JP7148118B2 - heat transfer device - Google Patents

heat transfer device Download PDF

Info

Publication number
JP7148118B2
JP7148118B2 JP2018150074A JP2018150074A JP7148118B2 JP 7148118 B2 JP7148118 B2 JP 7148118B2 JP 2018150074 A JP2018150074 A JP 2018150074A JP 2018150074 A JP2018150074 A JP 2018150074A JP 7148118 B2 JP7148118 B2 JP 7148118B2
Authority
JP
Japan
Prior art keywords
heat transfer
fins
heat
transfer medium
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018150074A
Other languages
Japanese (ja)
Other versions
JP2020026889A (en
Inventor
洋介 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2018150074A priority Critical patent/JP7148118B2/en
Priority to PCT/JP2019/030285 priority patent/WO2020031856A1/en
Publication of JP2020026889A publication Critical patent/JP2020026889A/en
Application granted granted Critical
Publication of JP7148118B2 publication Critical patent/JP7148118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、伝熱装置に関し、詳しくは、平行に配置された複数の伝熱フィンを有する伝熱装置に関する。 TECHNICAL FIELD The present invention relates to a heat transfer device, and more particularly to a heat transfer device having a plurality of heat transfer fins arranged in parallel.

従来、この種の技術としては、複数の放熱フィンを平行に配置したヒートシンクが提案されている(例えば、特許文献1参照)。このヒートシンクの放熱フィンは、アルミニウムやアルミニウム合金、銅などの熱伝導率の高い金属材料により板状に形成されている。また、放熱フィンには高い熱輸送性が求められることから、放熱フィンをグラファイト材料により形成するものも提案されている(例えば、特許文献2参照)。 Conventionally, as this type of technology, a heat sink in which a plurality of heat radiation fins are arranged in parallel has been proposed (see, for example, Patent Document 1). The radiation fins of this heat sink are formed in a plate shape from a metal material with high thermal conductivity such as aluminum, aluminum alloy, or copper. Further, since the radiation fins are required to have high heat transportability, it has been proposed to form the radiation fins from a graphite material (see, for example, Patent Document 2).

また、複数のルーバを切り起こして形成されたコルゲートフィンを備える熱交換器も提案されている(例えば、特許文献3参照)。この熱交換器では、コルゲートフィンに複数のルーバを形成することにより、伝熱性能の向上を図っている。 A heat exchanger having corrugated fins formed by cutting and raising a plurality of louvers has also been proposed (see Patent Document 3, for example). In this heat exchanger, heat transfer performance is improved by forming a plurality of louvers on the corrugated fins.

特開2018-098396号公報JP 2018-098396 A 特開2018-093119号公報JP 2018-093119 A 特開2015-017776号公報JP 2015-017776 A

上述の技術のように、放熱フィンやコルゲートフィンなどの伝熱フィンには高い伝熱性能が望まれる。このため、伝熱フィンの間隔を狭くたり、伝熱フィンの間に流れる空気や液体などの伝熱媒体の流速を大きくしたり、伝熱フィンに切り起こしを形成したり、伝熱フィンを波状に形成したりするなど種々の手法により伝熱を高める提案が行なわれているが、これらの多くの場合、伝熱媒体の圧損が過剰に大きくなってしまう。 High heat transfer performance is desired for heat transfer fins such as heat dissipation fins and corrugated fins, as in the above technology. For this reason, the space between the heat transfer fins is narrowed, the flow velocity of the heat transfer medium such as air or liquid flowing between the heat transfer fins is increased, the heat transfer fins are cut and raised, or the heat transfer fins are wavy. Various techniques have been proposed to improve the heat transfer, such as forming the heat transfer medium into a thin layer.

本発明の伝熱装置は、伝熱フィンの間に流れる伝熱媒体の圧損を抑えて伝熱フィンの伝熱を高くすることを主目的とする。 A main object of the heat transfer device of the present invention is to increase the heat transfer of the heat transfer fins by suppressing the pressure loss of the heat transfer medium flowing between the heat transfer fins.

本発明の伝熱装置は、上述の主目的を達成するために以下の手段を採った。 The heat transfer device of the present invention employs the following means in order to achieve the above main object.

本発明の伝熱装置は、
平行に配置された複数の伝熱フィンを有する伝熱装置であって、
前記伝熱フィンは、隣接する伝熱フィンの間を流路として流れる伝熱媒体を透過可能な多孔質材料により形成されている、
ことを特徴とする。
The heat transfer device of the present invention is
A heat transfer device having a plurality of heat transfer fins arranged in parallel,
The heat transfer fins are made of a porous material that is permeable to a heat transfer medium that flows as a flow path between adjacent heat transfer fins.
It is characterized by

本発明の伝熱装置では、伝熱媒体を平行に配置された伝熱フィンの間を流路として流すと、伝熱面近傍の低速領域と伝熱面遠方における高速領域との間の速度差により、ケルビン・ヘルムホルツ不安定性による不安定波が発生し、伝熱媒体の圧力が高い高圧部と圧力の低い低圧部とが交互に形成され、これが主流方向に伝播する進行波として下流側に流れる。伝熱フィンは伝熱媒体を透過可能な多孔質材料により形成されているから、高圧部では伝熱媒体が伝熱フィンを透過して隣接する流路に流出し、低圧部では隣接する流路から伝熱フィンを透過して流入する。この透過の際に伝熱媒体と伝熱フィンとに伝熱が生じる。こうした伝熱フィンで生成される進行波は、流れを下流へと推し進める効果を有しており、伝熱フィン間の流動抵抗を比較的小さく抑える効果があるとともに、流路内部の攪拌する効果によって伝熱促進が実現できる。この結果、伝熱フィンの間に流れる伝熱媒体の圧損を抑えて伝熱フィンの伝熱を高くすることができる。 In the heat transfer device of the present invention, when the heat transfer medium flows between the heat transfer fins arranged in parallel as a flow path, the speed difference between the low speed region near the heat transfer surface and the high speed region far from the heat transfer surface is As a result, an unstable wave due to Kelvin-Helmholtz instability is generated, and a high-pressure part with high pressure and a low-pressure part with low pressure are alternately formed in the heat transfer medium, and this flows downstream as a traveling wave that propagates in the mainstream direction. . Since the heat transfer fins are made of a porous material that allows the heat transfer medium to pass through, the heat transfer medium permeates the heat transfer fins in the high pressure section and flows out into the adjacent flow path, while in the low pressure section, the heat transfer medium flows out into the adjacent flow path. flows through the heat transfer fins from the During this transmission, heat transfer occurs between the heat transfer medium and the heat transfer fins. The traveling wave generated by these heat transfer fins has the effect of propelling the flow downstream, and has the effect of keeping the flow resistance between the heat transfer fins relatively low. Heat transfer promotion can be realized. As a result, the pressure loss of the heat transfer medium flowing between the heat transfer fins can be suppressed and the heat transfer of the heat transfer fins can be enhanced.

本発明の伝熱装置において、前記伝熱フィンの間隔を2H、前記伝熱フィンの板厚をδとしたときに式(1)で示される無次元板厚βと、前記伝熱フィンの全体の体積における空隙の体積の比率である空隙率をε、前記伝熱フィンの空隙の体積の4倍を伝熱フィンの固体空隙界面の面積で除した空隙水力直径をDhとしたときに式(2)で表わされる無次元透過率Kと、前記伝熱媒体のバルク速度をUb、前記伝熱媒体の動粘性係数をνとしたときに式(3)で表わされるレイノルズ数Reと、を用いたときに式(4)を満たすものとしてもよい。こうすれば、伝熱フィンのサイズや間隔、伝熱媒体の種類に応じてより適正な伝熱装置を設計することができる。 In the heat transfer device of the present invention, when the distance between the heat transfer fins is 2H and the plate thickness of the heat transfer fins is δ, the dimensionless plate thickness β represented by the formula (1) and the entire heat transfer fin The formula ( 2) and the Reynolds number Re represented by Equation (3) where Ub is the bulk velocity of the heat transfer medium and ν is the kinematic viscosity coefficient of the heat transfer medium. (4) may be satisfied. In this way, a more appropriate heat transfer device can be designed according to the size and spacing of the heat transfer fins and the type of heat transfer medium.

β=δ/H (1)
K=(ε/32)・(Dh/H)2 (2)
Re=Ub・H/ν (3)
K/β>0.08×Re-1.5 (4)
β=δ/H (1)
K=(ε/32)·(Dh/H) 2 (2)
Re=Ub·H/ν (3)
K/β>0.08×Re −1.5 (4)

こうした式(4)を満たす態様の本発明の伝熱装置において、レイノルズ数ReがRe≧50を満たすものとしてもよい。この条件は、レイノルズ数Reが50未満では伝熱媒体はゆっくり流れるため、ケルビン・ヘルムホルツ不安定性による進行波が生じない場合が多いことに基づいている。 In the heat transfer device of the present invention that satisfies the formula (4), the Reynolds number Re may satisfy Re≧50. This condition is based on the fact that when the Reynolds number Re is less than 50, the heat transfer medium flows slowly, and thus traveling waves due to Kelvin-Helmholtz instability are often not generated.

また、式(4)を満たす態様の本発明の伝熱装置において、空隙水力直径DhがDh≦0.1Hを満たすものとしてもよい。この条件は、伝熱フィンの伝熱媒体が透過する孔が、機械的に形成する流路寸法に対して充分に小さいことに基づいている。即ち、伝熱における数値計算上において、伝熱フィンの個別の孔の中の流れや熱伝達を解くのではなく、透過率に応じて、伝熱フィン内部に平均的な流れが生じるものとの仮定を成立させるためである。 Further, in the heat transfer device of the present invention satisfying the formula (4), the pore hydraulic diameter Dh may satisfy Dh≦0.1H. This condition is based on the fact that the holes of the heat transfer fins through which the heat transfer medium passes are sufficiently small relative to the dimension of the mechanically formed flow passages. That is, in the numerical calculation of heat transfer, instead of solving the flow and heat transfer in individual holes of the heat transfer fins, an average flow is generated inside the heat transfer fins according to the transmittance. This is to establish the assumption.

一実施形態の伝熱装置としてのヒートシンク20の構成の概略を示す説明図である。It is an explanatory view showing an outline of composition of heat sink 20 as a heat transfer device of one embodiment. 放熱フィン40の表面の近傍に不安定波(進行波)が生じている状態を模式的に示す模式図である。4 is a schematic diagram schematically showing a state in which an unstable wave (traveling wave) is generated near the surface of the heat radiating fin 40. FIG. 放熱フィン40の表面の近傍に生じた不安定波(進行波)における交互に生じる高圧部と低圧部とを模式的に示す模式図である。4 is a schematic diagram schematically showing alternately occurring high-pressure portions and low-pressure portions in an unstable wave (traveling wave) generated near the surface of the heat radiating fin 40. FIG. 放熱フィン40を挟む流路における伝熱媒体の圧力のシミュレーション結果を等高線を用いて示す説明図である。FIG. 7 is an explanatory diagram showing, using contour lines, simulation results of the pressure of the heat transfer medium in the flow path sandwiching the heat radiating fins 40 ; 放熱フィン40の寸法や放熱フィン40の間に流れる伝熱媒体の流速を模式的に示す説明図である。FIG. 4 is an explanatory diagram schematically showing the dimensions of the heat radiating fins 40 and the flow velocity of the heat transfer medium flowing between the heat radiating fins 40; レイノルズ数Reと無次元透過率/無次元板厚(K/β)と圧損と伝熱との関係のシミュレーション結果の一例を示す一覧表である。4 is a list showing an example of simulation results of the relationship between Reynolds number Re, non-dimensional transmittance/non-dimensional plate thickness (K/β), pressure loss, and heat transfer. 進行波が生じるレイノルズ数Reに対する最小の無次元透過率/無次元板厚(K/β)の関係のシミュレーション結果を示す一覧表である。4 is a table showing simulation results of the relationship between minimum dimensionless transmittance/dimensionless plate thickness (K/β) and Reynolds number Re at which traveling waves are generated; 進行波が生じるレイノルズ数Reに対する最小の無次元透過率/無次元板厚(K/β)の関係の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the relationship between the minimum dimensionless transmittance/the dimensionless plate thickness (K/β) and the Reynolds number Re at which traveling waves are generated;

次に、本発明を実施するための形態について説明する。図1は、実施形態の伝熱装置としてのヒートシンク20の構成の概略を示す説明図である。実施形態のヒートシンク20は、発熱体に取り付けられる受熱部30と、受熱部30に平行に配置されるように取り付けられた複数の放熱フィン40と、を備える。 Next, the form for implementing this invention is demonstrated. FIG. 1 is an explanatory diagram showing the outline of the configuration of a heat sink 20 as a heat transfer device of the embodiment. The heat sink 20 of the embodiment includes a heat receiving portion 30 attached to a heating element, and a plurality of radiation fins 40 attached to the heat receiving portion 30 so as to be arranged in parallel.

受熱部30は、アルミニウムや銅、ステンレスなどの熱伝導性が良好な金属材料などにより板状に形成されている。 The heat-receiving portion 30 is formed in a plate shape from a metal material having good thermal conductivity, such as aluminum, copper, or stainless steel.

放熱フィン40は、隣接する放熱フィン40との間を流路として流れる空気や冷媒などの伝熱媒体を透過するように、アルミニウムや銅、ステンレスなどの熱伝導性が良好な金属などによる多孔質材料によって、薄板状に形成されている。 The radiating fins 40 are made of a porous metal such as aluminum, copper, stainless steel, or the like having good thermal conductivity so as to pass through a heat transfer medium such as air or a coolant that flows between the adjacent radiating fins 40 as a flow path. It is made of material and formed into a thin plate.

次に、こうして構成されたヒートシンク20を発熱体に取り付け、複数の放熱フィン40の間に空気や冷媒(液体や気体の冷媒)などの伝熱媒体を流したときの機能について説明する。伝熱媒体を隣接する放熱フィン40の間を流路として流すと、伝熱媒体の放熱フィン40の表面近傍と遠方において主流速度が不均一になるため、ケルビン・ヘルムホルツ不安定性により、不安定波が発生じる。こうした不安定波は、伝熱媒体の放熱フィン40の流入部近傍の微小撹乱によって生じた圧力変動がその後増幅することにより発生し、流れ方向に移流する進行波となる。したがって、放熱フィン40の表面の近傍には、伝熱媒体の圧力の高い高圧部と圧力の低い低圧部とが交互に生じ、この高圧部と低圧部とが交互に生じる不安定波が伝熱媒体の流れ方向に進行する。図2は、放熱フィン40の表面の近傍に不安定波(進行波)が生じている状態を模式的に示す模式図であり、図3は、放熱フィン40の表面の近傍に生じた不安定波(進行波)における交互に生じる高圧部と低圧部とを模式的に示す模式図である。放熱フィン40は、上述したように、伝熱媒体を透過する金属などによる多孔質材料により形成されているから、放熱フィン40の表面において高圧部では、伝熱媒体が放熱フィン40を透過して隣の流路に流出し、逆に低圧部では、隣の流路の伝熱媒体が放熱フィン40を透過して流入する。高圧部や低圧部の分布は、全体的なバランスにより、放熱フィン40を挟む2つの流路における放熱フィン40の両表面の近傍では、図3に示すように、一方が高圧部となるときには放熱フィン40を挟んで対向する他方は低圧部となり、一方が低圧部となるときには他方は高圧部となる。図4は、放熱フィン40を挟む流路における伝熱媒体の圧力のシミュレーション結果を等高線を用いて示す説明図である。図中、中央の太実線は放熱フィン40を示し、等高線における-1.4~1.4のうちプラスの表示は伝熱媒体の平均圧力より高圧であることを示し、マイナス表示は伝熱媒体の平均圧力より低圧であることを示す。図示するように、放熱フィン40の図中上側では左側から高圧部、低圧部、高圧部、低圧部の順に圧力変動し、放熱フィンの図中下側では上側と対になるように左側から低圧部、高圧部、低圧部、高圧部の順に圧力変動する。このため、図3の放熱フィン40に記載された矢印に示すように、伝熱媒体は高圧部から低圧部に向けて放熱フィン40を透過する。こうした交互に生じる高圧部と低圧部とによる波は伝熱媒体の流れに沿って進行するから、放熱フィン40の各部では、伝熱媒体の一方の流路側から他方の流路側への透過と他方の流路側から一方側への透過とが交互に行なわれる。こうした伝熱媒体の放熱フィン40の透過では、伝熱媒体と放熱フィン40とに伝熱が生じる。このため、放熱フィン40を伝熱媒体が透過できない材料により形成する場合に比して伝熱を高くすることができる。一方、ケルビン・ヘルムホルツ不安定性による不安定波は、下流へ流体を駆動する効果があり、これにより流動抵抗を比較的小さく抑えることができる。これらの結果、放熱フィン40の間に流れる伝熱媒体の圧損を抑えて放熱フィン40の伝熱を高くすることができる。 Next, the function when the heat sink 20 configured in this way is attached to a heat generating body and a heat transfer medium such as air or refrigerant (liquid or gaseous refrigerant) is caused to flow between the plurality of radiation fins 40 will be described. When the heat transfer medium is caused to flow as a flow path between the adjacent heat dissipating fins 40, the velocity of the main flow of the heat transfer medium becomes uneven near and far from the surface of the heat dissipating fins 40. Therefore, due to Kelvin-Helmholtz instability, an unstable wave is generated. occurs. Such unstable waves are generated by subsequent amplification of pressure fluctuations caused by minute disturbances in the vicinity of the inflow portions of the heat radiating fins 40 of the heat transfer medium, and become traveling waves that advect in the flow direction. Therefore, in the vicinity of the surface of the heat radiating fins 40, a high pressure portion with a high pressure and a low pressure portion with a low pressure of the heat transfer medium alternately occur. It progresses in the direction of flow of the medium. FIG. 2 is a schematic diagram schematically showing a state in which an unstable wave (traveling wave) is generated near the surface of the radiation fins 40, and FIG. FIG. 2 is a schematic diagram schematically showing alternately occurring high-pressure portions and low-pressure portions in a wave (traveling wave); As described above, the radiation fins 40 are made of a porous material such as a metal that allows the heat transfer medium to pass through. The heat transfer medium flows out to the adjacent flow passage, and conversely, the heat transfer medium in the adjacent flow passage passes through the heat radiating fins 40 and flows into the low pressure section. As shown in FIG. 3, the distribution of the high pressure portion and the low pressure portion is such that when one of the two flow paths sandwiching the heat radiating fin 40 is in the vicinity of both surfaces of the heat radiating fin 40, the heat is dissipated when one becomes the high pressure portion. The other one facing across the fin 40 becomes a low pressure section, and when one becomes a low pressure section, the other becomes a high pressure section. FIG. 4 is an explanatory diagram showing, using contour lines, simulation results of the pressure of the heat transfer medium in the flow path sandwiching the heat radiating fins 40 . In the figure, the thick solid line in the center indicates the heat radiating fins 40, the plus indication in the contour lines of -1.4 to 1.4 indicates that the pressure is higher than the average pressure of the heat transfer medium, and the minus indication indicates the heat transfer medium. indicates that the pressure is lower than the average pressure of As shown in the figure, the pressure fluctuates in the order of high pressure, low pressure, high pressure, and low pressure on the upper side of the radiation fins 40 in the drawing, and low pressure from the left side on the lower side of the radiation fins so as to be paired with the upper side. The pressure fluctuates in the order of part, high pressure part, low pressure part, and high pressure part. Therefore, as indicated by the arrows drawn on the heat radiation fins 40 in FIG. 3, the heat transfer medium passes through the heat radiation fins 40 from the high pressure section toward the low pressure section. Since the waves generated by such alternating high-pressure and low-pressure portions travel along the flow of the heat transfer medium, in each portion of the radiating fins 40, the heat transfer medium permeates from one channel side to the other channel side and passes through the other. permeation from the channel side to one side alternately. Such permeation of the heat transfer medium through the heat dissipation fins 40 causes heat transfer between the heat transfer medium and the heat dissipation fins 40 . For this reason, heat transfer can be enhanced as compared with the case where the radiation fins 40 are formed of a material impermeable to the heat transfer medium. On the other hand, the unstable wave due to Kelvin-Helmholtz instability has the effect of driving the fluid downstream, which can keep the flow resistance relatively small. As a result, the pressure loss of the heat transfer medium flowing between the heat radiating fins 40 can be suppressed, and the heat transfer of the heat radiating fins 40 can be increased.

次に、実施形態のヒートシンク20の放熱フィン40における好ましい条件について説明する。図5は、放熱フィン40の寸法や放熱フィン40の間(流路)に流れる伝熱媒体の流速を模式的に示す説明図である。いま、放熱フィン40の板厚をδ、放熱フィン40の間隔(チャネル幅)を2H(チャネル半幅をH)、伝熱媒体のバルク速度(平均流速)をUb、放熱フィンの全体の体積Vにおける空隙の体積Vvの比率(Vv/V)である空隙率をε、放熱フィン40の空隙の体積Vvの4倍を放熱フィン40の固体空隙界面の面積Sで除した空隙水力直径(4Vv/S)をDh、伝熱媒体の動粘性係数をνとしたときに、式(1)で示される無次元板厚βと、式(2)で表わされる無次元透過率Kと、式(3)で表わされるレイノルズ数Reと、を定義する。このとき、式(4)の条件を満たすことが好ましい。 Next, preferable conditions for the radiation fins 40 of the heat sink 20 of the embodiment will be described. FIG. 5 is an explanatory diagram schematically showing the dimensions of the heat radiating fins 40 and the flow velocity of the heat transfer medium flowing between the heat radiating fins 40 (flow paths). Now, the plate thickness of the heat radiation fins 40 is δ, the interval (channel width) of the heat radiation fins 40 is 2H (half channel width is H), the bulk velocity (average flow velocity) of the heat transfer medium is Ub, and the total volume of the radiation fins is V The void ratio (Vv/V), which is the ratio (Vv/V) of the void volume Vv, is ε, and the void hydraulic diameter (4Vv/S ) is Dh, and the kinematic viscosity coefficient of the heat transfer medium is ν, the dimensionless plate thickness β represented by Equation (1), the dimensionless transmittance K represented by Equation (2), and Equation (3) Define a Reynolds number Re represented by At this time, it is preferable to satisfy the condition of formula (4).

β=δ/H (1)
K=(ε/32)・(Dh/H)2 (2)
Re=Ub・H/ν (3)
K/β>0.08×Re-1.5 (4)
β=δ/H (1)
K=(ε/32)·(Dh/H) 2 (2)
Re=Ub·H/ν (3)
K/β>0.08×Re −1.5 (4)

図6は、レイノルズ数Reと無次元透過率/無次元板厚(K/β)と圧損と伝熱との関係のシミュレーション結果を示す一覧表である。図7は、進行波が生じるレイノルズ数Reに対する最小の無次元透過率/無次元板厚(K/β)の関係のシミュレーション結果を示す一覧表である。図6中、ハッチング領域は進行波が生じる領域を示す。レイノルズ数Reが10(RE=10)のときには、K/βが無限大にならないと圧損や伝熱は大きくならない。これは、進行波が生じていないことを意味している。レイノルズ数Reが50(RE=50)のときには、K/βが10-3~10-2の間の値(3.0×10-3)以上で圧損と伝熱とが大きくなる。これは、この値以上で進行波が生じていることを意味している。同様に、レイノルズ数Reが100(RE=100)、500(Re=500)、1000(Re=1000)のときには、K/βが10-4~10-5の間の値(9.0×10-4)以上、10-5~10-6の間の値(8.0×10-5)以上、10-5~10-6の間の値(3.0×10-5)以上で圧損と伝熱とが大きくなり、この値以上で進行波が生じる。 FIG. 6 is a table showing simulation results of the relationship between Reynolds number Re, dimensionless transmittance/thickness (K/β), pressure loss, and heat transfer. FIG. 7 is a table showing simulation results of the relationship between the minimum dimensionless transmittance/the dimensionless plate thickness (K/β) and the Reynolds number Re at which traveling waves are generated. In FIG. 6, hatched areas indicate areas where traveling waves are generated. When the Reynolds number Re is 10 (RE=10), pressure loss and heat transfer do not increase unless K/β becomes infinite. This means that no traveling wave is generated. When the Reynolds number Re is 50 (RE=50), pressure loss and heat transfer increase when K/β is a value between 10 -3 and 10 -2 (3.0×10 -3 ) or higher. This means that traveling waves are generated above this value. Similarly, when the Reynolds number Re is 100 (RE=100), 500 (Re=500) and 1000 (Re=1000), K/β is a value between 10 −4 and 10 −5 (9.0× 10 −4 ) or more, a value between 10 −5 and 10 −6 (8.0×10 −5 ) or more, a value between 10 −5 and 10 −6 (3.0×10 −5 ) or more Pressure loss and heat transfer increase, and above this value a traveling wave is generated.

図8は、進行波が生じるレイノルズ数Reに対する最小の無次元透過率/無次元板厚(K/β)の関係の一例を示す説明図である。図中、4つのプロットは、図7に示すポイントであり、直線は、4つのプロットが右上領域に含まれるように作図した直線(式(4)の不等号を等号としたもの)である。シミュレーション結果では図8の直線より左下側の領域ではケルビン・ヘルムホルツ不安定性による不安定波(進行波)が生じない。このため、この領域では、伝熱媒体が放熱フィン40を透過することが困難となり、伝熱への寄与も困難となる。一方、図8の直線より右上側の領域ではケルビン・ヘルムホルツ不安定性による不安定波(進行波)が生じる。このため、この領域では、伝熱媒体が放熱フィン40を透過することになり、これが伝熱にも寄与する。 FIG. 8 is an explanatory diagram showing an example of the relationship between the minimum dimensionless transmittance/the dimensionless plate thickness (K/β) and the Reynolds number Re at which traveling waves are generated. In the figure, the four plots are the points shown in FIG. 7, and the straight line is a straight line drawn so that the four plots are included in the upper right region (where the inequality sign in Equation (4) is replaced by an equal sign). According to the simulation results, an unstable wave (traveling wave) due to Kelvin-Helmholtz instability does not occur in the lower left region of the straight line in FIG. Therefore, in this region, it becomes difficult for the heat transfer medium to pass through the heat radiating fins 40, making it difficult to contribute to heat transfer. On the other hand, an unstable wave (progressive wave) due to Kelvin-Helmholtz instability is generated in the area on the upper right side of the straight line in FIG. Therefore, in this region, the heat transfer medium passes through the heat radiating fins 40, which also contributes to heat transfer.

上述の式(4)の条件に加えて、レイノルズ数Reは50以上(Re≧50)であることが好ましい。この条件は、レイノルズ数Reが50未満では伝熱媒体はゆっくり流れるため、ケルビン・ヘルムホルツ不安定性による不安定波(進行波)の発生が困難となる場合が多いことに基づく。また、空隙水力直径DhがDh≦0.1Hであることが好ましい。この条件は、放熱フィン40の伝熱媒体が透過する細孔が機械的に形成することができる流路寸法に対して充分に小さいことに基づいている。即ち、放熱フィン40の伝熱における数値計算上において、放熱フィン40の個別の細孔の中の流れや熱伝達を解くのではなく、無次元透過率Kに応じて、放熱フィン40内部に平均的な流れ(透過による流れ)が生じるものとの仮定を成立させるためである。 In addition to the condition of the above formula (4), the Reynolds number Re is preferably 50 or more (Re≧50). This condition is based on the fact that when the Reynolds number Re is less than 50, the heat transfer medium flows slowly, which often makes it difficult to generate unstable waves (traveling waves) due to Kelvin-Helmholtz instability. Moreover, it is preferable that the pore hydraulic diameter Dh satisfies Dh≦0.1H. This condition is based on the fact that the pores through which the heat transfer medium of the heat radiating fins 40 permeates are sufficiently small relative to the channel dimensions that can be mechanically formed. That is, in the numerical calculation of the heat transfer of the heat radiating fins 40, instead of solving the flow and heat transfer in the individual pores of the heat radiating fins 40, according to the dimensionless transmittance K, an average This is to establish the assumption that a natural flow (flow due to permeation) occurs.

以上説明した実施形態のヒートシンク20では、伝熱媒体が透過可能な多孔質材料により放熱フィン40を形成することにより、放熱フィン40の表面の近傍に生じる不安定波(進行波)によって放熱フィン40の各部において伝熱媒体の一方の流路側から他方の流路側への透過と他方の流路側から一方側への透過とが交互に行なわれる。これにより、放熱フィン40の間に流れる伝熱媒体の圧損を抑えて放熱フィン40の伝熱を高くすることができる。 In the heat sink 20 of the embodiment described above, the radiation fins 40 are formed of a porous material through which a heat transfer medium can pass. , the heat transfer medium alternately permeates from one channel side to the other channel side and permeates from the other channel side to one side. As a result, the pressure loss of the heat transfer medium flowing between the heat radiating fins 40 can be suppressed, and the heat transfer of the heat radiating fins 40 can be increased.

実施形態のヒートシンク20では、放熱フィン40により放熱するものとして説明したが、冷熱を放熱するもの、即ち吸熱するものとしてもよい。 In the heat sink 20 of the embodiment, the heat dissipation fins 40 are used to dissipate heat, but the heat sink 20 may dissipate cold heat, that is, absorb heat.

本発明の伝熱装置をヒートシンク20を実施形態とし、その放熱フィン40に適用して説明した。しかし、本発明の伝熱装置の実施形態としてコルゲートフィン型熱交換器を用い、コルゲートフィンに適用するものとしてもよい。また、本発明の伝熱装置の実施形態として熱交換媒体を流通するチューブ型の熱交換器を用い、チューブに取り付けたフィンに適用するものとしてもよい。或いは、コルゲートフィンやチューブに取り付けたフィンをオフセットフィンとし、このオフセットフィンにおける平行に配置された部分に適用するものとしてもよい。 The heat transfer device of the present invention has been described with the heat sink 20 as an embodiment and applying it to the radiation fins 40 thereof. However, as an embodiment of the heat transfer device of the present invention, a corrugated fin type heat exchanger may be used and applied to corrugated fins. Further, as an embodiment of the heat transfer device of the present invention, a tube-type heat exchanger through which a heat exchange medium flows may be used and applied to fins attached to the tube. Alternatively, a corrugated fin or a fin attached to a tube may be used as an offset fin, and the offset fin may be applied to the portions arranged in parallel.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to such embodiments at all, and can be modified in various forms without departing from the scope of the present invention. Of course, it can be implemented.

本発明は、伝熱装置の製造産業などに利用可能である。 INDUSTRIAL APPLICABILITY The present invention is applicable to the manufacturing industry of heat transfer devices .

20 ヒートシンク、30 受熱部、40 放熱フィン。 20 heat sink, 30 heat receiving part, 40 radiation fin.

Claims (2)

平行に配置された複数の伝熱フィンを有する伝熱装置であって、
前記伝熱フィンは、隣接する伝熱フィンの間を流路として流れる伝熱媒体を透過可能な多孔質材料により形成されており、
前記伝熱フィンの間隔を2H、前記伝熱フィンの板厚をδとしたときに式(1)で示される無次元板厚βと、前記伝熱フィンの全体の体積における空隙の体積の比率である空隙率をε、前記伝熱フィンの空隙の体積の4倍を伝熱フィンの固体空隙界面の面積で除した空隙水力直径をDhとしたときに式(2)で表わされる無次元透過率Kと、前記伝熱媒体のバルク速度をUb、前記伝熱媒体の動粘性係数をνとしたときに式(3)で表わされるレイノルズ数Reと、を用いたときに式(4)を満たし、
レイノルズ数ReがRe≧50を満たす、
ことを特徴とする伝熱装置。
β=δ/H (1)
K=(ε/32)・(Dh/H)2 (2)
Re=Ub・H/ν (3)
K/β>0.08×Re-1.5 (4)
A heat transfer device having a plurality of heat transfer fins arranged in parallel,
The heat transfer fins are made of a porous material that is permeable to a heat transfer medium that flows as a flow path between adjacent heat transfer fins ,
The ratio of the dimensionless plate thickness β represented by the formula (1) when the distance between the heat transfer fins is 2H and the plate thickness of the heat transfer fins is δ, and the volume of the voids in the entire volume of the heat transfer fins. is the porosity, and Dh is the pore hydraulic diameter obtained by dividing 4 times the volume of the pore of the heat transfer fin by the area of the solid pore interface of the heat transfer fin. When using the coefficient K and the Reynolds number Re represented by the equation (3) where Ub is the bulk velocity of the heat transfer medium and ν is the kinematic viscosity coefficient of the heat transfer medium, the equation (4) is expressed as fill,
Reynolds number Re satisfies Re≧50,
A heat transfer device characterized by:
β=δ/H (1)
K=(.epsilon./32).(Dh/H)@2 (2)
Re=Ub·H/ν (3)
K/β>0.08×Re-1.5 (4)
請求項1の伝熱装置であって、
空隙水力直径DhがDh≦0.1Hを満たす、
伝熱装置。
The heat transfer device of claim 1 ,
pore hydraulic diameter Dh satisfies Dh≦0.1H,
heat transfer device.
JP2018150074A 2018-08-09 2018-08-09 heat transfer device Active JP7148118B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018150074A JP7148118B2 (en) 2018-08-09 2018-08-09 heat transfer device
PCT/JP2019/030285 WO2020031856A1 (en) 2018-08-09 2019-08-01 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150074A JP7148118B2 (en) 2018-08-09 2018-08-09 heat transfer device

Publications (2)

Publication Number Publication Date
JP2020026889A JP2020026889A (en) 2020-02-20
JP7148118B2 true JP7148118B2 (en) 2022-10-05

Family

ID=69413673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150074A Active JP7148118B2 (en) 2018-08-09 2018-08-09 heat transfer device

Country Status (2)

Country Link
JP (1) JP7148118B2 (en)
WO (1) WO2020031856A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113551870B (en) * 2021-06-23 2022-09-20 中国核动力研究设计院 Characterization method and system for influence mechanism of flow instability behavior of parallel channel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057255A (en) 2000-08-11 2002-02-22 Nec Corp Apparatus and method of calculating fin interval
JP2003037226A (en) 2001-06-01 2003-02-07 Delphi Technologies Inc High-performance heat sink for cooling electronics
JP2003068944A (en) 2001-08-28 2003-03-07 Nec Corp Method and device for computing optimum fin-interval of forced convection cooling type heat sink and heat sink
US20090321046A1 (en) 2008-06-30 2009-12-31 Alcatel-Lucent Technologies Inc. Flow diverters to enhance heat sink performance
CN201382734Y (en) 2009-04-03 2010-01-13 李明烈 Injection molding porous ceramics radiator structure
JP2016174025A (en) 2015-03-16 2016-09-29 日立化成株式会社 Heat dissipation fin and heat sink, module mounting the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262964A (en) * 1975-11-18 1977-05-24 Stanley Electric Co Ltd Ultrasonic washing apparatus using jet stream
JPS5272964A (en) * 1975-12-15 1977-06-18 Matsushita Refrig Co Heat exchanger
JPS57178985U (en) * 1981-05-08 1982-11-12

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057255A (en) 2000-08-11 2002-02-22 Nec Corp Apparatus and method of calculating fin interval
JP2003037226A (en) 2001-06-01 2003-02-07 Delphi Technologies Inc High-performance heat sink for cooling electronics
JP2003068944A (en) 2001-08-28 2003-03-07 Nec Corp Method and device for computing optimum fin-interval of forced convection cooling type heat sink and heat sink
US20090321046A1 (en) 2008-06-30 2009-12-31 Alcatel-Lucent Technologies Inc. Flow diverters to enhance heat sink performance
CN201382734Y (en) 2009-04-03 2010-01-13 李明烈 Injection molding porous ceramics radiator structure
JP2016174025A (en) 2015-03-16 2016-09-29 日立化成株式会社 Heat dissipation fin and heat sink, module mounting the same

Also Published As

Publication number Publication date
WO2020031856A1 (en) 2020-02-13
JP2020026889A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US11143466B2 (en) Heat transfer system and method incorporating tapered flow field
JP5487423B2 (en) Heat exchanger
JPH0514194B2 (en)
US10420254B2 (en) Heat sink assembly apparatus
JP6926325B2 (en) Heat sink and its manufacturing method
JP2009540264A (en) Hollow plate heat exchanger
JP2010043850A (en) Micro-channel heat exchanger, and method for cooling heat source
US11480398B2 (en) Combining complex flow manifold with three dimensional woven lattices as a thermal management unit
JPWO2018012558A1 (en) Stacked heat sink core
JP7148118B2 (en) heat transfer device
JP5205095B2 (en) Oil cooler
JP4013883B2 (en) Heat exchanger
JP2018017424A (en) Manufacturing method of heat exchanger
JP2020060365A (en) Rib heat exchanger and manufacturing method therefor
JP2006207968A (en) Heat transfer device
WO2017038380A1 (en) Heat exchanger
JP4572911B2 (en) Heat exchanger
JP2012007778A (en) Heat exchanger
JP5839386B2 (en) heatsink
WO2021131175A1 (en) Cooling structure and heatsink
JP2009052874A (en) Plate fin type heat exchanger
Ho et al. Enhanced thermal performance of a water-cooled cold plate with porous inserts fabricated by selective laser melting
JP2005203466A (en) Heatsink
US20230087617A1 (en) Heat exchanger core
JP2006322667A (en) Resin-made heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220914

R150 Certificate of patent or registration of utility model

Ref document number: 7148118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150