JP7146345B2 - Resin raw material composition containing alcohol compound having fluorene skeleton - Google Patents

Resin raw material composition containing alcohol compound having fluorene skeleton Download PDF

Info

Publication number
JP7146345B2
JP7146345B2 JP2018166516A JP2018166516A JP7146345B2 JP 7146345 B2 JP7146345 B2 JP 7146345B2 JP 2018166516 A JP2018166516 A JP 2018166516A JP 2018166516 A JP2018166516 A JP 2018166516A JP 7146345 B2 JP7146345 B2 JP 7146345B2
Authority
JP
Japan
Prior art keywords
compound represented
alcohol compound
above formula
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018166516A
Other languages
Japanese (ja)
Other versions
JP2020037546A (en
Inventor
浩二 松本
俊一 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP2018166516A priority Critical patent/JP7146345B2/en
Publication of JP2020037546A publication Critical patent/JP2020037546A/en
Application granted granted Critical
Publication of JP7146345B2 publication Critical patent/JP7146345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学レンズ、光学フィルム等の光学部材を構成する樹脂(光学樹脂)の原料モノマーとして好適で、加工性、生産性に優れた樹脂原料用組成物に関する。 TECHNICAL FIELD The present invention relates to a resin raw material composition suitable as a raw material monomer for resins (optical resins) constituting optical members such as optical lenses and optical films, and excellent in workability and productivity.

フルオレン骨格を有するアルコール類を原料モノマーとするポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料は、光学特性、耐熱性等に優れることから、近年、光学レンズや光学シートなどの新たな光学材料として注目されている。中でも以下式(1): Resin materials such as polycarbonates, polyesters, polyacrylates, polyurethanes, and epoxies, which use alcohols with a fluorene skeleton as raw material monomers, have excellent optical properties and heat resistance. attention as a material. Among them, the following formula (1):

Figure 0007146345000001
で表される構造を有するアルコール化合物は、該アルコール化合物及びその誘導体から製造される樹脂が屈折率等の光学特性、耐熱性、耐水性、耐薬品性、電気特性、機械特性、溶解性等の諸特性に優れることから、特に光学樹脂の原材料として着目されている(例えば特許文献1)。
Figure 0007146345000001
An alcohol compound having a structure represented by is such that the resin produced from the alcohol compound and its derivative has optical properties such as refractive index, heat resistance, water resistance, chemical resistance, electrical properties, mechanical properties, solubility, etc. Due to its excellent properties, it is drawing particular attention as a raw material for optical resins (for example, Patent Document 1).

一方、上記式(1)で表されるアルコール化合物は、その製造工程で使用する芳香族炭化水素類を包接して包接化合物を形成し、該包接化合物を減圧乾燥する際に包接している芳香族炭化水素類の除去が困難であることが知られており、芳香族炭化水素類を包接しない上記式(1)で表されるアルコール化合物の製造方法が複数報告されている(例えば特許文献2~4)。 On the other hand, the alcohol compound represented by the above formula (1) clathrates the aromatic hydrocarbons used in the production process to form a clathrate compound, and clathrates the clathrate when the clathrate compound is dried under reduced pressure. It is known that it is difficult to remove aromatic hydrocarbons containing aromatic hydrocarbons, and several methods for producing alcohol compounds represented by the above formula (1) that do not clathrate aromatic hydrocarbons have been reported (e.g. Patent documents 2-4).

特許文献2では、特定条件下にて上記式(1)で表されるアルコール化合物を製造した後、芳香族炭化水素類とメタノールを含む溶液から特定温度で上記式(1)で表される化合物の結晶を析出させることにより、芳香族炭化水素類を包接していない上記式(1)で表される化合物を得る方法が記載されている。また、特許文献3では、水溶性ケトン及び水溶性アルコールの混合溶媒から上記式(1)で表されるアルコール化合物を晶析させることにより、芳香族炭化水素類を包接していない、上記式(1)で表される化合物を得る方法が記載されている。両文献に記載される方法によって得られる上記式(1)で表される化合物の結晶の融点は共に148~151℃(示差走査熱量分析による融解吸熱最大温度。)と、芳香族炭化水素類を包接している上記式(1)で表される化合物と同程度の融点を示すことが記載されている。 In Patent Document 2, after producing an alcohol compound represented by the above formula (1) under specific conditions, a compound represented by the above formula (1) at a specific temperature from a solution containing aromatic hydrocarbons and methanol describes a method for obtaining a compound represented by the above formula (1) that does not clathrate aromatic hydrocarbons by precipitating crystals of. Further, in Patent Document 3, by crystallizing the alcohol compound represented by the above formula (1) from a mixed solvent of a water-soluble ketone and a water-soluble alcohol, the above formula ( A method for obtaining the compound represented by 1) is described. The melting points of the crystals of the compound represented by the above formula (1) obtained by the methods described in both documents are both 148 to 151 ° C. (maximum melting endothermic temperature by differential scanning calorimetry), and aromatic hydrocarbons are It is described that it exhibits a melting point comparable to that of the compound represented by the formula (1) in which it clathrates.

特許文献4では、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液から特定温度で、上記式(1)で表される化合物の結晶を析出させることにより、芳香族炭化水素類を包接していない、上記式(1)で表される化合物を得る方法が記載されている。前記方法では複数の結晶多形体が得られることが記載されており、これら結晶多形体の融点は167~196℃の間と、芳香族炭化水素類を包接している上記式(1)で表される化合物の融点より高融点を示すことが記載されている。 In Patent Document 4, from a crystallization solution containing chain ketones having 4 or more carbon atoms and having a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight, at a specific temperature, the above formula It describes a method for obtaining a compound represented by the above formula (1) that does not clathrate aromatic hydrocarbons by precipitating crystals of the compound represented by (1). It is described that a plurality of crystal polymorphs can be obtained by the above method, and the melting point of these crystal polymorphs is between 167 and 196 ° C., and the above formula (1) that includes aromatic hydrocarbons. It is described that it exhibits a melting point higher than that of the compound used.

特開平07―149881号公報JP-A-07-149881 特開2017-200900号公報Japanese Patent Application Laid-Open No. 2017-200900 特開2017-141182号公報JP 2017-141182 A 特開2017-200901号公報Japanese Patent Application Laid-Open No. 2017-200901

本願発明者らが特許文献2及び3の方法を追試したところ、該方法により製造される結晶は、その嵩密度(ゆるめ嵩密度)が0.25~0.29g/cmと小さく、使用時や輸送時の取扱性に劣るといった問題があることが判明した。一方、特許文献4の方法で製造される結晶は、その嵩密度が0.5~1.5g/cmであることが記載され、特許文献2及び3に記載される結晶に比べ嵩密度は改善されているものの、前述の通り融点が高いことから、溶融重合等、結晶を一旦溶融して使用する際にはより多くのエネルギーが必要であったり、より高い温度とすることが可能な反応容器が必要である等、殊に工業的使用においては、融点の低い結晶に比べ使い勝手に劣るといった問題がある。 When the inventors of the present application repeated the methods of Patent Documents 2 and 3, the crystals produced by the method had a low bulk density (loose bulk density) of 0.25 to 0.29 g / cm 3 , and during use It was found that there were problems such as poor handleability during transportation. On the other hand, the crystals produced by the method of Patent Document 4 are described to have a bulk density of 0.5 to 1.5 g/cm 3 , and compared to the crystals described in Patent Documents 2 and 3, the bulk density is Although it has been improved, since the melting point is high as mentioned above, when the crystal is melted once and used, such as melt polymerization, more energy is required or a reaction that can be made at a higher temperature. Especially in industrial use, such as the need for a container, there is a problem that the usability is inferior to crystals with a low melting point.

本発明の目的は、芳香族炭化水素類の含有量が少なく、かつ嵩密度が比較的高く、更にはその融点が芳香族炭化水素類を包接する包接体と同程度の、上記式(1)で表されるアルコール化合物を含む樹脂原料用組成物を提供することにある。 The object of the present invention is to provide a ) to provide a resin raw material composition containing an alcohol compound represented by

本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、上記式(1)で表されるアルコール化合物に、以下式(2)で表されるアルコール化合物を一定量含有させ樹脂原料用組成物とすることによって前記課題が解決可能であることを見出した。具体的には以下の発明を含む。 As a result of intensive studies to solve the above problems, the present inventors have found that the alcohol compound represented by the above formula (1) contains a certain amount of the alcohol compound represented by the following formula (2) to form a resin. The present inventors have found that the above problems can be solved by using a raw material composition. Specifically, the following inventions are included.

[1]
以下式(1):
[1]
Formula (1) below:

Figure 0007146345000002
で表されるアルコール化合物を85.0~99.9重量%、以下式(2):
Figure 0007146345000002
85.0 to 99.9% by weight of an alcohol compound represented by the following formula (2):

Figure 0007146345000003
で表されるアルコール化合物を0.01~0.5重量%含み、
芳香族炭化水素類の含量が1重量%未満であり、示差走査熱量分析による融解吸熱最大温度が148~151℃である、樹脂原料用組成物。
Figure 0007146345000003
Contains 0.01 to 0.5% by weight of an alcohol compound represented by
A resin raw material composition containing less than 1% by weight of aromatic hydrocarbons and having a maximum melting endothermic temperature of 148 to 151° C. as determined by differential scanning calorimetry.

[2]
更に以下式(3):
[2]
Furthermore, the following formula (3):

Figure 0007146345000004
で表されるアルコール化合物の含量が0.1重量%以下である、[1]に記載の樹脂原料用組成物。
Figure 0007146345000004
The resin raw material composition according to [1], wherein the content of the alcohol compound represented by is 0.1% by weight or less.

[3]
ゆるめ嵩密度が0.4g/cm以上である、[1]又は[2]に記載の樹脂原料用組成物。
[3]
The resin raw material composition according to [1] or [2], which has a loose bulk density of 0.4 g/cm 3 or more.

[4]
以下式(2):
[4]
Formula (2) below:

Figure 0007146345000005
で表されるアルコール化合物。
Figure 0007146345000005
Alcohol compound represented by.

本発明によれば、芳香族炭化水素類の含有量が少なく、かつ嵩密度が比較的高く、更にはその融点が芳香族炭化水素類を包接する包接体と同程度の、上記式(1)で表されるアルコール化合物を含む樹脂原料用組成物が提供可能となる。 According to the present invention, the above formula (1 ), it is possible to provide a resin raw material composition containing the alcohol compound represented by

また、本発明の樹脂原料用組成物は、上記式(2)で表されるアルコール化合物を一定量含むためか、該樹脂原料用組成物を製造する際、ろ過性に優れるとの特徴を有する。 In addition, the resin raw material composition of the present invention is characterized by excellent filterability when the resin raw material composition is produced, probably because it contains a certain amount of the alcohol compound represented by the above formula (2). .

製造例1で得られた、上記式(2)で表されるアルコール化合物のLC-MSチャートである。1 is an LC-MS chart of the alcohol compound represented by the above formula (2) obtained in Production Example 1. FIG.

<本発明の樹脂原料用組成物>
本発明の樹脂原料用組成物は、上記式(1)で表されるアルコール化合物を85.0~99.9重量%含む。含量が85.0重量%より少ない場合、樹脂原料用組成物として好適に使用できない場合がある。
<Composition for resin raw material of the present invention>
The resin raw material composition of the present invention contains 85.0 to 99.9% by weight of the alcohol compound represented by the above formula (1). If the content is less than 85.0% by weight, it may not be suitable for use as a resin raw material composition.

本発明の樹脂原料用組成物には、上記式(2)で表されるアルコール化合物を0.01~0.5重量%含む必要がある。含量が0.01重量%未満、あるいは0.5重量%より多い場合、嵩密度が改善せず、本発明の課題が解決できない恐れがある。 The resin raw material composition of the present invention must contain 0.01 to 0.5% by weight of the alcohol compound represented by the above formula (2). If the content is less than 0.01% by weight or more than 0.5% by weight, the bulk density may not be improved and the problems of the present invention may not be solved.

本発明の樹脂原料用組成物に含まれる、上記式(3)で表されるアルコール化合物の含量は0.1重量%以下であることが好ましい。0.1重量%以下とすることにより、本発明の樹脂原料用組成物を用いて製造される樹脂の強度、耐熱性(ガラス転移温度)をより向上させることが可能となる。 The content of the alcohol compound represented by the above formula (3) contained in the resin raw material composition of the present invention is preferably 0.1% by weight or less. By setting the amount to 0.1% by weight or less, it becomes possible to further improve the strength and heat resistance (glass transition temperature) of the resin produced using the composition for resin raw material of the present invention.

上記式(1)で表されるアルコール化合物が芳香族炭化水素類を包接する場合、その含有量は1~6重量%程度となる(特許文献3、[0005])。従って、本発明の樹脂原料用組成物に含まれる上記式(1)で表されるアルコール化合物は主に非包接体である必要がある。非包接体である上記式(1)で表されるアルコール化合物は例えば、特許文献2、3記載の方法により製造することができる。また、主に非包接体である上記式(1)で表されるアルコール化合物を使用することから、本発明の樹脂原料用組成物に含まれる芳香族炭化水素類は通常1重量%未満であり、好ましくは0.5重量%以下、さらに好ましくは0.1重量%以下である。 When the alcohol compound represented by the above formula (1) clathrates aromatic hydrocarbons, the content thereof is about 1 to 6% by weight (Patent Document 3, [0005]). Therefore, the alcohol compound represented by the above formula (1) contained in the resin raw material composition of the present invention must mainly be a non-clathrate. The alcohol compound represented by the formula (1), which is a non-clathrate, can be produced, for example, by the methods described in Patent Documents 2 and 3. In addition, since the alcohol compound represented by the above formula (1), which is a non-clathrate, is mainly used, the amount of aromatic hydrocarbons contained in the resin raw material composition of the present invention is usually less than 1% by weight. Yes, preferably 0.5% by weight or less, more preferably 0.1% by weight or less.

本発明の樹脂原料用組成物の示差走査熱量分析による融解吸熱最大温度は148~151℃である。本発明における示差走査熱量分析による融解吸熱最大温度とは、後述する条件にて示差走査熱量分析を実施した際、最大吸熱ピークが観測される温度のことをいう。 The maximum melting endothermic temperature of the resin raw material composition of the present invention is 148 to 151° C. according to differential scanning calorimetry. The maximum melting endothermic temperature by differential scanning calorimetry in the present invention means the temperature at which the maximum endothermic peak is observed when differential scanning calorimetry is performed under the conditions described later.

本発明の樹脂原料用組成物は、示差走査熱量分析により得られる吸熱ピークを165~200℃の範囲に含まないことが好ましい。前記範囲に吸熱ピークを含む場合、高融点である他の結晶形(特許文献4記載の結晶多形体)を含むことが示唆されることから、その含有量によっては結晶溶融の際、吸熱ピークを含まない樹脂原料用組成物に比べより多くのエネルギーが必要となる場合がある。 It is preferable that the resin raw material composition of the present invention does not include an endothermic peak in the range of 165 to 200° C. obtained by differential scanning calorimetry. When an endothermic peak is included in the above range, it is suggested that other crystal forms with a high melting point (crystal polymorphs described in Patent Document 4) are included. More energy may be required than a resin raw material composition that does not contain it.

本発明の樹脂原料用組成物のゆるめ嵩密度は0.4g/cm以上、具体的には0.4~0.5g/cmである。なお、本発明におけるゆるめ嵩密度とは、後述する方法によって測定される嵩密度のことをいう。 The loose bulk density of the resin raw material composition of the present invention is 0.4 g/cm 3 or more, specifically 0.4 to 0.5 g/cm 3 . In addition, the loose bulk density in the present invention means the bulk density measured by the method described later.

<本発明の樹脂原料用組成物の製造方法>
本発明の樹脂原料用組成物は例えば、特許文献2記載の方法により上記式(1)で表されるアルコール化合物を製造し、再晶析等の精製操作によって上記式(2)で表されるアルコール化合物の含量を上述する範囲となるまで精製操作を繰り返すことによって製造することができる。
<Method for Producing the Resin Raw Material Composition of the Present Invention>
For example, the resin raw material composition of the present invention is produced by producing an alcohol compound represented by the above formula (1) by the method described in Patent Document 2, and performing a refining operation such as recrystallization to obtain the above formula (2). It can be produced by repeating the purification operation until the content of the alcohol compound is within the range described above.

以下に実施例等を挙げて本発明を具体的に説明するが、本発明は何ら限定されるものではない。なお、例中、各種測定は下記の方法で実施した。また、以下実施例等に記載した各成分の含量は、下記条件で測定した高速液体クロマトグラフィー(HPLC)によって得られた面積値に基づき、絶対検量線法により求めた値であり、また、芳香族炭化水素類の含量については下記条件に基づくガスクロマトグラフィー(GC)によって得られた面積値に基づき、内部標準法(内標:1,2-ジメトキシエタン)により求めた値である。 EXAMPLES The present invention will be specifically described below with reference to Examples, etc., but the present invention is not limited in any way. In addition, various measurements were implemented by the following method in an example. In addition, the content of each component described in the examples below is a value obtained by an absolute calibration curve method based on the area value obtained by high performance liquid chromatography (HPLC) measured under the following conditions. The content of group hydrocarbons is a value determined by an internal standard method (internal standard: 1,2-dimethoxyethane) based on area values obtained by gas chromatography (GC) under the following conditions.

(1)HPLC測定条件
装置 :島津製作所製 LC-2010A
カラム:Waters XBridge Shield RP18(3.5μm、4.6mmφ×250mm)
移動相:純水/アセトニトリル(アセトニトリル70%→100%)
流量 :1.0ml/min
カラム温度:40℃
検出波長:UV 254nm
(1) HPLC measurement conditions Apparatus: LC-2010A manufactured by Shimadzu Corporation
Column: Waters XBridge Shield RP18 (3.5 μm, 4.6 mmφ×250 mm)
Mobile phase: pure water/acetonitrile (acetonitrile 70% → 100%)
Flow rate: 1.0ml/min
Column temperature: 40°C
Detection wavelength: UV 254nm

(2)GC測定条件
装置:島津製作所製 GC-2014
カラム:DB-1(0.25μm、0.25mmID×30m)
昇温:40℃(5分保持)→20℃/min→250℃(10分保持)
Inj温度:250℃
Det温度:300℃
スプリット比 1:10
キャリアー:窒素54.4kPa(一定)
(2) GC measurement conditions Device: GC-2014 manufactured by Shimadzu Corporation
Column: DB-1 (0.25 μm, 0.25 mm ID × 30 m)
Temperature rise: 40°C (held for 5 minutes) → 20°C/min → 250°C (held for 10 minutes)
Inj temperature: 250°C
Det temperature: 300°C
Split ratio 1:10
Carrier: Nitrogen 54.4 kPa (constant)

(3)示差走査熱量測定(DSC)による融解吸熱最大温度の測定条件
サンプル5mgをアルミパンに精密に秤取し、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社:DSC7020)を用い、酸化アルミニウムを対照として下記操作条件で測定し、検出された融解吸熱最大温度を融点として下記した。
(操作条件)
昇温速度:10℃/min
測定範囲:30-250℃
雰囲気 :開放、窒素40ml/min
(3) Conditions for measuring maximum melting endothermic temperature by differential scanning calorimetry (DSC) 5 mg of a sample was precisely weighed in an aluminum pan, and aluminum oxide was measured using a differential scanning calorimeter (SII Nanotechnology Co., Ltd.: DSC7020). was measured under the following operating conditions as a control, and the detected maximum melting endothermic temperature was defined as the melting point.
(Operating conditions)
Heating rate: 10°C/min
Measurement range: 30-250℃
Atmosphere: open, nitrogen 40 ml/min

(4)ゆるめ嵩密度の測定条件
ホソカワミクロン社製パウダーテスター PT-X型を使用して、ゆるめ嵩密度を測定した。
(4) Conditions for Measuring Loose Bulk Density Loose bulk density was measured using a powder tester PT-X manufactured by Hosokawa Micron Corporation.

(5)LC-MS測定条件
装置:Waters社製 Xevo G2 Q-Tof
カラム:Waters社製 X SELECT CSH C18(3.5μm、4.6mmφ×150mm)
カラム温度:40℃
検出波長:UV 254nm
移動相:A液=純水、B液=アセトニトリル。なお、B液濃度に付、下記の通り濃度を変化させ分析を行った。
B液濃度:50%(0min)→70%(10min)→70%(18min)→
100%(25min)→100%(35min)
移動相流量:0.8ml/min
検出法:Q-Tof
イオン化法:APCI(-)法
Ion Source:コロナ電流 20.0μA、温度 150℃
Sampling Cone:電圧 30V、ガスフロー 50L/h
Desolvation Gas:温度 600℃、ガスフロー 1200L/h
Mass range:100-1300
(5) LC-MS measurement conditions Apparatus: Xevo G2 Q-Tof manufactured by Waters
Column: X SELECT CSH C18 manufactured by Waters (3.5 μm, 4.6 mmφ×150 mm)
Column temperature: 40°C
Detection wavelength: UV 254nm
Mobile phase: A liquid = pure water, B liquid = acetonitrile. In addition, the analysis was performed by changing the concentration of the liquid B as follows.
B liquid concentration: 50% (0 min) → 70% (10 min) → 70% (18 min) →
100% (25 min) → 100% (35 min)
Mobile phase flow rate: 0.8ml/min
Detection method: Q-Tof
Ionization method: APCI (−) method Ion Source: Corona current 20.0 μA, temperature 150° C.
Sampling Cone: voltage 30V, gas flow 50L/h
Desolvation Gas: temperature 600°C, gas flow 1200L/h
Mass range: 100-1300

<比較例1>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン900g、炭酸カリウム20.4g、エチレンカーボネート361g、トルエン1350g、およびトリエチレングリコールジメチルエーテル90gを仕込み、115℃まで昇温し、同温度で8時間撹拌した。
得られた反応液を90℃まで冷却した後、水1350gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を濃縮することにより溶媒を除去し、濃縮物を得た。得られた濃縮物にトルエン294g、メタノール1128gを添加し晶析溶液を得た。
得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.1℃/分で冷却することにより44℃で結晶を析出させ、同温度で2時間撹拌した。更に20℃まで冷却した後、濾過し結晶を得た。
得られた結晶を内圧1.3kPaの減圧下、内温を68℃~73℃で5時間乾燥することにより、上記式(1)で表されるアルコール化合物860gを得た。得られた上記式(1)で表されるアルコール化合物の各分析値は以下の通りであった。
<Comparative Example 1>
Into a glass reactor equipped with a stirrer, heating cooler, and thermometer, 900 g of 9,9'-bis(4-hydroxy-3-phenylphenyl)fluorene, 20.4 g of potassium carbonate, 361 g of ethylene carbonate, and 1350 g of toluene. , and 90 g of triethylene glycol dimethyl ether were charged, heated to 115° C., and stirred at the same temperature for 8 hours.
After cooling the obtained reaction liquid to 90° C., 1350 g of water was added, and the mixture was stirred at 80 to 85° C. for 30 minutes, allowed to stand, and then the aqueous layer was separated. After repeating the same operation three times, the solvent was removed by concentrating the obtained organic solvent layer to obtain a concentrate. 294 g of toluene and 1128 g of methanol were added to the resulting concentrate to obtain a crystallization solution.
The resulting crystallization solution was heated to 65°C and stirred at the same temperature for 1 hour to completely dissolve the crystals. Stir at temperature for 2 hours. After further cooling to 20° C., it was filtered to obtain crystals.
The obtained crystals were dried at an internal temperature of 68° C. to 73° C. for 5 hours under a reduced internal pressure of 1.3 kPa to obtain 860 g of the alcohol compound represented by the above formula (1). Each analytical value of the obtained alcohol compound represented by the above formula (1) was as follows.

上記式(1)で表されるアルコール化合物の含量:98.20重量%
上記式(2)で表されるアルコール化合物の含量:0.74重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.03重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.253g/cm
Content of the alcohol compound represented by the above formula (1): 98.20% by weight
Content of the alcohol compound represented by the above formula (2): 0.74% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.03% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.253 g/cm 3

<比較例2>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、9,9’-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン)900g、炭酸カリウム20.4g、エチレンカーボネート361g、トルエン1350g、およびトリエチレングリコールジメチルエーテル900gを仕込み、115℃まで昇温し、同温度で13時間撹拌した。
得られた反応液を85℃まで冷却した後、水1350gを加え、80~85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層を一部濃縮し、上記式(1)で表されるアルコール化合物、トルエン及びメチルジグライムを含む溶液を得た。該溶液にトルエン330g、メタノール510gを添加し晶析溶液を得た後、得られた晶析溶液を65℃まで昇温し、同温度で1時間撹拌して結晶を完溶させた後、0.15℃/分で冷却し40℃とした時点で、比較例1で得られた結晶0.1gを種晶として添加した所、結晶が析出した。その後、同温度で1時間撹拌した。撹拌後、更に25℃まで冷却した後、濾過し、結晶を得た。
得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で5時間乾燥することにより、上記式(1)で表されるアルコール化合物801gを得た。得られた上記式(1)で表されるアルコール化合物の各分析値は以下の通りであった。
<Comparative Example 2>
Into a glass reactor equipped with a stirrer, heating cooler, and thermometer, 900 g of 9,9′-bis(4-hydroxy-3-phenylphenyl)fluorene), 20.4 g of potassium carbonate, 361 g of ethylene carbonate, and toluene. 1350 g and 900 g of triethylene glycol dimethyl ether were charged, heated to 115° C., and stirred at the same temperature for 13 hours.
After cooling the resulting reaction solution to 85° C., 1350 g of water was added, and the mixture was stirred at 80 to 85° C. for 30 minutes, allowed to stand, and separated into an aqueous layer. After repeating the same operation three times, the obtained organic solvent layer was partially concentrated to obtain a solution containing the alcohol compound represented by the above formula (1), toluene and methyl diglyme. After adding 330 g of toluene and 510 g of methanol to the solution to obtain a crystallization solution, the resulting crystallization solution was heated to 65° C. and stirred at the same temperature for 1 hour to completely dissolve the crystals. When 0.1 g of the crystals obtained in Comparative Example 1 were added as seed crystals when the temperature was lowered to 40° C. by cooling at 15° C./min, crystals precipitated. After that, the mixture was stirred at the same temperature for 1 hour. After stirring, the mixture was further cooled to 25°C and filtered to obtain crystals.
The obtained crystals were dried under a reduced internal pressure of 1.1 kPa at an internal temperature of 68° C. to 73° C. for 5 hours to obtain 801 g of the alcohol compound represented by the above formula (1). Each analytical value of the obtained alcohol compound represented by the above formula (1) was as follows.

上記式(1)で表されるアルコール化合物の含量:98.40重量%
上記式(2)で表されるアルコール化合物の含量:0.56重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.05重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.290g/cm
Content of the alcohol compound represented by the above formula (1): 98.40% by weight
Content of the alcohol compound represented by the above formula (2): 0.56% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.05% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.290 g/cm 3

<比較例3~6>
反応、水洗、濃縮後、得られた濃縮物に添加するトルエン及びメタノール量を以下表1に示す量に変更した以外は比較例1と同様の操作を行い、上記式(1)で表される化合物を製造した。得られた上記式(1)で表されるアルコール化合物の各分析値は以下表1に示す通りであった。
<Comparative Examples 3 to 6>
After the reaction, washing with water, and concentration, the same operation as in Comparative Example 1 was performed except that the amounts of toluene and methanol added to the resulting concentrate were changed to the amounts shown in Table 1 below. compound was prepared. Each analysis value of the obtained alcohol compound represented by the above formula (1) was as shown in Table 1 below.

Figure 0007146345000006
なお、上記表(1)中、式(3)で表される化合物のピークは検出されなかったため、その含量を0.00%とした。また、融点とはDSC融解吸熱最大温度を表し、いずれの比較例においても165~200℃の範囲に吸熱ピークは存在しなかった。
Figure 0007146345000006
Since no peak of the compound represented by formula (3) was detected in Table (1) above, the content was set to 0.00%. The melting point represents the DSC melting endothermic maximum temperature, and no endothermic peak was present in the range of 165 to 200°C in any of the comparative examples.

<比較例7>
特開2017-141182号実施例1と同様の操作を行い、上記式(1)で表される化合物を製造した。得られた上記式(1)で表されるアルコール化合物の各分析値は以下の通りであった。
<Comparative Example 7>
The same operation as in Example 1 of JP-A-2017-141182 was performed to produce a compound represented by the above formula (1). Each analytical value of the obtained alcohol compound represented by the above formula (1) was as follows.

上記式(1)で表されるアルコール化合物の含量:98.60重量%
上記式(2)で表されるアルコール化合物の含量:0.00重量%(検出せず)
上記式(3)で表されるアルコール化合物の含量:0.19重量%
トルエン含量:0.05重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.260g/cm
Content of the alcohol compound represented by the above formula (1): 98.60% by weight
Content of the alcohol compound represented by the above formula (2): 0.00% by weight (not detected)
Content of the alcohol compound represented by the above formula (3): 0.19% by weight
Toluene content: 0.05% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.260 g/cm 3

<比較例8>
特開2017-141182号実施例2と同様の操作を行い、上記式(1)で表される化合物を製造した。得られた上記式(1)で表されるアルコール化合物の各分析値は以下の通りであった。
<Comparative Example 8>
A compound represented by the above formula (1) was produced in the same manner as in Example 2 of JP-A-2017-141182. Each analytical value of the obtained alcohol compound represented by the above formula (1) was as follows.

上記式(1)で表されるアルコール化合物の含量:98.70重量%
上記式(2)で表されるアルコール化合物の含量:0.00重量%(検出せず)
上記式(3)で表されるアルコール化合物の含量:0.12重量%
トルエン含量:0.03重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.242g/cm
Content of the alcohol compound represented by the above formula (1): 98.70% by weight
Content of the alcohol compound represented by the above formula (2): 0.00% by weight (not detected)
Content of the alcohol compound represented by the above formula (3): 0.12% by weight
Toluene content: 0.03% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.242 g/cm 3

<製造例1 上記式(2)で表されるアルコール化合物の単離、同定>
比較例1~6のろ過操作時に得られたろ液を濃縮することにより濃縮物を得、濃縮物をメチル-tert-ブチルエーテルに溶解した後、PLCプレート(メルク社製シリカゲル60PLCプレート)にて分取することにより上記式(2)で表されるアルコール化合物を単離した。得られた上記式(2)で表されるアルコール化合物は上記した条件にてLC-MS分析をすることにより、上記式(2)で表される構造を有することを確認した。図1にLC-MSチャートを示すと共に、分析結果を下記する。
分析値:545.21([M-H]
<Production Example 1 Isolation and identification of the alcohol compound represented by the above formula (2)>
A concentrate was obtained by concentrating the filtrate obtained during the filtration operation in Comparative Examples 1 to 6, and after dissolving the concentrate in methyl-tert-butyl ether, fractionation was performed using a PLC plate (Merck silica gel 60PLC plate). By doing so, the alcohol compound represented by the above formula (2) was isolated. The obtained alcohol compound represented by the above formula (2) was confirmed to have the structure represented by the above formula (2) by LC-MS analysis under the above conditions. An LC-MS chart is shown in FIG. 1, and the analysis results are described below.
Analysis value: 545.21 ([MH] )

<実施例1>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、比較例1で得られた上記式(1)で表されるアルコール化合物700g、トルエン770g、メタノール770gを加え、65℃まで昇温後、同温度で2時間撹拌することにより上記式(1)で表されるアルコール化合物を溶解させた。その後、0.1℃/分で冷却することにより44℃で結晶を析出させ、同温度で2時間撹拌した。更に20℃まで冷却した後、濾過し結晶を得た。
得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で5時間乾燥することにより、本発明の樹脂原料用組成物641gを得た。得られた樹脂原料用組成物の各分析値は以下の通りであった。
<Example 1>
700 g of the alcohol compound represented by the above formula (1) obtained in Comparative Example 1, 770 g of toluene, and 770 g of methanol were added to a glass reactor equipped with a stirrer, a heating cooler, and a thermometer, and the mixture was heated to 65°C. After the temperature was raised, the alcohol compound represented by the above formula (1) was dissolved by stirring at the same temperature for 2 hours. Thereafter, the mixture was cooled at 0.1°C/min to precipitate crystals at 44°C, and stirred at the same temperature for 2 hours. After further cooling to 20° C., it was filtered to obtain crystals.
The resulting crystals were dried at an internal pressure of 1.1 kPa at an internal temperature of 68° C. to 73° C. for 5 hours to obtain 641 g of the composition for resin raw material of the present invention. Each analysis value of the obtained resin raw material composition was as follows.

上記式(1)で表されるアルコール化合物の含量:98.50重量%
上記式(2)で表されるアルコール化合物の含量:0.31重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.03重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.442g/cm
Content of the alcohol compound represented by the above formula (1): 98.50% by weight
Content of the alcohol compound represented by the above formula (2): 0.31% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.03% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.442 g/cm 3

<実施例2>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、実施例1で得られた樹脂原料用組成物490g、トルエン539g、メタノール539gを加え、65℃まで昇温後、同温度で2時間撹拌することにより樹脂原料用組成物を溶解させた。その後、0.1℃/分で冷却することにより42℃で結晶を析出させ、同温度で2時間撹拌した。更に20℃まで冷却した後、濾過し結晶を得た。
得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で5時間乾燥することにより、本発明の樹脂原料用組成物451gを得た。得られた樹脂原料用組成物の各分析値は以下の通りであった。
<Example 2>
490 g of the resin raw material composition obtained in Example 1, 539 g of toluene, and 539 g of methanol were added to a glass reactor equipped with a stirrer, a heating cooler, and a thermometer. The resin raw material composition was dissolved by stirring for 2 hours at . Thereafter, the mixture was cooled at 0.1°C/min to precipitate crystals at 42°C, and stirred at the same temperature for 2 hours. After further cooling to 20° C., it was filtered to obtain crystals.
The resulting crystals were dried at an internal temperature of 68° C. to 73° C. for 5 hours under a reduced internal pressure of 1.1 kPa to obtain 451 g of the resin raw material composition of the present invention. Each analysis value of the obtained resin raw material composition was as follows.

上記式(1)で表されるアルコール化合物の含量:98.70重量%
上記式(2)で表されるアルコール化合物の含量:0.11重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.04重量%
DSC融解吸熱最大温度:149℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.433g/cm
Content of the alcohol compound represented by the above formula (1): 98.70% by weight
Content of the alcohol compound represented by the above formula (2): 0.11% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.04% by weight
DSC melting endothermic maximum temperature: 149°C (no endothermic peak in the range of 165 to 200°C)
Loose bulk density: 0.433 g/cm 3

<実施例3>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、実施例2で得られた樹脂原料用組成物300g、トルエン330g、メタノール330gを加え、65℃まで昇温後、同温度で2時間撹拌することにより樹脂原料用組成物を溶解させた。その後、0.1℃/分で冷却することにより43℃で結晶を析出させ、同温度で2時間撹拌した。更に20℃まで冷却した後、濾過し結晶を得た。
得られた結晶を内圧1.1kPaの減圧下、内温を68℃~73℃で5時間乾燥することにより、本発明の樹脂原料用組成物272gを得た。得られた上樹脂原料用組成物の各分析値は以下の通りであった。
<Example 3>
300 g of the resin raw material composition obtained in Example 2, 330 g of toluene, and 330 g of methanol were added to a glass reactor equipped with a stirrer, a heating cooler, and a thermometer. The resin raw material composition was dissolved by stirring for 2 hours at . Thereafter, the mixture was cooled at 0.1°C/min to precipitate crystals at 43°C, and stirred at the same temperature for 2 hours. After further cooling to 20° C., it was filtered to obtain crystals.
The obtained crystals were dried at an internal temperature of 68° C. to 73° C. for 5 hours under a reduced internal pressure of 1.1 kPa to obtain 272 g of the resin raw material composition of the present invention. Each analysis value of the obtained composition for upper resin raw material was as follows.

上記式(1)で表されるアルコール化合物の含量:99.10重量%
上記式(2)で表されるアルコール化合物の含量:0.01重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.02重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.490g/cm
Content of the alcohol compound represented by the above formula (1): 99.10% by weight
Content of the alcohol compound represented by the above formula (2): 0.01% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.02% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.490 g/cm 3

<実施例4>
上記式(1)で表されるアルコール化合物を比較例2で得られたものに変更し、その使用量を600gとし、トルエンの使用量を660g、メタノールの使用量を660gとする以外は実施例1と同様に精製操作を行い、本発明の樹脂原料用組成物546gを得た。得られた樹脂原料用組成物の各分析値は以下の通りであった。
<Example 4>
Example except that the alcohol compound represented by the above formula (1) was changed to that obtained in Comparative Example 2, the amount used was 600 g, the amount of toluene used was 660 g, and the amount of methanol used was 660 g. Purification was carried out in the same manner as in 1 to obtain 546 g of the resin raw material composition of the present invention. Each analysis value of the obtained resin raw material composition was as follows.

上記式(1)で表されるアルコール化合物の含量:98.60重量%
上記式(2)で表されるアルコール化合物の含量:0.19重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.03重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.463g/cm
Content of the alcohol compound represented by the above formula (1): 98.60% by weight
Content of the alcohol compound represented by the above formula (2): 0.19% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.03% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.463 g/cm 3

<実施例5>
上記式(1)で表されるアルコール化合物を比較例3で得られたものに変更し、トルエンの使用量を850g、メタノールの使用量を470gとする以外は実施例1と同様に精製操作を行い、本発明の樹脂原料用組成物617gを得た。得られた樹脂原料用組成物の各分析値は以下の通りであった。
<Example 5>
The purification operation was carried out in the same manner as in Example 1 except that the alcohol compound represented by the above formula (1) was changed to that obtained in Comparative Example 3, the amount of toluene used was 850 g, and the amount of methanol used was 470 g. 617 g of the resin raw material composition of the present invention was obtained. Each analysis value of the obtained resin raw material composition was as follows.

上記式(1)で表されるアルコール化合物の含量:98.50重量%
上記式(2)で表されるアルコール化合物の含量:0.37重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.04重量%
DSC融解吸熱最大温度:149℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.424g/cm
Content of the alcohol compound represented by the above formula (1): 98.50% by weight
Content of the alcohol compound represented by the above formula (2): 0.37% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.04% by weight
DSC melting endothermic maximum temperature: 149°C (no endothermic peak in the range of 165 to 200°C)
Loose bulk density: 0.424 g/cm 3

<実施例6>
上記式(1)で表されるアルコール化合物を比較例6で得られたものに変更する以外は実施例5と同様に精製操作を行い、本発明の樹脂原料用組成物613gを得た。得られた樹脂原料用組成物の各分析値は以下の通りであった。
<Example 6>
Except for changing the alcohol compound represented by the above formula (1) to the one obtained in Comparative Example 6, the purification operation was carried out in the same manner as in Example 5 to obtain 613 g of the resin raw material composition of the present invention. Each analysis value of the obtained resin raw material composition was as follows.

上記式(1)で表されるアルコール化合物の含量:98.50重量%
上記式(2)で表されるアルコール化合物の含量:0.41重量%
上記式(3)で表されるアルコール化合物の含量:0.00重量%(検出せず)
トルエン含量:0.04重量%
DSC融解吸熱最大温度:150℃(165~200℃の範囲に吸熱ピークは存在せず)
ゆるめ嵩密度:0.401g/cm
Content of the alcohol compound represented by the above formula (1): 98.50% by weight
Content of the alcohol compound represented by the above formula (2): 0.41% by weight
Content of the alcohol compound represented by the above formula (3): 0.00% by weight (not detected)
Toluene content: 0.04% by weight
DSC melting endothermic maximum temperature: 150°C (there is no endothermic peak in the range of 165-200°C)
Loose bulk density: 0.401 g/cm 3

Claims (4)

以下式(1):
Figure 0007146345000007
で表されるアルコール化合物を85.0~99.9重量%、以下式(2):
Figure 0007146345000008
で表されるアルコール化合物を0.01~0.5重量%含み、
芳香族炭化水素類の含量が1重量%未満であり、示差走査熱量分析による融解吸熱最大温度が148~151℃である、樹脂原料用組成物。
Formula (1) below:
Figure 0007146345000007
85.0 to 99.9% by weight of an alcohol compound represented by the following formula (2):
Figure 0007146345000008
Contains 0.01 to 0.5% by weight of an alcohol compound represented by
A resin raw material composition containing less than 1% by weight of aromatic hydrocarbons and having a maximum melting endothermic temperature of 148 to 151° C. as determined by differential scanning calorimetry.
更に以下式(3):
Figure 0007146345000009
で表されるアルコール化合物の含量が0.1重量%以下である、請求項1に記載の樹脂原料用組成物。
Furthermore, the following formula (3):
Figure 0007146345000009
2. The resin raw material composition according to claim 1, wherein the content of the alcohol compound represented by is 0.1% by weight or less.
ゆるめ嵩密度が0.4g/cm以上である、請求項1又は2に記載の樹脂原料用組成物。 The resin raw material composition according to claim 1 or 2, having a loose bulk density of 0.4 g/cm 3 or more. 以下式(2):
Figure 0007146345000010
で表される嵩密度改善剤。
Formula (2) below:
Figure 0007146345000010
Bulk density improving agent represented by.
JP2018166516A 2018-09-06 2018-09-06 Resin raw material composition containing alcohol compound having fluorene skeleton Active JP7146345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166516A JP7146345B2 (en) 2018-09-06 2018-09-06 Resin raw material composition containing alcohol compound having fluorene skeleton

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166516A JP7146345B2 (en) 2018-09-06 2018-09-06 Resin raw material composition containing alcohol compound having fluorene skeleton

Publications (2)

Publication Number Publication Date
JP2020037546A JP2020037546A (en) 2020-03-12
JP7146345B2 true JP7146345B2 (en) 2022-10-04

Family

ID=69737501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166516A Active JP7146345B2 (en) 2018-09-06 2018-09-06 Resin raw material composition containing alcohol compound having fluorene skeleton

Country Status (1)

Country Link
JP (1) JP7146345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353225B2 (en) 2020-03-19 2023-09-29 三菱電機株式会社 Semiconductor equipment and energy harvesting systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051114A1 (en) 2012-09-28 2014-04-03 三菱化学株式会社 Polycarbonate resin and transparent film comprising same
CN104263287A (en) 2014-09-19 2015-01-07 华烁科技股份有限公司 High heat-resistant low-fluidity adhesive for rigid-flexible printed circuit board, adhesive film and preparation method of high heat-resistant low-fluidity adhesive
WO2017078074A1 (en) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 Method of producing thermoplastic resin
JP2017210471A (en) 2016-05-19 2017-11-30 田岡化学工業株式会社 Method for producing alcohol compound having fluorene skeleton
JP2018028036A (en) 2016-08-19 2018-02-22 大阪瓦斯株式会社 Polyester resin and method for producing the same and use therefor
JP2018076238A (en) 2016-11-07 2018-05-17 田岡化学工業株式会社 Composition for resin raw material containing fluorene skeleton and method for producing same
JP2018104353A (en) 2016-12-27 2018-07-05 本州化学工業株式会社 Granular powder of fluorene compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051114A1 (en) 2012-09-28 2014-04-03 三菱化学株式会社 Polycarbonate resin and transparent film comprising same
CN104263287A (en) 2014-09-19 2015-01-07 华烁科技股份有限公司 High heat-resistant low-fluidity adhesive for rigid-flexible printed circuit board, adhesive film and preparation method of high heat-resistant low-fluidity adhesive
WO2017078074A1 (en) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 Method of producing thermoplastic resin
JP2017210471A (en) 2016-05-19 2017-11-30 田岡化学工業株式会社 Method for producing alcohol compound having fluorene skeleton
JP2018028036A (en) 2016-08-19 2018-02-22 大阪瓦斯株式会社 Polyester resin and method for producing the same and use therefor
JP2018076238A (en) 2016-11-07 2018-05-17 田岡化学工業株式会社 Composition for resin raw material containing fluorene skeleton and method for producing same
JP2018104353A (en) 2016-12-27 2018-07-05 本州化学工業株式会社 Granular powder of fluorene compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353225B2 (en) 2020-03-19 2023-09-29 三菱電機株式会社 Semiconductor equipment and energy harvesting systems

Also Published As

Publication number Publication date
JP2020037546A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6739136B2 (en) Crystal of alcohol having fluorene skeleton and method for producing the same
EP3805195B1 (en) Crystal of 2,2&#39;-bis(carboxymethoxy)-1,1&#39;-binaphthyl
JP6739137B2 (en) Crystal of alcohol having fluorene skeleton and method for producing the same
JP7146345B2 (en) Resin raw material composition containing alcohol compound having fluorene skeleton
JP6830304B2 (en) Method for Purifying Dihydroxy Compound with Fluorene Skeleton
JP6931984B2 (en) Crystals of alcohol compounds having a fluorene skeleton and methods for producing them
JP6241977B2 (en) Method for producing alcohol compound having fluorene skeleton
JP6537388B2 (en) Inclusion compound using alcohols having a fluorene skeleton
JP6994299B2 (en) A method for purifying a dihydroxy compound having a fluorene skeleton
Parent et al. Ritonavir Form III: Lightning strikes twice at the same time, 137 miles apart
JP2022061763A (en) Novel polythiol compound
JP7358696B2 (en) Crystalline mixture of bisfluorene compounds
JP5545514B2 (en) Purification method of liquid crystal material
JP6351074B2 (en) Amorphous form of binaphthalene derivative and method for producing the same
JP2019108408A (en) Crystal of alcohol compound having fluorene skeleton and method for producing the same
JP7125156B2 (en) Crystal of benzindene prostaglandin intermediate and method for producing the same
KR102025962B1 (en) 4-(3-benzyloxyphenylthio)-2-chloro-1-(3-nitropropyl)benzene crystal
JP2020158401A (en) Method for producing crystal of diol compound having fluorene skeleton
JP2023069294A (en) Dihydroxy compound having fluorene skeleton
BRPI0607761A2 (en) Method to minimize aldehyde-based impurities in a process stream
JP2021116250A (en) Crystal of bisnaphthol having fluorene skeleton
JP2020075866A (en) Bisphenol compound having fluorene skeleton
JP2007119362A (en) Method for producing n-vinylcarbazole compounds and n-vinylcarbazole compounds
JPH0515698B2 (en)
JP2004144518A (en) Separation/determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7146345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150