JP7151139B2 - Polylactic acid container and manufacturing method thereof - Google Patents

Polylactic acid container and manufacturing method thereof Download PDF

Info

Publication number
JP7151139B2
JP7151139B2 JP2018074407A JP2018074407A JP7151139B2 JP 7151139 B2 JP7151139 B2 JP 7151139B2 JP 2018074407 A JP2018074407 A JP 2018074407A JP 2018074407 A JP2018074407 A JP 2018074407A JP 7151139 B2 JP7151139 B2 JP 7151139B2
Authority
JP
Japan
Prior art keywords
container
polylactic acid
mold
preform
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018074407A
Other languages
Japanese (ja)
Other versions
JP2019182472A (en
Inventor
卓郎 伊藤
宏希 國枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2018074407A priority Critical patent/JP7151139B2/en
Publication of JP2019182472A publication Critical patent/JP2019182472A/en
Application granted granted Critical
Publication of JP7151139B2 publication Critical patent/JP7151139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Description

本発明は、二軸延伸ブロー成形及び熱固定により製造されるポリ乳酸製容器及びその製造方法に関するものであり、より詳細には、耐熱性に優れたポリ乳酸製容器及びかかる容器をワンモールド法により生産性良く製造可能な製造方法に関する。 TECHNICAL FIELD The present invention relates to a polylactic acid container manufactured by biaxial stretch blow molding and heat setting, and a method for manufacturing the same. It relates to a manufacturing method that enables manufacturing with high productivity.

地球温暖化がもたらすさまざまな環境問題を防止するため、大気中の温室効果ガス濃度を低減させる対策として、植物産生樹脂であるバイオプラスチック運用が期待されている。従来の石油系プラスチックから植物産生プラスチック(バイオプラスチック)への転換と、その樹脂の再利用を目的としたリサイクル技術の検討が進められている。中でも、工業的に量産され、入手が容易な、バイオプラスチックとして、脂肪族ポリエステルであるポリ乳酸(PLLA)が注目されている。 In order to prevent various environmental problems caused by global warming, the use of bioplastics, which are plant-produced resins, is expected as a measure to reduce the concentration of greenhouse gases in the atmosphere. Consideration is being given to recycling technology aimed at converting conventional petroleum-based plastics to plant-derived plastics (bioplastics) and reusing the resin. Among them, polylactic acid (PLLA), which is an aliphatic polyester, has attracted attention as a bioplastic that is industrially mass-produced and easily available.

ポリ乳酸は、トウモロコシなどの穀物澱粉や、キャッサバなどの塊根類、ジャガイモなどの塊茎類、または、タロイモなどの球茎類の澱粉質の乳酸発酵物、L-乳酸をモノマーとして重合体したポリエステルである。一般に、L-乳酸の直接重縮合法やL-乳酸のダイマーであるラクタイドの開環重合法により製造される。従来の石油系プラスチックと異なり、資源の枯渇化の心配もなく、また、自然界に廃棄された場合でも、微生物分解により堆肥化が可能であり、また、最終的に水と炭酸ガスに分解されても、発生炭酸ガスは地上の植物に再度取り込まれるため、大気中へ炭酸ガスを蓄積することがない。そのため、ポリ乳酸は、植物から生まれ、植物に帰る、完全リサイクル型プラスチック素材として、その実用化が期待されている。 Polylactic acid is a polyester obtained by polymerizing L-lactic acid as a monomer, lactic acid fermented starch of cereal starch such as corn, tuberous roots such as cassava, tubers such as potato, or corms such as taro. . Generally, it is produced by a direct polycondensation method of L-lactic acid or a ring-opening polymerization method of lactide, which is a dimer of L-lactic acid. Unlike conventional petroleum-based plastics, there is no concern about depletion of resources, and even if discarded in the natural world, it can be composted by microbial decomposition, and is finally decomposed into water and carbon dioxide. However, since the generated carbon dioxide is re-incorporated into the plants on the ground, it does not accumulate in the atmosphere. Therefore, polylactic acid is expected to be put into practical use as a completely recyclable plastic material that is born from plants and returns to plants.

ポリ乳酸から成る容器も種々提案されており、例えば、下記特許文献1には、光学活性異性体(d)含有量が4.0%以下であるポリ乳酸の二軸延伸ブロー成形及び熱固定で形成された容器であって、側壁部における広角X線測定で求めた2θ=10乃至25゜の回折ピークの半価幅(X)が0.624°乃至1.220゜の範囲にあることを特徴とする二軸延伸ブロー熱固定成形容器が提案されており、二軸延伸ブロー成形として、ワンモールド法及びツーモールド法が記載されている。 Various containers made of polylactic acid have also been proposed. For example, in Patent Document 1 below, polylactic acid having an optically active isomer (d) content of 4.0% or less is subjected to biaxial stretch blow molding and heat setting. In the formed container, the half-value width (X) of the diffraction peak at 2θ = 10 to 25° determined by wide-angle X-ray measurement on the side wall is in the range of 0.624° to 1.220°. A biaxially stretch blow heat set molded container is proposed, and the biaxial stretch blow molding is described as a one-mold method and a two-mold method.

特許第4294475号公報Japanese Patent No. 4294475

上記特許文献1に記載されているように、ツーモールド法の場合、一旦所定形状に有底プリフォームを膨張延伸後、加熱にて全体を一旦熱収縮後、目的とするボトル形状の金型で再延伸ブロー成形する方法が採用される。そのため、2段階の延伸ブロー成形が必要となり、設備の大型化と、該当設備への投資が増加することから、ボトル単価が高くなるという不具合も生じていた。特に、生産ロット(数)の少ない製品などの場合、製造コストの安いワンモールド成形法が好ましい場合が指摘されてきた。 As described in Patent Document 1 above, in the case of the two-molding method, once a preform with a bottom is expanded and stretched into a predetermined shape, the whole is once thermally shrunk by heating, and then a desired bottle-shaped mold is used. A method of re-stretch blow molding is employed. Therefore, a two-stage stretch blow molding is required, which increases the size of the equipment and the investment in the corresponding equipment, resulting in an increase in the unit price of the bottle. In particular, in the case of products with a small production lot (number), it has been pointed out that the one-mold molding method, which has a low production cost, is preferable.

一方、ワンモールド法では、側壁部(胴部)など延伸倍率が確保できる部位は有効に配向結晶を形成することができ、延伸ブロー成形と金型熱固定により優れた耐熱性と機械的強度を発現することが可能であるが、延伸成形が困難なノズル下肩部や底部については、満足な延伸が行えず、配向結晶の形成が不十分となるため、たとえ金型で熱固定しても、球晶を形成し、堅くもろくなり、機械的強度が低下するなど、耐熱性能以外の課題もクローズアップされていた。 On the other hand, in the one-mold method, it is possible to effectively form oriented crystals in areas such as the side wall (body) where the stretch ratio can be secured, and the stretch blow molding and heat setting of the mold can achieve excellent heat resistance and mechanical strength. However, for the lower shoulder and bottom of the nozzle where stretching molding is difficult, satisfactory stretching cannot be performed and the formation of oriented crystals becomes insufficient. , forming spherulites, becoming hard and brittle, and reducing mechanical strength.

ノズル下肩部は、肩部に相当するプリフォームノズル下部を内径方向に絞り込んだノズル下縮径型プリフォームを射出成形後、所定の肩形状に拡径延伸することで延伸倍率を確保することが可能であるが、ボトル底部は、低い延伸倍率のまま金型に接触するため、延伸成形が困難であった。このような底部は、60℃近傍の熱水による加熱殺菌乃至滅菌処理で、条件によっては、底部が熱収縮し、ボトムハイトが低下したり、ボトル落下時に底割れを起こすなど、容器変形や機械的強度の面で未だ解決しなければならない課題が残されていた。 For the lower shoulder of the nozzle, the lower part of the preform nozzle, which corresponds to the shoulder, is narrowed in the radial direction. After injection molding, the diameter of the preform is expanded and stretched to a predetermined shoulder shape to ensure the draw ratio. However, since the bottom of the bottle is in contact with the mold at a low draw ratio, it was difficult to draw. Such a bottom part is heat sterilized or sterilized with hot water at around 60 ° C. Depending on the conditions, the bottom part may be thermally shrunk, the bottom height may decrease, or the bottom may crack when the bottle is dropped, resulting in container deformation or mechanical damage. In terms of strength, there were still problems to be solved.

従って本発明の目的は、延伸成形の難しい容器底部の耐熱性向上につき、加熱殺菌乃至滅菌の熱履歴条件においても十分な耐熱性が確保できるとともに、落下等の衝撃にも耐えられる機械的強度を有したポリ乳酸製容器、及び、その製造方法を提供することにある。 Therefore, the object of the present invention is to improve the heat resistance of the bottom of a container, which is difficult to stretch and mold, so that sufficient heat resistance can be secured even under the thermal history conditions of heat sterilization and sterilization, and mechanical strength that can withstand impacts such as dropping is provided. The object of the present invention is to provide a polylactic acid container having a

本発明によれば、光学活性異性体(d)含有率が2.5%以下であるポリ乳酸製プリフォームを二軸延伸ブロー成形、及び、熱固定して成るポリ乳酸製容器において、前記容器の底部が、中央平坦部と、環状接地部と、該環状接地部から容器内に立ち上がる内側立ち上がり部と、内側立ち上がりから中央平坦部につながる傾斜部とを備え、前記容器の側壁部、広角X線測定で求めた2θ=10~25°の回折ピークの半価幅(X)が0.624°~0.970°の範囲にあり、前記内側立ち上がり部、広角X線測定で求めた2θ=10~25°に回折ピークを有することを特徴とするポリ乳酸製容器が提供される。 According to the present invention, there is provided a polylactic acid container obtained by biaxially stretching and blow-molding a polylactic acid preform having an optically active isomer (d) content of 2.5 % or less and heat-setting the container. has a central flat portion, an annular ground portion, an inner raised portion rising from the annular ground portion to the inner side of the container, and an inclined portion connecting the inner raised portion to the central flat portion, and the side wall portion of the container includes: The half width (X) of the diffraction peak at 2θ = 10 to 25 ° determined by wide-angle X-ray measurement is in the range of 0.624 ° to 0.970 °, and the inner rising portion is determined by wide-angle X-ray measurement. A polylactic acid container characterized by having a diffraction peak at 2θ=10 to 25° is provided .

本発明によればまた、光学活性異性体(d)含有率が2.5%以下であるポリ乳酸から成るプリフォームを二軸延伸ブロー成形、及び、熱固定して成るポリ乳酸製容器の製造方法において、前記容器の底部が、中央平坦部と、環状接地部と、該環状接地部から容器内側に立ち上がる内側立ち上がり部と、内側立ち上がりから中央平坦部につながる傾斜部とを備え、ブロー成形型が、キャビティ型と容器軸方向に移動可能な底型を備え、ブローエアの吹き込み初期に、底型をブロー成形型が閉じられた状態で所定位置よりも下方位置に配置し、前記内側立ち上がり部と前記傾斜となるべき部分を前記キャビティ型の下端よりも下方に膨出延伸させた後、加圧流体を印加しながら前記底型をブロー成形型が閉じられた状態の所定位置に移動させ、前記容器の底部が、プリフォームと容器の外径比率から算出される横延伸倍率(DH)と底型の移動距離(DL)を元に算出される縦延伸倍率(DL’)の積(DH×DL’)が、4.0~10.0の範囲内且つ前記横延伸倍率(DH)と前記縦延伸倍率(DL’)の比(DH/DL’)が、0.5~2.0の範囲内となるように延伸すると共に、前記ブロー成形型を70~150℃の温度として熱固定することにより、側壁部における広角X線測定で求めた2θ=10~25°の回折ピークの半価幅(X)が0.624°~0.970°の範囲にあり、前記内側立ち上がり部が、広角X線測定で求めた2θ=10~25°に回折ピークを有することを特徴とするポリ乳酸製容器の製造方法が提供される。 According to the present invention, a polylactic acid container is produced by biaxial stretch blow molding and heat setting a preform made of polylactic acid having an optically active isomer (d) content of 2.5 % or less. The method, wherein the bottom of the container comprises a central flat portion, an annular ground portion, an inner raised portion rising from the annular ground portion to the inside of the container , and an inclined portion leading from the inner raised portion to the central flat portion, wherein the blow molding is performed. The mold has a cavity mold and a bottom mold movable in the axial direction of the container , and at the initial stage of blowing the blow air, the bottom mold is arranged at a position lower than a predetermined position with the blow mold closed, and the inside rises. After expanding and extending the part to be the inclined part below the lower end of the cavity mold, the bottom mold is moved to a predetermined position where the blow mold is closed while applying a pressurized fluid. , the bottom of the container is the product of the lateral draw ratio (DH) calculated from the outer diameter ratio of the preform and the container and the longitudinal draw ratio (DL') calculated based on the movement distance (DL) of the bottom mold ( DH×DL') is in the range of 4.0 to 10.0, and the ratio (DH/DL') of the transverse draw ratio (DH) to the longitudinal draw ratio (DL') is 0.5 to 2.0. 0 and heat-setting the blow mold at a temperature of 70 to 150° C., the diffraction peak at 2θ=10 to 25° obtained by wide-angle X-ray measurement at the side wall portion. The half width (X) is in the range of 0.624° to 0.970°, and the inner rising portion has a diffraction peak at 2θ = 10 to 25° obtained by wide-angle X-ray measurement. A method for manufacturing a polylactic acid container is provided.

本発明のポリ乳酸製容器においては、側壁部において、広角X線測定で求めた2θ=10~25°の回折ピークの半価幅(X)が0.624°~1.220°の範囲にあると共に、底部においても広角X線測定により2θ=10~25°に回折ピークを有し、明らかに底部も十分に延伸され、優れた耐熱性及び機械的強度を有している。このことは、後述する実施例の結果からも明らかであり、温度55℃での軸方向収縮率が4%以下と寸法安定性に優れ、底部においても底部形状の形状安定性や機械的強度の安定性に優れている。
また過延伸や熱結晶化(ラメラ化)による白化がなく、側壁部におけるヘイズが10%以下と透明性にも優れている。
更に本発明のポリ乳酸製容器の製造方法においては、上述したポリ乳酸製容器をワンモールド法で成形可能であり、成形性及び生産性にも優れている。
In the polylactic acid container of the present invention, the half width (X) of the diffraction peak at 2θ = 10 to 25° determined by wide-angle X-ray measurement is in the range of 0.624° to 1.220° in the side wall portion. In addition, the bottom also has a diffraction peak at 2θ = 10 to 25° by wide-angle X-ray measurement, and the bottom is clearly stretched sufficiently and has excellent heat resistance and mechanical strength. This is clear from the results of the examples described later, and the axial shrinkage rate at a temperature of 55 ° C. is 4% or less, which is excellent in dimensional stability, and the shape stability of the bottom part and mechanical strength at the bottom part. Excellent stability.
In addition, there is no whitening due to overstretching or thermal crystallization (lamellarization), and the haze at the sidewall portion is 10% or less, which is excellent in transparency.
Furthermore, in the method for producing a polylactic acid container of the present invention, the above-described polylactic acid container can be molded by a one-mold method, and is excellent in moldability and productivity.

実施例及び比較例で得られたポリ乳酸製容器の側壁部の熱機械分析(TMA)で求めた熱収縮開始温度(Y,℃)と半価幅(X)の関係を示す図である。FIG. 2 is a diagram showing the relationship between the thermal shrinkage initiation temperature (Y,° C.) and the half width (X) obtained by thermomechanical analysis (TMA) of the side walls of polylactic acid containers obtained in Examples and Comparative Examples. 本発明のポリ乳酸製容器の一例を示す側面図である。1 is a side view showing an example of a polylactic acid container of the present invention; FIG. 本発明に用いるポリ乳酸製プリフォームの一例を示す側断面図である。1 is a side sectional view showing an example of a polylactic acid preform used in the present invention; FIG. 二軸延伸ブロー成形においてブローエアの吹き込み初期におけるブロー金型の状態を説明するための図である。FIG. 4 is a diagram for explaining the state of a blow mold at the initial stage of blowing air in biaxial stretch blow molding. 二軸延伸ブロー成形において底型が上昇し始める状態を説明するための図である。FIG. 4 is a diagram for explaining a state in which a bottom mold starts to rise in biaxial stretch blow molding. 二軸延伸ブロー成形において底型が上昇した状態を説明するための図である。It is a figure for demonstrating the state which the bottom type|mold raised in biaxial stretch blow molding.

(ポリ乳酸製容器)
本発明のポリ乳酸製容器においては、光学活性異性体(d)含有率が4.0%以下であるポリ乳酸(PLLA)から成ることが第一の特徴である。
商業的に入手しうるポリ乳酸は、L-乳酸を主体とする重合体であるが、程度の差はあれ、D-乳酸単位を含有している。この光学活性異性体(d)の含有量は延伸成形体の熱固定効果、即ち配向結晶の形成に大きな影響を与える。
本発明においては、ポリ乳酸樹脂中の光学活性異性体(d)の含有量を4.0%以下、好適には3%以下とすることにより、熱固定による配向結晶化の程度を高めることができる。
(Polylactic acid container)
The first feature of the polylactic acid container of the present invention is that it is made of polylactic acid (PLLA) having an optically active isomer (d) content of 4.0% or less.
Commercially available polylactic acid is a polymer based primarily on L-lactic acid, but contains D-lactic acid units to varying degrees. The content of this optically active isomer (d) has a great influence on the heat setting effect of the stretched molded product, that is, on the formation of oriented crystals.
In the present invention, the content of the optically active isomer (d) in the polylactic acid resin is 4.0% or less, preferably 3% or less, so that the degree of oriented crystallization by heat setting can be enhanced. can.

ポリ乳酸から成るプリフォームをガラス転移温度以上の温度で延伸すると、ポリエチレンテレフタレート(PET)と同様の延伸応力パターンを示し、延伸ポリ乳酸の機械的強度は延伸PETと同等になる(未図示)。しかし、延伸成形で形成する配向結晶構造は、PETのような芳香族ポリエステルと異なり、PETがベンゼン環の面配向(β-シート)構造を形成するのに対し、ポリ乳酸は、3ヘリックスと10ヘリックスの2種類の棒状ヘリックス構造(配向結晶構造)を形成する。加えて、このヘリックス構造は分子間(ヘリックス-ヘリックス間)インターラクションが弱いため、棒状ヘリックス構造が同一方向に配列すればするほど(整列すればするほど)、配向結晶の配列方向に、裂けやすくなったり、割れやすくなる。
つまり、ポリ乳酸(PLLA)のように延伸成形で形成する配向結晶が棒状のヘリックス構造の場合、縦・横ともに等倍率に延伸されているのであれば安定した機械的強度を発現することができるが、縦軸・横軸のどちらかに優先的に配列した場合(異なる倍率に延伸した場合)などは、延伸倍率の異方性に由来した機械的強度の異方性を生じ、落下時に割れる(耐衝撃性強度の低下)など、機械的強度の面で容器性能が低下する。
When a preform made of polylactic acid is stretched at a temperature above the glass transition temperature, it exhibits a stretching stress pattern similar to that of polyethylene terephthalate (PET), and the mechanical strength of stretched polylactic acid becomes equivalent to that of stretched PET (not shown). However, the oriented crystal structure formed by stretching is different from aromatic polyesters such as PET. PET forms a plane-oriented (β-sheet) structure of benzene rings, whereas polylactic acid has a 3 1 helix structure. It forms two types of rod-like helix structures (oriented crystal structures) of 10 3 helices. In addition, since this helix structure has weak intermolecular (helix-helix) interaction, the more the rod-like helix structure is aligned in the same direction (the more aligned), the easier it is to split in the alignment direction of the oriented crystal. or break easily.
In other words, in the case where the oriented crystals formed by stretch molding, such as polylactic acid (PLLA), have a rod-like helix structure, stable mechanical strength can be expressed as long as they are stretched at the same magnification both lengthwise and widthwise. However, when it is preferentially aligned on either the vertical axis or the horizontal axis (when it is stretched at different magnifications), anisotropy in mechanical strength derived from the anisotropy of the stretching ratio occurs, and it breaks when dropped. (decrease in impact resistance strength), etc., the performance of the container deteriorates in terms of mechanical strength.

本発明のポリ乳酸製容器においては、側壁部は、縦方向及び横方向に、等方的に延伸されており、形成される配向結晶が面で延伸軸方向に均等に分布し、広角X線測定で求めた2θ=10~25°の回折ピークの半価幅(X)が0.624°~1.220°の範囲にあり、特に1.100°以下であり、優れた耐熱性能と機械的強度を有している。尚、上記回折ピークはポリ乳酸の配向結晶構造に基づくものであり、この回折ピークの半価幅(X)が上記範囲にあることは、本発明のポリ乳酸製容器の配向結晶の配列が安定していることを意味している。 In the polylactic acid container of the present invention, the side wall portion is isotropically stretched in the longitudinal direction and the lateral direction, and the oriented crystals formed are uniformly distributed on the surface in the direction of the stretching axis. The half width (X) of the diffraction peak at 2θ = 10 to 25° determined by measurement is in the range of 0.624° to 1.220°, especially 1.100° or less, and has excellent heat resistance and mechanical properties. strength. The above diffraction peak is based on the oriented crystal structure of polylactic acid, and the fact that the half width (X) of this diffraction peak is within the above range means that the arrangement of the oriented crystals of the polylactic acid container of the present invention is stable. It means that

本発明においては、容器側壁部の熱機械分析(TMA)で求めた熱収縮開始温度(Y,℃)と前記容器側壁部の半価幅(X)とが、下記式(1)
Y≧4000exp(-10X)+54 ・・・(1)
を満足する関係にあることも、容器の耐熱性に関して好ましい。
熱機械分析(TMA)における熱収縮開始温度(Y,℃)は、後に詳述するとおり、温度-歪み曲線の微分値から変極点に対応する温度として求められる。
図1は後述する実施例及び比較例により得られたポリ乳酸容器の側壁部について、熱収縮開始温度(Y)を縦軸とし、半価幅(X)を横軸としてプロットした結果が示されている。
Y=4000exp(-10X)+54 ・・・(1a)
に相当するものである。
この結果によると、上記曲線(1a)よりも下側の領域では、容器の耐熱性が不満足であるのに対して、上記曲線(1a)よりも上側の領域では、55℃×18日保存後の熱収縮率を4%未満に抑制でき、満足すべき耐熱性が得られる。
In the present invention, the thermal shrinkage start temperature (Y, ° C.) obtained by thermomechanical analysis (TMA) of the container side wall and the half width (X) of the container side wall are expressed by the following formula (1)
Y≧4000exp(−10X)+54 (1)
It is also preferable with respect to the heat resistance of the container that the relationship is satisfied.
The thermal shrinkage initiation temperature (Y, °C) in thermomechanical analysis (TMA) is obtained as the temperature corresponding to the inflection point from the differential value of the temperature-strain curve, as will be detailed later.
FIG. 1 shows the results of plotting the side wall portions of polylactic acid containers obtained in Examples and Comparative Examples, which will be described later, with the heat shrinkage initiation temperature (Y) as the vertical axis and the half width (X) as the horizontal axis. ing.
Y=4000exp(-10X)+54 (1a)
is equivalent to
According to this result, in the region below the curve (1a), the heat resistance of the container is unsatisfactory, while in the region above the curve (1a), after storage at 55 ° C. for 18 days can be suppressed to less than 4%, and satisfactory heat resistance can be obtained.

更に、このような延伸成形で形成する側壁部の結晶は、球晶化が抑制されているので、容器側壁のヘイズが10%以下、特に4%以下であるという特徴を有し、透明性にも優れた外観特性の利点もある。 Furthermore, since the crystals of the side wall formed by such stretch molding are suppressed in spherulization, the haze of the side wall of the container is 10% or less, particularly 4% or less. It also has the advantage of excellent appearance properties.

また容器の底部においては、後述するように、ボトル軸方向(縦方向)に移動可能な底型を用い、延伸ブロー成形過程で、底型を移動させながら成形することにより、容器底部を縦方向・横方向の機械的強度の異方性が発現しない範囲に、延伸成形することができ、配向結晶の形成とそのバランスを制御できるため、十分な耐熱性と機械的強度が確保されている。しかも、底部においても、配向結晶が形成されており、球晶の形成が抑制されていることから優れた透明性が得られている。
図2は、本発明のポリ乳酸製容器の一例を示す側面図であり、全体を1で示すポリ乳酸製容器は、口頚部2、肩部3、側壁部4及び底部5からなっている。この図2から明らかなように、底部5は、中央平坦部6、環状接地部7、環状接地部7から容器内方に立ち上がる内側立ち上がり部8、内側立ち上がり部8から中央平坦部につながる傾斜部9を備えている。
後述するように、本発明のポリ乳酸製容器においては、内側立ち上がり部8から傾斜部9、底部中央平坦部にかけ、延伸され、配向結晶が形成されることから、この部位の広角X線測定を行うと、胴部側壁部同様、配向結晶に由来した回折ピークが測定される。
In the bottom part of the container, as will be described later, a bottom mold that can move in the bottle axial direction (vertical direction) is used, and during the stretch blow molding process, the bottom mold is moved while molding, so that the bottom part of the container is moved in the vertical direction.・The film can be stretch-molded within a range in which the anisotropy of the mechanical strength in the horizontal direction does not occur, and the formation of oriented crystals and their balance can be controlled, ensuring sufficient heat resistance and mechanical strength. Moreover, oriented crystals are formed even in the bottom portion, and excellent transparency is obtained because the formation of spherulites is suppressed.
FIG. 2 is a side view showing one example of the polylactic acid container of the present invention. As is clear from FIG. 2, the bottom portion 5 includes a central flat portion 6, an annular ground portion 7, an inner raised portion 8 rising from the annular ground portion 7 toward the inside of the container, and an inclined portion connecting the inner raised portion 8 to the central flat portion. 9.
As will be described later, in the polylactic acid container of the present invention, the inner raised portion 8, the inclined portion 9, and the central flat portion of the bottom are stretched to form oriented crystals. As a result, diffraction peaks derived from the oriented crystals are measured as in the side wall of the body.

[ポリ乳酸]
本発明に用いるポリ乳酸は、下記式(I)
-[-O-C(CH)H-CO-] ・・・(I)
で表される反復単位から成り、構成単位が実質上L-乳酸から成り、光学異性体であるD-乳酸の含有量が4.0%以下、好適には3%以下のものである。
[Polylactic acid]
The polylactic acid used in the present invention has the following formula (I)
-[-OC(CH 3 )H-CO-] (I)
wherein the constituent unit is substantially L-lactic acid, and the content of optical isomer D-lactic acid is 4.0% or less, preferably 3% or less.

本発明に用いるポリ乳酸は、勿論これに限定されないが、10000~300000、特に20000~250000の範囲の重量平均分子量(Mw)を有することが好ましい。また密度1.26~1.20g/cm、融点160~200℃、メルトフローレート(ASTM D1238,190℃)2~20g/10分の範囲にあることが好ましい。 The polylactic acid used in the present invention is, of course, not limited to this, but preferably has a weight average molecular weight (Mw) in the range of 10,000 to 300,000, particularly 20,000 to 250,000. Further, it preferably has a density of 1.26 to 1.20 g/cm 3 , a melting point of 160 to 200° C., and a melt flow rate (ASTM D1238, 190° C.) of 2 to 20 g/10 minutes.

本発明のポリ乳酸容器には、その用途に応じて、各種着色剤、充填剤、無機系或いは有機系の補強剤、滑剤、アンチブロッキング剤、可塑剤、レベリング剤、界面活性剤、増粘剤、減粘剤、安定剤、抗酸化剤、紫外線吸収剤等を、公知の処方に従って配合することができる。 Various coloring agents, fillers, inorganic or organic reinforcing agents, lubricants, anti-blocking agents, plasticizers, leveling agents, surfactants and thickeners may be added to the polylactic acid container of the present invention depending on the application. , a viscosity reducer, a stabilizer, an antioxidant, an ultraviolet absorber, etc., can be blended according to known formulations.

また、本発明のポリ乳酸製容器では、上記ポリ乳酸の単層容器であってもよいし、内容物の性状に応じて、他の樹脂との積層構造を有することもできる。例えば、酸素に対するバリア性が要求される用途には、エチレン-ビニルアルコール共重合体、メタキシリレンアジパミド(MXD6)のようなガスバリア性樹脂との積層体の形で使用され、また、水蒸気に対するガスバリア性が要求される用途には、環状オレフィン共重合体等の水蒸気バリア性樹脂との積層体の形が使用できる。更に、本発明のポリ乳酸製容器には、ガスバリア性を向上させるために、金属酸化物等の被覆層を設けることも可能である。 In addition, the polylactic acid container of the present invention may be a single layer container of the polylactic acid, or may have a laminated structure with other resins depending on the properties of the content. For example, for applications that require barrier properties against oxygen, it is used in the form of a laminate with a gas barrier resin such as ethylene-vinyl alcohol copolymer or metaxylylene adipamide (MXD6). For applications requiring gas barrier properties against water, a laminate with a water vapor barrier resin such as a cyclic olefin copolymer can be used. Furthermore, the polylactic acid container of the present invention may be provided with a coating layer of metal oxide or the like in order to improve gas barrier properties.

(製造方法)
本発明のポリ乳酸製容器は、前述したとおり、光学異性体(D)の含有率が4%以下のポリ乳酸(PLLA)から成る有底プリフォームを二軸延伸ブロー成形し、熱固定することにより製造される。
このような有底プリフォームは、射出成形、圧縮成形、押出成形等のそれ自体公知の方法で製造され、例えば射出成形による場合には、溶融されたポリ乳酸を射出し、最終容器に対応する口頚部を有する有底プリフォームを非晶質の状態で製造する。
図3は、本発明の二軸延伸ブロー成形に好適に用いることができる有底プリフォームの側断面図である。全体を10で表すプリフォームは、口頚部11、口頚部11の下に内径方向に絞り込んだ縮径部12が形成されて、縮径部12から胴部13及び底部14に連なった形状となっている。これにより、二軸延伸ブローにおいて、容器の肩部となる部分は、拡径延伸することで延伸倍率が確保でき、配向結晶の形成が可能となる。
(Production method)
As described above, the polylactic acid container of the present invention is produced by biaxially stretching and blow-molding a bottomed preform made of polylactic acid (PLLA) having an optical isomer (D) content of 4% or less, followed by heat setting. Manufactured by
Such a bottomed preform is manufactured by a method known per se such as injection molding, compression molding, extrusion molding, etc. For example, in the case of injection molding, molten polylactic acid is injected to form a final container. A bottomed preform having a mouth-and-neck portion is manufactured in an amorphous state.
FIG. 3 is a side sectional view of a bottomed preform that can be suitably used for the biaxial stretch blow molding of the present invention. The preform, whose entirety is denoted by 10, has a mouth and neck portion 11, and a reduced diameter portion 12 narrowed in the inner diameter direction below the mouth and neck portion 11 is formed. ing. As a result, in the biaxial stretching blowing, the shoulder portion of the container is stretched to expand its diameter, thereby securing a stretch ratio and forming oriented crystals.

二軸延伸ブロー成形工程へのプリフォームの供給は、一旦過冷却状態のプリフォームを延伸温度に加熱して延伸成形を行う方法(コールドパリソン法)や、成形されるプリフォームの余熱を利用して延伸成形を行う方法(ホットパリソン法)等が採用される。
延伸のためのプリフォームの加熱温度(延伸温度)は、一般に70~150℃、特に80~120℃の範囲にあることが好ましい。
Preforms can be supplied to the biaxial stretch blow molding process by heating the preform in a supercooled state to the stretching temperature (cold parison method), or by using residual heat of the preform to be molded. A method (hot parison method) or the like in which stretching is performed by stretching is adopted.
The preform heating temperature (stretching temperature) for stretching is generally 70 to 150°C, preferably 80 to 120°C.

図4~図6は、本発明のポリ乳酸製容器の製造方法を説明するための図であり、図4は、ブローエアの吹き込み開始時における状態を示す図である。図5は、底型が下方に位置に配置した状態でブロー金型が閉じられており、この底型の下方配置により形成された空間にプリフォーム底部が膨出している状態を示している。図6は、ブローエアの吹き込みを行いながら、底型が上方に移動し、所定のボトル形状にブロー成形している状態が示されている。
本発明に用いるブロー成形型20は、左右2つの割型21a,21b(胴部側壁部形成)から成るキャビティ型21と、ボトル軸方向で上方位置と下方位置間を移動可能な底型22、及び、図示していないが、プリフォーム口頚部をクランプするクランプ型を備えている。尚、ブロー成形型20の閉じられた状態とは、キャビティ型21及び底型22によって、目的とする容器形状が成形される状態であり、具体的には図5に示す状態をいう。
4 to 6 are diagrams for explaining the method of manufacturing the polylactic acid container of the present invention, and FIG. 4 is a diagram showing the state at the start of blowing air. FIG. 5 shows a state in which the blow mold is closed with the bottom mold placed at a lower position, and the preform bottom bulges into the space formed by the lower placement of the bottom mold. FIG. 6 shows a state in which the bottom mold is moved upward while blowing air, and the bottle is being blown into a predetermined bottle shape.
The blow mold 20 used in the present invention comprises a cavity mold 21 consisting of two left and right split molds 21a and 21b (for forming the side walls of the body), a bottom mold 22 movable between upper and lower positions in the axial direction of the bottle, And, although not shown, a clamp die for clamping the mouth and neck of the preform is provided. The state in which the blow mold 20 is closed is a state in which the desired container shape is formed by the cavity mold 21 and the bottom mold 22, specifically the state shown in FIG.

ブロー成形型20にセットされた延伸温度にあるプリフォーム10は、ブロー成形金型内で延伸ロッド23により縦延伸されると同時に、ブローエア(加圧流体)が吹き込まれることによって周方向に横延伸される。
本発明においては、ブローエアの吹き込み初期には、図4に示すように、底金型22は、閉じられたブロー成形型の所定位置よりも下方位置に配置されている。
二軸延伸ブロー成形に際して、縦延伸倍率を1.5~5.0倍、特に2~3倍、周方向横延伸倍率を1.5~5.0倍、特に2~3倍、面積延伸倍率を2.25~9.0倍、特に4乃至7倍として二軸延伸ブロー成形を行うのが好ましい。
The preform 10 set in the blow molding die 20 and at the stretching temperature is longitudinally stretched by stretching rods 23 in the blow molding die, and at the same time, is laterally stretched in the circumferential direction by blowing blow air (pressurized fluid). be done.
In the present invention, as shown in FIG. 4, the bottom mold 22 is positioned below the predetermined position of the closed blow mold at the initial stage of blowing air.
At the time of biaxial stretch blow molding, the longitudinal draw ratio is 1.5 to 5.0 times, especially 2 to 3 times, the circumferential transverse stretch ratio is 1.5 to 5.0 times, especially 2 to 3 times, and the areal draw ratio. is 2.25 to 9.0 times, particularly 4 to 7 times, and the biaxial stretch blow molding is preferably carried out.

用いる加圧流体圧力は可及的に高いことが好ましく、最終容器の容量やプリフォームの厚みによっても相違するが、一般に用いる流体の初期圧力は、20kg/cm以上、に30~40kg/cmの範囲内にあることが好ましい。プリフォーム内に印加される圧力は成形の途中で一様であっても、また初期に高い圧力が印加されるものであってもよい。加圧用流体としては、未加熱の空気或いは不活性気体でも、或いは加熱された空気或いは不活性気体でも使用し得る。 The pressure of the pressurized fluid used is preferably as high as possible, and although it varies depending on the capacity of the final container and the thickness of the preform, generally the initial pressure of the fluid used is 20 kg/ cm2 or more, and 30 to 40 kg/cm2. It is preferably in the range of 2 . The pressure applied inside the preform may be uniform during molding, or a high pressure may be applied at the beginning. Unheated air or inert gas or heated air or inert gas can be used as the pressurizing fluid.

図5に示すように、プリフォーム10が、下方に配置された底型22の上方端部付近まで、下方に突出した半球形状に膨出するように延伸される。これにより容器底部の内側立ち上がり部8、及び、傾斜部9と底部中央平坦部6となるべき部分が十分に延伸される。
本発明においては、プリフォームの底部延伸においては、プリフォーム外径とボトル外径比から算出される横延伸倍率(DH)と底型の移動距離(DL)を元に算出される横延伸倍率(DL’)と縦延伸倍率の積(DH×DL’)が、4.0~10.0の範囲内にあり、且つ前記横延伸倍率と縦延伸倍率の比(DH/DL’)が、0.5~2.0の範囲内となるように延伸されていることが望ましい。これにより横方向、及び、縦方向に機械的強度の異方性が発現しない範囲で、所定延伸倍率に延伸成形することができ、つまり、配向結晶の分布やそのバランスが制御され、十分な耐熱性と機械的強度を確保することができる。
尚、底部における横延伸倍率(DH)は、図3に示すプリフォーム底部の外径(H)と図6に示すボトル底部外径(H)における比であり、底部における縦延伸倍率算出の元となる(DL)を図6に示す。
As shown in FIG. 5, the preform 10 is stretched so as to protrude downward into the vicinity of the upper end of the bottom mold 22 arranged below. As a result, the inner rising portion 8 of the container bottom and the portion to be the inclined portion 9 and the central flat portion 6 of the bottom portion are sufficiently stretched.
In the present invention, in the stretching of the bottom portion of the preform, the lateral stretching ratio (DH) calculated from the ratio of the outer diameter of the preform to the outer diameter of the bottle and the lateral stretching ratio calculated based on the moving distance (DL) of the bottom die. (DL′) and the product of the longitudinal draw ratio (DH×DL′) is in the range of 4.0 to 10.0, and the ratio of the transverse draw ratio to the longitudinal draw ratio (DH/DL′) is It is desirable to be stretched within the range of 0.5 to 2.0. As a result, stretch molding can be performed at a predetermined draw ratio within a range in which the anisotropy of mechanical strength is not expressed in the transverse direction and the longitudinal direction. and mechanical strength can be ensured.
The transverse draw ratio (DH) at the bottom is the ratio of the outer diameter (H 0 ) of the bottom of the preform shown in FIG. 3 to the outer diameter (H 1 ) of the bottom of the bottle shown in FIG. (DL) from which is shown in FIG.

次いでプリフォームの下方に膨出した半球状の底が底型22の上端に接触した状態で、加圧流体を印加させながら、底型22を上方に移動させ、前述内側立ち上がり部8、傾斜部9、及び、中央部平坦部6となるべき部分を環状接地部7より容器の内側に押し上げ、最終容器30形状に賦形する。この場合、底型22の下方位置(図4)と上方位置(図6)間移動距離(DL)を元に算出した縦延伸倍率(DL’)と該当部位の周方向の横延伸倍率(DH)に延伸されることになる。 Next, in a state in which the downwardly protruding hemispherical bottom of the preform is in contact with the upper end of the bottom mold 22, the bottom mold 22 is moved upward while applying a pressurized fluid to the inner rising portion 8 and the inclined portion. 9, and the part to be the central flat part 6 is pushed up from the annular grounding part 7 to the inside of the container to form the final container 30 shape. In this case, the longitudinal draw ratio (DL') calculated based on the movement distance (DL) between the lower position (Fig. 4) and the upper position (Fig. 6) of the bottom mold 22 and the transverse draw ratio (DH ).

本発明においては、二軸延伸ブロー成形により成形された最終成形品の形状を有する容器を、熱固定することが重要であり、これにより容器の配向結晶化を向上させ、耐熱性、及び、機械的強度を向上させることができる。熱固定温度は、70~150℃、特に90~120℃の範囲にあることが好ましい。熱固定温度を高くすると配向結晶化度が高くなるが、型からの取り出し性(取り出しの際の変形防止)の点からも上記温度範囲内であることが好ましい。
熱固定後の容器は、ブロー成形型の温度を上記熱固定温度に維持し、最終成形品(容器)を急激に冷却しないようにしてもよいし、最終成形品に冷風等を流して直ちに冷却が行われるようにしてもよい。
In the present invention, it is important to heat set the container having the shape of the final molded product formed by biaxial stretch blow molding. can improve the physical strength. The heat setting temperature is preferably in the range of 70-150°C, particularly 90-120°C. Although the degree of oriented crystallinity increases as the heat setting temperature increases, it is preferable that the temperature is within the above range from the viewpoint of ease of removal from the mold (prevention of deformation during removal).
After heat setting, the temperature of the blow mold may be maintained at the above heat setting temperature so that the final molded product (container) is not rapidly cooled, or the final molded product may be immediately cooled by blowing cold air or the like. may be performed.

本発明を下記の実施例で説明する。尚、本発明は以下の実施例に限定されるものではない。 The invention is illustrated by the following examples. In addition, the present invention is not limited to the following examples.

(プリフォームの成形)
表1に示す重量平均分子量及び光学活性異性体(d%)組成量のポリ乳酸を用い、射出成形機にてバレル温度180~210℃で図3に示す、ノズルネックリング下を内方に縮径させた形状のプリフォームを射出成形した。
プリフォームの寸法は、ノズル外径31.8mmφ、ノズル下を縮径したストレート形状、縮径移行の側部まで、胴外径(DH:23.0mmφ:肉厚2.0mm)で、ネックリング下から底部ゲート中心位置までの長さが61.0mmであり、ここで底部に該当するプリフォーム高さ(長さ)はプリフォーム底から10mmであることから(後述)、ボトル底部を形成する領域(底からの高さ10mm)を除く、50mm相当分がボトル側壁(胴部+肩部)に延伸成形されていた。
(Molding of preform)
Polylactic acid having a weight-average molecular weight and an optically active isomer (d%) composition shown in Table 1 was used and compressed inward under the nozzle neck ring shown in FIG. A diameter-shaped preform was injection molded.
The dimensions of the preform are: nozzle outer diameter 31.8mmφ, straight shape with reduced diameter below the nozzle, barrel outer diameter (DH: 23.0mmφ: wall thickness 2.0mm), neck ring The length from the bottom to the bottom gate center position is 61.0 mm, and the preform height (length) corresponding to the bottom here is 10 mm from the preform bottom (described later), so the bottle bottom is formed. A portion equivalent to 50 mm, excluding the area (height from the bottom of 10 mm), was stretch-molded on the side wall of the bottle (body + shoulder).

評価:
(ブロー成形性)
ボトルを延伸ブロー成形する過程で、ボトルがバースト(破胴・破底)したり、成形ボトルが、環状接地部が薄肉になり、自立できない場合は、ブロー成形性不良とし×とした。それ以外のボトルは成形性評価を○とした。
evaluation:
(blow moldability)
In the process of stretch blow molding the bottle, if the bottle burst (broken body/bottom) or if the molded bottle became too thin to stand on its own due to the thin wall of the annular contact portion, the blow moldability was evaluated as poor. The other bottles were evaluated for moldability as ◯.

(熱収縮性)
ボトルを55℃恒温槽に18日間保存した。55℃恒温槽に18日間保存前後のボトル満注内容量を20℃水道水の充填量で求め、保存経時後の満注内容量W1と初期満注内容量W0から、下記式(2)
熱収縮率(%)=(W0-W1)/W0×100 ・・・(2)
で熱収縮率を算出した。熱収縮率が4%未満のボトルを○とし、熱収縮率が4%以上のボトルを×とした。
(heat shrinkable)
The bottles were stored in a 55°C constant temperature bath for 18 days. The bottle full content before and after storage for 18 days in a 55°C constant temperature bath is obtained from the filling amount of 20°C tap water, and from the full content W1 after storage time and the initial full content W0, the following formula (2)
Thermal shrinkage rate (%) = (W0-W1)/W0 x 100 (2)
The thermal shrinkage rate was calculated with. A bottle with a heat shrinkage rate of less than 4% was rated as ◯, and a bottle with a heat shrinkage rate of 4% or more was rated as x.

(熱機械的分析)
ボトル側壁平坦部を15mm×5mm角に切り出し、チャック間距離10mmにて一定荷重条件下(10gf)、初期温度30℃、測定終了温度90℃、昇温速度5℃/分条件でTMA測定した。得られた温度-ひずみ曲線を微分し、変極点を求め、熱収縮開始点温度(℃)とした。
(Thermo-mechanical analysis)
A 15 mm x 5 mm square was cut from the flat portion of the bottle side wall, and TMA measurement was performed under a constant load condition (10 gf), an initial temperature of 30°C, a measurement end temperature of 90°C, and a heating rate of 5°C/min at a distance between chucks of 10 mm. The resulting temperature-strain curve was differentiated to obtain the inflection point, which was taken as the heat shrinkage start temperature (° C.).

(広角X線解析測定)
ボトル側壁平坦部を25mm×25mm角に切り出し、20mm×15mm角アパーチャーに固定後、X線回折装置を用い、広角度X線測定した。次に、得られたピークからピーク半価幅を求めた。
またボトル底部の内側立ち上がり部平坦部から、8mm×8mm角(最大)を切り出し、20mm×15mm角アパーチャーに固定後、X線回折装置を用い、広角X線測定した。 回折ピークの出現有無を確認した。
(Wide-angle X-ray analysis measurement)
A 25 mm×25 mm square flat portion of the bottle side wall was cut out and fixed to a 20 mm×15 mm square aperture, and then wide-angle X-ray measurement was performed using an X-ray diffractometer. Next, the peak half width was obtained from the obtained peak.
Also, an 8 mm×8 mm square (maximum) was cut out from the flat portion of the inner raised portion of the bottom of the bottle, fixed to a 20 mm×15 mm square aperture, and then subjected to wide-angle X-ray measurement using an X-ray diffractometer. The presence or absence of diffraction peaks was confirmed.

(落下強度)
ボトルに20℃水400mlの充填後、キャップで密封し、38℃恒温度室に24時間放置後、1.5m高さから正立状態で落下させた。落下本数10本の内、破損しない場合を○とし、1本以上破損した場合を×とした。
(Drop strength)
After the bottle was filled with 400 ml of 20° C. water, it was sealed with a cap, left in a constant temperature room of 38° C. for 24 hours, and dropped from a height of 1.5 m in an upright state. Of the 10 dropped tubes, the case where no damage occurred was evaluated as ◯, and the case where one or more cables were damaged was evaluated as x.

[実施例1]
光学活性異性体(d%)がd%=1.4%で平均重量分子量が200000であるポリ乳酸を用いてプリフォームを成形し、このプリフォームを用いて、ワンモールド延伸ブロー成形機にて、キャビティ型、及び、底型移動可能な底型を用い、金型温度70℃にて二軸延伸ブロー成形、及び、熱固定を行った。
尚、ボトル形状は、胴径52.0mmφでネックリング下から底部環状接地部までの垂線距離が122mm高さの円柱状ボトルを成形した。この場合、プリフォームの高さ方向に5mm刻みでけがを入れ、このプリフォームけがき位置とブロー成形後のボトルけがき位置の関係から、側壁部(胴部)に相当するプリフォーム部位を実測値で50.0mmと求めた。ネックリング下から底部環状接地部までの垂線距離の85%相当分であった。そのため、ボトル底部部位の18mm相当分を差し引いたボトル側壁部(胴部の領域)長さは104mm相当分を、前出プリフォーム長さ(50mm)で延伸しており、縦延伸倍率に2.1倍が求まった。横(周方向)延伸倍率は、プリフォーム外径と成形ボトル外径から2.3倍となり、側壁部(胴部)の面積延伸倍率は概ね4.8倍になった。
[Example 1]
A preform was molded using polylactic acid having an optically active isomer (d%) of d%=1.4% and an average weight molecular weight of 200,000, and this preform was molded using a one-mold stretch blow molding machine. , cavity mold, and bottom mold Using a movable bottom mold, biaxial stretch blow molding and heat setting were performed at a mold temperature of 70°C.
The shape of the bottle was 52.0 mmφ in diameter, and the vertical distance from the bottom of the neck ring to the bottom ring-shaped contact portion was 122 mm in height. In this case, the height direction of the preform is marked in increments of 5 mm, and the preform portion corresponding to the side wall (body) is actually measured from the relationship between the preform marking position and the bottle marking position after blow molding. A value of 50.0 mm was obtained. It was equivalent to 85% of the vertical distance from the bottom of the neck ring to the bottom annular contact area. Therefore, the length of the side wall portion of the bottle (region of the body portion) after subtracting the portion corresponding to 18 mm of the bottom portion of the bottle is drawn by the preform length (50 mm) described above, and the longitudinal draw ratio is 2.0 mm. 1 times was found. The horizontal (circumferential) draw ratio was 2.3 times the outer diameter of the preform and the molded bottle outer diameter, and the area draw ratio of the side wall portion (body portion) was approximately 4.8 times.

底部は、底部に該当するプリフォーム部位(図2)は、プリフォームの底部からノズル部に向けて10mm相当分になり(底接地部からネックリング下までの垂線距離の15%相当分)、元々の底部の高さ(長さ)が18mmであったことから、元々の縦延伸倍率は1.8倍であった。ここで、底型を20.0mm下方移動させ、プリフォーム底部を膨出延伸成形後、底型を所定位置に上方移動させ、最終ボトル形状に形成した場合、ボトル底部の縦延伸倍率(DL’)は(20mm+18mm)/10mmで3.8倍となり、ボトル底部の横延伸倍率はプリフォーム外径とボトル底部外径比から2.3倍であることから、底部面積延伸倍率は8.74倍となった。 As for the bottom part, the preform part corresponding to the bottom part (Fig. 2) is equivalent to 10 mm from the bottom part of the preform toward the nozzle part (equivalent to 15% of the perpendicular distance from the bottom contact part to the bottom of the neck ring), Since the original height (length) of the bottom portion was 18 mm, the original longitudinal draw ratio was 1.8 times. Here, when the bottom mold is moved downward by 20.0 mm to expand and stretch the preform bottom, the bottom mold is moved upward to a predetermined position to form the final bottle shape. ) is (20 mm + 18 mm) / 10 mm, which is 3.8 times, and the lateral draw ratio of the bottle bottom is 2.3 times from the ratio of the outer diameter of the preform to the outer diameter of the bottle bottom, so the bottom area draw ratio is 8.74 times. became.

側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.964°であり、熱機械分析から求めた熱収縮開始点温度(Y)は57.4℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。 The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the side wall was 0.964°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 57.4°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottles.

[実施例2]
キャビティ型及び底型ともに温度を100℃にした以外は、実施例1と同様に行った。
側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.629°であり、熱機械分析から求めた熱収縮開始点温度(Y)は73.2℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。
[Example 2]
The procedure of Example 1 was repeated except that the temperature of both the cavity mold and the bottom mold was set to 100°C.
The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the sidewall portion was 0.629°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 73.2°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottles.

[実施例3]
光学活性異性体(d%)がd%=1.9%で平均重量分子量が200000であるポリ乳酸を用い、キャビティ型及び底型ともに温度を100℃とした以外は、実施例1と同様に行った。
側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.652°であり、熱機械分析から求めた熱収縮開始点温度(Y)は67.5℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。
[Example 3]
In the same manner as in Example 1, except that polylactic acid having an optically active isomer (d%) of d%=1.9% and an average weight molecular weight of 200,000 was used, and the temperature was set to 100° C. for both the cavity mold and the bottom mold. gone.
The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the side wall was 0.652°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 67.5°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottles.

[実施例4]
光学活性異性体(d%)がd%=2.5%で平均重量分子量が200000であるポリ乳酸を用い、キャビティ型及び底型ともに温度を80℃とした以外は、実施例1と同様に行った。
側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.767°であり、熱機械分析から求めた熱収縮開始点温度(Y)は57.3℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。
[Example 4]
In the same manner as in Example 1, except that polylactic acid having an optically active isomer (d%) of d%=2.5% and an average weight molecular weight of 200,000 was used, and the temperature was set to 80° C. for both the cavity mold and the bottom mold. gone.
The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the sidewall portion was 0.767°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 57.3°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottles.

[実施例5]
底金型移動距離を5mmとした以外は、実施例1と同様に行った。側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.968°であり、熱機械分析から求めた熱収縮開始点温度(Y)は57.4℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。
[Example 5]
The same procedure as in Example 1 was carried out, except that the moving distance of the bottom mold was set to 5 mm. The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the sidewall portion was 0.968°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 57.4°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottle.

[実施例6]
底金型移動距離を10mmとした以外は、実施例1と同様に行った。側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.969°であり、熱機械分析から求めた熱収縮開始点温度(Y)は57.2℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。
[Example 6]
The same procedure as in Example 1 was carried out, except that the moving distance of the bottom mold was set to 10 mm. The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the side wall portion was 0.969°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 57.2°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottle.

[実施例7]
底金型移動距離を22mmとした以外は、実施例1と同様に行った。側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.962°であり、熱機械分析から求めた熱収縮開始点温度(Y)は57.5℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであった。得られたボトルのブロー成形性、1.5m落下試験結果と熱収縮性結果を表1に示した。
[Example 7]
The same procedure as in Example 1 was carried out, except that the moving distance of the bottom mold was set to 22 mm. The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the side wall portion was 0.962°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 57.5°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships show that the half width (X) is 1.220° or less and satisfies the above formula (1). Table 1 shows the blow moldability, 1.5 m drop test results, and heat shrinkability results of the obtained bottles.

[比較例1]
底金型を移動させずに延伸ブロー成形をした以外は、実施例1と同様に行った。側壁部の広角X線測定から求まる回折ピークの半価幅(X)は0.963°であり、熱機械分析から求めた熱収縮開始点温度(Y)は57.5℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであったが、1.5m落下試験結果で10本中2本が割れ、熱収縮性は、底接地部の変形と底バックリングにて満足内容量が増加した。前記評価法には記載されていないが、底バックリングによる底形状の変形は、容器性能が確保されていないため、評価は×であった。
[Comparative Example 1]
The procedure of Example 1 was repeated except that the stretch blow molding was carried out without moving the bottom mold. The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the sidewall portion was 0.963°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 57.5°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). These relationships were such that the half width (X) was 1.220° or less and satisfied the above formula (1). As for the contractility, the deformation of the bottom contact part and the bottom buckling increased the satisfactory content. Although not described in the evaluation method, deformation of the bottom shape due to bottom buckling was evaluated as x because container performance was not ensured.

[比較例2]
光学活性異性体(d%)がd%=4.2%で平均重量分子量が200000であるポリ乳酸を用いた以外は、実施例1と同様に行った。側壁部の広角X線測定から求まる回折ピークの半価幅(X)は1.271°であり、熱機械分析から求めた熱収縮開始点温度(Y)は51.5℃であった。半価幅(X)と熱収縮開始点温度(Y)の関係を図1に示した。これらの関係は、半価幅(X)が1.220°以下であり且つ前記式(1)を満足するものであったが、胴部の熱収縮が大きく、熱収縮率は×であった。
[Comparative Example 2]
The procedure of Example 1 was repeated except that polylactic acid having an optically active isomer (d%) of d%=4.2% and an average weight molecular weight of 200,000 was used. The half width (X) of the diffraction peak obtained from wide-angle X-ray measurement of the side wall portion was 1.271°, and the thermal shrinkage starting point temperature (Y) obtained from thermomechanical analysis was 51.5°C. FIG. 1 shows the relationship between the half width (X) and the temperature at which thermal shrinkage starts (Y). In these relationships, the half width (X) was 1.220° or less and satisfied the above formula (1), but the thermal shrinkage of the body was large and the thermal shrinkage rate was x. .

[比較例3]
底金型移動距離を34mmとした以外は、実施例1同と様に行った。底型移動距離の増加に伴い、底部がバーストし、ボトル形状に成形することができなかった。このことは、底型移動の増加に伴い、ポリ乳酸の適切な延伸倍率を超過したためと推察した。得られた結果を表1にまとめた。
[Comparative Example 3]
The same procedure as in Example 1 was carried out, except that the moving distance of the bottom mold was set to 34 mm. As the moving distance of the bottom die increased, the bottom part burst and the bottle shape could not be formed. It was speculated that this was because the appropriate draw ratio for polylactic acid was exceeded as the movement of the bottom mold increased. The results obtained are summarized in Table 1.

Figure 0007151139000001
Figure 0007151139000001

本発明のポリ乳酸製容器は、優れた耐熱性及び機械的強度を有すると共に、透明性にも優れており、飲料用の容器として好適に使用できる。 The polylactic acid container of the present invention has excellent heat resistance and mechanical strength as well as excellent transparency, and can be suitably used as a container for beverages.

1 ポリ乳酸製容器、2 口頚部、3 肩部、4 側壁部、5 底部、10 プリフォーム、11 口頚部、12 縮径部、13 胴部、14 底部、20 ブロー成形型、21 キャビティ型、22 底型、23 延伸ロッド。 1 polylactic acid container, 2 neck, 3 shoulder, 4 side wall, 5 bottom, 10 preform, 11 neck, 12 diameter reduction, 13 body, 14 bottom, 20 blow mold, 21 cavity mold, 22 bottom mold, 23 extension rod.

Claims (2)

光学活性異性体(d)含有率が2.5%以下であるポリ乳酸製プリフォームを二軸延伸ブロー成形及び熱固定して成るポリ乳酸製容器において、
前記容器の底部が、中央平坦部と、環状接地部と、該環状接地部から容器内側に立ち上がる内側立ち上がり部と、内側立ち上がりから中央平坦部につながる傾斜部とを備え、
前記容器の側壁部が、広角X線測定で求めた2θ=10~25°の回折ピークの半価幅(X)が0.624°~0.970°の範囲にあり、
前記内側立ち上がり部が、広角X線測定で求めた2θ=10~25°に回折ピークを有することを特徴とするポリ乳酸製容器。
A polylactic acid container obtained by biaxially stretching blow molding and heat setting a polylactic acid preform having an optically active isomer (d) content of 2.5 % or less,
The bottom portion of the container includes a central flat portion, an annular ground portion, an inner raised portion rising from the annular ground portion to the inner side of the container, and an inclined portion connecting the inner raised portion to the central flat portion,
The side wall of the container has a half width (X) of a diffraction peak at 2θ = 10 to 25° determined by wide-angle X-ray measurement in the range of 0.624° to 0.970 °,
A container made of polylactic acid, wherein the inner rising portion has a diffraction peak at 2θ=10 to 25° determined by wide-angle X-ray measurement.
光学活性異性体(d)含有率が2.5%以下であるポリ乳酸から成るプリフォームを二軸延伸ブロー成形及び熱固定して成るポリ乳酸製容器の製造方法において、
前記容器の底部が、中央平坦部と、環状接地部と、該環状接地部から容器内側に立ち上がる内側立ち上がり部と、内側立ち上がりから中央平坦部につながる傾斜部とを備え、
ブロー成形型が、キャビティ型と容器軸方向に移動可能な底型とを備え、
ブローエアの吹き込み初期に、底型をブロー成形型が閉じられた状態の所定位置よりも下方位置に配置し、前記内側立ち上がり部と前記傾斜となるべき部分を前記キャビティ型の下端よりも下方に膨出延伸させた後、加圧流体を印加しながら前記底型をブロー成形型が閉じられた状態の所定位置に移動させ、前記容器の底部が、プリフォームと容器の外径比率から算出される横延伸倍率(DH)と底型の移動距離(DL)を元に算出される縦延伸倍率(DL’)の積(DH×DL’)が、4.0~10.0の範囲内且つ前記横延伸倍率(DH)と前記縦延伸倍率(DL’)の比(DH/DL’)が、0.5~2.0の範囲内となるように延伸すると共に、前記ブロー成形型を70~150℃の温度として熱固定することにより、側壁部における広角X線測定で求めた2θ=10~25°の回折ピークの半価幅(X)が0.624°~0.970°の範囲にあり、前記内側立ち上がり部が、広角X線測定で求めた2θ=10~25°に回折ピークを有することを特徴とするポリ乳酸製容器の製造方法。
In a method for producing a polylactic acid container comprising biaxial stretch blow molding and heat setting a preform made of polylactic acid having an optically active isomer (d) content of 2.5 % or less,
The bottom portion of the container includes a central flat portion, an annular ground portion, an inner raised portion rising from the annular ground portion to the inner side of the container, and an inclined portion connecting the inner raised portion to the central flat portion,
The blow mold has a cavity mold and a bottom mold movable in the axial direction of the container ,
At the initial stage of blowing the blow air, the bottom mold is placed at a position lower than the predetermined position in which the blow mold is closed, and the inner rising portion and the inclined portion are expanded below the lower end of the cavity mold. After stretching, the bottom mold is moved to a predetermined position where the blow mold is closed while applying a pressurized fluid, and the bottom of the container is calculated from the outer diameter ratio of the preform and the container. The product (DH × DL') of the longitudinal draw ratio (DL') calculated based on the transverse draw ratio (DH) and the moving distance (DL) of the bottom die is in the range of 4.0 to 10.0 and the above Stretching is performed so that the ratio (DH/DL') of the transverse draw ratio (DH) and the longitudinal draw ratio (DL') is within the range of 0.5 to 2.0, and the blow mold is set to 70 to By heat setting at a temperature of 150 ° C., the half width (X) of the diffraction peak at 2θ = 10 to 25 ° obtained by wide-angle X-ray measurement at the side wall is in the range of 0.624 ° to 0.970 °. A method for producing a polylactic acid container , wherein the inner rising portion has a diffraction peak at 2θ=10 to 25° determined by wide-angle X-ray measurement .
JP2018074407A 2018-04-09 2018-04-09 Polylactic acid container and manufacturing method thereof Active JP7151139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018074407A JP7151139B2 (en) 2018-04-09 2018-04-09 Polylactic acid container and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018074407A JP7151139B2 (en) 2018-04-09 2018-04-09 Polylactic acid container and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2019182472A JP2019182472A (en) 2019-10-24
JP7151139B2 true JP7151139B2 (en) 2022-10-12

Family

ID=68339249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018074407A Active JP7151139B2 (en) 2018-04-09 2018-04-09 Polylactic acid container and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7151139B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103607A (en) 2001-09-28 2003-04-09 Toyo Seikan Kaisha Ltd Bottom structure of heat-resistant bottle
JP4294475B2 (en) 2001-07-19 2009-07-15 東洋製罐株式会社 Biaxial stretch blow thermoset container and method for manufacturing the same
WO2015117922A1 (en) 2014-02-07 2015-08-13 Appe Benelux System and process for double-blow molding a heat resistant and biaxially stretched plastic container
JP2018016344A (en) 2016-07-27 2018-02-01 東洋製罐株式会社 Synthetic resin container, and manufacturing method for the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294366A (en) * 1980-03-17 1981-10-13 Owens-Illinois, Inc. Free-standing plastic bottle
JP3325074B2 (en) * 1993-03-19 2002-09-17 日精エー・エス・ビー機械株式会社 Container molding method
JP3423452B2 (en) * 1994-11-02 2003-07-07 日精エー・エス・ビー機械株式会社 Biaxially stretch blow-molded container and its mold
JP3612775B2 (en) * 1995-03-28 2005-01-19 東洋製罐株式会社 Heat-resistant pressure-resistant self-supporting container and manufacturing method thereof
JP3680526B2 (en) * 1997-12-04 2005-08-10 東洋製罐株式会社 Stretched resin container and manufacturing method thereof
JP2004217265A (en) * 2003-01-15 2004-08-05 Dainippon Printing Co Ltd Packaging container
US6942116B2 (en) * 2003-05-23 2005-09-13 Amcor Limited Container base structure responsive to vacuum related forces
JP4825535B2 (en) * 2006-02-14 2011-11-30 北海製罐株式会社 Method for producing a bottle filled with contents
JP5524688B2 (en) * 2010-04-13 2014-06-18 北海製罐株式会社 Blow molding method for synthetic resin bottles
JP5794184B2 (en) * 2012-03-21 2015-10-14 東洋製罐株式会社 POLYLACTIC ACID FORMED BODY HAVING DEPOSIBLE FILM AND PROCESS FOR PRODUCING THE SAME
EP3181640B1 (en) * 2014-08-13 2019-01-02 Toyo Seikan Co., Ltd. Polylactic acid compound and stretch-molded bottle molded using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294475B2 (en) 2001-07-19 2009-07-15 東洋製罐株式会社 Biaxial stretch blow thermoset container and method for manufacturing the same
JP2003103607A (en) 2001-09-28 2003-04-09 Toyo Seikan Kaisha Ltd Bottom structure of heat-resistant bottle
WO2015117922A1 (en) 2014-02-07 2015-08-13 Appe Benelux System and process for double-blow molding a heat resistant and biaxially stretched plastic container
JP2018016344A (en) 2016-07-27 2018-02-01 東洋製罐株式会社 Synthetic resin container, and manufacturing method for the same

Also Published As

Publication number Publication date
JP2019182472A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
AU2018282378B2 (en) Furanoic polymer preforms, containers and processing
JP4294475B2 (en) Biaxial stretch blow thermoset container and method for manufacturing the same
US7572493B2 (en) Low IV pet based copolymer preform with enhanced mechanical properties and cycle time, container made therewith and methods
JP4190498B2 (en) "PET copolymer" compositions having enhanced mechanical properties and stretch ratios, products made therewith and processes
JP5592379B2 (en) Stretch blow molding process and container
NZ209211A (en) Blow moulding a container in two moulds with intermould transfer under pressure
CN102105526A (en) Plastic formulation and method for the production of plastic bottles in a two-stage stretch blow-molding process
JPH036061B2 (en)
US4603066A (en) Poly(ethylene terephthalate) articles
JP5439692B2 (en) Biomass-derived laminated plastic molded body and method for producing the same
EP2025703B1 (en) Biodegradable stretch-molded container having excellent heat resistance
JPH10337772A (en) Stretching blown container and its manufacture
JP7151139B2 (en) Polylactic acid container and manufacturing method thereof
US20110290758A1 (en) Method of making a container such as a bottle from a preform made of thermoplastic polymer
JPH01157828A (en) Heat-setting polyester orientation molding container
CN109415134B (en) Polyester stretch blow molded container and method for producing same
JPS63185620A (en) Production of thermally set polyester stretched molded container
JP4285016B2 (en) Flat polyester stretch molding
JP3742644B2 (en) polyester
JP2010036357A (en) Blow bottle made of synthetic resin and its molding method
WO2018003790A1 (en) Polyester stretch blow-molded container and manufacturing method therefor
JP2021160722A (en) Polyester container
JP4550700B2 (en) Method for producing heat-resistant polyester container
JP2018083630A (en) Polyester stretch blow molding vessel and its manufacturing method
JPH0329736A (en) Polyester container for beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150