JP2020063486A - Method for manufacturing aluminum alloy member - Google Patents

Method for manufacturing aluminum alloy member Download PDF

Info

Publication number
JP2020063486A
JP2020063486A JP2018196294A JP2018196294A JP2020063486A JP 2020063486 A JP2020063486 A JP 2020063486A JP 2018196294 A JP2018196294 A JP 2018196294A JP 2018196294 A JP2018196294 A JP 2018196294A JP 2020063486 A JP2020063486 A JP 2020063486A
Authority
JP
Japan
Prior art keywords
local
aluminum alloy
casting
electrode
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018196294A
Other languages
Japanese (ja)
Other versions
JP7152932B2 (en
Inventor
川原 博
Hiroshi Kawahara
博 川原
加瑞馬 日比
Kazuma Hibi
加瑞馬 日比
岩田 靖
Yasushi Iwata
靖 岩田
盾 八百川
Jun Yaokawa
盾 八百川
琢真 箕浦
Takuma Minoura
琢真 箕浦
尼子 龍幸
Tatsuyuki Amako
龍幸 尼子
崇史 浅田
Takashi Asada
崇史 浅田
内田 圭亮
Yoshiaki Uchida
圭亮 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018196294A priority Critical patent/JP7152932B2/en
Publication of JP2020063486A publication Critical patent/JP2020063486A/en
Application granted granted Critical
Publication of JP7152932B2 publication Critical patent/JP7152932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To provide a method for manufacturing an aluminum alloy member which can suppress local crack generated in joining.SOLUTION: A method for manufacturing an aluminum alloy member includes a local heating step of Joule heating a local part of a cast of an aluminum alloy by performing energization from an electrode to a cast while pressurizing the local part with the electrode. Thereby, a softened part obtained by softening only the local part can be formed into the cast. A hardness of the softened part is, for instance, 90% or less with respect to a hardness of a base part not affected by Joule heating. In the case of die casting, circularity of eutectic Si in the softened part is 1.2 or more times as large as circularity of eutectic Si in the base part. When the softened part is used, for instance, even when a steel plate is joined to a cast by a self-piercing rivet (SPR), occurrence of cracking can be prevented.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム合金の鋳物からなるアルミニウム合金部材の製造方法等に関する。   The present invention relates to a method for manufacturing an aluminum alloy member made of a cast aluminum alloy, and the like.

部材の複雑化、大型化、多機能化、軽量化等に対応するため、形状、材質、機能等の異なる複数の部材が接合されることが多い。接合は、要求仕様等に応じて、接着、溶接、締結、結合等によりなされる。中でも、強固な接合を比較的容易に行える機械的な接合が多用されている。例えば、着脱が必要な部材はネジ(ボルト・ナット等)で締結され、着脱が不要な部材はリベットで結合される。   A plurality of members having different shapes, materials, functions, etc. are often joined together in order to cope with complication, increase in size, multifunction, weight reduction, etc. of the members. The joining is performed by adhesion, welding, fastening, joining, etc. according to required specifications and the like. Among them, mechanical joining is often used, which can make strong joining relatively easily. For example, members that need to be attached and detached are fastened with screws (bolts, nuts, etc.), and members that need not be attached and detached are joined with rivets.

リベットを用いると、溶接等ができない異種材間等でも容易に接合できる。また最近では、穿孔作業が不要(つまり自己穿孔式)で、強固な結合が可能なセルフピアシングリベット(Self Piercing Rivet/単に「SPR」という。)を用いた接合も注目されている。   If rivets are used, it is possible to easily join even dissimilar materials that cannot be welded. Recently, attention has also been paid to joining using a self-piercing rivet (simply referred to as “SPR”) that does not require a punching operation (that is, a self-piercing type) and can perform a strong coupling.

例えば、アルミニウム合金のダイカスト鋳物(部材)へ、SPRを打鋲して鋼板等を接合することに関連した記載が、下記の特許文献にある。   For example, the following patent document describes a description relating to the bonding of a steel plate or the like by driving an SPR into a die cast casting (member) of an aluminum alloy.

特開2010−90459号公報JP, 2010-90459, A 特開2018−94621号公報JP, 2008-94621, A 特開2004−124151号公報JP, 2004-124151, A

特許文献1は、成分組成を調整したAl―Si系合金からなるダイカスト部材(鋳物)に熱処理(溶体化処理、時効処理)を施して延性を高めることにより、SPRの打鋲時に生じる割れを抑止することを提案している。   Patent Document 1 suppresses cracks generated during SPR driving by performing heat treatment (solution treatment, aging treatment) on a die-cast member (casting) made of an Al—Si alloy whose component composition is adjusted to enhance ductility. I suggest you do.

しかし、特許文献1では、接合部以外は熱処理しなくても十分な特性を有するにも拘わらず、SPRを打鋲したときの局所変形に伴う割れを防止するためだけに、鋳物全体の熱処理を行っている。また、その熱処理時に生じるブリスタ(高圧ガス巣の膨張)を防止するために、特殊な高真空ダイカストを行っている。従って、特許文献1の方法では、ダイカスト部材全体に対して実体強度の低下や熱歪みが生じたり、製造コストが増加したりする。   However, in Patent Document 1, the heat treatment of the entire casting is performed only in order to prevent cracks due to local deformation when the SPR is driven, despite that the heat treatment is performed on the joints only, even though the heat treatment is performed on the joints. Is going. Moreover, in order to prevent blisters (expansion of high-pressure gas bubbles) that occur during the heat treatment, special high vacuum die casting is performed. Therefore, in the method of Patent Document 1, the physical strength of the entire die casting member is reduced, thermal distortion occurs, and the manufacturing cost increases.

特許文献2には、SPRが打鋲等される接合部のみを、選択的に高延性化したアルミニウム合金部材の製造方法を提案している。具体的にいうと、ダイカスト鋳造中に局所加圧することにより、接合部の初晶Alの体積率(初晶率)を高め、その高延性化を実現している。   Patent Document 2 proposes a method of manufacturing an aluminum alloy member in which only the joint portion where SPR is driven into a tack or the like is selectively made highly ductile. Specifically, by locally applying pressure during die casting, the volume ratio (primary crystal ratio) of primary crystal Al in the joint is increased, and its ductility is increased.

しかし、特許文献2の方法では、部位により肉厚や湯温低下が異なるため、鋳造工程中の加圧制御が容易ではなく、金型構造も複雑化する。   However, in the method of Patent Document 2, since the wall thickness and the decrease in the molten metal temperature differ depending on the part, it is not easy to control the pressure during the casting process and the die structure becomes complicated.

なお、特許文献3は、加熱した金属ブロックを接触させて、アルミニウム合金を部分的に軟化させることを提案している。しかし、特許文献3は、鋳物の接合性等の向上ではなく、冷延板のプレス成形性の向上を対象としており、大きく塑性変形する部分(例えば、環状のフランジ部分)を予め軟化させることを提案しているに過ぎない。また、特許文献3のような方法は、金属ブロックからの無駄な放熱量が多く、接合部のような狭い局部を所望温度に加熱することには適さない。   Patent Document 3 proposes to bring a heated metal block into contact with the aluminum alloy to partially soften the aluminum alloy. However, Patent Document 3 is intended to improve the press formability of the cold rolled sheet, not to improve the bondability of the casting, and to soften a portion that undergoes large plastic deformation (for example, an annular flange portion) in advance. It's just a suggestion. Further, the method as disclosed in Patent Document 3 has a large amount of wasteful heat radiation from the metal block and is not suitable for heating a narrow local portion such as a joint portion to a desired temperature.

本発明はこのような事情に鑑みて為されたものであり、従来とは異なる手法により、アルミニウム合金鋳物の局部を軟化させたアルミニウム合金部材を、効率的に得ることができる製造方法等を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a manufacturing method and the like that can efficiently obtain an aluminum alloy member in which a local portion of an aluminum alloy casting is softened by a method different from the conventional method. The purpose is to do.

本発明者はこの課題を解決すべく鋭意研究した結果、アルミニウム合金鋳物の局部に電極を接触させて、その局部だけをジュール加熱することにより、その局部を効率的に軟化させることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of earnest studies to solve this problem, the present inventor succeeded in efficiently softening the local part of the aluminum alloy casting by bringing the electrode into contact with the local part and Joule heating only the local part. By developing this result, the present invention described below has been completed.

《アルミニウム合金部材の製造方法》
(1)本発明は、アルミニウム合金の鋳物の局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱する局部加熱工程を備え、該鋳物に該局部を軟化させた軟化部を設けたアルミニウム合金部材の製造方法である。
<< Method of manufacturing aluminum alloy member >>
(1) The present invention comprises a local heating step of Joule heating the local portion of an aluminum alloy casting by energizing the electrode while pressing the local portion with an electrode, and a softening portion obtained by softening the local portion of the casting. Is a method for manufacturing an aluminum alloy member.

(2)本発明の製造方法によれば、全体的に生じ得る強度低下や熱歪み等を回避しつつ、アルミニウム合金(「Al合金」ともいう。)の鋳物(単に「鋳物」という。)の局部だけを軟化させたアルミニウム合金部材(「Al合金部材」ともいう。)を効率的に得ることができる。そして、周囲よりも高延性な軟化部を利用すれば、例えば、割れ等を抑止しつつ、安定した品質で、Al合金部材と他部材との接合等が可能となる。 (2) According to the manufacturing method of the present invention, casting of an aluminum alloy (also referred to as “Al alloy”) (simply referred to as “casting”) is avoided while avoiding strength reduction, thermal strain, and the like that may occur as a whole. It is possible to efficiently obtain an aluminum alloy member (also referred to as “Al alloy member”) in which only a local portion is softened. If a softened portion having a higher ductility than the surroundings is used, for example, it is possible to join the Al alloy member and another member with stable quality while suppressing cracking and the like.

ところで、本発明の製造方法により、局部だけを効率的に軟化(高延性化)できる理由は次のように考えられる。先ず、局部が所定温度以上に昇温されると、局部を構成する金属組織(基地)中にあった析出相(Si、MgSi、CuAl等)が、α−Al内に再固溶される。また、鋳造時に晶出した角張った結晶(共晶相等)も、丸みをおびた形状へ変化(つまり球状化)する。さらに、鋳造時に蓄積された局部の内部歪も、緩和または解消される。これらのことが相加的または相乗的に作用して局部が軟化する。 By the way, the reason why the local part can be efficiently softened (high ductility) by the manufacturing method of the present invention is considered as follows. First, when the temperature of the local part is raised to a predetermined temperature or higher, the precipitation phase (Si, Mg 2 Si, CuAl 2 etc.) in the metal structure (base) forming the local part is redissolved in α-Al. To be done. In addition, angular crystals that crystallized during casting (eutectic phase, etc.) also change into a rounded shape (that is, spheroidize). Further, the local internal strain accumulated during casting is relaxed or eliminated. These act additively or synergistically to soften the local area.

次に、Al合金を自己発熱させるジュール加熱によれば、極短時間内に、局部を所望温度まで急速に昇温させることができる。そして、通電終了後、鋳物に接触させた電極を通じて局部を冷却できる。こうして、本発明に係る局部加熱工程中およびその終了後も、局部の周囲が熱伝導により加熱されることが抑制される。このため、軟化する範囲は、電極(先端面)の接触部分かその極近傍域(つまり局部)に限られる。この結果、局部を軟化させつつも、Al合金部材(Al合金鋳物)全体としての実体強度の低下や熱歪みの発生等は回避される。   Next, according to Joule heating that causes the Al alloy to self-heat, the local temperature can be rapidly raised to a desired temperature within an extremely short time. Then, after the completion of energization, the local portion can be cooled through the electrode that is in contact with the casting. In this way, heating of the periphery of the local portion due to heat conduction is suppressed during and after the local heating step according to the present invention. For this reason, the range of softening is limited to the contact portion of the electrode (tip surface) or the extremely close region (that is, the local portion). As a result, the local strength of the Al alloy member (Al alloy casting) as a whole is prevented from deteriorating and the occurrence of thermal strain is avoided while softening the local portion.

なお、本発明の局部加熱工程では、局部を加圧しつつ加熱している。このため、鋳造時に導入された内在ガスが局部内にあっても、それに起因したブリスタが局部加熱工程に発生することが抑止される。   In the local heating step of the present invention, the local area is heated while being pressurized. Therefore, even if the internal gas introduced at the time of casting is in the local area, it is possible to suppress the occurrence of blisters in the local heating step.

《アルミニウム合金部材または複合部材》
本発明は、上述した製造方法により得られたAl合金部材としても把握できる。さらに、軟化部を利用した一形態として、本発明は、Al合金部材と他部材とを接合した複合部材としても把握できる。
<< Aluminum alloy member or composite member >>
The present invention can also be grasped as an Al alloy member obtained by the manufacturing method described above. Furthermore, the present invention can be grasped as a composite member in which an Al alloy member and another member are joined, as one form utilizing the softened portion.

《金属部材の製造方法》
本発明は、上述した内容を踏まえて、さらに金属部材の製造方法にまで拡張して考えることもできる。すなわち、本発明は、局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱する局部加熱工程を備え、該局部を軟化させた軟化部を設けた金属部材の製造方法、またはその製造方法により得られた金属部材としても把握できる。金属部材は、鋳物に限らないAl合金部材、Mg合金部材、Ti合金部材、Fe系(鋳鉄、鉄鋼)部材等である。
<< Metal member manufacturing method >>
The present invention can be further expanded to a method of manufacturing a metal member based on the above-mentioned contents. That is, the present invention comprises a local heating step of Joule heating the local portion by energizing the electrode while pressing the local portion with an electrode, and a method for manufacturing a metal member provided with a softened portion that softens the local portion, Alternatively, it can be grasped as a metal member obtained by the manufacturing method. The metal members are not limited to castings, but are Al alloy members, Mg alloy members, Ti alloy members, Fe-based (cast iron, steel) members, and the like.

《その他》
特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。
《Others》
Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. A range such as “a to b” may be newly established by setting any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

局部加熱工程の様子を模式的に示す説明図である。It is explanatory drawing which shows the mode of a local heating process typically. 加圧パターンと通電パターンを示す模式図である。It is a schematic diagram which shows a pressurization pattern and an energization pattern. 鋳物の加熱温度と硬さの関係を示すグラフである。It is a graph which shows the heating temperature of a casting, and the relationship of hardness. 電極接触部とその周辺の硬さ分布を示すグラフである。It is a graph which shows the hardness distribution of an electrode contact part and its periphery. 鋳物中央における深さ方向の硬さ分布を示すグラフである。It is a graph which shows the hardness distribution of the depth direction in the casting center. 局部加熱の有無と金属組織の関係を示す写真である。It is a photograph showing the relationship between the presence or absence of local heating and the metal structure. 局部加熱時の加圧の有無による金属組織への影響を示す写真である。It is a photograph which shows the influence on the metal structure by the presence or absence of pressurization at the time of local heating. SPR打鋲時の耐割れ性を評価する様子を示す写真である。It is a photograph showing how to evaluate the crack resistance during SPR driving. SPR打鋲時の貫通割れの有無を示す写真である。It is a photograph showing the presence or absence of through cracks at the time of SPR driving.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の製造方法のみならず、Al合金部材、それを用いた複合部材等にも適宜該当する。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or more constituent elements arbitrarily selected from the specification may be added to the constituent elements of the present invention described above. The contents described in the present specification appropriately apply not only to the manufacturing method of the present invention, but also to Al alloy members, composite members using the same, and the like. Which of the embodiments is the best depends on the target, the required performance and the like.

《局部加熱工程》
局部加熱工程は、電極で鋳物の局部を加圧しつつ、電極からその局部へ通電することによりなされる。
<< Local heating process >>
The local heating step is performed by energizing the local area of the casting while pressing the local area of the casting with the electrode.

(1)電極
所望の局部(およびその近傍)だけを効率的にジュール加熱できれば、電極の形態は問わない。電極は、通常、その局部を挟圧する一対からなる。但し、局部の加圧と局部への通電が可能であれば、電極の形態は、必ずしも対向する一対には限らない。
(1) Electrode The form of the electrode does not matter as long as it can efficiently Joule heat only a desired local portion (and the vicinity thereof). The electrodes are usually composed of a pair of members that sandwich the local pressure. However, the shape of the electrodes is not necessarily limited to the pair of electrodes facing each other as long as the local pressure can be applied and the local current can be supplied.

電極の形態、材質等は、軟化部の用途・要求仕様に応じて適宜選択される。電極には、専用品の他、例えば、スポット溶接用電極等の汎用品を用いてもよい。電極の基本形状には、JIS C9304(1999)に多数規定されているように、例えば、平面形(F形)、ラジアス形(R形)、ドーム形(D形)、ドームラジアス形(DR形)、円錐台形(CF形)、円錐台ラジアス形(CR形)等がある。平坦な軟化部を形成する場合なら、局部に接触する電極先端面が平面状であるF形の電極を用いるとよい。なお、スポット溶接用電極は、通常、円筒状または円柱状である。この場合、局部と電極の接触面は略円状または略球面状となる。但し、本発明で用いる電極は角柱状等でもよい。この場合、接触面は略多角形状または略角錐面状錐状となる。   The form, material, etc. of the electrode are appropriately selected according to the application and required specifications of the softening part. For the electrodes, general-purpose products such as spot welding electrodes may be used in addition to the dedicated products. The basic shape of the electrode is, for example, a flat shape (F shape), a radius shape (R shape), a dome shape (D shape), a dome radius shape (DR shape), as defined in JIS C9304 (1999). ), A truncated cone shape (CF type), and a truncated cone radius type (CR type). In the case of forming a flat softened portion, it is preferable to use an F-shaped electrode having a flat electrode tip surface in contact with the local portion. The spot welding electrode is usually cylindrical or columnar. In this case, the contact surface between the local portion and the electrode has a substantially circular shape or a substantially spherical shape. However, the electrodes used in the present invention may be prismatic or the like. In this case, the contact surface has a substantially polygonal shape or a substantially pyramidal surface cone shape.

電極は、シャンクに着脱できるもの(キャップチップ型)でも、シャンクと一体化したもの(一体型)でもよい。キャップチップ型の電極(「電極チップ」ともいう。)を用いると、局部加熱工程の低コスト化を図れる。   The electrode may be detachable from the shank (cap tip type) or integrated with the shank (integral type). When a cap tip type electrode (also referred to as “electrode tip”) is used, the cost of the local heating step can be reduced.

電極により、大電流の通電と加圧力の印加がなされる。このため電極は、導電率(電気伝導度)や強度等に優れる材料からなるとよい。例えば、純銅(無酸素銅、タフピッチ銅、リン脱酸銅等)の他、クロム銅、ジルコニウム銅、クロム・ジルコニウム銅、アルミナ分散銅、ベリリウム銅等が用いられる。このような電極材料は、JIS Z3234(2種)、またはRWMA(Resistance Welder Manufacturer’s Association/米国抵抗溶接機製造者協会)のGroupA(Class2)に準拠して選択されるとよい。代表例は、電気伝導度と強度に優れるクロム銅(Cr:0.5〜1.4質量%、Cu:残部)である。   A large current is applied and a pressure is applied by the electrodes. Therefore, the electrode is preferably made of a material having excellent conductivity (electrical conductivity) and strength. For example, in addition to pure copper (oxygen-free copper, tough pitch copper, phosphorous deoxidized copper, etc.), chromium copper, zirconium copper, chromium / zirconium copper, alumina dispersed copper, beryllium copper, etc. are used. Such an electrode material may be selected in accordance with JIS Z3234 (2 types) or Group A (Class 2) of RWMA (Resistance Welder Manufacturer's Association). A typical example is chromium copper (Cr: 0.5 to 1.4 mass%, Cu: balance), which has excellent electrical conductivity and strength.

高導電率(低抵抗率)な材質からなる電極は、通常、熱伝導性にも優れる。このため、ジュール加熱された局部は、通電終了後、電極が冷し金となって急冷される。これにより、ジュール加熱の影響は、局部またはその極周辺域だけに留まる。   An electrode made of a material having high electrical conductivity (low resistivity) usually has excellent thermal conductivity. Therefore, in the locally heated Joule, the electrodes are cooled and rapidly cooled after the completion of energization. As a result, the effect of Joule heating is limited to the local area or its peripheral area.

電極自体も、鋳物側からの熱伝達と通電時の自己発熱により高温になる。電極自体の強度や電極による局部の冷却性等を確保するため、電極は内部が強制冷却(水冷等)されているとよい。これにより、量産時でも、局部加熱工程を安定して連続的に行える。   The electrode itself also becomes hot due to heat transfer from the casting side and self-heating during energization. In order to secure the strength of the electrode itself and the local cooling property of the electrode, it is preferable that the inside of the electrode is forcibly cooled (water-cooled or the like). As a result, the local heating process can be stably and continuously performed even during mass production.

(2)加圧
電極による局部の加圧力は、局部の形態(厚さ等)、Al合金の組成、鋳造方法、加熱温度(軟化度)等に応じて調整されるとよい。その加圧力は、例えば、10〜70N/mm、15〜50N/mmまたは20〜40N/mmである。加圧力が過小であると、局部にブリスタが生じ易くなる。加圧力が過大になると、鋳物の変形(陥没等)や電極の変形(摩耗、座屈等)が生じ易くなる。なお、ブリスタが生じない限り、加圧力の下限値は問わないが、加圧状態と単なる接触状態を区別する意味で、加圧力を5N/mm以上としてもよい。
(2) Pressurization The local pressure applied by the electrode may be adjusted according to the local form (thickness, etc.), the composition of the Al alloy, the casting method, the heating temperature (softening degree), etc. The applied pressure is, for example, 10 to 70 N / mm 2 , 15 to 50 N / mm 2 or 20 to 40 N / mm 2 . If the applied pressure is too small, blisters are likely to occur locally. If the applied pressure becomes excessive, deformation of the casting (depression, etc.) and deformation of the electrode (wear, buckling, etc.) are likely to occur. It should be noted that the lower limit of the pressing force does not matter as long as the blister does not occur, but the pressing force may be 5 N / mm 2 or more in order to distinguish the pressed state from the simple contact state.

(3)通電
電極から局部の通電条件も、局部の形態、Al合金の組成、加熱温度(軟化度)等に応じて調整されるとよい。電流密度は、例えば、50〜400A/mm、100〜350A/mmまたは150〜300A/mmである。通電時間は、例えば、100〜4000msec、500〜3000msecまたは1000〜2000msecである。電流密度や通電時間が過小では、加熱が不十分となり、軟化度も小さくなる。電流密度や通電時間が過大になると、局部が過度に軟化、変形等するようになる。
(3) Energization The energization condition from the electrode to the local part may be adjusted according to the morphology of the local part, the composition of the Al alloy, the heating temperature (softening degree) and the like. The current density is, for example, 50 to 400 A / mm 2 , 100 to 350 A / mm 2 or 150 to 300 A / mm 2 . The energization time is, for example, 100 to 4000 msec, 500 to 3000 msec or 1000 to 2000 msec. If the current density or the energization time is too short, the heating becomes insufficient and the softening degree becomes small. If the current density or the energization time becomes too long, the local parts will be excessively softened or deformed.

通電条件は、局部の温度が所望範囲内となるように制御されてもよい。局部の温度は、例えば、Al合金の液相が0.2質量%出現する温度以下にされるとよい。局部の温度が、Al合金の液相率で0.2質量%超となる温度にまで上昇すると、α−Alや共晶相の粗大化が進み、却って局部の延性が低下し得る。なお、「Al合金の液相が0.2質量%出現する温度」は、各Al合金(組成)毎に、統合型熱力学計算ソフトウェアー "Thermo-Calc" を用いた凝固計算を行って得られた液相率と温度との関係から求まる。   The energization condition may be controlled so that the temperature of the local part falls within a desired range. The local temperature may be set to, for example, a temperature at which the liquid phase of the Al alloy appears at 0.2 mass% or less. When the local temperature rises to a temperature at which the liquid phase ratio of the Al alloy exceeds 0.2% by mass, α-Al and the eutectic phase are coarsened, and the local ductility may be deteriorated. The "temperature at which 0.2% by mass of liquid phase of Al alloy appears" was obtained by performing solidification calculation using the integrated thermodynamic calculation software "Thermo-Calc" for each Al alloy (composition). It can be obtained from the relationship between the obtained liquid phase ratio and temperature.

また局部の温度は、例えば、350℃以上、400℃以上さらには450℃以上でもよい。局部の温度が過小では、局部における軟化度や延性の向上も小さい。逆に、局部の温度は、例えば、600℃以下さらには550℃以下でもよい。   The local temperature may be, for example, 350 ° C or higher, 400 ° C or higher, and further 450 ° C or higher. If the local temperature is too low, the softness and ductility in the local area are not improved so much. Conversely, the local temperature may be, for example, 600 ° C. or lower, or even 550 ° C. or lower.

なお、本明細書でいう「局部の温度」は、電極が接触する部分(単に「電極接触部」という。)またはその極近傍における表面温度とする。表面温度は、電極接触部またはその近傍の表面に接地した熱電対(例えば、K熱電対)で測温して求まる最高温度である。   The "local temperature" referred to in the present specification is a surface temperature at a portion in contact with an electrode (simply referred to as "electrode contact portion") or in the vicinity thereof. The surface temperature is the maximum temperature obtained by measuring the temperature with a thermocouple (for example, K thermocouple) grounded on the surface of the electrode contact portion or its vicinity.

(4)処理パターン
局部加熱工程の開始から終了までの間で、加圧力が変化する形態(「加圧パターン」という。)や電流密度が変化する形態(「通電パターン」という。)は、種々あり得る。例えば、開始直後または終了間際を除いて、加圧力や電流密度が一定値に保持される方形パターンまたは台形パターン(「基本パターン」という。)を採用してもよい。また、加圧力や電流密度が、途中で変化する変則パターンを採用してもよい。一つの局部を加熱する際に(つまり1回の局部加熱工程中に)、加圧力や電流密度が一定周期で変化し、それを複数サイクル行うサイクルパターンを採用してもよい。なお、1回の局部加熱工程中に、加圧力と電流密度の両方を種々変化させてもよいが、通常、制御が容易な電流密度を変化させれば十分である。
(4) Treatment pattern There are various modes in which the applied pressure changes (referred to as “pressurization pattern”) and the current density changes (referred to as “energization pattern”) from the start to the end of the local heating step. possible. For example, a square pattern or a trapezoidal pattern (referred to as “basic pattern”) in which the pressing force and the current density are maintained at constant values may be adopted immediately after the start or just before the end. An irregular pattern in which the pressing force and the current density change on the way may be adopted. When heating one local area (that is, during one local heating step), the pressing force or the current density may change in a constant cycle, and a cycle pattern may be adopted in which it is performed for a plurality of cycles. Note that both the pressing force and the current density may be variously changed during one local heating step, but it is usually sufficient to change the current density that is easy to control.

《鋳物》
鋳物は、既述した局部加熱工程により局部が軟化される限り、Al合金組成、鋳造方法、金属組織、形態等を問わない。
"casting"
The casting may be of any Al alloy composition, casting method, metallographic structure, morphology, etc., as long as it is locally softened by the above-described local heating step.

(1)合金組成
Al合金は、全体を100%として、例えば、Siを6〜12%、7〜11%、8〜10.5%含むとよい。Siが過少になると、鋳造性が低下して、引け量が大きくなる。Siが過多になると、鋳物の機械的特性(特に伸び)が低下し得る。なお、本明細書でいう合金組成は、特に断らない限り、軟化部を含む鋳物全体を100質量%(単に「%」という。)とした質量割合で示す。
(1) Alloy Composition The Al alloy may contain 6% to 12%, 7% to 11%, and 8% to 10.5% of the entire Al alloy, for example. If the amount of Si is too small, the castability decreases and the shrinkage amount increases. If the amount of Si is excessive, the mechanical properties (especially elongation) of the casting may deteriorate. In addition, unless otherwise specified, the alloy composition in the present specification is represented by a mass ratio with 100% by mass (simply referred to as “%”) of the entire casting including the softened portion.

Al合金は、Si以外に、Mg、Cu、Fe、Mn、Sr、Na、Sb等の改質元素を含んでもよい。Mgは、Al基地を強化する。Al合金は、例えば、Mgを0.1〜1%、0.2〜0.5%含んでもよい。Mgが過少では、その効果が十分に得られず、Mgが過多になると、MgSi等の晶出が多くなり、延性や靭性が低下し得る。 The Al alloy may contain modifying elements such as Mg, Cu, Fe, Mn, Sr, Na, and Sb in addition to Si. Mg strengthens the Al matrix. The Al alloy may contain, for example, 0.1 to 1% and 0.2 to 0.5% of Mg. If the amount of Mg is too small, the effect cannot be sufficiently obtained, and if the amount of Mg is too large, crystallization of Mg 2 Si and the like increases, and ductility and toughness may decrease.

Cuは、Al基地を強化する。Al合金は、例えば、Cuを1〜5%、2〜4%含んでもよい。Cuが過少では、その効果が十分に得られず、Cuが過多になると、延性や靱性が低下し得る。   Cu strengthens the Al base. The Al alloy may contain, for example, 1 to 5% and 2 to 4% Cu. If the amount of Cu is too small, the effect cannot be obtained sufficiently, and if the amount of Cu is too large, the ductility and toughness may decrease.

Feは、金型に対する耐焼付き性を向上させる。Al合金は、例えば、Feを0.05〜1%、0.1〜0.4%含んでもよい。Feが過少では、その効果が十分に得られず、Feが過多になると、延性が低下し得る。   Fe improves the seizure resistance of the mold. The Al alloy may include, for example, 0.05 to 1% and 0.1 to 0.4% Fe. If Fe is too small, the effect cannot be obtained sufficiently, and if Fe is too large, the ductility may decrease.

Mnは、金型に対する耐焼付き性を向上させる。Al合金は、例えば、Mnを0.2〜1.2%、0.3〜0.8%含んでもよい。Mnが過少では、その効果が十分に得られず、Mnが過多になると、延性が低下し得る。   Mn improves seizure resistance with respect to the mold. The Al alloy may contain Mn in an amount of 0.2 to 1.2% and 0.3 to 0.8%, for example. If Mn is too small, the effect cannot be obtained sufficiently, and if Mn is too large, the ductility may decrease.

Sr、NaまたはSbは、共晶Siを微細化させて、鋳物(主に非接合部)の機械的特性(特に延性または靱性)を向上させる。これら元素は微量で十分である。それら元素は、例えば、合計量で0.003〜0.05%、0.01〜0.03%含まれてもよい。   Sr, Na or Sb refines the eutectic Si to improve the mechanical properties (especially ductility or toughness) of the casting (mainly the non-bonded portion). Trace amounts of these elements are sufficient. These elements may be contained in a total amount of 0.003 to 0.05% and 0.01 to 0.03%, for example.

(2)鋳造方法/金属組織
鋳物は、重力鋳造、低圧鋳造、ダイカスト鋳造等により得られる。自動車分野等では、量産性、寸法精度等に優れたダイカスト鋳造された鋳物(「ダイカスト鋳物」という。)が多用されている。ダイカスト鋳物は、薄肉部分も多いため、割れを生じ易い領域(例えば接合部等)を軟化部とするとよい。
(2) Casting method / metal structure The casting is obtained by gravity casting, low pressure casting, die casting, or the like. In the automobile field and the like, die-cast castings (referred to as "die-cast castings") having excellent mass productivity and dimensional accuracy are often used. Since the die cast casting has many thin portions, it is advisable to set a region where cracks are likely to occur (for example, a joint portion) as the softened portion.

ダイカスト鋳物には、上述したSiを含むAl合金(Al−Si系合金)やSiおよびCuを含むAl合金(Al−Si−Cu系合金)が用いられる。例えば、JIS ADC10、ADC12等のAl合金が代表的である。また、近年の自動車ボディ部材に用いられるダイカスト鋳物には、SiおよびMgを含むAl合金(Al−Si−Mg系合金)が用いられる。   The above-described Al alloy containing Si (Al-Si alloy) or Al alloy containing Si and Cu (Al-Si-Cu alloy) is used for the die casting. For example, Al alloys such as JIS ADC10 and ADC12 are typical. In addition, Al alloys containing Si and Mg (Al-Si-Mg based alloys) are used for die castings used for automobile body members in recent years.

このようなダイカスト鋳物は、主にα−Al(初晶)と共晶組織からなり、α―Alを取り囲むように共晶が連なった共晶ネットワーク組織を形成していることが多い。共晶組織は、主に、Al−Si系合金ならα―Al+Si(これを「共晶Si」という。)、Al−Si−Mg系合金ならα―Al+Si+MgSiからなる。なお、いずれの場合でも、α−Al中には、合金組成中の溶質元素(Si、Mg、Cu等)が固溶または析出相として存在し得る。 Such die-cast castings are mainly composed of α-Al (primary crystal) and a eutectic structure, and often form a eutectic network structure in which eutectics are continuous so as to surround α-Al. Eutectic structure mainly, Al-Si-based alloy if alpha-Al + Si (this is called "eutectic Si."), Made of Al-Si-Mg based alloy, if α-Al + Si + Mg 2 Si. In any case, solute elements (Si, Mg, Cu, etc.) in the alloy composition may exist in α-Al as a solid solution or a precipitation phase.

(3)形態
電極による局部加熱が可能である限り、鋳物の形態は問わない。但し、局部は、一対の電極で挟圧しつつ通電可能な形状であると、上述した局部加熱工程を効率的に行えて好ましい。
(3) Morphology The shape of the casting does not matter as long as local heating by the electrode is possible. However, it is preferable that the local portion has a shape capable of conducting electricity while being sandwiched by a pair of electrodes, because the above-described local heating step can be efficiently performed.

《軟化部》
(1)硬さ
鋳物の軟化部の硬さや延性(靱性)は、その要求仕様に応じて、局部加熱工程の条件を変更することにより調整される。軟化部の硬さは、例えば、ジュール加熱の影響がない基部(または局部加熱前の鋳物そのものからなる母材・基材)の硬さに対して90%以下、85%以下、80%以下さらには75%以下となる。これにより、局部(軟化部)における延性や耐割れ性の向上が図られる。敢えていうと、軟化部の硬さは、基部の硬さに対して60%以上、65%以上さらには70%以上とするとよい。これにより、軟化部の強度も確保される。
<Softening part>
(1) Hardness The hardness and ductility (toughness) of the softened part of the casting are adjusted by changing the conditions of the local heating step according to the required specifications. The hardness of the softened portion is, for example, 90% or less, 85% or less, 80% or less with respect to the hardness of the base portion (or the base material / base material made of the casting itself before local heating) that is not affected by Joule heating. Is 75% or less. Thereby, the ductility and crack resistance in the local part (softened part) can be improved. Suffice it to say, the hardness of the softened portion is preferably 60% or more, 65% or more, and further 70% or more with respect to the hardness of the base portion. This ensures the strength of the softened portion.

本明細書でいう硬さは、対象部位を含む鋳物断面を、マイクロビッカース硬度計(例えば、株式会社明石製作所製 MVK−E)を用いて測定する。測定は、鏡面まで研磨した観察片を用いて、荷重:100g、負荷時間:15秒間として行う。こうして測定されたビッカース硬さを「HV0.1」で示す。   The hardness referred to in this specification is measured by using a micro Vickers hardness tester (for example, MVK-E manufactured by Akashi Seisakusho Co., Ltd.) on a cross section of a casting including a target site. The measurement is performed using an observation piece polished to a mirror surface, with a load of 100 g and a load time of 15 seconds. The Vickers hardness thus measured is indicated by "HV0.1".

特定部位(位置)の硬さは、特に断らない限り、鋳物表面から、その法線方向に延びる肉厚中心までの間で、200μmピッチ間隔で測定した各硬さの算術(相加)平均値(「平均硬さ」という。)とする。軟化部の硬さは、特に断らない限り、電極接触部の中心近傍(電極の先端面が接していた鋳物表面の中央)で測定・算出した平均硬さとする。   Unless otherwise specified, the hardness of a specific portion (position) is the arithmetic (additive) average value of the hardnesses measured at 200 μm pitch intervals from the casting surface to the center of the wall thickness extending in the normal direction. (It is called "average hardness"). Unless otherwise specified, the hardness of the softened portion is the average hardness measured and calculated in the vicinity of the center of the electrode contact portion (the center of the casting surface where the tip surface of the electrode was in contact).

硬さ分布は、特に断らない限り、200μmピッチ間隔で測定したビッカース硬さで示す。鋳物表面に沿った方向の硬さ分布なら、特に断らない限り、最表面から深さ200μmの位置におけるビッカース硬さに基づく。   The hardness distribution is represented by Vickers hardness measured at 200 μm pitch intervals unless otherwise specified. The hardness distribution in the direction along the casting surface is based on the Vickers hardness at the depth of 200 μm from the outermost surface unless otherwise specified.

基準となる基部(非加熱部/基材)の硬さは、局部加熱の影響が及んでいない領域の硬さである。本発明により局部加熱を行う場合、熱影響部の幅は高々1〜2mm程度である。局部加熱されたAl合金部材でも、例えば、電極接触部の外周縁(または内周縁)から外側(または内側)に2mm以上離間した領域(位置)における平均硬さを基部の硬さとしてもよい。なお、複数箇所で硬さを測定するときは、それぞれの箇所で求まる平均硬さの最大値を、軟化部の硬さまたは基部の硬さとして採用する。   The hardness of the reference base (non-heated portion / base material) is the hardness of a region that is not affected by local heating. When the local heating is performed according to the present invention, the width of the heat-affected zone is at most about 1 to 2 mm. Even in the locally heated Al alloy member, for example, the average hardness in a region (position) separated by 2 mm or more from the outer peripheral edge (or inner peripheral edge) of the electrode contact portion to the outer side (or inner side) may be the hardness of the base portion. When measuring the hardness at a plurality of points, the maximum value of the average hardness found at each point is adopted as the hardness of the softened portion or the hardness of the base portion.

(2)組織
鋳物の金属組織は、合金組成、鋳造方法(条件)、熱処理等により様々である。もっとも、Al合金鋳物は通常、少なくともSiを含み、初晶Al(α―Al)と共晶Si(共晶組織中に晶出しているSi)を有する。
(2) Structure The metal structure of the casting varies depending on the alloy composition, casting method (conditions), heat treatment and the like. However, an Al alloy casting usually contains at least Si, and has primary crystal Al (α-Al) and eutectic Si (Si crystallized in the eutectic structure).

このような鋳物の軟化部にある共晶Si(粒子)は、局部加熱の影響が及んでいない基部にある共晶Siよりも丸みをおびた形状(より球状化した形状)になり易い。共晶Siの球状化(3次元)の度合は、例えば、観察片を顕微鏡で観察して得られた画像を解析して求めた円形度(2次元)により指標される。   The eutectic Si (particles) in the softened portion of such a casting is more likely to have a rounded shape (more spherical shape) than the eutectic Si in the base portion that is not affected by local heating. The degree of spheroidization (three-dimensional) of eutectic Si is indexed by, for example, the circularity (two-dimensional) obtained by analyzing an image obtained by observing an observation piece with a microscope.

軟化部における共晶Siの円形度は、ジュール加熱の影響がない基部における共晶Siの円形度に対して、1.2倍以上、1.3倍以上、1.4倍以上ともなり得る。   The circularity of the eutectic Si in the softened portion can be 1.2 times or more, 1.3 times or more, or 1.4 times or more that of the eutectic Si in the base portion that is not affected by Joule heating.

この円形度は、次のようにして求まる。先ず、対象部位を含む鋳物断面を切り出して、鏡面まで研磨した観察片を製作する。観察片には、化学エッチングが施されてもよい。例えば、0.25%HF水溶液で10秒、あるいは0.2%NaOH水溶液で30秒として行える。鋳物の冷却速度が遅い場合には400倍を選定してもよい。   This circularity is obtained as follows. First, a casting cross section including a target portion is cut out, and an observation piece polished to a mirror surface is manufactured. The observation piece may be subjected to chemical etching. For example, a 0.25% HF aqueous solution can be used for 10 seconds, or a 0.2% NaOH aqueous solution can be used for 30 seconds. If the cooling rate of the casting is slow, 400 times may be selected.

こうして得られた観察片を光学顕微鏡により観察する。倍率:1000倍で撮影した組織画像(データ)を、画像処理装置(例えば、株式会社ニレコ製LUZEX)を用いて解析する。これにより、観察片内から抽出(トレース)された共晶Siについて円形度が算出される。なお、画像解析により抽出される共晶Si(粒子の最大長)の下限値は1μmである。   The observation piece thus obtained is observed with an optical microscope. Magnification: A tissue image (data) taken at 1000 times is analyzed using an image processing device (for example, LUZEX manufactured by Nireco Co., Ltd.). Thereby, the circularity of the eutectic Si extracted (traced) from the observation piece is calculated. The lower limit of eutectic Si (maximum particle length) extracted by image analysis is 1 μm.

ちなみに、円形度は、粒子の占有面積:S、粒子の周長:Lとして、4π・S/Lから求まる。真円(真球)の円形度は1であり、歪な粒子ほど、その円形度は小さくなる。本明細書でいう軟化部または基部における円形度は、特に断らない限り、光学顕微鏡(×1000倍)で観察した視野内にある各Si粒子(共晶Si)の円形度を、算術平均した値とする。 By the way, the circularity is obtained from 4π · S / L 2 where the occupied area of particles is S and the circumferential length of particles is L. The circularity of a perfect circle (true sphere) is 1, and the more distorted particles have the smaller circularity. Unless otherwise specified, the circularity in the softened part or the base in the present specification is a value obtained by arithmetically averaging the circularity of each Si particle (eutectic Si) in the visual field observed with an optical microscope (× 1000 times). And

軟化部の円形度は、特に断らない限り、電極の先端面が接触していた領域の中央付近から切り出した観察片の特定視野(鋳物最表面からの深さ:200〜1000μm×幅:500μm)の組織を画像解析して算出する。   Unless otherwise specified, the circularity of the softened portion is the specific field of view of the observation piece cut out from the vicinity of the center of the region where the tip surface of the electrode was in contact (depth from the outermost surface of the casting: 200 to 1000 μm × width: 500 μm) The tissue is calculated by image analysis.

基部の円形度は、特に断らない限り、電極の先端面との接触領域の外周縁(内周縁)から外側(内側)に2mm以上離間した領域から切り出した観察片の特定視野(鋳物最表面からの深さ:200〜1000μm×幅:500μm)の組織を画像解析して算出する。   Unless otherwise specified, the circularity of the base part is a specific field of view (from the outermost surface of the casting) cut out from an area separated by 2 mm or more from the outer edge (inner edge) of the contact area with the tip surface of the electrode to the outside (inner edge). (Depth of 200 to 1000 μm × width: 500 μm) is calculated by image analysis.

(3)形態・用途
軟化部(局部)は、一つの鋳物に、単数あっても複数あってもよい。軟化部の形状や大きさも種々あり得る。複雑形状の軟化部や広面積の軟化部は、相応な形状の専用電極を用いた通電を1回または数回行って形成されてもよいし、汎用電極を用いた通電を複数回行って形成されてもよい。
(3) Morphology / Use The number of softening parts (local parts) may be one or more in one casting. There may be various shapes and sizes of the softened portion. The softened portion having a complicated shape or the softened portion having a large area may be formed by energizing using a dedicated electrode having an appropriate shape once or several times, or by energizing using a general-purpose electrode multiple times. May be done.

一つの軟化部(連続的に軟化している領域)が過大になると、鋳物本来の機械的特性(強度等)に影響が及ぶ。そこで、一つの軟化部の大きさは、例えば、9cm以下、7cm以下さらには5cm以下にしてもよい。具体的にいうと、軟化部は、例えば、φ30mm以下、φ25mm以下さらにはφ20mm以下の略円形状、または一辺が30mm以下、25mm以下さらには20mm以下の略方形状としてもよい。 If one softened portion (continuously softened region) becomes excessive, the original mechanical properties (strength, etc.) of the casting are affected. Therefore, the size of one softened portion may be, for example, 9 cm 2 or less, 7 cm 2 or less, and further 5 cm 2 or less. Specifically, the softened portion may have, for example, a substantially circular shape with a diameter of 30 mm or less, a diameter of 25 mm or less, and a diameter of 20 mm or less, or a substantially rectangular shape with one side of 30 mm or less, 25 mm or less, or 20 mm or less.

軟化部は、延性や耐割れ性等を高めたい鋳物の一部に設けられるとよい。代表例として、他部材が機械的に接合される接合部(接合予定部を含む)が軟化部とされる。勿論、接合部以外に軟化部が設けられてもよい。   The softened portion is preferably provided in a part of the casting for which ductility, crack resistance, etc. are desired to be improved. As a typical example, a joint portion (including a joint portion to be joined) to which other members are mechanically joined is a softening portion. Of course, a softening part may be provided in addition to the joining part.

なお、本明細書でいう機械的な接合は、例えば、ネジ(ボルト・ナット等)やリベットによりなされる。リベットは、予め形成した孔へ挿入された後にかしめられるものでも、自己穿孔式のもの(SPR:Self Piercing Rivet/セルフピアシングリベット)でもよい。局所的に大きな塑性変形を伴うSPRの打鋲が軟化部になされると、割れが防止されて好ましい。   The mechanical joining referred to in this specification is made by, for example, screws (bolts, nuts, etc.) or rivets. The rivet may be one that is crimped after being inserted into a preformed hole, or one that is self-piercing (SPR: Self Piercing Rivet). It is preferable that the SPR tack with local large plastic deformation is applied to the softened portion because cracking is prevented.

SPR接合する場合、軟化部の大きさは、SPRの頭部の大きさに対して、例えば、2〜3倍であるとよい。具体的にいうと、軟化部は、例えば、直径または一辺が15〜25mmの円形状または方形状であるとよい。このような軟化部は、電極の接地面積(加熱領域)の調整により、容易に形成され得る。   In the case of SPR joining, the size of the softened portion may be, for example, 2 to 3 times the size of the head of the SPR. Specifically, the softened portion may have a circular shape or a rectangular shape having a diameter or one side of 15 to 25 mm, for example. Such a softened portion can be easily formed by adjusting the ground area (heating area) of the electrode.

本明細書でいう鋳物に機械的に接合される他部材は、締結具(ネジ、リベット等)自体でもよいし、それ以外の被接合部材でもよい。被接合部材は、Al合金鋳物と材質や形状等が異なる部材であり、例えば、Fe系部材(特に鋼板)、Al系部材、Mg系部材、Ti系部材等の金属部材、樹脂部材、さらにはFRPのような複合部材等である。なお、「X系部材」には、純金属部材、X合金部材、X基複合部材が含まれる。なお、SPR接合される被接合部材の接合部は、リベットが貫通可能な(薄)板状であるとよい。   The other member that is mechanically joined to the casting referred to in this specification may be the fastener (screw, rivet, etc.) itself, or any other member to be joined. The members to be joined are members different in material, shape, etc. from the Al alloy casting, and include, for example, metal members such as Fe-based members (particularly steel plates), Al-based members, Mg-based members, Ti-based members, resin members, and It is a composite member such as FRP. The "X-based member" includes a pure metal member, an X alloy member, and an X-based composite member. It should be noted that the joining portion of the joined members to be joined by SPR is preferably a (thin) plate shape through which a rivet can pass.

《鋳造》
鋳物は、Al合金の溶湯を鋳型へ注湯する注湯工程と、その溶湯を鋳型内で冷却して凝固させる冷却工程とを経て得られる。特に鋳物は、金型のキャビティへ溶湯を加圧しつつ注湯するダイカスト鋳造により得られると好ましい。ダイカスト鋳造の冷却工程は、例えば、注湯工程完了後または冷却工程開始時の冷却速度が50〜500℃/sでなされる。
"casting"
The casting is obtained by a pouring step of pouring a molten aluminum alloy into a mold and a cooling step of cooling the molten metal in the mold to solidify it. Particularly, it is preferable that the casting is obtained by die casting in which the molten metal is poured into the cavity of the mold while being pressurized. The cooling process of die casting is performed, for example, at a cooling rate of 50 to 500 ° C./s after completion of the pouring process or at the start of the cooling process.

様々な試料(Al合金部材)を製作し、それらの硬さ、金属組織、接合時の耐割れ性等を評価した。このような具体例を挙げつつ、本発明をさらに詳しく説明する。   Various samples (Al alloy members) were manufactured, and their hardness, metallographic structure, crack resistance during joining, etc. were evaluated. The present invention will be described in more detail with reference to such specific examples.

《試料の製造》
(1)鋳物(基材)
Al合金からなる板状の鋳物(100mm×30mm×3mm)をダイカスト鋳造により製作した。この鋳物を基材(母材)とした。なお、ダイカスト鋳造は、工具鋼(JIS SKD61)からなる金型のキャビティへ、調製した溶湯を射出して行った。鋳造条件は、湯温:630℃、型温:200℃、鋳造圧力:40MPa、射出速度:2m/sとした。
<< Manufacture of sample >>
(1) Casting (base material)
A plate-shaped casting (100 mm × 30 mm × 3 mm) made of an Al alloy was manufactured by die casting. This casting was used as a base material (base material). The die casting was performed by injecting the prepared molten metal into the cavity of the mold made of tool steel (JIS SKD61). The casting conditions were: hot water temperature: 630 ° C., mold temperature: 200 ° C., casting pressure: 40 MPa, injection speed: 2 m / s.

溶湯の調製は、下記の組成に秤量した原料(金属、化合物)を大気中で溶解して行った。下記の組成を有するAl合金の場合、液相が0.2質量%出現する温度は572℃である。合金組成は(溶湯)全体(100質量%)に対する質量割合である。
合金組成:Al−9%Si−0.21%Mg−0.38%Mn−0.12%Fe
The molten metal was prepared by dissolving the raw materials (metal, compound) weighed in the following composition in the atmosphere. In the case of an Al alloy having the following composition, the temperature at which the liquid phase appears at 0.2% by mass is 572 ° C. The alloy composition is a mass ratio with respect to the entire (molten metal) (100 mass%).
Alloy composition: Al-9% Si-0.21% Mg-0.38% Mn-0.12% Fe

(2)局部加熱工程
図1に示すように、基材の中央部(局部)を一対の電極(チップ)で挟持して、表1に示すような加圧および通電を行った。電極チップには、クロム銅製D形(先端面:φ8mm/SMK株式会社製)を用いた。電極による局部への加圧および通電は、スポット溶接機(ART−HIKARI株式会社製)により行った。その際、電極と基材の接触領域の外周縁近傍における表面温度を、K熱電対により測定した。
(2) Local heating step As shown in FIG. 1, the central portion (local portion) of the base material was sandwiched between a pair of electrodes (chips), and pressure and current application as shown in Table 1 were performed. For the electrode tip, a chrome copper D type (tip surface: φ8 mm / SMK Co., Ltd.) was used. Pressurization and energization to local areas by the electrodes were performed by a spot welder (manufactured by ART-HIKARI Co., Ltd.). At that time, the surface temperature in the vicinity of the outer peripheral edge of the contact region between the electrode and the substrate was measured by a K thermocouple.

加圧および通電は、図2に示すようなパターンで行った。すなわち、先ず、電極の先端面を基材の中央部表面に当接させて挟圧する。これにより電極から基材へ加圧力を印加する(区間I)。次に、その加圧状態のまま、電極から基材へ通電を開始し、一定の電流値を供給して所定時間保持する(区間II)。なお、図2の破線に示すように、電流値を通電途中で変更する通電パターンを採用することもできる。通電終了後、電極から基材への加圧力を除去して、電極を基材から離脱させる(区間III)。   Pressurization and energization were performed in a pattern as shown in FIG. That is, first, the tip end surface of the electrode is brought into contact with the surface of the central portion of the base material and pinched. As a result, a pressure is applied from the electrode to the base material (section I). Next, in the pressurized state, energization is started from the electrode to the base material, a constant current value is supplied, and the current is maintained for a predetermined time (section II). Note that, as shown by the broken line in FIG. 2, it is possible to adopt an energization pattern in which the current value is changed during energization. After the completion of energization, the pressure applied from the electrode to the base material is removed to separate the electrode from the base material (section III).

表1に示した加圧力と電流密度は、電極から基材へ印加される荷重および電流値を、電極と基材の接触面積で除した値である。荷重および電流値はスポット溶接機の設定値である。本実施例の接触面積(φ8mmの先端面側)はいずれも50.24mmであった The pressing force and current density shown in Table 1 are values obtained by dividing the load and current value applied from the electrode to the base material by the contact area between the electrode and the base material. The load and current values are set values for the spot welder. The contact area (on the side of the tip surface of φ8 mm) in this example was 50.24 mm 2 .

通電時間は、通電開始から通電終了までの時間(図2の区間IIの全時間)である。なお、電流値が一定な時間は、その通電時間の約90%である。表1に示した加熱温度は、上述した熱電対により測定された表面温度の最大値(最高温度)である。   The energization time is the time from the start of energization to the end of energization (the total time of section II in FIG. 2). The time when the current value is constant is about 90% of the energization time. The heating temperature shown in Table 1 is the maximum value (maximum temperature) of the surface temperature measured by the thermocouple described above.

なお、表1に示した試料C1は、局部加熱を行わない鋳造したままの基材である。試料C2は、電極を基材に接触させただけで、実質的な加圧力を基材に印加しない状態で通電したものである。   The sample C1 shown in Table 1 is an as-cast base material that is not subjected to local heating. The sample C2 was energized only by bringing the electrode into contact with the base material without applying a substantial pressing force to the base material.

《測定・観察》
(1)硬さ
既述した方法により、各試料の供試材から製作した観察片を用いて、各部におけるビッカース硬さ(HV0.1)を測定した。局部加熱した試料については、電極が接触していた中央付近における平均硬さを、軟化部の硬さとして表1に示した。また、局部加熱の影響が及んでいない基部の平均硬さ(試料C1の硬さ)に対する軟化部の硬さの比率も、軟化度として表1に併せて示した。さらに、表1に示した各試料に係る硬さと加熱温度(表面温度)の関係を図3にまとめて示した。図3には、局部加熱していない試料C1(基材)の硬さも併せて示した。
<< Measurement and observation >>
(1) Hardness Vickers hardness (HV0.1) in each part was measured by using the observation piece manufactured from the test material of each sample by the method described above. For the locally heated samples, the average hardness near the center where the electrodes were in contact is shown in Table 1 as the hardness of the softened portion. In addition, the ratio of the hardness of the softened portion to the average hardness of the base portion (hardness of sample C1) not affected by local heating is also shown in Table 1 as the softening degree. Furthermore, the relationship between hardness and heating temperature (surface temperature) for each sample shown in Table 1 is shown collectively in FIG. FIG. 3 also shows the hardness of the sample C1 (base material) that was not locally heated.

試料12の供試材から製作した観察片を用いて、鋳物の最表面から深さ200μmの位置における硬さ分布を図4に示した。鋳物表面に沿った距離は、電極と鋳物の接触領域(電極接触部)の外周縁を基準(0μm)とした。   FIG. 4 shows the hardness distribution at a position of a depth of 200 μm from the outermost surface of the casting, using the observation piece manufactured from the sample material of Sample 12. The distance along the casting surface was based on the outer periphery of the contact area (electrode contact portion) of the electrode and the casting (0 μm).

また、試料12の供試材から製作した観察片を用いて、電極接触部の中央(局部中心)における深さ方向(鋳物の厚さ方向)の硬さ分布も図5に示した。図5には、局部加熱していない試料C1についても、同位置における硬さ分布を併せて示した。   Further, the hardness distribution in the depth direction (thickness direction of the casting) at the center (local center) of the electrode contact portion is also shown in FIG. 5 using the observation piece manufactured from the sample material of Sample 12. FIG. 5 also shows the hardness distribution at the same position for the sample C1 which was not locally heated.

(2)金属組織
既述した方法により、各試料に係る金属組織を観察し、共晶Siの円形度を算出した。金属組織の観察は、各鋳物の中央(局部加熱した試料は電極接触部の中央)で、最表面からの深さが200〜1000μmの範囲で行った。こうして求まった円形度を表1にまとめて示した。局部加熱の影響が及んでいない基部の円形度(試料C1の円形度)に対する各試料の円形度の比率も、円形度比として表1に併せて示した。
(2) Metallographic Structure By the method described above, the metallic structure of each sample was observed and the circularity of eutectic Si was calculated. The observation of the metal structure was performed at the center of each casting (the center of the locally heated sample was at the electrode contact portion) and the depth from the outermost surface was in the range of 200 to 1000 μm. The circularity thus obtained is summarized in Table 1. The ratio of the circularity of each sample to the circularity of the base portion (circularity of sample C1) not affected by local heating is also shown in Table 1 as the circularity ratio.

各試料の供試材から切り出した鏡面研磨後の観察片を光学顕微鏡(倍率:200倍)で観察して、鋳物中央の肉厚方向におけるブリスタ(ガス孔)の有無を確認した。その結果を表1にまとめて示した。   The observation piece after mirror-polishing cut out from the test material of each sample was observed with an optical microscope (magnification: 200 times) to confirm the presence or absence of blisters (gas holes) in the thickness direction of the center of the casting. The results are summarized in Table 1.

《接合性/耐割れ性》
各試料の鋳物に亜鉛メッキ鋼板(厚さ1.6mm)を重ね合わせて、SPRにより接合した。SPRには、ボロン鋼製、頭部(円盤状部):φ8mm、脚部(円筒部):φ5.3mm×長さ5.5mm×肉厚1mmを用いた。
<Joinability / Crack resistance>
A galvanized steel plate (thickness: 1.6 mm) was overlaid on the casting of each sample and joined by SPR. For SPR, boron steel, head (disc-shaped portion): φ8 mm, leg portion (cylindrical portion): φ5.3 mm × length 5.5 mm × wall thickness 1 mm was used.

打鋲は、POP JOISPND 油圧システムを用いて、荷重:56kN、速度:100mm/sとして、鋼板側から行った。局部加熱した試料への打鋲は、軟化部(電極接触部)とSPRとの中心軸を略一致させつつ行った。   Driving was performed from the steel plate side using a POP JOISPND hydraulic system with a load of 56 kN and a speed of 100 mm / s. The tacking on the locally heated sample was performed while the central axes of the softened part (electrode contact part) and the SPR were substantially aligned.

打鋲による鋳物の割れの有無は、次のようにして調べた。図8Aと図8B(両者を併せて「図8」という。)に示すように、打鋲後の鋳物の非接合面側(背面側)に染色探傷用の染色液を塗布する。その接合部をSPRの軸方向に沿って切断する。SPRを取り除き、鋳物の接合面側に反染色液(現像液)を塗布する。その接合面側における染色液の浸透の有無を観察し、貫通割れの有無を判定した。こうして判定した各試料に係る接合時の割れの有無を表1にまとめて示した。また、貫通割れが有る場合と貫通割れが無い場合の一例を図8に併せて示した。   The presence or absence of cracks in the casting due to the rivets was examined as follows. As shown in FIGS. 8A and 8B (both of which are collectively referred to as “FIG. 8”), a dyeing solution for dye flaw detection is applied to the non-bonding surface side (rear surface side) of the cast product after the rivet driving. The joint is cut along the axial direction of SPR. The SPR is removed, and the anti-staining solution (developing solution) is applied to the joint surface side of the casting. The presence or absence of penetration of the dyeing solution on the joint surface side was observed, and the presence or absence of penetration cracking was determined. Table 1 collectively shows the presence or absence of cracks at the time of joining of each sample thus judged. In addition, examples of cases where there is a through crack and cases where there is no through crack are also shown in FIG.

《評価》
(1)硬さ
表1と図3から明らかなように、本実施例のような局部加熱を行うと、その加熱温度に応じて軟化することがわかる。特に、その温度が350℃以上さらには400℃以上になると、軟化が急激に進行することがわかった。また、450℃以上に加熱された局部(軟化部)は、その加熱前(基部)に対して85%以下に軟化することもわかった。
<< Evaluation >>
(1) Hardness As is clear from Table 1 and FIG. 3, it can be seen that when local heating is performed as in this example, the material softens depending on the heating temperature. In particular, it has been found that when the temperature is 350 ° C. or higher, or even 400 ° C. or higher, the softening rapidly progresses. It was also found that the local part (softened part) heated to 450 ° C. or higher is softened to 85% or less of that before heating (base part).

図4から明らかなように、電極を用いて局部加熱した場合、電極接触部で安定的に軟化が生じる一方、その周囲への影響は極僅かであることもわかる。例えば、電極接触部の外周縁から1mm程度離間した位置では、殆ど軟化が生じておらず、基材と同様な硬さとなることもわかった。   As is apparent from FIG. 4, when the electrode is locally heated, the electrode contact portion is stably softened, while the influence on the surroundings is extremely small. For example, it was also found that at a position separated by about 1 mm from the outer peripheral edge of the electrode contact portion, almost no softening occurred and the hardness was similar to that of the base material.

図5から明らかなように、先ず、局部加熱していない基材の硬さは、表面側から中心部に向かって、ほぼ単調減少していた。しかし、電極を用いて局部加熱すると、その深さ方向(鋳物厚さ方向)に亘って、略均一的な硬さに軟化することがわかった。   As is clear from FIG. 5, first, the hardness of the base material that was not locally heated was monotonically decreased from the surface side toward the center. However, it has been found that when the electrode is locally heated, it softens to a substantially uniform hardness in the depth direction (the casting thickness direction).

(2)組織
表1および図6から明らかなように、局部加熱することにより、共晶Siが丸みをおびて、その円形度が増すことがわかった。
(2) Structure As is clear from Table 1 and FIG. 6, it was found that the eutectic Si is rounded and the circularity thereof is increased by the local heating.

表1および図7から明らかなように、局部加熱する際に、加圧しないと、内部にブリスタが発生することがわかった。逆にいえば、加圧することにより、ブリスタの発生を防止できることが確認された。   As is clear from Table 1 and FIG. 7, it was found that blisters are generated in the interior unless pressure is applied during local heating. Conversely, it has been confirmed that pressurization can prevent the formation of blisters.

(3)耐割れ性
表1および図8から明らかなように、大きな塑性変形を伴うSPRの打鋲を鋳物に行う場合でも、局部加熱した軟化部を利用することにより、割れの発生を防止できることがわかった。
(3) Cracking resistance As is clear from Table 1 and FIG. 8, even when SPR studs with large plastic deformation are applied to the casting, the occurrence of cracking can be prevented by using the locally heated softened portion. I understood.

以上のように、本発明の局部加熱工程を行うと、鋳物の局部(電極接触部とその極近傍)だけを、ブリスタを発生させることなく、軟化させられることが確認できた。その局部(軟化部)を利用すれば、例えば、割れを生じさせることなく、Al合金鋳物にもSPR接合を行えることも確認された。   As described above, it was confirmed that when the local heating step of the present invention was performed, only the local parts of the casting (the electrode contact part and its immediate vicinity) could be softened without generating blisters. It was also confirmed that, by utilizing the local portion (softened portion), for example, SPR bonding can be performed on an Al alloy casting without causing cracks.

Claims (10)

アルミニウム合金の鋳物の局部を電極で加圧しつつ該電極へ通電することにより、該局部をジュール加熱する局部加熱工程を備え、
該鋳物に該局部を軟化させた軟化部を設けたアルミニウム合金部材の製造方法。
By applying current to the electrode while pressurizing the local part of the cast aluminum alloy with the electrode, a local heating step of Joule heating the local part is provided,
A method for manufacturing an aluminum alloy member, wherein the casting is provided with a softened portion obtained by softening the local portion.
前記局部加熱工程は、前記局部の温度を、前記アルミニウム合金の液相が0.2質量%出現する温度以下にしてなされる請求項1に記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to claim 1, wherein the local heating step is performed at a temperature of the local portion equal to or lower than a temperature at which a liquid phase of the aluminum alloy appears at 0.2% by mass. 前記局部加熱工程は、前記局部の温度を350℃以上にしてなされる請求項1または2に記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to claim 1, wherein the local heating step is performed at a temperature of the local part of 350 ° C. or higher. 前記局部加熱工程は、前記軟化部の硬さを、前記ジュール加熱の影響がない基部の硬さに対して90%以下にする請求項1〜3のいずれかに記載のアルミニウム合金部材の製造方法。   The said local heating process makes the hardness of the said softening part 90% or less with respect to the hardness of the base part which is not influenced by the said Joule heating, The manufacturing method of the aluminum alloy member in any one of Claims 1-3. . 前記鋳物は、ダイカスト鋳物である請求項1〜4のいずれかに記載のアルミニウム合金部材の製造方法。   The method for manufacturing an aluminum alloy member according to claim 1, wherein the casting is a die casting. 前記アルミニウム合金は、全体を100質量%として、Siを6〜12質量%含む請求項1〜5のいずれかに記載のアルミニウム合金部材の製造方法。   The said aluminum alloy makes the whole 100 mass%, Si is 6-12 mass%, The manufacturing method of the aluminum alloy member in any one of Claims 1-5. 前記アルミニウム合金は、さらに、Mgを0.1〜1質量%含む請求項6に記載のアルミニウム合金部材の製造方法。   The method for manufacturing an aluminum alloy member according to claim 6, wherein the aluminum alloy further contains 0.1 to 1 mass% of Mg. 前記局部加熱工程は、前記ジュール加熱の影響がない基部における共晶Siの円形度に対して、前記軟化部における共晶Siの円形度を1.2倍以上にする請求項6または7に記載のアルミニウム合金部材の製造方法。   The said local heating process makes the circularity of the eutectic Si in the said softening part 1.2 times or more with respect to the circularity of the eutectic Si in the base part which is not influenced by the said Joule heating. Manufacturing method of aluminum alloy member. 前記電極は、内部が水冷されている請求項1〜8のいずれかに記載のアルミニウム合金部材の製造方法。   The method for manufacturing an aluminum alloy member according to claim 1, wherein the electrode is water-cooled inside. 前記軟化部は、他部材が機械的に接合される接合部である請求項1〜9のいずれかに記載のアルミニウム合金部材の製造方法。   The method for manufacturing an aluminum alloy member according to claim 1, wherein the softened portion is a joined portion to which other members are mechanically joined.
JP2018196294A 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member Active JP7152932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196294A JP7152932B2 (en) 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196294A JP7152932B2 (en) 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2020063486A true JP2020063486A (en) 2020-04-23
JP7152932B2 JP7152932B2 (en) 2022-10-13

Family

ID=70388145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196294A Active JP7152932B2 (en) 2018-10-18 2018-10-18 Method for manufacturing aluminum alloy member

Country Status (1)

Country Link
JP (1) JP7152932B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177192A (en) * 1997-09-10 1999-03-23 Nippon Light Metal Co Ltd Energizing caulking method for aluminum alloy casting
JPH11256227A (en) * 1998-01-12 1999-09-21 Mazda Motor Corp Electric heating treatment and apparatus thereof and electrode for electric heating treatment
JP2002035955A (en) * 2000-07-28 2002-02-05 Japan Science & Technology Corp Manufacturing method for aluminum alloy composite member by electrified joint
JP2007002281A (en) * 2005-06-22 2007-01-11 Nissan Motor Co Ltd Aluminum alloy casting for self-pierce rivet joining, and method for producing the same
JP2007105737A (en) * 2005-10-11 2007-04-26 Nissan Motor Co Ltd Method for joining different metals by resistance welding, and joined structure
JP2015535778A (en) * 2012-10-08 2015-12-17 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat treatment for vehicle seat structures and components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177192A (en) * 1997-09-10 1999-03-23 Nippon Light Metal Co Ltd Energizing caulking method for aluminum alloy casting
JPH11256227A (en) * 1998-01-12 1999-09-21 Mazda Motor Corp Electric heating treatment and apparatus thereof and electrode for electric heating treatment
JP2002035955A (en) * 2000-07-28 2002-02-05 Japan Science & Technology Corp Manufacturing method for aluminum alloy composite member by electrified joint
JP2007002281A (en) * 2005-06-22 2007-01-11 Nissan Motor Co Ltd Aluminum alloy casting for self-pierce rivet joining, and method for producing the same
JP2007105737A (en) * 2005-10-11 2007-04-26 Nissan Motor Co Ltd Method for joining different metals by resistance welding, and joined structure
JP2015535778A (en) * 2012-10-08 2015-12-17 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat treatment for vehicle seat structures and components

Also Published As

Publication number Publication date
JP7152932B2 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
Zhou et al. Effect of pin profile on microstructure and mechanical properties of friction stir spot welded Al-Cu dissimilar metals
Ilangovan et al. Microstructure and tensile properties of friction stir welded dissimilar AA6061–AA5086 aluminium alloy joints
Cavaliere et al. Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding
Karthikeyan et al. On the role of process variables in the friction stir processing of cast aluminum A319 alloy
Amini et al. Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy
Neag et al. Microstructure and flow behaviour during backward extrusion of semi-solid 7075 aluminium alloy
Schempp et al. Influence of grain size on mechanical properties of aluminium GTA weld metal
Fall et al. Local mechanical properties, microstructure, and microtexture in friction stir welded Ti-6Al-4V alloy
Geng et al. Parametric optimization and microstructural characterization of friction welded aeronautic aluminum alloy 2024
Lalvani et al. Cold forming of Al-5251 and Al-6082 tailored welded blanks manufactured by laser and electron beam welding
Nadikudi et al. Formability analysis of dissimilar tailor welded blanks welded with different tool pin profiles
Mahmoud et al. Effect of tool rotational and welding speeds on microstructural and mechanical characteristics of friction stir welded A319 cast Al alloy
Saju et al. Friction stir forming of dissimilar grade aluminum alloys: Influence of tool rotational speed on the joint evolution, mechanical performance, and failure modes
Nakata Friction stir welding of copper and copper alloys
Singh et al. Effect of rotational speed on mechanical, microstructure, and residual stress behaviour of AA6061-T6 alloy joints through Friction stir Welding
Lu et al. Effects of rotational speed on microstructure and mechanical properties of inertia friction-welded 7005–5083 aluminum alloy joints
Khan et al. Sound dissimilar linear friction welding of A7075-T6 Al and mild steel by simultaneous interfacial deformation using higher forging speed
Selamat et al. Weldability and mechanical properties of dissimilar al-mgsi to pure aluminium and al-mg using friction stir welding process
JP7152932B2 (en) Method for manufacturing aluminum alloy member
Richmire et al. Friction stir welding of a hypoeutectic Al–Si alloy: microstructural, mechanical, and cyclic response
Kumai et al. Advanced high-speed solid-state joining of 2024 aluminum alloy studs to 5052 aluminum alloy plates
Li et al. Microstructure and mechanical properties of ultrasonic spot welding of AA7075-T6 and A380 casting aluminum alloy
Kasman et al. Effects of overlapping formed via pin-offsetting on friction stir weldability of AA7075-T651 aluminum alloy
McNelley Friction stir processing (FSP) and superplasticity
Anand et al. Interlock friction stir weld of dissimilar aluminum alloys AA 7075 T6-AA7475 T7 using a novel asymmetric dual-pin tool: mechanical properties and microstructure characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220930

R150 Certificate of patent or registration of utility model

Ref document number: 7152932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150