き続き、その後の架橋を継続してもよい。 The dip molded article after cross-linking is removed from the mold. Specific examples of the detachment method include a method of manually peeling from the mold, a method of peeling by water pressure or compressed air pressure, and the like. If the dip-molded article in the middle of cross-linking has sufficient strength against detachment, it may be detached in the middle of cross-linking, and the subsequent cross-linking may be continued.

本発明の膜成形体、およびその一態様であるディップ成形体は、上述した本発明のラテックスを用いて得られるものであるため、引張強度および伸びに優れるものであり、たとえば、手袋として特に好適に用いることができる。膜成形体が手袋である場合、膜成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。 The film molded article of the present invention and the dip molded article, which is one aspect thereof, are obtained using the above-described latex of the present invention, and therefore are excellent in tensile strength and elongation, and are particularly suitable for gloves, for example. can be used for In the case where the membrane molded article is a glove, the glove is coated with inorganic fine particles such as talc or calcium carbonate or organic fine particles such as starch particles in order to prevent the contact surfaces of the membrane compacts from sticking to each other and to improve the slippage when putting on and taking off the gloves. It may be sprayed on the surface, an elastomer layer containing fine particles may be formed on the glove surface, or the surface layer of the glove may be chlorinated.

また、本発明の膜成形体、およびその一態様であるディップ成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドームなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。 In addition to the above-mentioned gloves, the film molded article of the present invention and the dip molded article which is one aspect thereof can also be used for nursing bottle nipples, droppers, tubes, water pillows, balloon sacks, catheters, condoms, and other medical supplies; balloons; , dolls, balls and other toys; industrial products such as pressure molding bags and gas storage bags; finger cots and the like.

包装構造体
本発明の包装構造体は、上述した本発明の合成ポリイソプレンラテックスを塗布した第1のシート基材および第2のシート基材を接着積層してなり、被包装物を収容可能な構造を示す。具体的には、本発明の包装構造体においては、第1のシート基材および第2のシート基材は、合成ポリイソプレンラテックスが塗布された面(ラテックス塗布面)が対向するようにして、必要に応じて被包装物を挟み、第1のシート基材および第2のシート基材のラテックス塗布面同士が互いに接触した状態で、押圧することにより、第1のシート基材と第2のシート基材とが互いに接着し、これにより、被包装物を包装可能な構造となっている。被包装物としては、特に限定されないが、たとえば、絆創膏等の医療品のように、滅菌をすることが望まれる各種被包装物が挙げられる。第1のシート基材および第2のシート基材としては、特に限定されないが、たとえば、グラシン紙等の紙材、高密度ポリエチレン不織布、ポリオレフィンフィルム、ポリエステルフィルム等が挙げられ、これらのなかでも、取り扱い性が優れている点(適度な折れ曲がり易さを有している点)および安価であるという点から、紙材が好ましく、グラシン紙が特に好ましい。
Packaging structure The packaging structure of the present invention is formed by adhesively laminating the first sheet base material and the second sheet base material coated with the synthetic polyisoprene latex of the present invention described above, and is capable of accommodating an item to be packaged. Show structure. Specifically, in the packaging structure of the present invention, the first sheet base material and the second sheet base material are arranged such that the surfaces coated with the synthetic polyisoprene latex (latex-coated surfaces) face each other. If necessary, the article to be packaged is sandwiched and pressed while the latex-coated surfaces of the first sheet base material and the second sheet base material are in contact with each other, thereby separating the first sheet base material and the second sheet base material. The sheet base material is adhered to each other, thereby forming a structure capable of packaging an object to be packaged. The items to be packaged are not particularly limited, but include, for example, various items to be packaged that are desired to be sterilized, such as medical products such as bandages. The first sheet base material and the second sheet base material are not particularly limited, but examples include paper materials such as glassine paper, high-density polyethylene nonwoven fabric, polyolefin film, polyester film, etc. A paper material is preferable, and glassine paper is particularly preferable, because it is easy to handle (it has an appropriate degree of bending easiness) and it is inexpensive.

以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。 EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the following, "parts" are by weight unless otherwise specified. Physical properties and properties are tested or evaluated as follows.

重量平均分子量(Mw)
重合体溶液に含まれる、合成ポリイソプレンの固形分濃度が0.1重量%となるように、テトラヒドロフランで希釈し、この溶液について、ゲル・パーミエーション・クロマトグラフィー分析を行い、標準ポリスチレン換算の重量平均分子量(Mw)を算出した。
Weight average molecular weight (Mw)
The synthetic polyisoprene contained in the polymer solution was diluted with tetrahydrofuran so that the solid content concentration was 0.1% by weight. Average molecular weight (Mw) was calculated.

固形分濃度
アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
固形分濃度(重量%)=(X3-X1)×100/X2
2 g of the sample was precisely weighed (weight: X2) in a solid concentration aluminum dish (weight: X1) and dried in a hot air dryer at 105°C for 2 hours. Next, after cooling in a desiccator, the weight of each aluminum dish was measured (weight: X3), and the solid content concentration was calculated according to the following formula.
Solid content concentration (% by weight) = (X3-X1) x 100/X2

不均化トールロジン酸ナトリウム、不均化ガムロジン酸ナトリウムの含有割合
ポリイソプレンラテックス0.1gに水2mlを加え、アセトニトリルで10mlに希釈した。得られた液体をよく振とうさせ、ゴム分を凝固させた。その後水層を0.2μmのディスクフィルタで濾過した。この液体を高速液体クロマトグラフィーで分析し、合成ポリイソプレン100部に対する、不均化トールロジン酸ナトリウム、不均化ガムロジン酸ナトリウムの含有割合(単位:重量部)を算出した。
Content ratio of disproportionated tall sodium rosinate and disproportionated gum sodium rosinate To 0.1 g of polyisoprene latex, 2 ml of water was added and diluted to 10 ml with acetonitrile. The resulting liquid was shaken well to solidify the rubber. The aqueous layer was then filtered through a 0.2 μm disc filter. This liquid was analyzed by high-performance liquid chromatography to calculate the content ratio (unit: parts by weight) of disproportionated sodium tall rosinate and disproportionated sodium gum rosinate with respect to 100 parts of synthetic polyisoprene.

臭気
膜厚が約0.2mmのフィルム状のディップ成形体について、以下の基準で臭気判定を行った。
A:臭気を全く感じない。
B:わずかな臭気を感じるものの、不快ではない。
C:明らかに臭気を感じる。
D:強い臭気を感じ、不快である。
A film-like dip-molded article having an odor film thickness of about 0.2 mm was evaluated for odor according to the following criteria.
A: No odor is felt at all.
B: Slight odor, but not unpleasant.
C: Odor is clearly sensed.
D: A strong odor is sensed, which is unpleasant.

二硫化炭素量、硫化カルボニル量
膜厚が約0.2mmのフィルム状のディップ成形体について、トリプル四重極ガスクロマトグラフ質量分析計による測定を行うことで、二硫化炭素量および硫化カルボニル量の測定を行った。具体的には、トリプル四重極ガスクロマトグラフ質量分析により検出された二硫化炭素に対応するピークの面積(Area)、および硫化カルボニルに対応するピークの面積(Area)を、それぞれ試料1g当たりに換算した値を、二硫化炭素量および硫化カルボニル量(単位:Area/g)として求めた。二硫化炭素および硫化カルボニルは臭気の原因となるため、二硫化炭素量および硫化カルボニル量(単位:Area/g)が大きいほど、臭気が強いものと判断できる。
Carbon disulfide content and carbonyl sulfide content Measurement of the carbon disulfide content and carbonyl sulfide content of a film-shaped dip molded product with a thickness of about 0.2 mm using a triple quadrupole gas chromatograph mass spectrometer. did Specifically, the area (Area) of the peak corresponding to carbon disulfide detected by triple quadrupole gas chromatograph mass spectrometry and the area (Area) of the peak corresponding to carbonyl sulfide are converted to 1 g of sample. The obtained values were obtained as the amount of carbon disulfide and the amount of carbonyl sulfide (unit: Area/g). Since carbon disulfide and carbonyl sulfide cause odor, it can be judged that the larger the amount of carbon disulfide and the amount of carbonyl sulfide (unit: Area/g), the stronger the odor.

ディップ成形体の引張強度、破断時伸び(引張伸び)、500%引張応力
ASTM D412に基づいて、膜厚が約0.2mmのフィルム状のディップ成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機(商品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、破断直前の引張強度(単位:MPa)、破断直前の伸び(単位:%)および伸び率が500%の時の引張応力(単位:MPa)を測定した。なお、引張強度および破断時伸びは高いほど好ましい。また、500%の時の引張応力が小さいほど、ディップ成形体は柔軟性に優れたものとなり、好ましい。
Based on the tensile strength, elongation at break (tensile elongation), and 500% tensile stress ASTM D412 of the dip-molded body, a film-shaped dip-molded body having a thickness of about 0.2 mm was used as a dumbbell (trade name: "Super Dumbbell (model : SDMK-100C)”, manufactured by Dumbbell) to prepare a test piece for tensile strength measurement. The test piece is pulled at a tensile speed of 500 mm / min with a Tensilon universal testing machine (trade name "RTG-1210", manufactured by Orientec Co., Ltd.), tensile strength immediately before breakage (unit: MPa), elongation immediately before breakage (unit: % ) and the tensile stress (unit: MPa) at an elongation of 500%. Incidentally, the higher the tensile strength and the elongation at break, the better. Also, the smaller the tensile stress at 500%, the better the flexibility of the dip-molded article, which is preferable.

実施例1
(合成ポリイソプレン(a-1)の重合体溶液の製造)
乾燥および窒素置換された撹拌付きオートクレーブに、ノルマルヘキサン1150部と、イソプレン100部とを仕込んだ。次いで、オートクレーブ内の温度を60℃にし、撹拌しながらノルマルブチルリチウム0.006部を加えて2時間反応させた後、重合停止剤としてメタノール0.05部を添加し、反応を停止させて、合成ポリイソプレン(a-1)のノルマルヘキサン溶液を得た。ノルマルヘキサン溶液中の合成ポリイソプレン(a-1)の重量平均分子量は3,520,000であった。
Example 1
(Production of polymer solution of synthetic polyisoprene (a-1))
1150 parts of normal hexane and 100 parts of isoprene were charged into a dried and nitrogen-purged agitated autoclave. Next, the temperature in the autoclave is set to 60° C., 0.006 part of n-butyllithium is added with stirring and reacted for 2 hours, and then 0.05 part of methanol is added as a polymerization terminator to stop the reaction. A normal hexane solution of synthetic polyisoprene (a-1) was obtained. The weight average molecular weight of synthetic polyisoprene (a-1) in the normal hexane solution was 3,520,000.

(合成ポリイソプレンラテックス(A-1)の製造)
次いで、得られた合成ポリイソプレン(a-1)のノルマルヘキサン溶液1250部を60℃に加熱し、60℃に加熱した濃度1.0重量%の不均化トールロジン酸ナトリウムの水溶液1250部と、重量比で1:1となるように流量を調整してラインミキサーを用いて混合し、続いて、ホモジナイザーを用いて乳化液を得た。
(Production of synthetic polyisoprene latex (A-1))
Next, 1250 parts of the normal hexane solution of the obtained synthetic polyisoprene (a-1) was heated to 60°C, and 1250 parts of an aqueous solution of disproportionated sodium tall rosinate having a concentration of 1.0% by weight heated to 60°C, The flow rate was adjusted so that the weight ratio was 1:1, mixing was performed using a line mixer, and then an emulsion was obtained using a homogenizer.

さらに、上記にて得られた乳化液を減圧下で80℃に加温することでノルマルヘキサンを留去することで、合成ポリイソプレン(a-1)の水分散液を得た。得られた水分散液を固形分濃度10.3重量%に調整した後、固形分濃度を調整した水分散液を、密閉ディスク型連続遠心分離機(製品名「SGR509」、アルファ・ラバル社製)に1.0m/時間の流量(滞留時間に換算すると、3.0分の条件)にて連続的にフィードし、遠心加速度9,000Gにて、遠心分離を行い、合成ポリイソプレンラテックス(A-1)を得た。得られた合成ポリイソプレンラテックス(A-1)中の不均化トールロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、0.8部であった。Further, the emulsified liquid obtained above was heated to 80° C. under reduced pressure to distill off normal hexane, thereby obtaining an aqueous dispersion of synthetic polyisoprene (a-1). After adjusting the resulting water dispersion to a solid content concentration of 10.3% by weight, the water dispersion liquid with the adjusted solid content concentration is subjected to a closed disk type continuous centrifuge (product name “SGR509”, manufactured by Alfa Laval ) at a flow rate of 1.0 m 3 / hour (condition of 3.0 minutes when converted to residence time), centrifuged at a centrifugal acceleration of 9,000 G, and synthetic polyisoprene latex ( A-1) was obtained. The content of disproportionated sodium tall rosinate in the obtained synthetic polyisoprene latex (A-1) was measured and found to be 0.8 parts per 100 parts of synthetic polyisoprene.

(ラテックス組成物の調製)
上記にて得られた合成ポリイソプレンラテックス(A-1)を撹拌しながら、合成ポリイソプレンラテックス(A-1)中の合成ポリイソプレン100部に対して、固形分換算での配合量が1部となるように、濃度10重量%のドデシルベンゼンスルホン酸ソーダを添加した。そして、得られた混合物を撹拌しながら、混合物中の合成ポリイソプレン100部に対して、それぞれ固形分換算で、酸化亜鉛1.5部、硫黄1.5部、老化防止剤(商品名「Wingstay L」、グッドイヤー社製)2部、ジエチルジチオカルバミン酸亜鉛0.3部、ジブチルジチオカルバミン酸亜鉛0.5部、メルカプトベンゾチアゾール亜鉛塩0.7部となるように、各配合剤の水分散液を添加した後、水酸化カリウム水溶液を添加して、pHを10.5に調整したラテックス組成物を得た。その後、得られたラテックス組成物を、30℃に調整された恒温水槽で48時間熟成した。
(Preparation of latex composition)
While stirring the synthetic polyisoprene latex (A-1) obtained above, the compounding amount in terms of solid content is 1 part per 100 parts of the synthetic polyisoprene in the synthetic polyisoprene latex (A-1). Sodium dodecylbenzenesulfonate with a concentration of 10% by weight was added so as to obtain a Then, while stirring the obtained mixture, 1.5 parts of zinc oxide, 1.5 parts of sulfur, and an antioxidant (trade name “Wingstay L", manufactured by Goodyear), 0.3 parts of zinc diethyldithiocarbamate, 0.5 parts of zinc dibutyldithiocarbamate, and 0.7 parts of zinc mercaptobenzothiazole. After the addition, an aqueous potassium hydroxide solution was added to obtain a latex composition adjusted to pH 10.5. After that, the resulting latex composition was aged for 48 hours in a constant temperature water bath adjusted to 30°C.

(ディップ成形体の製造)
表面がすり加工されたガラス型(直径約5cm、すり部長さ約15cm)を洗浄し、70℃のオーブン内で予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)を含む凝固剤水溶液に5秒間浸漬し、取り出した。次いで、凝固剤で被覆されたガラス型を70℃のオーブン内で30分以上乾燥した。
(Manufacturing of dip molded body)
Ground-surfaced glass molds (approximately 5 cm in diameter and approximately 15 cm of grind length) were cleaned and preheated in an oven at 70° C. before being treated with 18% by weight calcium nitrate and 0.05% by weight polyoxyethylene. It was immersed in an aqueous coagulant solution containing lauryl ether (trade name “Emulgen 109P”, manufactured by Kao Corporation) for 5 seconds and then taken out. The coagulant-coated glass mold was then dried in an oven at 70° C. for 30 minutes or more.

その後、凝固剤で被覆されたガラス型をオーブンから取り出し、上記にて得られたラテックス組成物を25℃に調整し、このラテックス組成物に10秒間浸漬した後に取り出して、次いで、室温で60分間風乾することで、フィルムで被覆されたガラス型を得た。そして、フィルムで被覆されたガラス型を60℃の温水中に2分間浸漬した後、室温で30分間風乾した。その後、フィルムで被覆されたガラス型を120℃のオーブン内に置き20分間加硫を行った後、室温まで冷却し、タルクを散布した後、フィルムをガラス型から剥離することで、ディップ成形体を得た。そして、得られたディップ成形体を用いて、上記方法にしたがって、臭気、二硫化炭素量、硫化カルボニル量、引張強度、破断時伸び、および、500%引張応力の各測定を行った。結果を表1に示す。 After that, the coagulant-coated glass mold is removed from the oven, the latex composition obtained above is adjusted to 25° C., immersed in the latex composition for 10 seconds, then removed, and then at room temperature for 60 minutes. Air-drying yielded a film-coated glass mold. Then, the glass mold coated with the film was immersed in hot water at 60° C. for 2 minutes, and then air-dried at room temperature for 30 minutes. After that, the glass mold covered with the film was placed in an oven at 120 ° C. for 20 minutes to vulcanize, cooled to room temperature, sprinkled with talc, and then peeled off the film from the glass mold to obtain a dip molded body. got Then, using the obtained dip-molded body, odor, amount of carbon disulfide, amount of carbonyl sulfide, tensile strength, elongation at break, and 500% tensile stress were measured according to the above methods. Table 1 shows the results.

実施例2
(合成ポリイソプレンラテックス(A-2)の製造)
固形分濃度を調整した水分散液を、連続遠心分離機に連続的にフィードする際における流量を1.0m/時間から1.3m/時間(滞留時間に換算すると、2.3分の条件)とした以外は、実施例1と同様にして、合成ポリイソプレンラテックス(A-2)を得た。得られた合成ポリイソプレンラテックス(A-2)中の不均化トールロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、1.3部であった。
Example 2
(Production of synthetic polyisoprene latex (A-2))
The flow rate when continuously feeding the water dispersion with the adjusted solid content concentration to the continuous centrifuge is from 1.0 m 3 / hour to 1.3 m 3 / hour (converted to residence time, 2.3 minutes A synthetic polyisoprene latex (A-2) was obtained in the same manner as in Example 1, except that the conditions were changed. The content of disproportionated sodium tall rosinate in the obtained synthetic polyisoprene latex (A-2) was measured and found to be 1.3 parts per 100 parts of synthetic polyisoprene.

(ラテックス組成物の調製、ディップ成形体の製造)
そして、上記にて得られた合成ポリイソプレンラテックス(A-2)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
(Preparation of latex composition, manufacture of dip molded product)
Then, a latex composition was prepared and a dip-molded body was produced in the same manner as in Example 1, except that the synthetic polyisoprene latex (A-2) obtained above was used, and evaluation was performed in the same manner. gone. Table 1 shows the results.

実施例3
(合成ポリイソプレンラテックス(A-3)の製造)
製造例1と同様にして得られた合成ポリイソプレン(a-1)のノルマルヘキサン溶液を、メタノール中で凝固した後、得られた凝固物を70℃で12時間真空乾燥することで、固体状の合成ポリイソプレン(a-1)を得た。次いで、得られた固体状の合成ポリイソプレン(a-1)を、ノルマルヘキサンに再溶解させて、固形分濃度8重量%の合成ポリイソプレン(a-1)のノルマルヘキサン溶液とし、再溶解により得られた合成ポリイソプレン(a-1)のノルマルヘキサン溶液を使用した以外は、実施例2と同様にして、乳化液の調製、ノルマルヘキサンの留去および遠心分離を行うことで、合成ポリイソプレンラテックス(A-3)を得た。得られた合成ポリイソプレンラテックス(A-3)中の不均化トールロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、1.3部であった。
Example 3
(Production of synthetic polyisoprene latex (A-3))
A normal hexane solution of the synthetic polyisoprene (a-1) obtained in the same manner as in Production Example 1 was coagulated in methanol, and then the obtained coagulate was vacuum-dried at 70° C. for 12 hours to obtain a solid state. of synthetic polyisoprene (a-1) was obtained. Next, the obtained solid synthetic polyisoprene (a-1) is redissolved in normal hexane to obtain a normal hexane solution of the synthetic polyisoprene (a-1) having a solid concentration of 8% by weight. Synthetic polyisoprene was obtained by preparing an emulsified liquid, distilling off normal hexane, and centrifuging in the same manner as in Example 2, except that the normal hexane solution of the obtained synthetic polyisoprene (a-1) was used. A latex (A-3) was obtained. The content of disproportionated sodium tall rosinate in the obtained synthetic polyisoprene latex (A-3) was measured and found to be 1.3 parts per 100 parts of synthetic polyisoprene.

(ラテックス組成物の調製、ディップ成形体の製造)
そして、上記にて得られた合成ポリイソプレンラテックス(A-3)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
(Preparation of latex composition, manufacture of dip molded product)
Then, a latex composition was prepared and a dip-molded article was produced in the same manner as in Example 1, except that the synthetic polyisoprene latex (A-3) obtained above was used, and evaluation was performed in the same manner. gone. Table 1 shows the results.

実施例4
(合成ポリイソプレン(a-2)の重合体溶液の製造)
乾燥および窒素置換された撹拌付きオートクレーブに、ノルマルヘキサン1150部と、イソプレン100部とを仕込んだ。次いで、オートクレーブ内の温度を30℃にし、撹拌しながら四塩化チタン0.03部、トリイソブチルアルミニウム0.03部、およびノルマルブチルエーテル0.005部を加えて2時間反応させた後、重合停止剤としてメタノール0.05部を添加し、反応を停止させて、合成ポリイソプレン(a-2)のノルマルヘキサン溶液を得た。ノルマルヘキサン溶液中の合成ポリイソプレン(a-2)の重量平均分子量は1,860,000であった。
Example 4
(Production of polymer solution of synthetic polyisoprene (a-2))
1150 parts of normal hexane and 100 parts of isoprene were charged into a dried and nitrogen-purged agitated autoclave. Next, the temperature in the autoclave is set to 30° C., and 0.03 parts of titanium tetrachloride, 0.03 parts of triisobutylaluminum, and 0.005 parts of normal butyl ether are added with stirring and reacted for 2 hours, followed by a polymerization terminator. 0.05 part of methanol was added as a solution to stop the reaction, and a normal hexane solution of synthetic polyisoprene (a-2) was obtained. The weight average molecular weight of synthetic polyisoprene (a-2) in the normal hexane solution was 1,860,000.

(合成ポリイソプレンラテックス(A-4)の製造)
上記にて得られた合成ポリイソプレン(a-2)のノルマルヘキサン溶液を、メタノール中で凝固した後、得られた凝固物を70℃で12時間真空乾燥することで、固体状の合成ポリイソプレン(a-2)を得た。次いで、得られた固体状の合成ポリイソプレン(a-2)を、ノルマルヘキサンに再溶解させて、固形分濃度8重量%の合成ポリイソプレン(a-2)のノルマルヘキサン溶液とした。そして、再溶解により得られた合成ポリイソプレン(a-2)のノルマルヘキサン溶液を使用した以外は、実施例2と同様にして、乳化液の調製、ノルマルヘキサンの留去および遠心分離を行うことで、合成ポリイソプレンラテックス(A-4)を得た。得られた合成ポリイソプレンラテックス(A-4)中の不均化トールロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、1.3部であった。
(Production of synthetic polyisoprene latex (A-4))
The normal hexane solution of the synthetic polyisoprene (a-2) obtained above was coagulated in methanol, and the resulting coagulate was vacuum-dried at 70° C. for 12 hours to obtain a solid synthetic polyisoprene. (a-2) was obtained. Next, the obtained solid synthetic polyisoprene (a-2) was redissolved in normal hexane to obtain a normal hexane solution of synthetic polyisoprene (a-2) having a solid content concentration of 8% by weight. Then, preparation of an emulsified liquid, distillation of normal hexane, and centrifugation were carried out in the same manner as in Example 2, except that the normal hexane solution of the synthetic polyisoprene (a-2) obtained by redissolution was used. to obtain a synthetic polyisoprene latex (A-4). The content of disproportionated sodium tall rosinate in the obtained synthetic polyisoprene latex (A-4) was measured and found to be 1.3 parts per 100 parts of synthetic polyisoprene.

(ラテックス組成物の調製、ディップ成形体の製造)
そして、上記にて得られた合成ポリイソプレンラテックス(A-4)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
(Preparation of latex composition, manufacture of dip molded product)
Then, a latex composition was prepared and a dip-molded body was produced in the same manner as in Example 1, except that the synthetic polyisoprene latex (A-4) obtained above was used, and evaluation was performed in the same manner. gone. Table 1 shows the results.

比較例1
(合成ポリイソプレンラテックス(A-5)の製造)
遠心分離に供する、合成ポリイソプレン(a-1)の水分散液の固形分濃度を11.5重量%に変更し、かつ、連続遠心分離機に連続的にフィードする際における流量を1.0m/時間から1.6m/時間(滞留時間に換算すると、1.9分の条件)とした以外は、実施例1と同様にして、合成ポリイソプレンラテックス(A-5)を得た。得られた合成ポリイソプレンラテックス(A-5)中の不均化トールロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、1.7部であった。
Comparative example 1
(Production of synthetic polyisoprene latex (A-5))
The solid content concentration of the aqueous dispersion of synthetic polyisoprene (a-1) to be centrifuged was changed to 11.5% by weight, and the flow rate when continuously fed to the continuous centrifuge was 1.0 m. Synthetic polyisoprene latex (A-5) was obtained in the same manner as in Example 1, except that the flow rate was changed from 3 m 3 /h to 1.6 m 3 /h (1.9 minutes in terms of residence time). The content of disproportionated sodium tall rosinate in the obtained synthetic polyisoprene latex (A-5) was measured and found to be 1.7 parts per 100 parts of synthetic polyisoprene.

(ラテックス組成物の調製、ディップ成形体の製造)
そして、上記にて得られた合成ポリイソプレンラテックス(A-5)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
(Preparation of latex composition, manufacture of dip molded product)
Then, a latex composition was prepared and a dip-molded article was produced in the same manner as in Example 1, except that the synthetic polyisoprene latex (A-5) obtained above was used, and evaluation was performed in the same manner. gone. Table 1 shows the results.

比較例2
(合成ポリイソプレンラテックス(A-6)の製造)
遠心分離に供する、合成ポリイソプレン(a-1)の水分散液の固形分濃度を11.5重量%に変更し、かつ、連続遠心分離機に連続的にフィードする際における流量を1.0m/時間から1.3m/時間とし、かつ、遠心加速度を12,000Gとした以外は、実施例1と同様にして、合成ポリイソプレンラテックス(A-6)を得た。得られた合成ポリイソプレンラテックス(A-6)中の不均化トールロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、0.2部であった。
Comparative example 2
(Production of synthetic polyisoprene latex (A-6))
The solid content concentration of the aqueous dispersion of synthetic polyisoprene (a-1) to be centrifuged was changed to 11.5% by weight, and the flow rate when continuously fed to the continuous centrifuge was 1.0 m. A synthetic polyisoprene latex (A-6) was obtained in the same manner as in Example 1, except that the flow rate was changed from 3 /h to 1.3 m 3 /h and the centrifugal acceleration was changed to 12,000G. The content of disproportionated sodium tall rosinate in the obtained synthetic polyisoprene latex (A-6) was measured and found to be 0.2 parts per 100 parts of synthetic polyisoprene.

そして、上記にて得られた合成ポリイソプレンラテックス(A-6)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製を行ったところ、合成ポリイソプレンラテックス(A-6)は、凝集が顕著であり、凝固してしまい、ラテックス組成物を調製することはできず、さらには、ディップ成形体を製造することもできなかった。 A latex composition was prepared in the same manner as in Example 1, except that the synthetic polyisoprene latex (A-6) obtained above was used. However, it was not possible to prepare a latex composition, and furthermore, it was not possible to produce a dip-molded product.

比較例3
(合成ポリイソプレンラテックス(A-7)の製造)
乳化剤として、濃度1.0重量%の不均化ガムロジン酸ナトリウム(商品名「ロンジスK-25」、荒川化学工業社製)の水溶液を使用した以外は、実施例2と同様にして、合成ポリイソプレンラテックス(A-7)を得た。得られた合成ポリイソプレンラテックス(A-7)中の不均化ガムロジン酸ナトリウムの含有量を測定したところ、合成ポリイソプレン100部に対して、1.3部であった。
Comparative example 3
(Production of synthetic polyisoprene latex (A-7))
A synthetic polymer was prepared in the same manner as in Example 2, except that an aqueous solution of sodium disproportionated gum rosinate (trade name "Londis K-25", manufactured by Arakawa Chemical Industries, Ltd.) having a concentration of 1.0% by weight was used as the emulsifier. An isoprene latex (A-7) was obtained. The content of disproportionated gum sodium rosinate in the obtained synthetic polyisoprene latex (A-7) was measured and found to be 1.3 parts per 100 parts of synthetic polyisoprene.

(ラテックス組成物の調製、ディップ成形体の製造)
そして、上記にて得られた合成ポリイソプレンラテックス(A-7)を使用した以外は、実施例1と同様にして、ラテックス組成物の調製およびディップ成形体の製造を行い、同様にして評価を行った。結果を表1に示す。
(Preparation of latex composition, manufacture of dip molded product)
Then, a latex composition was prepared and a dip-molded body was produced in the same manner as in Example 1, except that the synthetic polyisoprene latex (A-7) obtained above was used, and evaluation was performed in the same manner. gone. Table 1 shows the results.

Figure 0007156030000001
(*1)合成ポリイソプレン100部に対する含有量
Figure 0007156030000001
(*1) Content per 100 parts of synthetic polyisoprene

表1より、合成ポリイソプレン100部に対して、トールロジン系界面活性剤を0.3~1.5部の割合で含有する合成ポリイソプレンラテックスを用いて得られる膜成形体の一態様としてのディップ成形体は、臭気が有効に抑えられており、引張強度および伸びに優れ、しかも、柔軟な風合いを備える(500%引張応力が低い)ものであった(実施例1~4)。 From Table 1, a dip as one embodiment of a film molded product obtained using a synthetic polyisoprene latex containing 0.3 to 1.5 parts of a tall rosin-based surfactant with respect to 100 parts of synthetic polyisoprene. The molded articles had an effectively suppressed odor, excellent tensile strength and elongation, and had a soft texture (low 500% tensile stress) (Examples 1 to 4).

一方、合成ポリイソプレンラテックス中における、トールロジン系界面活性剤の量が多すぎると、得られるディップ成形体は、臭気が強くなり、また、引張強度にも劣るものであった(比較例1)。
また、合成ポリイソプレンラテックス中における、トールロジン系界面活性剤の量が少なすぎると、合成ポリイソプレンの凝集が顕著となり、ラテックスとしての安定性に極めて劣るものとなった(比較例2)。
さらに、乳化剤として、不均化ガムロジン酸ナトリウムを使用した場合には、得られるディップ成形体は、臭気が強くなる結果となった(比較例3)。
On the other hand, when the amount of the tall rosin-based surfactant in the synthetic polyisoprene latex was too large, the resulting dip-molded article had a strong odor and was inferior in tensile strength (Comparative Example 1).
Further, when the amount of the tall rosin-based surfactant in the synthetic polyisoprene latex was too small, the synthetic polyisoprene agglomerated remarkably, resulting in extremely poor latex stability (Comparative Example 2).
Furthermore, when disproportionated sodium gum rosinate was used as an emulsifier, the resulting dip molded product had a strong odor (Comparative Example 3).

Claims (9)

合成ポリイソプレン100重量部に対して、トールロジン系界面活性剤を0.3~1.5重量部の割合で含有し、
前記トールロジン系界面活性剤が不均化トールロジンの金属塩である合成ポリイソプレンラテックス。
Containing 0.3 to 1.5 parts by weight of a tall rosin-based surfactant with respect to 100 parts by weight of synthetic polyisoprene ,
A synthetic polyisoprene latex wherein the tall rosin-based surfactant is a metal salt of disproportionated tall rosin .
前記合成ポリイソプレンが、アニオン重合により重合されたものである請求項1に記載の合成ポリイソプレンラテックス。 The synthetic polyisoprene latex according to Claim 1, wherein the synthetic polyisoprene is polymerized by anionic polymerization. 前記トールロジン系界面活性剤の含有量が、前記合成ポリイソプレン100重量部に対して、0.3~1.3重量部の割合である請求項1または2に記載の合成ポリイソプレンラテックス。 3. The synthetic polyisoprene latex according to claim 1, wherein the content of said tall rosin-based surfactant is in a proportion of 0.3 to 1.3 parts by weight with respect to 100 parts by weight of said synthetic polyisoprene. 請求項1~3のいずれかに記載の合成ポリイソプレンラテックスを製造する方法であって、
アニオン重合により重合された合成ポリイソプレンの重合体溶液を、トールロジン系界面活性剤の存在下で、水中で乳化する工程を備える合成ポリイソプレンラテックスの製造方法。
A method for producing the synthetic polyisoprene latex according to any one of claims 1 to 3,
A method for producing a synthetic polyisoprene latex comprising a step of emulsifying a polymer solution of synthetic polyisoprene polymerized by anionic polymerization in water in the presence of a tall rosin surfactant.
前記重合体溶液が、有機溶媒を含む請求項4に記載の合成ポリイソプレンラテックスの製造方法。 5. The method for producing a synthetic polyisoprene latex according to claim 4, wherein the polymer solution contains an organic solvent. 水中で乳化する工程により得られた乳化液から、前記有機溶媒を除去する工程をさらに備える請求項5に記載の合成ポリイソプレンラテックスの製造方法。 The method for producing a synthetic polyisoprene latex according to claim 5, further comprising a step of removing the organic solvent from the emulsion obtained by the step of emulsifying in water. 請求項1~3のいずれかに記載の合成ポリイソプレンラテックスと、加硫剤および/または加硫促進剤とを含有するラテックス組成物。 A latex composition containing the synthetic polyisoprene latex according to any one of claims 1 to 3 and a vulcanizing agent and/or a vulcanization accelerator. 請求項7に記載のラテックス組成物からなる膜成形体。 A molded film made of the latex composition according to claim 7 . 第1のシート基材の少なくとも一部と第2のシート基材の少なくとも一部とが、請求項1~3のいずれかに記載の合成ポリイソプレンラテックスからなる塗膜により接着積層されてなり、前記第1のシート基材と前記第2のシート基材との間に被包装物を収容可能な包装構造体。
At least part of the first sheet substrate and at least part of the second sheet substrate are adhesively laminated with a coating film made of the synthetic polyisoprene latex according to any one of claims 1 to 3, A packaging structure capable of accommodating an object to be packaged between the first sheet base material and the second sheet base material.
JP2018550177A 2016-11-10 2017-11-02 synthetic polyisoprene latex Active JP7156030B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016219663 2016-11-10
JP2016219663 2016-11-10
PCT/JP2017/039738 WO2018088327A1 (en) 2016-11-10 2017-11-02 Synthetic polyisoprene latex

Publications (2)

Publication Number Publication Date
JPWO2018088327A1 JPWO2018088327A1 (en) 2019-10-03
JP7156030B2 true JP7156030B2 (en) 2022-10-19

Family

ID=62109247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550177A Active JP7156030B2 (en) 2016-11-10 2017-11-02 synthetic polyisoprene latex

Country Status (2)

Country Link
JP (1) JP7156030B2 (en)
WO (1) WO2018088327A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020825A1 (en) 2001-08-29 2003-03-13 Zeon Corporation Elastomer composition and pressure-sensitive adhesives made by using the same
JP2005307045A (en) 2004-04-22 2005-11-04 Yokohama Rubber Co Ltd:The Rubber composition
US20080221246A1 (en) 2007-03-09 2008-09-11 The United States Of America, As Represented By The Secretary Of Agriculture Water soluble films from latex
JP2009173689A (en) 2008-01-21 2009-08-06 Nitto Denko Corp Aqueous dispersion type adhesive composition and adhesive sheet
JP2010059441A (en) 2006-06-30 2010-03-18 Four Road Research Ltd Latex composition containing crosslinking agent and crosslinked molded body thereof
WO2013099501A1 (en) 2011-12-27 2013-07-04 日本ゼオン株式会社 Latex, composition for dip molding and dip molded body
WO2014181714A1 (en) 2013-05-10 2014-11-13 Jsr株式会社 Polyisoprene latex for molding medical supplies, composition for dip molding, medical supplies, and method for molding same
JP2016035003A (en) 2014-08-01 2016-03-17 横浜ゴム株式会社 Hose rubber composition, hose rubber composition metal laminate, and vulcanized rubber product
JP2016138212A (en) 2015-01-29 2016-08-04 日本ゼオン株式会社 Synthetic isoprene polymer latex for dip molding, composition for dip molding and dip molded body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541258B2 (en) * 1974-03-29 1980-10-23
JPS5726545B2 (en) * 1974-10-03 1982-06-04
US5021492A (en) * 1990-10-22 1991-06-04 The Goodyear Tire & Rubber Company Rubber compositions containing a mixture of alkyl esters of rosin acid
JP3891643B2 (en) * 1997-07-02 2007-03-14 横浜ゴム株式会社 Method of bonding galvanized steel cord and rubber and conveyor belt using the bonding method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020825A1 (en) 2001-08-29 2003-03-13 Zeon Corporation Elastomer composition and pressure-sensitive adhesives made by using the same
JP2005307045A (en) 2004-04-22 2005-11-04 Yokohama Rubber Co Ltd:The Rubber composition
JP2010059441A (en) 2006-06-30 2010-03-18 Four Road Research Ltd Latex composition containing crosslinking agent and crosslinked molded body thereof
US20080221246A1 (en) 2007-03-09 2008-09-11 The United States Of America, As Represented By The Secretary Of Agriculture Water soluble films from latex
JP2009173689A (en) 2008-01-21 2009-08-06 Nitto Denko Corp Aqueous dispersion type adhesive composition and adhesive sheet
WO2013099501A1 (en) 2011-12-27 2013-07-04 日本ゼオン株式会社 Latex, composition for dip molding and dip molded body
WO2014181714A1 (en) 2013-05-10 2014-11-13 Jsr株式会社 Polyisoprene latex for molding medical supplies, composition for dip molding, medical supplies, and method for molding same
JP2016035003A (en) 2014-08-01 2016-03-17 横浜ゴム株式会社 Hose rubber composition, hose rubber composition metal laminate, and vulcanized rubber product
JP2016138212A (en) 2015-01-29 2016-08-04 日本ゼオン株式会社 Synthetic isoprene polymer latex for dip molding, composition for dip molding and dip molded body

Also Published As

Publication number Publication date
WO2018088327A1 (en) 2018-05-17
JPWO2018088327A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
EP2799483B1 (en) Latex, composition for dip molding and dip molded body
JP6816728B2 (en) Method for producing polymer latex
JP5488137B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED BODY
WO2017154736A1 (en) Synthetic rubber latex and method for manufacturing same
JP7127649B2 (en) latex composition
JP6879218B2 (en) Method for producing polymer latex
JP7304154B2 (en) Method for producing polymer latex
WO2017159534A1 (en) Method for producing polymer latex
WO2010098008A1 (en) Composition for dip forming, and dip-formed articles
JP6729549B2 (en) Method for producing synthetic isoprene polymer latex for dip molding, method for producing dip molding composition and method for producing dip molded article
JP7156030B2 (en) synthetic polyisoprene latex
WO2019073890A1 (en) Production method for polymer latex
JP2016150946A (en) Isoprene polymer latex for dip molding, composition for dip molding and dip molded body
JP2016141691A (en) Composition for dip molding and dip molded body
JP7036028B2 (en) Method for manufacturing polymer latex
JP7259837B2 (en) LATEX OF ACID-MODIFIED CONJUGATED DIENE-BASED POLYMER AND METHOD FOR PRODUCING THE SAME
JP6984610B2 (en) Synthetic polyisoprene latex
EP4112264A1 (en) Method for producing dip-molded article
JP6984609B2 (en) Manufacturing method of synthetic polyisoprene latex
WO2022172696A1 (en) Method for producing molded body
US20230103092A1 (en) Method for producing latex composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150