JP7152932B2 - Method for manufacturing aluminum alloy member - Google Patents

Method for manufacturing aluminum alloy member Download PDF

Info

Publication number
JP7152932B2
JP7152932B2 JP2018196294A JP2018196294A JP7152932B2 JP 7152932 B2 JP7152932 B2 JP 7152932B2 JP 2018196294 A JP2018196294 A JP 2018196294A JP 2018196294 A JP2018196294 A JP 2018196294A JP 7152932 B2 JP7152932 B2 JP 7152932B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
local
casting
electrode
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018196294A
Other languages
Japanese (ja)
Other versions
JP2020063486A (en
Inventor
博 川原
加瑞馬 日比
靖 岩田
盾 八百川
琢真 箕浦
龍幸 尼子
崇史 浅田
圭亮 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018196294A priority Critical patent/JP7152932B2/en
Publication of JP2020063486A publication Critical patent/JP2020063486A/en
Application granted granted Critical
Publication of JP7152932B2 publication Critical patent/JP7152932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、アルミニウム合金の鋳物からなるアルミニウム合金部材の製造方法等に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing an aluminum alloy member made of an aluminum alloy casting, and the like.

部材の複雑化、大型化、多機能化、軽量化等に対応するため、形状、材質、機能等の異なる複数の部材が接合されることが多い。接合は、要求仕様等に応じて、接着、溶接、締結、結合等によりなされる。中でも、強固な接合を比較的容易に行える機械的な接合が多用されている。例えば、着脱が必要な部材はネジ(ボルト・ナット等)で締結され、着脱が不要な部材はリベットで結合される。 A plurality of members with different shapes, materials, functions, etc. are often joined together in order to cope with the complication, enlargement, multi-functionality, weight reduction, etc. of members. Joining is performed by adhesion, welding, fastening, bonding, or the like according to required specifications. Among them, mechanical bonding is frequently used because it is relatively easy to achieve strong bonding. For example, members that need to be attached and detached are fastened with screws (bolts, nuts, etc.), and members that do not need to be attached and detached are joined with rivets.

リベットを用いると、溶接等ができない異種材間等でも容易に接合できる。また最近では、穿孔作業が不要(つまり自己穿孔式)で、強固な結合が可能なセルフピアシングリベット(Self Piercing Rivet/単に「SPR」という。)を用いた接合も注目されている。 By using rivets, dissimilar materials that cannot be welded can be easily joined together. Recently, attention has also been focused on joining using a self-piercing rivet (simply referred to as "SPR") that does not require a piercing operation (that is, self-piercing type) and enables strong bonding.

例えば、アルミニウム合金のダイカスト鋳物(部材)へ、SPRを打鋲して鋼板等を接合することに関連した記載が、下記の特許文献にある。 For example, the following patent document describes the joining of a steel plate or the like by riveting SPR to an aluminum alloy die-cast casting (member).

特開2010-90459号公報JP 2010-90459 A 特開2018-94621号公報JP 2018-94621 A 特開2004-124151号公報Japanese Patent Application Laid-Open No. 2004-124151

特許文献1は、成分組成を調整したAl―Si系合金からなるダイカスト部材(鋳物)に熱処理(溶体化処理、時効処理)を施して延性を高めることにより、SPRの打鋲時に生じる割れを抑止することを提案している。 In Patent Document 1, a die-cast member (casting) made of an Al—Si alloy with an adjusted chemical composition is subjected to heat treatment (solution treatment, aging treatment) to increase ductility, thereby suppressing cracks that occur during riveting of SPR. are proposing to

しかし、特許文献1では、接合部以外は熱処理しなくても十分な特性を有するにも拘わらず、SPRを打鋲したときの局所変形に伴う割れを防止するためだけに、鋳物全体の熱処理を行っている。また、その熱処理時に生じるブリスタ(高圧ガス巣の膨張)を防止するために、特殊な高真空ダイカストを行っている。従って、特許文献1の方法では、ダイカスト部材全体に対して実体強度の低下や熱歪みが生じたり、製造コストが増加したりする。 However, in Patent Document 1, heat treatment of the entire casting is performed only in order to prevent cracking due to local deformation when the SPR is hammered, despite having sufficient properties without heat treatment except for the joint. Is going. In addition, in order to prevent blisters (expansion of high-pressure gas voids) that occur during heat treatment, special high-vacuum die casting is performed. Therefore, in the method of Patent Document 1, the overall strength of the die-cast member is lowered, thermal distortion occurs, and the manufacturing cost increases.

特許文献2には、SPRが打鋲等される接合部のみを、選択的に高延性化したアルミニウム合金部材の製造方法を提案している。具体的にいうと、ダイカスト鋳造中に局所加圧することにより、接合部の初晶Alの体積率(初晶率)を高め、その高延性化を実現している。 Patent Literature 2 proposes a method for manufacturing an aluminum alloy member in which only the joints where SPR is riveted are selectively made highly ductile. Specifically, by locally pressurizing during die casting, the volume ratio (primary crystal ratio) of the primary crystal Al in the joint is increased, and the high ductility is realized.

しかし、特許文献2の方法では、部位により肉厚や湯温低下が異なるため、鋳造工程中の加圧制御が容易ではなく、金型構造も複雑化する。 However, in the method of Patent Document 2, since the wall thickness and hot water temperature drop differ depending on the part, it is not easy to control the pressure during the casting process, and the mold structure is complicated.

なお、特許文献3は、加熱した金属ブロックを接触させて、アルミニウム合金を部分的に軟化させることを提案している。しかし、特許文献3は、鋳物の接合性等の向上ではなく、冷延板のプレス成形性の向上を対象としており、大きく塑性変形する部分(例えば、環状のフランジ部分)を予め軟化させることを提案しているに過ぎない。また、特許文献3のような方法は、金属ブロックからの無駄な放熱量が多く、接合部のような狭い局部を所望温度に加熱することには適さない。 Patent document 3 proposes contacting a heated metal block to partially soften the aluminum alloy. However, Patent Document 3 is aimed at improving the press formability of cold-rolled sheets rather than improving the bondability of castings, and it is proposed to preliminarily soften a portion that undergoes large plastic deformation (for example, an annular flange portion). I am just suggesting it. In addition, the method disclosed in Patent Document 3 is not suitable for heating a narrow local area such as a joint to a desired temperature because the amount of wasteful heat radiation from the metal block is large.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、アルミニウム合金鋳物の局部を軟化させたアルミニウム合金部材を、効率的に得ることができる製造方法等を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a manufacturing method and the like that can efficiently obtain an aluminum alloy member by partially softening an aluminum alloy casting by a method different from the conventional method. intended to

本発明者はこの課題を解決すべく鋭意研究した結果、アルミニウム合金鋳物の局部に電極を接触させて、その局部だけをジュール加熱することにより、その局部を効率的に軟化させることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research to solve this problem, the present inventor succeeded in effectively softening the localized area by bringing an electrode into contact with the localized area of the aluminum alloy casting and Joule heating only the localized area. Developing this result led to the completion of the present invention described below.

《アルミニウム合金部材の製造方法》
(1)本発明は、アルミニウム合金の鋳物の局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱する局部加熱工程を備え、該鋳物に該局部を軟化させた軟化部を設けたアルミニウム合金部材の製造方法である。
<<Manufacturing method of aluminum alloy member>>
(1) The present invention includes a local heating step of Joule-heating a local portion of an aluminum alloy casting by applying an electric current to the electrode while applying pressure to the electrode, thereby softening the local portion of the casting. It is a method of manufacturing an aluminum alloy member provided with.

(2)本発明の製造方法によれば、全体的に生じ得る強度低下や熱歪み等を回避しつつ、アルミニウム合金(「Al合金」ともいう。)の鋳物(単に「鋳物」という。)の局部だけを軟化させたアルミニウム合金部材(「Al合金部材」ともいう。)を効率的に得ることができる。そして、周囲よりも高延性な軟化部を利用すれば、例えば、割れ等を抑止しつつ、安定した品質で、Al合金部材と他部材との接合等が可能となる。 (2) According to the production method of the present invention, castings (simply referred to as "castings") of aluminum alloys (also referred to as "Al alloys") can be produced while avoiding overall reduction in strength, thermal strain, etc. It is possible to efficiently obtain an aluminum alloy member (also referred to as "Al alloy member") in which only a local portion is softened. By using the softened portion having higher ductility than the surroundings, for example, it is possible to join an Al alloy member and another member with stable quality while suppressing cracks and the like.

ところで、本発明の製造方法により、局部だけを効率的に軟化(高延性化)できる理由は次のように考えられる。先ず、局部が所定温度以上に昇温されると、局部を構成する金属組織(基地)中にあった析出相(Si、MgSi、CuAl等)が、α-Al内に再固溶される。また、鋳造時に晶出した角張った結晶(共晶相等)も、丸みをおびた形状へ変化(つまり球状化)する。さらに、鋳造時に蓄積された局部の内部歪も、緩和または解消される。これらのことが相加的または相乗的に作用して局部が軟化する。 By the way, the reason why the manufacturing method of the present invention can effectively soften only a local portion (high ductility) is considered as follows. First, when the temperature of the local portion is raised to a predetermined temperature or higher, the precipitation phases (Si, Mg 2 Si, CuAl 2 , etc.) in the metal structure (base) that constitutes the local portion are dissolved again in α-Al. be done. In addition, angular crystals (eutectic phase, etc.) crystallized during casting also change to a rounded shape (that is, spheroidized). In addition, local internal strain accumulated during casting is also relieved or eliminated. These things act additively or synergistically to soften the local area.

次に、Al合金を自己発熱させるジュール加熱によれば、極短時間内に、局部を所望温度まで急速に昇温させることができる。そして、通電終了後、鋳物に接触させた電極を通じて局部を冷却できる。こうして、本発明に係る局部加熱工程中およびその終了後も、局部の周囲が熱伝導により加熱されることが抑制される。このため、軟化する範囲は、電極(先端面)の接触部分かその極近傍域(つまり局部)に限られる。この結果、局部を軟化させつつも、Al合金部材(Al合金鋳物)全体としての実体強度の低下や熱歪みの発生等は回避される。 Next, according to Joule heating, in which the Al alloy is self-heated, a local area can be rapidly heated to a desired temperature within an extremely short period of time. Then, after the energization is completed, the local area can be cooled through the electrodes brought into contact with the casting. Thus, during and after the local heating process according to the present invention, heating of the surroundings of the local area due to heat conduction is suppressed. For this reason, the softening range is limited to the contact portion of the electrode (tip surface) or its extremely neighboring region (that is, local area). As a result, while softening the local portion, the decrease in the actual strength of the Al alloy member (Al alloy casting) as a whole, the occurrence of thermal strain, etc. can be avoided.

なお、本発明の局部加熱工程では、局部を加圧しつつ加熱している。このため、鋳造時に導入された内在ガスが局部内にあっても、それに起因したブリスタが局部加熱工程に発生することが抑止される。 In addition, in the local heating step of the present invention, the local part is heated while being pressurized. Therefore, even if the internal gas introduced during casting is present locally, the occurrence of blisters caused by it during the local heating process is suppressed.

《アルミニウム合金部材または複合部材》
本発明は、上述した製造方法により得られたAl合金部材としても把握できる。さらに、軟化部を利用した一形態として、本発明は、Al合金部材と他部材とを接合した複合部材としても把握できる。
《Aluminum alloy member or composite member》
The present invention can also be grasped as an Al alloy member obtained by the manufacturing method described above. Furthermore, as one form using the softened portion, the present invention can also be grasped as a composite member in which an Al alloy member and another member are joined.

《金属部材の製造方法》
本発明は、上述した内容を踏まえて、さらに金属部材の製造方法にまで拡張して考えることもできる。すなわち、本発明は、局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱する局部加熱工程を備え、該局部を軟化させた軟化部を設けた金属部材の製造方法、またはその製造方法により得られた金属部材としても把握できる。金属部材は、鋳物に限らないAl合金部材、Mg合金部材、Ti合金部材、Fe系(鋳鉄、鉄鋼)部材等である。
<<Manufacturing method of metal member>>
Based on the above-described content, the present invention can be further expanded to include a method for manufacturing a metal member. That is, the present invention provides a method for manufacturing a metal member provided with a softened portion, which includes a local heating step of Joule-heating the local portion by energizing the electrode while pressurizing the local portion with an electrode, Alternatively, it can be grasped as a metal member obtained by the manufacturing method thereof. Metal members are Al alloy members, Mg alloy members, Ti alloy members, Fe-based (cast iron, steel) members, etc., which are not limited to castings.

《その他》
特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。
"others"
Unless otherwise specified, "x to y" as used herein includes the lower limit value x and the upper limit value y. A new range such as “a to b” can be established as a new lower or upper limit of any numerical value included in the various numerical values or numerical ranges described herein.

局部加熱工程の様子を模式的に示す説明図である。It is explanatory drawing which shows the mode of a local heating process typically. 加圧パターンと通電パターンを示す模式図である。It is a schematic diagram which shows a pressurization pattern and an electricity supply pattern. 鋳物の加熱温度と硬さの関係を示すグラフである。It is a graph which shows the heating temperature of a casting, and the relationship of hardness. 電極接触部とその周辺の硬さ分布を示すグラフである。4 is a graph showing the hardness distribution of an electrode contact portion and its surroundings. 鋳物中央における深さ方向の硬さ分布を示すグラフである。4 is a graph showing hardness distribution in the depth direction at the center of the casting. 局部加熱の有無と金属組織の関係を示す写真である。It is a photograph showing the relationship between the presence or absence of local heating and the metal structure. 局部加熱時の加圧の有無による金属組織への影響を示す写真である。It is a photograph which shows the influence on a metal structure by the presence or absence of pressurization at the time of local heating. SPR打鋲時の耐割れ性を評価する様子を示す写真である。It is a photograph showing how to evaluate the crack resistance at the time of SPR riveting. SPR打鋲時の貫通割れの有無を示す写真である。It is a photograph showing the presence or absence of penetration cracks during SPR riveting.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の製造方法のみならず、Al合金部材、それを用いた複合部材等にも適宜該当する。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 In addition to the components of the present invention described above, one or more components arbitrarily selected from this specification may be added. The content described in this specification appropriately applies not only to the production method of the present invention, but also to Al alloy members, composite members using the same, and the like. Which embodiment is the best depends on the target, required performance, and the like.

《局部加熱工程》
局部加熱工程は、電極で鋳物の局部を加圧しつつ、電極からその局部へ通電することによりなされる。
<<Local heating process>>
The local heating process is performed by applying current to the local portion from the electrode while applying pressure to the local portion of the casting.

(1)電極
所望の局部(およびその近傍)だけを効率的にジュール加熱できれば、電極の形態は問わない。電極は、通常、その局部を挟圧する一対からなる。但し、局部の加圧と局部への通電が可能であれば、電極の形態は、必ずしも対向する一対には限らない。
(1) Electrode The shape of the electrode does not matter as long as only the desired local area (and its vicinity) can be Joule-heated efficiently. The electrodes usually consist of a pair that clamps the area. However, the form of the electrodes is not necessarily limited to a pair facing each other as long as local pressure and local energization are possible.

電極の形態、材質等は、軟化部の用途・要求仕様に応じて適宜選択される。電極には、専用品の他、例えば、スポット溶接用電極等の汎用品を用いてもよい。電極の基本形状には、JIS C9304(1999)に多数規定されているように、例えば、平面形(F形)、ラジアス形(R形)、ドーム形(D形)、ドームラジアス形(DR形)、円錐台形(CF形)、円錐台ラジアス形(CR形)等がある。平坦な軟化部を形成する場合なら、局部に接触する電極先端面が平面状であるF形の電極を用いるとよい。なお、スポット溶接用電極は、通常、円筒状または円柱状である。この場合、局部と電極の接触面は略円状または略球面状となる。但し、本発明で用いる電極は角柱状等でもよい。この場合、接触面は略多角形状または略角錐面状錐状となる。 The shape, material, etc. of the electrode are appropriately selected according to the application and required specifications of the softened portion. As for the electrodes, in addition to dedicated products, for example, general-purpose products such as spot welding electrodes may be used. As specified in JIS C9304 (1999), the basic shape of the electrode includes, for example, a planar shape (F type), a radius shape (R type), a dome shape (D type), a dome radius shape (DR type). ), truncated cone type (CF type), truncated cone radius type (CR type), etc. In the case of forming a flat softened portion, it is preferable to use an F-shaped electrode having a planar electrode tip surface that comes into contact with the local area. Note that the spot welding electrode is usually cylindrical or columnar. In this case, the contact surface between the local part and the electrode is approximately circular or approximately spherical. However, the electrodes used in the present invention may be prismatic or the like. In this case, the contact surfaces are substantially polygonal or substantially pyramidal.

電極は、シャンクに着脱できるもの(キャップチップ型)でも、シャンクと一体化したもの(一体型)でもよい。キャップチップ型の電極(「電極チップ」ともいう。)を用いると、局部加熱工程の低コスト化を図れる。 The electrode may be detachable from the shank (cap chip type) or may be integrated with the shank (integrated type). Using a cap tip type electrode (also referred to as an "electrode tip") can reduce the cost of the local heating process.

電極により、大電流の通電と加圧力の印加がなされる。このため電極は、導電率(電気伝導度)や強度等に優れる材料からなるとよい。例えば、純銅(無酸素銅、タフピッチ銅、リン脱酸銅等)の他、クロム銅、ジルコニウム銅、クロム・ジルコニウム銅、アルミナ分散銅、ベリリウム銅等が用いられる。このような電極材料は、JIS Z3234(2種)、またはRWMA(Resistance Welder Manufacturer’s Association/米国抵抗溶接機製造者協会)のGroupA(Class2)に準拠して選択されるとよい。代表例は、電気伝導度と強度に優れるクロム銅(Cr:0.5~1.4質量%、Cu:残部)である。 A large current is applied and a pressure is applied by the electrodes. Therefore, the electrodes are preferably made of a material having excellent electrical conductivity (electrical conductivity), strength, and the like. For example, in addition to pure copper (oxygen-free copper, tough pitch copper, phosphorus-deoxidized copper, etc.), chromium copper, zirconium copper, chromium-zirconium copper, alumina-dispersed copper, beryllium copper, and the like are used. Such an electrode material may be selected according to JIS Z3234 (2 types) or Group A (Class 2) of RWMA (Resistance Welder Manufacturer's Association). A typical example is chromium copper (Cr: 0.5 to 1.4% by mass, Cu: balance), which is excellent in electrical conductivity and strength.

高導電率(低抵抗率)な材質からなる電極は、通常、熱伝導性にも優れる。このため、ジュール加熱された局部は、通電終了後、電極が冷し金となって急冷される。これにより、ジュール加熱の影響は、局部またはその極周辺域だけに留まる。 Electrodes made of materials with high electrical conductivity (low resistivity) generally have excellent thermal conductivity. Therefore, the Joule-heated local area is rapidly cooled by the electrode serving as a chill after the energization is completed. Thus, the Joule heating effect remains localized or only in its extreme periphery.

電極自体も、鋳物側からの熱伝達と通電時の自己発熱により高温になる。電極自体の強度や電極による局部の冷却性等を確保するため、電極は内部が強制冷却(水冷等)されているとよい。これにより、量産時でも、局部加熱工程を安定して連続的に行える。 The electrode itself also becomes hot due to heat transfer from the casting side and self-heating during energization. In order to secure the strength of the electrode itself and the local cooling performance of the electrode, it is preferable that the inside of the electrode is forcibly cooled (water-cooled, etc.). As a result, the local heating process can be stably and continuously performed even during mass production.

(2)加圧
電極による局部の加圧力は、局部の形態(厚さ等)、Al合金の組成、鋳造方法、加熱温度(軟化度)等に応じて調整されるとよい。その加圧力は、例えば、10~70N/mm、15~50N/mmまたは20~40N/mmである。加圧力が過小であると、局部にブリスタが生じ易くなる。加圧力が過大になると、鋳物の変形(陥没等)や電極の変形(摩耗、座屈等)が生じ易くなる。なお、ブリスタが生じない限り、加圧力の下限値は問わないが、加圧状態と単なる接触状態を区別する意味で、加圧力を5N/mm以上としてもよい。
(2) Pressing The local pressing force by the electrode may be adjusted according to the local shape (thickness, etc.), Al alloy composition, casting method, heating temperature (softening degree), and the like. The applied pressure is, for example, 10-70 N/mm 2 , 15-50 N/mm 2 or 20-40 N/mm 2 . If the applied pressure is too small, blisters tend to occur locally. If the applied pressure is excessively large, deformation (cavity, etc.) of the casting and deformation (wear, buckling, etc.) of the electrode tend to occur. As long as blisters do not occur, the lower limit of the applied pressure is not critical, but the applied pressure may be 5 N/mm 2 or more in order to distinguish between the pressurized state and the mere contact state.

(3)通電
電極から局部の通電条件も、局部の形態、Al合金の組成、加熱温度(軟化度)等に応じて調整されるとよい。電流密度は、例えば、50~400A/mm、100~350A/mmまたは150~300A/mmである。通電時間は、例えば、100~4000msec、500~3000msecまたは1000~2000msecである。電流密度や通電時間が過小では、加熱が不十分となり、軟化度も小さくなる。電流密度や通電時間が過大になると、局部が過度に軟化、変形等するようになる。
(3) Energization It is preferable to adjust the local energization conditions from the electrode according to the form of the local area, the composition of the Al alloy, the heating temperature (softening degree), and the like. The current density is for example 50-400 A/mm 2 , 100-350 A/mm 2 or 150-300 A/mm 2 . The energization time is, for example, 100-4000 msec, 500-3000 msec, or 1000-2000 msec. If the current density or energization time is too small, the heating will be insufficient and the degree of softening will be small. If the current density or the energization time becomes excessive, the local area will be excessively softened or deformed.

通電条件は、局部の温度が所望範囲内となるように制御されてもよい。局部の温度は、例えば、Al合金の液相が0.2質量%出現する温度以下にされるとよい。局部の温度が、Al合金の液相率で0.2質量%超となる温度にまで上昇すると、α-Alや共晶相の粗大化が進み、却って局部の延性が低下し得る。なお、「Al合金の液相が0.2質量%出現する温度」は、各Al合金(組成)毎に、統合型熱力学計算ソフトウェアー "Thermo-Calc" を用いた凝固計算を行って得られた液相率と温度との関係から求まる。 The energization conditions may be controlled so that the local temperature is within a desired range. The local temperature may be, for example, the temperature at which 0.2% by mass of the Al alloy liquid phase appears or less. If the local temperature rises to a temperature at which the Al alloy liquid phase ratio exceeds 0.2% by mass, coarsening of α-Al and the eutectic phase proceeds, and local ductility may rather decrease. The "temperature at which 0.2% by mass of the liquid phase of the Al alloy appears" is obtained by solidification calculation using the integrated thermodynamic calculation software "Thermo-Calc" for each Al alloy (composition). It can be obtained from the relationship between the obtained liquid fraction and temperature.

また局部の温度は、例えば、350℃以上、400℃以上さらには450℃以上でもよい。局部の温度が過小では、局部における軟化度や延性の向上も小さい。逆に、局部の温度は、例えば、600℃以下さらには550℃以下でもよい。 Also, the local temperature may be, for example, 350° C. or higher, 400° C. or higher, or even 450° C. or higher. If the local temperature is too low, the improvement in softening and ductility in the local area is also small. Conversely, the local temperature may be, for example, below 600°C or even below 550°C.

なお、本明細書でいう「局部の温度」は、電極が接触する部分(単に「電極接触部」という。)またはその極近傍における表面温度とする。表面温度は、電極接触部またはその近傍の表面に接地した熱電対(例えば、K熱電対)で測温して求まる最高温度である。 The term "local temperature" as used in this specification refers to the surface temperature of the portion in contact with the electrode (simply referred to as the "electrode contact portion") or its extreme vicinity. The surface temperature is the maximum temperature obtained by measuring the temperature with a thermocouple (for example, K thermocouple) grounded on the surface of the electrode contact portion or its vicinity.

(4)処理パターン
局部加熱工程の開始から終了までの間で、加圧力が変化する形態(「加圧パターン」という。)や電流密度が変化する形態(「通電パターン」という。)は、種々あり得る。例えば、開始直後または終了間際を除いて、加圧力や電流密度が一定値に保持される方形パターンまたは台形パターン(「基本パターン」という。)を採用してもよい。また、加圧力や電流密度が、途中で変化する変則パターンを採用してもよい。一つの局部を加熱する際に(つまり1回の局部加熱工程中に)、加圧力や電流密度が一定周期で変化し、それを複数サイクル行うサイクルパターンを採用してもよい。なお、1回の局部加熱工程中に、加圧力と電流密度の両方を種々変化させてもよいが、通常、制御が容易な電流密度を変化させれば十分である。
(4) Treatment pattern There are various forms in which the applied pressure changes (referred to as "pressurization pattern") and changes in current density (referred to as "energization pattern") from the start to the end of the local heating process. could be. For example, a rectangular pattern or a trapezoidal pattern (referred to as “basic pattern”) may be employed in which the pressure and current density are kept constant except immediately after the start or just before the end. Also, an irregular pattern in which the pressure or current density changes in the middle may be adopted. When heating one local area (that is, during one local heating process), a cycle pattern may be employed in which the applied pressure or current density is changed in a constant cycle and this is repeated multiple times. It should be noted that both the applied pressure and the current density may be variously changed during one local heating step, but it is usually sufficient to change the current density, which is easy to control.

《鋳物》
鋳物は、既述した局部加熱工程により局部が軟化される限り、Al合金組成、鋳造方法、金属組織、形態等を問わない。
"casting"
As long as the casting is locally softened by the above-described local heating process, the Al alloy composition, casting method, metallographic structure, form, etc. are not limited.

(1)合金組成
Al合金は、全体を100%として、例えば、Siを6~12%、7~11%、8~10.5%含むとよい。Siが過少になると、鋳造性が低下して、引け量が大きくなる。Siが過多になると、鋳物の機械的特性(特に伸び)が低下し得る。なお、本明細書でいう合金組成は、特に断らない限り、軟化部を含む鋳物全体を100質量%(単に「%」という。)とした質量割合で示す。
(1) Alloy composition The Al alloy preferably contains 6 to 12%, 7 to 11%, and 8 to 10.5% Si, for example, when the entire Al alloy is 100%. If the amount of Si is too small, the castability deteriorates and the amount of shrinkage increases. Too much Si can degrade the mechanical properties (especially elongation) of the casting. In addition, unless otherwise specified, the alloy composition referred to in this specification is indicated by a mass ratio based on 100% by mass (simply referred to as "%") of the entire casting including the softened portion.

Al合金は、Si以外に、Mg、Cu、Fe、Mn、Sr、Na、Sb等の改質元素を含んでもよい。Mgは、Al基地を強化する。Al合金は、例えば、Mgを0.1~1%、0.2~0.5%含んでもよい。Mgが過少では、その効果が十分に得られず、Mgが過多になると、MgSi等の晶出が多くなり、延性や靭性が低下し得る。 The Al alloy may contain modifying elements such as Mg, Cu, Fe, Mn, Sr, Na and Sb in addition to Si. Mg strengthens the Al matrix. The Al alloy may contain, for example, 0.1-1%, 0.2-0.5% Mg. If the amount of Mg is too small, the effect cannot be sufficiently obtained, and if the amount of Mg is too much, crystallization of Mg 2 Si and the like increases, and ductility and toughness may decrease.

Cuは、Al基地を強化する。Al合金は、例えば、Cuを1~5%、2~4%含んでもよい。Cuが過少では、その効果が十分に得られず、Cuが過多になると、延性や靱性が低下し得る。 Cu strengthens the Al matrix. The Al alloy may contain, for example, 1-5%, 2-4% Cu. If Cu is too little, the effect cannot be sufficiently obtained, and if Cu is too much, ductility and toughness may decrease.

Feは、金型に対する耐焼付き性を向上させる。Al合金は、例えば、Feを0.05~1%、0.1~0.4%含んでもよい。Feが過少では、その効果が十分に得られず、Feが過多になると、延性が低下し得る。 Fe improves the seizure resistance to the mold. The Al alloy may contain, for example, 0.05-1%, 0.1-0.4% Fe. If the amount of Fe is too small, the effect cannot be sufficiently obtained, and if the amount of Fe is too much, the ductility may decrease.

Mnは、金型に対する耐焼付き性を向上させる。Al合金は、例えば、Mnを0.2~1.2%、0.3~0.8%含んでもよい。Mnが過少では、その効果が十分に得られず、Mnが過多になると、延性が低下し得る。 Mn improves seizure resistance to molds. The Al alloy may contain, for example, 0.2-1.2%, 0.3-0.8% Mn. If the amount of Mn is too small, the effect cannot be sufficiently obtained, and if the amount of Mn is too large, the ductility may decrease.

Sr、NaまたはSbは、共晶Siを微細化させて、鋳物(主に非接合部)の機械的特性(特に延性または靱性)を向上させる。これら元素は微量で十分である。それら元素は、例えば、合計量で0.003~0.05%、0.01~0.03%含まれてもよい。 Sr, Na or Sb refines the eutectic Si and improves the mechanical properties (especially ductility or toughness) of castings (mainly non-bonded portions). A trace amount of these elements is sufficient. These elements may be contained, for example, in a total amount of 0.003-0.05%, 0.01-0.03%.

(2)鋳造方法/金属組織
鋳物は、重力鋳造、低圧鋳造、ダイカスト鋳造等により得られる。自動車分野等では、量産性、寸法精度等に優れたダイカスト鋳造された鋳物(「ダイカスト鋳物」という。)が多用されている。ダイカスト鋳物は、薄肉部分も多いため、割れを生じ易い領域(例えば接合部等)を軟化部とするとよい。
(2) Casting Method/Metal Structure Castings are obtained by gravity casting, low-pressure casting, die casting, or the like. In the field of automobiles and the like, castings obtained by die casting (referred to as "die castings"), which are excellent in mass productivity, dimensional accuracy, etc., are frequently used. Since die casting has many thin-walled portions, it is preferable to soften the areas where cracks are likely to occur (for example, joints, etc.).

ダイカスト鋳物には、上述したSiを含むAl合金(Al-Si系合金)やSiおよびCuを含むAl合金(Al-Si-Cu系合金)が用いられる。例えば、JIS ADC10、ADC12等のAl合金が代表的である。また、近年の自動車ボディ部材に用いられるダイカスト鋳物には、SiおよびMgを含むAl合金(Al-Si-Mg系合金)が用いられる。 The above-mentioned Al alloy containing Si (Al--Si alloy) or Al alloy containing Si and Cu (Al--Si--Cu alloy) is used for the die casting. For example, Al alloys such as JIS ADC10 and ADC12 are representative. In addition, Al alloys containing Si and Mg (Al--Si--Mg alloys) are used in die castings used for automobile body members in recent years.

このようなダイカスト鋳物は、主にα-Al(初晶)と共晶組織からなり、α―Alを取り囲むように共晶が連なった共晶ネットワーク組織を形成していることが多い。共晶組織は、主に、Al-Si系合金ならα―Al+Si(これを「共晶Si」という。)、Al-Si-Mg系合金ならα―Al+Si+MgSiからなる。なお、いずれの場合でも、α-Al中には、合金組成中の溶質元素(Si、Mg、Cu等)が固溶または析出相として存在し得る。 Such die castings are mainly composed of α-Al (primary crystal) and eutectic structure, and often form a eutectic network structure in which eutectic crystals surround α-Al. The eutectic structure mainly consists of α-Al+Si (this is referred to as “eutectic Si”) for Al—Si alloys, and α—Al+Si+Mg 2 Si for Al—Si—Mg alloys. In any case, the solute elements (Si, Mg, Cu, etc.) in the alloy composition may exist as a solid solution or a precipitated phase in α-Al.

(3)形態
電極による局部加熱が可能である限り、鋳物の形態は問わない。但し、局部は、一対の電極で挟圧しつつ通電可能な形状であると、上述した局部加熱工程を効率的に行えて好ましい。
(3) Form The form of the casting does not matter as long as it can be locally heated by the electrodes. However, it is preferable that the local portion has a shape that allows current to flow while being sandwiched by a pair of electrodes, so that the above-described local heating process can be performed efficiently.

《軟化部》
(1)硬さ
鋳物の軟化部の硬さや延性(靱性)は、その要求仕様に応じて、局部加熱工程の条件を変更することにより調整される。軟化部の硬さは、例えば、ジュール加熱の影響がない基部(または局部加熱前の鋳物そのものからなる母材・基材)の硬さに対して90%以下、85%以下、80%以下さらには75%以下となる。これにより、局部(軟化部)における延性や耐割れ性の向上が図られる。敢えていうと、軟化部の硬さは、基部の硬さに対して60%以上、65%以上さらには70%以上とするとよい。これにより、軟化部の強度も確保される。
《Softening part》
(1) Hardness The hardness and ductility (toughness) of the softened portion of the casting are adjusted by changing the conditions of the local heating process according to the required specifications. The hardness of the softened portion is, for example, 90% or less, 85% or less, 80% or less of the hardness of the base portion (or the base material / base material made of the casting itself before local heating) that is not affected by Joule heating. is 75% or less. As a result, the ductility and crack resistance of the local portion (softened portion) are improved. I dare say that the hardness of the softened portion should be 60% or more, 65% or more, or even 70% or more of the hardness of the base portion. Thereby, the strength of the softened portion is also ensured.

本明細書でいう硬さは、対象部位を含む鋳物断面を、マイクロビッカース硬度計(例えば、株式会社明石製作所製 MVK-E)を用いて測定する。測定は、鏡面まで研磨した観察片を用いて、荷重:100g、負荷時間:15秒間として行う。こうして測定されたビッカース硬さを「HV0.1」で示す。 The hardness referred to in this specification is measured by using a micro Vickers hardness tester (for example, MVK-E manufactured by Akashi Seisakusho Co., Ltd.) of a casting cross section including a target portion. The measurement is performed using an observation piece polished to a mirror surface, with a load of 100 g and a load time of 15 seconds. The Vickers hardness thus measured is indicated by "HV0.1".

特定部位(位置)の硬さは、特に断らない限り、鋳物表面から、その法線方向に延びる肉厚中心までの間で、200μmピッチ間隔で測定した各硬さの算術(相加)平均値(「平均硬さ」という。)とする。軟化部の硬さは、特に断らない限り、電極接触部の中心近傍(電極の先端面が接していた鋳物表面の中央)で測定・算出した平均硬さとする。 Unless otherwise specified, the hardness of a specific part (position) is the arithmetic (additive) average value of each hardness measured at 200 μm pitch intervals from the casting surface to the center of the thickness extending in the normal direction. (referred to as “average hardness”). Unless otherwise specified, the hardness of the softened portion is the average hardness measured and calculated in the vicinity of the center of the electrode contact portion (the center of the casting surface with which the electrode tip surface was in contact).

硬さ分布は、特に断らない限り、200μmピッチ間隔で測定したビッカース硬さで示す。鋳物表面に沿った方向の硬さ分布なら、特に断らない限り、最表面から深さ200μmの位置におけるビッカース硬さに基づく。 Hardness distribution is represented by Vickers hardness measured at a pitch of 200 μm unless otherwise specified. The hardness distribution along the cast surface is based on the Vickers hardness at a depth of 200 μm from the outermost surface unless otherwise specified.

基準となる基部(非加熱部/基材)の硬さは、局部加熱の影響が及んでいない領域の硬さである。本発明により局部加熱を行う場合、熱影響部の幅は高々1~2mm程度である。局部加熱されたAl合金部材でも、例えば、電極接触部の外周縁(または内周縁)から外側(または内側)に2mm以上離間した領域(位置)における平均硬さを基部の硬さとしてもよい。なお、複数箇所で硬さを測定するときは、それぞれの箇所で求まる平均硬さの最大値を、軟化部の硬さまたは基部の硬さとして採用する。 The reference hardness of the base portion (non-heated portion/substrate) is the hardness of the region not affected by localized heating. When local heating is performed according to the present invention, the width of the heat affected zone is at most about 1 to 2 mm. Even in a locally heated Al alloy member, for example, the average hardness in a region (position) spaced 2 mm or more outward (or inward) from the outer peripheral edge (or inner peripheral edge) of the electrode contact portion may be the hardness of the base. When the hardness is measured at a plurality of points, the maximum value of the average hardness obtained at each point is adopted as the hardness of the softened portion or the hardness of the base portion.

(2)組織
鋳物の金属組織は、合金組成、鋳造方法(条件)、熱処理等により様々である。もっとも、Al合金鋳物は通常、少なくともSiを含み、初晶Al(α―Al)と共晶Si(共晶組織中に晶出しているSi)を有する。
(2) Structure The metal structure of castings varies depending on the alloy composition, casting method (conditions), heat treatment, and the like. However, Al alloy castings usually contain at least Si, and have primary Al (α-Al) and eutectic Si (Si crystallized in the eutectic structure).

このような鋳物の軟化部にある共晶Si(粒子)は、局部加熱の影響が及んでいない基部にある共晶Siよりも丸みをおびた形状(より球状化した形状)になり易い。共晶Siの球状化(3次元)の度合は、例えば、観察片を顕微鏡で観察して得られた画像を解析して求めた円形度(2次元)により指標される。 The eutectic Si (particles) in the softened portion of such castings tends to be more rounded (more spherical) than the eutectic Si in the base, which is not affected by localized heating. The degree of spheroidization (three-dimensional) of eutectic Si is indexed, for example, by the degree of circularity (two-dimensional) obtained by analyzing an image obtained by observing a specimen with a microscope.

軟化部における共晶Siの円形度は、ジュール加熱の影響がない基部における共晶Siの円形度に対して、1.2倍以上、1.3倍以上、1.4倍以上ともなり得る。 The circularity of the eutectic Si in the softened portion can be 1.2 times or more, 1.3 times or more, or 1.4 times or more than the circularity of the eutectic Si in the base portion, which is not affected by Joule heating.

この円形度は、次のようにして求まる。先ず、対象部位を含む鋳物断面を切り出して、鏡面まで研磨した観察片を製作する。観察片には、化学エッチングが施されてもよい。例えば、0.25%HF水溶液で10秒、あるいは0.2%NaOH水溶液で30秒として行える。鋳物の冷却速度が遅い場合には400倍を選定してもよい。 This circularity is obtained as follows. First, a cross-section of a casting including a target portion is cut out and polished to a mirror finish to produce an observation piece. The observation piece may be chemically etched. For example, a 0.25% HF aqueous solution can be used for 10 seconds, or a 0.2% NaOH aqueous solution can be used for 30 seconds. If the cooling rate of the casting is slow, 400 times may be selected.

こうして得られた観察片を光学顕微鏡により観察する。倍率:1000倍で撮影した組織画像(データ)を、画像処理装置(例えば、株式会社ニレコ製LUZEX)を用いて解析する。これにより、観察片内から抽出(トレース)された共晶Siについて円形度が算出される。なお、画像解析により抽出される共晶Si(粒子の最大長)の下限値は1μmである。 The observation piece thus obtained is observed with an optical microscope. Magnification: Tissue images (data) photographed at 1000 times are analyzed using an image processing device (for example, LUZEX manufactured by Nireco Corporation). Thereby, the degree of circularity is calculated for the eutectic Si extracted (traced) from the observation piece. The lower limit of eutectic Si (maximum particle length) extracted by image analysis is 1 μm.

ちなみに、円形度は、粒子の占有面積:S、粒子の周長:Lとして、4π・S/Lから求まる。真円(真球)の円形度は1であり、歪な粒子ほど、その円形度は小さくなる。本明細書でいう軟化部または基部における円形度は、特に断らない限り、光学顕微鏡(×1000倍)で観察した視野内にある各Si粒子(共晶Si)の円形度を、算術平均した値とする。 Incidentally, the degree of circularity can be obtained from 4π·S/L 2 , where S is the area occupied by the particle and L is the circumference of the particle. The circularity of a perfect circle (perfect sphere) is 1, and the more distorted the particle, the smaller the circularity. Unless otherwise specified, the circularity of the softened portion or the base as used herein is the arithmetic average of the circularity of each Si particle (eutectic Si) in the field of view observed with an optical microscope (×1000). and

軟化部の円形度は、特に断らない限り、電極の先端面が接触していた領域の中央付近から切り出した観察片の特定視野(鋳物最表面からの深さ:200~1000μm×幅:500μm)の組織を画像解析して算出する。 Unless otherwise specified, the degree of circularity of the softened portion is the specific field of view of the observation piece cut from the vicinity of the center of the region where the electrode tip surface was in contact (depth from the outermost surface of the casting: 200 to 1000 μm × width: 500 μm). is calculated by image analysis of the tissue of

基部の円形度は、特に断らない限り、電極の先端面との接触領域の外周縁(内周縁)から外側(内側)に2mm以上離間した領域から切り出した観察片の特定視野(鋳物最表面からの深さ:200~1000μm×幅:500μm)の組織を画像解析して算出する。 Unless otherwise specified, the circularity of the base is the specific field of view of the observation piece cut out from the area spaced 2 mm or more outward (inward) from the outer peripheral edge (inner peripheral edge) of the contact area with the tip surface of the electrode (from the outermost casting surface Depth: 200 to 1000 μm × width: 500 μm) is calculated by image analysis of the tissue.

(3)形態・用途
軟化部(局部)は、一つの鋳物に、単数あっても複数あってもよい。軟化部の形状や大きさも種々あり得る。複雑形状の軟化部や広面積の軟化部は、相応な形状の専用電極を用いた通電を1回または数回行って形成されてもよいし、汎用電極を用いた通電を複数回行って形成されてもよい。
(3) Form/use A single casting may have a single softened portion (local portion) or a plurality of softened portions. Various shapes and sizes of the softened portion are possible. A softened portion with a complicated shape or a softened portion with a large area may be formed by performing energization once or several times using a dedicated electrode having a suitable shape, or by performing energization multiple times using a general-purpose electrode. may be

一つの軟化部(連続的に軟化している領域)が過大になると、鋳物本来の機械的特性(強度等)に影響が及ぶ。そこで、一つの軟化部の大きさは、例えば、9cm以下、7cm以下さらには5cm以下にしてもよい。具体的にいうと、軟化部は、例えば、φ30mm以下、φ25mm以下さらにはφ20mm以下の略円形状、または一辺が30mm以下、25mm以下さらには20mm以下の略方形状としてもよい。 If one softened portion (continuously softened region) becomes excessively large, the original mechanical properties (strength, etc.) of the casting will be affected. Therefore, the size of one softened portion may be, for example, 9 cm 2 or less, 7 cm 2 or less, or 5 cm 2 or less. Specifically, the softened portion may be, for example, a substantially circular shape with a diameter of 30 mm or less, a φ25 mm or less, or a φ20 mm or less, or a substantially rectangular shape with a side of 30 mm or less, 25 mm or less, or 20 mm or less.

軟化部は、延性や耐割れ性等を高めたい鋳物の一部に設けられるとよい。代表例として、他部材が機械的に接合される接合部(接合予定部を含む)が軟化部とされる。勿論、接合部以外に軟化部が設けられてもよい。 The softened portion is preferably provided in a part of the casting whose ductility and crack resistance are to be improved. As a representative example, the softened portion is a joint portion (including a portion to be joined) where another member is mechanically joined. Of course, the softened portion may be provided in addition to the joint portion.

なお、本明細書でいう機械的な接合は、例えば、ネジ(ボルト・ナット等)やリベットによりなされる。リベットは、予め形成した孔へ挿入された後にかしめられるものでも、自己穿孔式のもの(SPR:Self Piercing Rivet/セルフピアシングリベット)でもよい。局所的に大きな塑性変形を伴うSPRの打鋲が軟化部になされると、割れが防止されて好ましい。 It should be noted that the mechanical connection referred to in this specification is achieved by, for example, screws (bolts, nuts, etc.) or rivets. The rivets may be inserted into pre-formed holes and then crimped, or they may be self-piercing (SPR: Self Piercing Rivet). Cracking is preferably prevented when SPR riveting with large local plastic deformation is applied to the softened portion.

SPR接合する場合、軟化部の大きさは、SPRの頭部の大きさに対して、例えば、2~3倍であるとよい。具体的にいうと、軟化部は、例えば、直径または一辺が15~25mmの円形状または方形状であるとよい。このような軟化部は、電極の接地面積(加熱領域)の調整により、容易に形成され得る。 In the case of SPR joining, the size of the softened portion should be, for example, 2 to 3 times the size of the SPR head. Specifically, the softened portion may have a circular or rectangular shape with a diameter or side of 15 to 25 mm, for example. Such a softened portion can be easily formed by adjusting the contact area (heating area) of the electrode.

本明細書でいう鋳物に機械的に接合される他部材は、締結具(ネジ、リベット等)自体でもよいし、それ以外の被接合部材でもよい。被接合部材は、Al合金鋳物と材質や形状等が異なる部材であり、例えば、Fe系部材(特に鋼板)、Al系部材、Mg系部材、Ti系部材等の金属部材、樹脂部材、さらにはFRPのような複合部材等である。なお、「X系部材」には、純金属部材、X合金部材、X基複合部材が含まれる。なお、SPR接合される被接合部材の接合部は、リベットが貫通可能な(薄)板状であるとよい。 The other members mechanically joined to the casting referred to in this specification may be fasteners (screws, rivets, etc.) themselves, or other members to be joined. The member to be joined is a member different in material, shape, etc. from Al alloy castings. Composite members such as FRP and the like. The "X-based member" includes a pure metal member, an X-alloy member, and an X-based composite member. The joint portion of the member to be joined to be SPR-joined is preferably in the form of a (thin) plate through which a rivet can pass.

《鋳造》
鋳物は、Al合金の溶湯を鋳型へ注湯する注湯工程と、その溶湯を鋳型内で冷却して凝固させる冷却工程とを経て得られる。特に鋳物は、金型のキャビティへ溶湯を加圧しつつ注湯するダイカスト鋳造により得られると好ましい。ダイカスト鋳造の冷却工程は、例えば、注湯工程完了後または冷却工程開始時の冷却速度が50~500℃/sでなされる。
"casting"
A casting is obtained through a pouring step of pouring molten Al alloy into a mold and a cooling step of cooling and solidifying the molten Al alloy in the mold. In particular, the casting is preferably obtained by die casting in which molten metal is poured into a mold cavity while being pressurized. The cooling process of die casting is performed at a cooling rate of 50 to 500° C./s, for example, after the metal pouring process is completed or when the cooling process is started.

様々な試料(Al合金部材)を製作し、それらの硬さ、金属組織、接合時の耐割れ性等を評価した。このような具体例を挙げつつ、本発明をさらに詳しく説明する。 Various samples (Al alloy members) were produced, and their hardness, metal structure, crack resistance during joining, etc. were evaluated. The present invention will be described in more detail while citing such specific examples.

《試料の製造》
(1)鋳物(基材)
Al合金からなる板状の鋳物(100mm×30mm×3mm)をダイカスト鋳造により製作した。この鋳物を基材(母材)とした。なお、ダイカスト鋳造は、工具鋼(JIS SKD61)からなる金型のキャビティへ、調製した溶湯を射出して行った。鋳造条件は、湯温:630℃、型温:200℃、鋳造圧力:40MPa、射出速度:2m/sとした。
《Production of samples》
(1) Casting (base material)
A plate-shaped casting (100 mm×30 mm×3 mm) made of Al alloy was produced by die casting. This casting was used as a base material (base material). The die casting was performed by injecting the prepared molten metal into a mold cavity made of tool steel (JIS SKD61). The casting conditions were: hot water temperature: 630°C, mold temperature: 200°C, casting pressure: 40 MPa, injection speed: 2 m/s.

溶湯の調製は、下記の組成に秤量した原料(金属、化合物)を大気中で溶解して行った。下記の組成を有するAl合金の場合、液相が0.2質量%出現する温度は572℃である。合金組成は(溶湯)全体(100質量%)に対する質量割合である。
合金組成:Al-9%Si-0.21%Mg-0.38%Mn-0.12%Fe
The molten metal was prepared by dissolving raw materials (metals and compounds) weighed to the following composition in the atmosphere. In the case of Al alloy having the following composition, the temperature at which 0.2% by mass of the liquid phase appears is 572°C. The alloy composition is the mass ratio of the (molten metal) to the whole (100 mass %).
Alloy composition: Al-9%Si-0.21%Mg-0.38%Mn-0.12%Fe

(2)局部加熱工程
図1に示すように、基材の中央部(局部)を一対の電極(チップ)で挟持して、表1に示すような加圧および通電を行った。電極チップには、クロム銅製D形(先端面:φ8mm/SMK株式会社製)を用いた。電極による局部への加圧および通電は、スポット溶接機(ART-HIKARI株式会社製)により行った。その際、電極と基材の接触領域の外周縁近傍における表面温度を、K熱電対により測定した。
(2) Local Heating Process As shown in FIG. 1, the central portion (local portion) of the substrate was sandwiched between a pair of electrodes (chips), and pressure and current were applied as shown in Table 1. A chromium-copper D-type electrode tip (end face: φ8 mm/manufactured by SMK Corporation) was used. A spot welder (manufactured by ART-HIKARI Co., Ltd.) was used to locally pressurize and energize the electrode. At that time, the surface temperature near the outer edge of the contact area between the electrode and the substrate was measured with a K thermocouple.

加圧および通電は、図2に示すようなパターンで行った。すなわち、先ず、電極の先端面を基材の中央部表面に当接させて挟圧する。これにより電極から基材へ加圧力を印加する(区間I)。次に、その加圧状態のまま、電極から基材へ通電を開始し、一定の電流値を供給して所定時間保持する(区間II)。なお、図2の破線に示すように、電流値を通電途中で変更する通電パターンを採用することもできる。通電終了後、電極から基材への加圧力を除去して、電極を基材から離脱させる(区間III)。 Pressurization and energization were performed in a pattern as shown in FIG. That is, first, the front end surface of the electrode is brought into contact with the surface of the central portion of the substrate and pressed. As a result, a pressure is applied from the electrode to the substrate (section I). Next, while maintaining the pressurized state, electricity is started to be supplied from the electrode to the substrate, and a constant current value is supplied and held for a predetermined time (section II). It is also possible to employ an energization pattern in which the current value is changed during the energization, as indicated by the dashed line in FIG. After the energization is completed, the electrode is separated from the substrate by removing the pressure applied from the electrode to the substrate (section III).

表1に示した加圧力と電流密度は、電極から基材へ印加される荷重および電流値を、電極と基材の接触面積で除した値である。荷重および電流値はスポット溶接機の設定値である。本実施例の接触面積(φ8mmの先端面側)はいずれも50.24mmであった The pressure and current density shown in Table 1 are values obtained by dividing the load and current value applied from the electrode to the substrate by the contact area between the electrode and the substrate. Load and current values are spot welder settings. The contact area (φ8 mm tip surface side) of this example was all 50.24 mm 2

通電時間は、通電開始から通電終了までの時間(図2の区間IIの全時間)である。なお、電流値が一定な時間は、その通電時間の約90%である。表1に示した加熱温度は、上述した熱電対により測定された表面温度の最大値(最高温度)である。 The energization time is the time from the start of energization to the end of energization (the entire time of section II in FIG. 2). Note that the time during which the current value is constant is about 90% of the energization time. The heating temperatures shown in Table 1 are the maximum values (maximum temperatures) of the surface temperatures measured by the thermocouples described above.

なお、表1に示した試料C1は、局部加熱を行わない鋳造したままの基材である。試料C2は、電極を基材に接触させただけで、実質的な加圧力を基材に印加しない状態で通電したものである。 Note that sample C1 shown in Table 1 is an as-cast base material that is not locally heated. In sample C2, the electrodes were brought into contact with the base material, and current was applied in a state in which no substantial pressure was applied to the base material.

《測定・観察》
(1)硬さ
既述した方法により、各試料の供試材から製作した観察片を用いて、各部におけるビッカース硬さ(HV0.1)を測定した。局部加熱した試料については、電極が接触していた中央付近における平均硬さを、軟化部の硬さとして表1に示した。また、局部加熱の影響が及んでいない基部の平均硬さ(試料C1の硬さ)に対する軟化部の硬さの比率も、軟化度として表1に併せて示した。さらに、表1に示した各試料に係る硬さと加熱温度(表面温度)の関係を図3にまとめて示した。図3には、局部加熱していない試料C1(基材)の硬さも併せて示した。
《Measurement/Observation》
(1) Hardness Vickers hardness (HV 0.1) at each part was measured using an observation piece produced from the test material of each sample by the method described above. For the locally heated samples, the average hardness near the center where the electrode was in contact is shown in Table 1 as the hardness of the softened portion. Table 1 also shows the ratio of the hardness of the softened portion to the average hardness of the base portion (hardness of sample C1) not affected by the local heating as the degree of softening. Further, FIG. 3 summarizes the relationship between hardness and heating temperature (surface temperature) for each sample shown in Table 1. As shown in FIG. FIG. 3 also shows the hardness of sample C1 (substrate) that is not locally heated.

試料12の供試材から製作した観察片を用いて、鋳物の最表面から深さ200μmの位置における硬さ分布を図4に示した。鋳物表面に沿った距離は、電極と鋳物の接触領域(電極接触部)の外周縁を基準(0μm)とした。 FIG. 4 shows the hardness distribution at a depth of 200 μm from the outermost surface of the casting using an observation piece manufactured from the test material of sample 12. As shown in FIG. The distance along the casting surface was based on the outer edge of the contact area (electrode contact portion) between the electrode and the casting (0 μm).

また、試料12の供試材から製作した観察片を用いて、電極接触部の中央(局部中心)における深さ方向(鋳物の厚さ方向)の硬さ分布も図5に示した。図5には、局部加熱していない試料C1についても、同位置における硬さ分布を併せて示した。 FIG. 5 also shows the hardness distribution in the depth direction (thickness direction of casting) at the center (local center) of the electrode contact portion using an observation piece manufactured from the test material of Sample 12. FIG. 5 also shows the hardness distribution at the same position for sample C1, which is not locally heated.

(2)金属組織
既述した方法により、各試料に係る金属組織を観察し、共晶Siの円形度を算出した。金属組織の観察は、各鋳物の中央(局部加熱した試料は電極接触部の中央)で、最表面からの深さが200~1000μmの範囲で行った。こうして求まった円形度を表1にまとめて示した。局部加熱の影響が及んでいない基部の円形度(試料C1の円形度)に対する各試料の円形度の比率も、円形度比として表1に併せて示した。
(2) Metal structure By the method described above, the metal structure of each sample was observed, and the circularity of eutectic Si was calculated. The metallographic structure was observed at the center of each casting (the center of the electrode contact portion for locally heated samples) at a depth of 200 to 1000 μm from the outermost surface. Table 1 summarizes the circularity obtained in this way. The ratio of the circularity of each sample to the circularity of the base not affected by local heating (the circularity of sample C1) is also shown in Table 1 as the circularity ratio.

各試料の供試材から切り出した鏡面研磨後の観察片を光学顕微鏡(倍率:200倍)で観察して、鋳物中央の肉厚方向におけるブリスタ(ガス孔)の有無を確認した。その結果を表1にまとめて示した。 Observation pieces after mirror polishing cut out from test material of each sample were observed with an optical microscope (magnification: 200) to confirm the presence or absence of blisters (gas holes) in the thickness direction at the center of the casting. The results are summarized in Table 1.

《接合性/耐割れ性》
各試料の鋳物に亜鉛メッキ鋼板(厚さ1.6mm)を重ね合わせて、SPRにより接合した。SPRには、ボロン鋼製、頭部(円盤状部):φ8mm、脚部(円筒部):φ5.3mm×長さ5.5mm×肉厚1mmを用いた。
《Bonding/cracking resistance》
A galvanized steel plate (thickness 1.6 mm) was superimposed on the casting of each sample and joined by SPR. The SPR used was made of boron steel, head (disc-shaped portion): φ8 mm, leg portion (cylindrical portion): φ5.3 mm×length 5.5 mm×thickness 1 mm.

打鋲は、POP JOISPND 油圧システムを用いて、荷重:56kN、速度:100mm/sとして、鋼板側から行った。局部加熱した試料への打鋲は、軟化部(電極接触部)とSPRとの中心軸を略一致させつつ行った。 Riveting was performed from the steel plate side using a POP JOISPND hydraulic system with a load of 56 kN and a speed of 100 mm/s. The locally heated sample was riveted while the central axes of the softened portion (electrode contact portion) and the SPR were approximately aligned.

打鋲による鋳物の割れの有無は、次のようにして調べた。図8Aと図8B(両者を併せて「図8」という。)に示すように、打鋲後の鋳物の非接合面側(背面側)に染色探傷用の染色液を塗布する。その接合部をSPRの軸方向に沿って切断する。SPRを取り除き、鋳物の接合面側に反染色液(現像液)を塗布する。その接合面側における染色液の浸透の有無を観察し、貫通割れの有無を判定した。こうして判定した各試料に係る接合時の割れの有無を表1にまとめて示した。また、貫通割れが有る場合と貫通割れが無い場合の一例を図8に併せて示した。 The presence or absence of cracks in the casting due to riveting was examined as follows. As shown in FIGS. 8A and 8B (both collectively referred to as "FIG. 8"), a dyeing liquid for dyeing flaw detection is applied to the non-bonded surface side (rear side) of the riveted casting. The joint is cut along the axial direction of the SPR. Remove the SPR and apply an anti-dye solution (developer) to the joint surface side of the casting. The presence or absence of permeation of the staining solution on the joint surface side was observed to determine the presence or absence of penetrating cracks. Table 1 summarizes the presence or absence of cracks at the time of bonding for each sample judged in this manner. In addition, FIG. 8 also shows an example of a case where there is a penetrating crack and an example where there is no penetrating crack.

《評価》
(1)硬さ
表1と図3から明らかなように、本実施例のような局部加熱を行うと、その加熱温度に応じて軟化することがわかる。特に、その温度が350℃以上さらには400℃以上になると、軟化が急激に進行することがわかった。また、450℃以上に加熱された局部(軟化部)は、その加熱前(基部)に対して85%以下に軟化することもわかった。
"evaluation"
(1) Hardness As is clear from Table 1 and FIG. 3, when local heating is performed as in this example, softening occurs depending on the heating temperature. In particular, it has been found that when the temperature is 350° C. or higher, or 400° C. or higher, the softening progresses rapidly. It was also found that a localized portion (softened portion) heated to 450° C. or higher softens to 85% or less of that before heating (base portion).

図4から明らかなように、電極を用いて局部加熱した場合、電極接触部で安定的に軟化が生じる一方、その周囲への影響は極僅かであることもわかる。例えば、電極接触部の外周縁から1mm程度離間した位置では、殆ど軟化が生じておらず、基材と同様な硬さとなることもわかった。 As is clear from FIG. 4, when the electrode is locally heated, the electrode contact portion is stably softened, while the effect on the surroundings is negligible. For example, it was found that at a position about 1 mm away from the outer peripheral edge of the electrode contact portion, softening hardly occurs and the hardness is the same as that of the base material.

図5から明らかなように、先ず、局部加熱していない基材の硬さは、表面側から中心部に向かって、ほぼ単調減少していた。しかし、電極を用いて局部加熱すると、その深さ方向(鋳物厚さ方向)に亘って、略均一的な硬さに軟化することがわかった。 As is clear from FIG. 5, first, the hardness of the base material that was not locally heated decreased almost monotonically from the surface side toward the center. However, it was found that local heating using an electrode softened the hardness to a substantially uniform thickness over the depth direction (casting thickness direction).

(2)組織
表1および図6から明らかなように、局部加熱することにより、共晶Siが丸みをおびて、その円形度が増すことがわかった。
(2) Structure As is clear from Table 1 and FIG. 6, local heating causes the eutectic Si to be rounded, increasing the degree of circularity.

表1および図7から明らかなように、局部加熱する際に、加圧しないと、内部にブリスタが発生することがわかった。逆にいえば、加圧することにより、ブリスタの発生を防止できることが確認された。 As is clear from Table 1 and FIG. 7, it was found that blisters were generated inside unless pressure was applied during local heating. Conversely, it was confirmed that applying pressure can prevent blisters from occurring.

(3)耐割れ性
表1および図8から明らかなように、大きな塑性変形を伴うSPRの打鋲を鋳物に行う場合でも、局部加熱した軟化部を利用することにより、割れの発生を防止できることがわかった。
(3) Crack resistance As is clear from Table 1 and Fig. 8, cracks can be prevented by using a locally heated softened portion even when SPR riveting with large plastic deformation is performed on castings. I found out.

以上のように、本発明の局部加熱工程を行うと、鋳物の局部(電極接触部とその極近傍)だけを、ブリスタを発生させることなく、軟化させられることが確認できた。その局部(軟化部)を利用すれば、例えば、割れを生じさせることなく、Al合金鋳物にもSPR接合を行えることも確認された。 As described above, it was confirmed that the local heating process of the present invention softens only the local parts of the casting (electrode contact parts and their immediate vicinity) without generating blisters. It has also been confirmed that by using the localized portion (softened portion), for example, it is possible to perform SPR joining to Al alloy castings without causing cracks.

Figure 0007152932000001
Figure 0007152932000001

Claims (10)

アルミニウム合金の鋳物の局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱する局部加熱工程を備え、
局部の金属組織の変化により軟化た軟化部が、他部材と冷間状態で機械的に接合される接合部となるアルミニウム合金部材の製造方法。
A local heating step of joule-heating a local part of an aluminum alloy casting by energizing the electrode while pressurizing the local part of the aluminum alloy casting,
A method for producing an aluminum alloy member, wherein the softened portion softened by the change in local metallographic structure serves as a joining portion to be mechanically joined to another member in a cold state .
前記局部加熱工程は、前記局部の温度を、前記アルミニウム合金の液相が0.2質量%出現する温度以下にしてなされる請求項1に記載のアルミニウム合金部材の製造方法。 2. The method of manufacturing an aluminum alloy member according to claim 1, wherein the local heating step is performed by setting the temperature of the local area to a temperature at which 0.2 mass % of the liquid phase of the aluminum alloy appears or less. 前記局部加熱工程は、前記局部の温度を350℃以上にしてなされる請求項1または2に記載のアルミニウム合金部材の製造方法。 3. The method of manufacturing an aluminum alloy member according to claim 1, wherein the local heating step is performed by setting the temperature of the local area to 350[deg.] C. or higher. 前記局部加熱工程は、前記軟化部の硬さを、前記ジュール加熱の影響がない基部の硬さに対して90%以下にする請求項1~3のいずれかに記載のアルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member according to any one of claims 1 to 3, wherein the local heating step sets the hardness of the softened portion to 90% or less of the hardness of the base portion that is not affected by the Joule heating. . 前記鋳物は、ダイカスト鋳物である請求項1~4のいずれかに記載のアルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member according to any one of claims 1 to 4, wherein the casting is a die casting. 前記アルミニウム合金は、全体を100質量%として、Siを6~12質量%含む請求項1~5のいずれかに記載のアルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member according to any one of claims 1 to 5, wherein the aluminum alloy contains 6 to 12% by mass of Si with respect to 100% by mass of the whole. 前記アルミニウム合金は、さらに、Mgを0.1~1質量%含む請求項6に記載のアルミニウム合金部材の製造方法。 7. The method for manufacturing an aluminum alloy member according to claim 6, wherein the aluminum alloy further contains 0.1 to 1% by mass of Mg. 前記局部加熱工程は、前記ジュール加熱の影響がない基部における共晶Siの円形度に対して、前記軟化部における共晶Siの円形度を1.2倍以上にする請求項6または7に記載のアルミニウム合金部材の製造方法。 8. The local heating step according to claim 6, wherein the circularity of the eutectic Si in the softened portion is 1.2 times or more the circularity of the eutectic Si in the base portion which is not affected by the Joule heating. A method for manufacturing an aluminum alloy member of 前記電極は、内部が水冷されている請求項1~8のいずれかに記載のアルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member according to any one of claims 1 to 8, wherein the electrode is internally water-cooled. 前記他部材は、ネジまたはリベットである請求項1~9のいずれかに記載のアルミニウム合金部材の製造方法。 The method for manufacturing an aluminum alloy member according to any one of claims 1 to 9, wherein the other member is a screw or a rivet .
JP2018196294A 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member Active JP7152932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196294A JP7152932B2 (en) 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196294A JP7152932B2 (en) 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2020063486A JP2020063486A (en) 2020-04-23
JP7152932B2 true JP7152932B2 (en) 2022-10-13

Family

ID=70388145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196294A Active JP7152932B2 (en) 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member

Country Status (1)

Country Link
JP (1) JP7152932B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035955A (en) 2000-07-28 2002-02-05 Japan Science & Technology Corp Manufacturing method for aluminum alloy composite member by electrified joint
JP2007002281A (en) 2005-06-22 2007-01-11 Nissan Motor Co Ltd Aluminum alloy casting for self-pierce rivet joining, and method for producing the same
JP2007105737A (en) 2005-10-11 2007-04-26 Nissan Motor Co Ltd Method for joining different metals by resistance welding, and joined structure
JP2015535778A (en) 2012-10-08 2015-12-17 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat treatment for vehicle seat structures and components

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177192A (en) * 1997-09-10 1999-03-23 Nippon Light Metal Co Ltd Energizing caulking method for aluminum alloy casting
JP3921839B2 (en) * 1998-01-12 2007-05-30 マツダ株式会社 ELECTRIC HEAT TREATMENT METHOD AND DEVICE, AND ELECTRODE HEAT TREAT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035955A (en) 2000-07-28 2002-02-05 Japan Science & Technology Corp Manufacturing method for aluminum alloy composite member by electrified joint
JP2007002281A (en) 2005-06-22 2007-01-11 Nissan Motor Co Ltd Aluminum alloy casting for self-pierce rivet joining, and method for producing the same
JP2007105737A (en) 2005-10-11 2007-04-26 Nissan Motor Co Ltd Method for joining different metals by resistance welding, and joined structure
JP2015535778A (en) 2012-10-08 2015-12-17 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat treatment for vehicle seat structures and components

Also Published As

Publication number Publication date
JP2020063486A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
Ilangovan et al. Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints
Karthikeyan et al. On the role of process variables in the friction stir processing of cast aluminum A319 alloy
Zhou et al. Effect of pin profile on microstructure and mechanical properties of friction stir spot welded Al-Cu dissimilar metals
Singh et al. Mechanical and microstructural properties evolutions of various alloys welded through cooling assisted friction-stir welding: A review
Elangovan et al. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints
Rose et al. Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy
Amini et al. Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy
Dilip et al. Microstructural characterization of dissimilar friction stir welds between AA2219 and AA5083
Selamat et al. Friction stir welding of similar and dissimilar aluminium alloys for automotive applications
Prasanna et al. Effect of tool pin profiles and heat treatment process in the friction stir welding of AA 6061 aluminium alloy
Msomi et al. Analysis of material positioning towards microstructure of the friction stir processed AA1050/AA6082 dissimilar joint
Zhao et al. Study of temperature and material flow during friction spot welding of 7B04-T74 aluminum alloy
Geng et al. Parametric optimization and microstructural characterization of friction welded aeronautic aluminum alloy 2024
Mahmoud et al. Effect of tool rotational and welding speeds on microstructural and mechanical characteristics of friction stir welded A319 cast Al alloy
Ali et al. Microstructure and mechanical properties of friction stir welded SiC/TiB 2 reinforced aluminum hybrid composites
Hassan et al. Friction stir welding of dissimilar A319 and A356 aluminium cast alloys
Saju et al. Friction stir forming of dissimilar grade aluminum alloys: Influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes
JP7152932B2 (en) Method for manufacturing aluminum alloy member
Richmire et al. Friction stir welding of a hypoeutectic Al–Si alloy: microstructural, mechanical, and cyclic response
Lu et al. Effects of rotational speed on microstructure and mechanical properties of inertia friction-welded 7005–5083 aluminum alloy joints
Selamat et al. Weldability and mechanical properties of dissimilar al-mgsi to pure aluminium and al-mg using friction stir welding process
Kasman et al. Effects of overlapping formed via pin-offsetting on friction stir weldability of AA7075-T651 aluminum alloy
Kumai et al. Advanced high-speed solid-state joining of 2024 aluminum alloy studs to 5052 aluminum alloy plates
Astarita et al. Mechanical characteristics of welded joints of aluminum alloy 6061 T6 formed by Arc and Friction Stir Welding
Li et al. Microstructure and mechanical properties of ultrasonic spot welding of AA7075-T6 and A380 casting aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220930

R150 Certificate of patent or registration of utility model

Ref document number: 7152932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150