JP6739137B2 - Crystal of alcohol having fluorene skeleton and method for producing the same - Google Patents

Crystal of alcohol having fluorene skeleton and method for producing the same Download PDF

Info

Publication number
JP6739137B2
JP6739137B2 JP2016132178A JP2016132178A JP6739137B2 JP 6739137 B2 JP6739137 B2 JP 6739137B2 JP 2016132178 A JP2016132178 A JP 2016132178A JP 2016132178 A JP2016132178 A JP 2016132178A JP 6739137 B2 JP6739137 B2 JP 6739137B2
Authority
JP
Japan
Prior art keywords
fluorene skeleton
skeleton represented
alcohol
crystal
above formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132178A
Other languages
Japanese (ja)
Other versions
JP2017200901A (en
Inventor
弘行 加藤
弘行 加藤
崇史 佐伯
崇史 佐伯
侑加 森永
侑加 森永
有児 西田
有児 西田
克宏 藤井
克宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57833962&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6739137(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Publication of JP2017200901A publication Critical patent/JP2017200901A/en
Application granted granted Critical
Publication of JP6739137B2 publication Critical patent/JP6739137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Description

本発明は、光学レンズや光学フィルムに代表される光学部材を構成する樹脂(光学樹脂)を形成するモノマーとして好適で、加工性、生産性に優れた新規なフルオレン骨格を有するアルコールの結晶およびその製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention is suitable as a monomer for forming a resin (optical resin) that constitutes an optical member represented by an optical lens and an optical film, and has a novel fluorene skeleton crystal having excellent processability and productivity, and a crystal thereof. It relates to a manufacturing method.

フルオレン骨格を有するアルコールを原料モノマーとするポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料は、光学特性、耐熱性等に優れることから、近年、光学レンズや光学シートなどの新たな光学材料として注目されている。この中でも以下式(1) Resin materials such as polycarbonate, polyester, polyacrylate, polyurethane, and epoxy, which use alcohol having a fluorene skeleton as a raw material monomer, are excellent in optical characteristics and heat resistance, so in recent years, new optical materials such as optical lenses and optical sheets have been developed. Has been attracting attention as. Among these, the following formula (1)

Figure 0006739137
で表される構造を有する、フェニル基及びフルオレン骨格を有するアルコール及び該アルコール類から製造される樹脂は屈折率等の光学特性、耐熱性、耐水性、耐薬品性、電気特性、機械特性、溶解性等の諸特性に優れるとして着目されている(例えば特許文献1〜4)。
Figure 0006739137
Alcohols having a phenyl group and a fluorene skeleton having a structure represented by and resins produced from the alcohols have optical properties such as refractive index, heat resistance, water resistance, chemical resistance, electrical properties, mechanical properties, and dissolution properties. Attention has been paid to the fact that it is excellent in various properties such as properties (for example, Patent Documents 1 to 4).

上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法としては、塩基触媒存在下、以下式(2) As a method for producing an alcohol having a fluorene skeleton represented by the above formula (1), the following formula (2) is used in the presence of a base catalyst.

Figure 0006739137
で表されるフルオレン骨格を有するフェノール化合物とエチレンオキサイドとを反応させる方法が知られている(特許文献2)。しかしながら、本方法で得られる上記式(1)で表されるフルオレン骨格を有するアルコールはその純度が低く、エチレンオキサイドが3、4分子と付加した化合物が多量に副生し、上記式(1)で表されるフルオレン骨格を有するアルコールを高純度で得ることは困難である。
Figure 0006739137
A method of reacting a phenol compound having a fluorene skeleton represented by and ethylene oxide is known (Patent Document 2). However, the alcohol having a fluorene skeleton represented by the above formula (1) obtained by the present method has a low purity, and a large amount of a compound obtained by adding 3 or 4 molecules of ethylene oxide to the byproduct is represented by the above formula (1). It is difficult to obtain an alcohol having a fluorene skeleton represented by

一方、特許文献2記載の方法を改善する方法として、酸触媒及びチオール類存在下、以下式(3) On the other hand, as a method for improving the method described in Patent Document 2, the following formula (3) is used in the presence of an acid catalyst and thiols.

Figure 0006739137
で表されるアルコール類と9−フルオレノンとを反応させ上記式(1)で表されるフルオレン骨格を有するアルコールを得る方法が提案されている(特許文献3、4)。しかしながら、特許文献3記載の方法により上記式(1)で表されるフルオレン骨格を有するアルコールを製造すると、光学用途等、用途によっては特に敬遠されるような着色があり、更に該着色は精製操作を施しても除去ができないといった趣旨の記載が特許文献4に為されている。
Figure 0006739137
There has been proposed a method of reacting an alcohol represented by the formula (9) with 9-fluorenone to obtain an alcohol having a fluorene skeleton represented by the formula (1) (Patent Documents 3 and 4). However, when an alcohol having a fluorene skeleton represented by the above formula (1) is produced by the method described in Patent Document 3, there is coloring that is particularly shunned depending on the application such as optical applications, and the coloring is a purification operation. Patent Document 4 describes that it cannot be removed even by applying.

また、特許文献4には特許文献2及び3に記載された製造方法の改善を目的として、酸触媒及び9―フルオレノン類100重量部に対して3重量部以上のチオール類存在下、上記式(3)で表されるアルコール類と9―フルオレノンを反応させ上記式(1)で表されるフルオレン骨格を有するアルコールを得る方法が提案されている。しかしながら、該方法で得られる上記式(1)で表されるフルオレン骨格を有するアルコールは特許文献3の方法で得られるものよりも着色は少ないものの、その着色改善は十分ではない。また、反応時に多量のチオール類を必要とすることから、上記式(1)で表されるフルオレン骨格を有するアルコールからチオール類を完全に除去することが困難であり、該アルコールを樹脂原料として使用する際、チオール類に由来する硫黄分が樹脂の更なる着色を引き起こすといった問題がある。 Further, in Patent Document 4, for the purpose of improving the production methods described in Patent Documents 2 and 3, in the presence of an acid catalyst and 3 parts by weight or more of thiols with respect to 100 parts by weight of 9-fluorenones, the above formula ( A method has been proposed in which an alcohol represented by 3) is reacted with 9-fluorenone to obtain an alcohol having a fluorene skeleton represented by the above formula (1). However, although the alcohol having a fluorene skeleton represented by the above formula (1) obtained by this method is less colored than that obtained by the method of Patent Document 3, the improvement in coloring is not sufficient. Further, since a large amount of thiols is required during the reaction, it is difficult to completely remove the thiols from the alcohol having the fluorene skeleton represented by the above formula (1), and the alcohol is used as a resin raw material. In doing so, there is a problem that the sulfur content derived from the thiols causes further coloring of the resin.

更に、本願発明者らが上記特許文献2〜4に記載される方法を追試したところ、特許文献3記載の方法では反応が進行しないか、あるいは反応が進行したとしても、上記式(1)で表されるフルオレン骨格を有するアルコールを含むオイル状物が得られるのみで結晶状の上記式(1)で表されるフルオレン骨格を有するアルコールは得られなかった。一方、特許文献2及び4の追試では、結晶状の上記式(1)で表されるフルオレン骨格を有するアルコールが得られるものの、反応や反応後の取り出し操作(晶析操作)で使用した溶媒(芳香族炭化水素類)が上記式(1)で表されるフルオレン骨格を有するアルコールに包接され、包接体となることが判明した。 Furthermore, when the inventors of the present application additionally tried the methods described in Patent Documents 2 to 4, the reaction did not proceed with the method described in Patent Document 3, or even if the reaction proceeded, according to the above formula (1), Only an oily substance containing the alcohol having the fluorene skeleton represented was obtained, but the crystalline alcohol having the fluorene skeleton represented by the above formula (1) was not obtained. On the other hand, in the additional tests of Patent Documents 2 and 4, although the crystalline alcohol having the fluorene skeleton represented by the above formula (1) is obtained, the solvent (the crystallization operation) used in the reaction or the extraction operation (crystallization operation) after the reaction ( It has been found that the (aromatic hydrocarbons) are clathrated with the alcohol having the fluorene skeleton represented by the above formula (1) to form a clathrate.

特開平07―149881号公報Japanese Patent Laid-Open No. 07-149881 特開2001−122828号公報JP 2001-122828 A 特開2001−206863号公報JP, 2001-206863, A 特開2009−256342号公報JP, 2009-256342, A

本発明の目的は、高純度かつ着色が少なく、更には包接体ではない、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を提供することにある。 An object of the present invention is to provide an alcohol crystal having a fluorene skeleton represented by the above formula (1), which has high purity and little coloration, and is not an inclusion body.

本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、炭素数が4以上の鎖状ケトン類存在下、上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得た後、前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製し、該晶析溶液から特定温度範囲で結晶を析出させ、析出した結晶を分離することにより、高純度・低着色、かつ包接体でない、上記式(1)で表されるフルオレン骨格を有するアルコールが提供可能であることを見出した。具体的には以下の発明を含む。 As a result of intensive studies to solve the above problems, the present inventors have found that a phenol compound having a fluorene skeleton represented by the above formula (2) and ethylene in the presence of a chain ketone having 4 or more carbon atoms. After reacting with a carbonate to obtain a reaction solution containing an alcohol having a fluorene skeleton represented by the above formula (1), the reaction solution contains a chain ketone having 4 or more carbon atoms and has an aroma. By preparing a crystallization solution in which the total content of group hydrocarbons and cyclic ketones is less than 10% by weight, precipitating crystals from the crystallization solution in a specific temperature range, and separating the precipitated crystals, It has been found that it is possible to provide an alcohol having a fluorene skeleton represented by the above formula (1), which is pure and low in color, and is not an inclusion body. Specifically, the following inventions are included.

[1]
示差走査熱量分析による融解吸熱最大温度が173〜176℃である、以下式(1)

Figure 0006739137
で表されるフルオレン骨格を有するアルコールの結晶。 [1]
The maximum melting endothermic temperature by differential scanning calorimetry is 173 to 176° C., which is expressed by the following formula (1).
Figure 0006739137
An alcohol crystal having a fluorene skeleton represented by.

[2]
Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=7.7±0.2°、17.2±0.2°、18.3±0.2°、19.6±0.2°、20.8±0.2°および21.4±0.2°にピークを有する、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[2]
In the powder X-ray diffraction pattern by Cu-Kα ray, the diffraction angles 2θ=7.7±0.2°, 17.2±0.2°, 18.3±0.2°, 19.6±0.2. A crystal of an alcohol having a fluorene skeleton represented by the above formula (1), which has peaks at 2° ± 20.8 ± 0.2° and 21.4 ± 0.2°.

[3]
示差走査熱量分析による融解吸熱最大温度が190〜196℃である、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[3]
A crystal of an alcohol having a fluorene skeleton represented by the above formula (1), which has a melting endothermic maximum temperature of 190 to 196° C. by differential scanning calorimetry.

[4]
Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=14.9±0.2°、17.8±0.2°、18.9±0.2°、19.7±0.2°、20.0±0.2°および21.0±0.2°にピークを有する、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[4]
In the powder X-ray diffraction pattern by Cu-Kα ray, the diffraction angles 2θ=14.9±0.2°, 17.8±0.2°, 18.9±0.2°, 19.7±0.2. A crystal of an alcohol having a fluorene skeleton represented by the above formula (1), which has peaks at 2° ± 20.0 ± 0.2° and 21.0 ± 0.2°.

[5]
示差走査熱量分析による融解吸熱最大温度が167〜170℃である、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[5]
A crystal of an alcohol having a fluorene skeleton represented by the above formula (1), which has a melting endothermic maximum temperature of 167 to 170° C. by differential scanning calorimetry.

[6]
Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=9.8±0.2°、14.9±0.2°、17.6±0.2°、18.8±0.2°、19.4±0.2°、20.0±0.2および20.6±0.2°にピークを有する、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[6]
In the powder X-ray diffraction pattern by Cu-Kα ray, the diffraction angles 2θ=9.8±0.2°, 14.9±0.2°, 17.6±0.2°, 18.8±0.2. A crystal of an alcohol having a fluorene skeleton represented by the above formula (1), which has peaks at °, 19.4 ± 0.2°, 20.0 ± 0.2 and 20.6 ± 0.2°.

[7]
示差走査熱量分析により得られる吸熱ピークを167〜176℃の範囲に少なくとも一つ有する、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[7]
A crystal of an alcohol having a fluorene skeleton represented by the above formula (1), which has at least one endothermic peak obtained by differential scanning calorimetry in the range of 167 to 176°C.

[8]
包接体ではない、[1]〜[7]いずれかに記載の上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[8]
A crystal of an alcohol having a fluorene skeleton represented by the above formula (1) according to any of [1] to [7], which is not an inclusion body.

[9]
上記式(1)で表されるフルオレン骨格を有するアルコール12gを、純度99重量%以上のN,N−ジメチルホルムアミド30mLに溶解させた溶液の黄色度(YI値)が10以下となる、[1]〜[8]いずれかに記載の、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[9]
12 g of alcohol having a fluorene skeleton represented by the above formula (1) is dissolved in 30 mL of N,N-dimethylformamide having a purity of 99% by weight or more to obtain a yellowness index (YI value) of 10 or less, [1 ] The crystal|crystallization of the alcohol which has a fluorene skeleton represented by said Formula (1) in any one of [8].

[10]
芳香族炭化水素類の含量が1重量%以下である、[1]〜[9]いずれかに記載の、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
[10]
A crystal of an alcohol having a fluorene skeleton represented by the above formula (1) according to any one of [1] to [9], which has an aromatic hydrocarbon content of 1% by weight or less.

[11]
以下(a)〜(c)の工程をこの順で含む、[1]又は[2]の上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法。
(a)
炭素数が4以上の鎖状ケトン類存在下、下記式(2)

Figure 0006739137
で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
(b)
前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程。
(c)
前記晶析溶液から75〜85℃で結晶を析出させ、析出した結晶を分離する工程。 [11]
A method for producing an alcohol having a fluorene skeleton represented by the above formula (1) of [1] or [2], which includes the following steps (a) to (c) in this order.
(A)
In the presence of a chain ketone having 4 or more carbon atoms, the following formula (2)
Figure 0006739137
A step of reacting a phenol compound having a fluorene skeleton represented by and ethylene carbonate to obtain a reaction liquid containing an alcohol having a fluorene skeleton represented by the above formula (1).
(B)
A step of preparing a crystallization solution containing a chain ketone having 4 or more carbon atoms and a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight from the reaction solution.
(C)
A step of precipitating crystals from the crystallization solution at 75 to 85° C. and separating the precipitated crystals.

[12]
以下(d)〜(f)の工程をこの順で含む、[3]又は[4]記載の上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法。
(d)
炭素数が4以上の鎖状ケトン類存在下、上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
(e)
前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程。
(f)
前記晶析溶液から90〜100℃で結晶を析出させ、析出した結晶を分離する工程。
[12]
A method for producing an alcohol having a fluorene skeleton represented by the above formula (1) according to [3] or [4], which includes the following steps (d) to (f) in this order.
(D)
An alcohol having a fluorene skeleton represented by the above formula (1) by reacting a phenol compound having the fluorene skeleton represented by the above formula (2) with ethylene carbonate in the presence of a chain ketone having 4 or more carbon atoms. Obtaining a reaction solution containing.
(E)
A step of preparing a crystallization solution containing a chain ketone having 4 or more carbon atoms and a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight from the reaction solution.
(F)
A step of precipitating crystals from the crystallization solution at 90 to 100° C. and separating the precipitated crystals.

[13]
以下(g)〜(i)の工程をこの順で含む、[5]又は[6]記載の上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法。
(g)
炭素数が4以上の鎖状ケトン類存在下、上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
(h)
前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程。
(i)
前記晶析溶液から70℃以下で結晶を析出させ、析出した結晶を分離する工程。
[13]
A method for producing an alcohol having a fluorene skeleton represented by the above formula (1) described in [5] or [6], which comprises the following steps (g) to (i) in this order.
(G)
An alcohol having a fluorene skeleton represented by the above formula (1) by reacting a phenol compound having the fluorene skeleton represented by the above formula (2) with ethylene carbonate in the presence of a chain ketone having 4 or more carbon atoms. Obtaining a reaction solution containing.
(H)
A step of preparing a crystallization solution containing a chain ketone having 4 or more carbon atoms and a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight from the reaction solution.
(I)
A step of precipitating crystals from the crystallization solution at 70° C. or lower and separating the precipitated crystals.

本発明によれば、高純度かつ着色が少なく、更には、包接体ではない、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶が提供可能となる。 According to the present invention, it is possible to provide an alcohol crystal having a fluorene skeleton represented by the above formula (1), which is not a clathrate and has high purity and little coloration.

特に上記式(1)で表されるフルオレン骨格を有するアルコールの結晶が包接体である場合、該包接体にアクリル酸等を反応させ他の化合物とする際、包接体が包接している化合物(以下、ゲスト分子と称することもある)が反応を阻害し、反応によっては使用できないといった問題があり、また、そのまま溶融等し樹脂原料として使用する際も、溶融中に発生するゲスト分子に由来する蒸気を系外へと除去する必要があったり、ゲスト分子の影響で、得られる樹脂の品質が一定とならないといった問題を引き起こすことがある。更には、引火点の低いゲスト分子(前記引例の場合、芳香族炭化水素類)を包接し得ることから、上記式(1)で表されるフルオレン骨格を有するアルコールを保管したり輸送したりする際、火災が起こりやすくなるといった防災上の懸念も存在する。 In particular, when the alcohol crystal having a fluorene skeleton represented by the above formula (1) is an inclusion complex, when the inclusion complex is reacted with acrylic acid or the like to form another compound, the inclusion complex is included. There is a problem that existing compounds (hereinafter sometimes referred to as guest molecules) interfere with the reaction and cannot be used depending on the reaction. Also, when used as a resin raw material by melting as it is, guest molecules generated during melting In some cases, it may be necessary to remove the vapor derived from the outside of the system, and due to the effect of guest molecules, the quality of the obtained resin may not be constant. Furthermore, since a guest molecule having a low flash point (in the case of the above-mentioned reference, aromatic hydrocarbons) can be included, the alcohol having the fluorene skeleton represented by the above formula (1) is stored or transported. At the same time, there are also concerns about disaster prevention, such as fires.

しかしながら、前述の通り、公知の方法に基づき上記式(1)で表されるフルオレン骨格を有するアルコールを結晶として得ようとした場合、ゲスト分子を包接した包接体として得られ、包接体でない上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を得る方法は知られていなかった。一方で、包接体に含まれるゲスト分子は、ゲスト分子の沸点以上の温度で結晶を乾燥させるといった、一般的に実施される方法により除去することは困難であり、一旦結晶を融点以上に加熱し溶融させた後にゲスト分子を除去する等、工業的実施が困難、あるいは非常にコストのかかる方法に依らなければならないので、包接体でない上記式(1)で表されるフルオレン骨格を有するアルコールの結晶及びその製造方法を見出した本発明は、特に工業的規模で上記式(1)で表されるフルオレン骨格を有するアルコールの結晶を製造、使用するに当たり、非常に意義があるものであると言える。 However, as described above, when an alcohol having a fluorene skeleton represented by the above formula (1) is to be obtained as a crystal based on a known method, it is obtained as a clathrate in which guest molecules are clathrated, and the clathrate is included. No method for obtaining an alcohol crystal having a fluorene skeleton represented by the above formula (1) was known. On the other hand, the guest molecule contained in the clathrate is difficult to remove by a generally practiced method such as drying the crystal at a temperature not lower than the boiling point of the guest molecule. Since it has to be subjected to a method that is difficult or very costly to carry out industrially, such as removing guest molecules after melting, an alcohol having a fluorene skeleton represented by the above formula (1) which is not an inclusion body The present invention, which has found the above-mentioned crystal and a method for producing the same, is extremely significant in producing and using an alcohol crystal having a fluorene skeleton represented by the above formula (1) on an industrial scale. I can say.

実施例1で得られた結晶(結晶B)の示差走査熱量測定(DSC)曲線を示す図である。FIG. 3 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal (crystal B) obtained in Example 1. 実施例2で得られた結晶(結晶C)の示差走査熱量測定(DSC)曲線を示す図である。5 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal (crystal C) obtained in Example 2. FIG. 比較例1で得られた結晶(結晶A)の示差走査熱量測定(DSC)曲線を示す図である。FIG. 6 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal (crystal A) obtained in Comparative Example 1. 実施例1で得られた結晶(結晶B)の粉末X線回折パターンを示す図である。FIG. 3 is a view showing a powder X-ray diffraction pattern of the crystal (crystal B) obtained in Example 1. 実施例2で得られた結晶(結晶C)の粉末X線回折パターンを示す図である。5 is a view showing a powder X-ray diffraction pattern of the crystal (crystal C) obtained in Example 2. FIG. 比較例1で得られた結晶(結晶A)の粉末X線回折パターンを示す図である。FIG. 3 is a diagram showing a powder X-ray diffraction pattern of a crystal (crystal A) obtained in Comparative Example 1. 比較例1で得られた結晶(結晶A)のTG−DTAチャート図である。7 is a TG-DTA chart diagram of the crystal (crystal A) obtained in Comparative Example 1. FIG. 比較例2で得られた結晶のTG−DTAチャート図である。7 is a TG-DTA chart diagram of the crystal obtained in Comparative Example 2. FIG. 実施例4で得られた結晶(結晶D)の示差走査熱量測定(DSC)曲線を示す図である。5 is a diagram showing a differential scanning calorimetry (DSC) curve of the crystal (crystal D) obtained in Example 4. FIG. 実施例4で得られた結晶(結晶D)の粉末X線回折パターンを示す図である。5 is a view showing a powder X-ray diffraction pattern of the crystal (crystal D) obtained in Example 4. FIG.

<上記式(1)で表されるフルオレン骨格を有するアルコールの結晶>
本発明の上記式(1)で表されるフルオレン骨格を有するアルコールの結晶(以下本発明の結晶と称することもある)は、示差走査熱量分析(DSC)による融解吸熱最大温度、および粉末X線回折パターンにおける回折角2θの少なくとも1つの特徴を有する。
<Crystal of alcohol having fluorene skeleton represented by the above formula (1)>
The alcohol crystal having a fluorene skeleton represented by the above formula (1) of the present invention (hereinafter sometimes referred to as the crystal of the present invention) has a melting endothermic maximum temperature by differential scanning calorimetry (DSC), and a powder X-ray. It has at least one characteristic of the diffraction angle 2θ in the diffraction pattern.

本発明の結晶は、示差走査熱量分析による融解吸熱最大温度によって3種類の結晶に区別され得る。具体的には、該融解吸熱最大温度が173〜176℃であるもの(以下、結晶Bと称することがある。)、190〜196℃であるもの(以下、結晶Cと称することがある。)及び、167〜170℃であるもの(以下、結晶Dと称することがある。)である。なお、公知の、上記式(1)で表されるフルオレン骨格を有するアルコールの包接体(ゲスト分子として芳香族炭化水素類を包接した包接体。以下、結晶Aと称することもある)の示差走査熱量分析による融解吸熱最大温度は125〜147℃である。 The crystal of the present invention can be classified into three kinds of crystals by the melting endothermic maximum temperature by differential scanning calorimetry. Specifically, the melting endothermic maximum temperature is 173 to 176° C. (hereinafter, may be referred to as crystal B), and the melting endothermic maximum temperature is 190 to 196° C. (hereinafter, may be referred to as crystal C). And 167 to 170° C. (hereinafter sometimes referred to as crystal D). Incidentally, a well-known clathrate of an alcohol having a fluorene skeleton represented by the above formula (1) (a clathrate in which an aromatic hydrocarbon is clathrated as a guest molecule; hereinafter, also referred to as a crystal A) The maximum temperature of melting endotherm by differential scanning calorimetry is 125 to 147°C.

また、結晶B及びDの混合結晶が得られる場合があり、該混合結晶は示差走査熱量分析により得られる吸熱ピークを167〜176℃の範囲に少なくとも一つ有する。なお、結晶B及びDの混合結晶であっても高純度かつ着色が少なく、更には包接体でないといった、下記する本発明の結晶の特徴と同じ特徴を有する結晶となる。 In some cases, a mixed crystal of crystals B and D may be obtained, and the mixed crystal has at least one endothermic peak obtained by differential scanning calorimetry in the range of 167 to 176°C. It should be noted that even a mixed crystal of the crystals B and D is a crystal having the same characteristics as those of the crystal of the present invention described below, such as high purity and little coloration, and further that it is not an inclusion body.

本発明における示差走査熱量分析による融解吸熱最大温度とは、後述する条件にて示差走査熱量分析を実施した際、最大吸熱ピークが観測される温度のことをいう。なお、本発明の結晶が示す融解吸熱最大温度は、いくつかの要因により、上下に変動することがある。このような偏差に関与する要因としては、分析を実施する際の試料の加熱速度、試料量、使用される校正標準、機器の校正方法、分析環境の相対湿度および試料の化学的純度がある。与えられた試料について観察される融解吸熱最大温度は、装置毎に異なることがあるが、一般に、装置が適正に校正されていれば、本願に定義される範囲内となる。 The melting endothermic maximum temperature by differential scanning calorimetry in the present invention means the temperature at which the maximum endothermic peak is observed when the differential scanning calorimetric analysis is carried out under the conditions described later. The maximum temperature of melting endotherm exhibited by the crystal of the present invention may fluctuate up and down due to several factors. Factors responsible for such deviations include the heating rate of the sample when performing the analysis, the sample volume, the calibration standard used, the instrument calibration method, the relative humidity of the analytical environment and the chemical purity of the sample. The maximum melting endothermic temperature observed for a given sample may vary from device to device, but is generally within the range defined in this application if the device is properly calibrated.

本発明の結晶の内、結晶Bは、Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=7.7±0.2°、17.2±0.2°、18.3±0.2°、19.6±0.2°、20.8±0.2°および21.4±0.2°に特徴的なピークを有する。結晶Cは、回折角2θ=14.9±0.2°、17.8±0.2°、18.9±0.2°、19.7±0.2°、20.0±0.2°および21.0±0.2°に特徴的なピークを有する。結晶Dは、回折角2θ=9.8±0.2°、14.9±0.2°、17.6±0.2°、18.8±0.2°、19.4±0.2°、20.0±0.2および20.6±0.2°に特徴的なピークを有する。一方、公知の結晶Aは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的なピークを有する。 Among the crystals of the present invention, crystal B has a diffraction angle 2θ of 7.7±0.2°, 17.2±0.2°, 18.3±0 in a powder X-ray diffraction pattern by Cu-Kα ray. It has characteristic peaks at .2°, 19.6±0.2°, 20.8±0.2° and 21.4±0.2°. Crystal C has diffraction angles 2θ=14.9±0.2°, 17.8±0.2°, 18.9±0.2°, 19.7±0.2°, 20.0±0. It has characteristic peaks at 2° and 21.0±0.2°. Crystal D has diffraction angles 2θ=9.8±0.2°, 14.9±0.2°, 17.6±0.2°, 18.8±0.2°, 19.4±0. It has characteristic peaks at 2°, 20.0±0.2 and 20.6±0.2°. On the other hand, in the known crystal A, the diffraction angles 2θ=7.6±0.2°, 15.6±0.2°, 16.4±0.2°, 18.7±0.2°, 19. It has characteristic peaks at 0±0.2°, 20.5±0.2° and 23.6±0.2°.

本発明の結晶の純度は、後述する方法により決定されるHPLC純度が通常90%以上、好ましくは95%以上、より好ましくは98%以上である。また、結晶Bの嵩密度は0.2〜0.5g/cm、結晶Cの嵩密度は0.6〜0.8g/cm、結晶Dの嵩密度は0.4〜0.6g/cmである。一方、公知の結晶Aの嵩密度は0.2〜0.4g/cmである。このように、本発明の結晶の中でも結晶Cは、公知の結晶Aに対し1.5〜4倍もの嵩密度の改善がみられることから、本発明の結晶の中でも結晶Cは、該結晶の製造時は勿論、輸送・保管・使用時においても大幅な容積効率の改善が可能となる。嵩密度は例えば、パウダーテスターと呼ばれる粉体特性評価装置を用いて測定したり、メスシリンダー中に本発明の結晶の結晶を入れ、所定体積を入れた際の重量から算出することで測定することができる。 The purity of the crystal of the present invention is usually 90% or higher, preferably 95% or higher, more preferably 98% or higher, as determined by the method described below. The bulk density of the crystal B is 0.2-0.5 g / cm 3, the bulk density of the crystal C is 0.6~0.8g / cm 3, the bulk density of the crystal D is 0.4 to 0.6 g / It is cm 3 . On the other hand, the known crystal A has a bulk density of 0.2 to 0.4 g/cm 3 . As described above, among the crystals of the present invention, since the crystal C has an improvement in bulk density of 1.5 to 4 times that of the known crystal A, the crystal C among the crystals of the present invention is Not only during manufacturing, but also during transportation, storage, and use, it is possible to significantly improve volumetric efficiency. The bulk density is measured, for example, by using a powder property evaluation device called a powder tester, or by inserting the crystal of the crystal of the present invention into a graduated cylinder and calculating it from the weight when a predetermined volume is put. You can

また、本発明の結晶は後述する方法で測定するYI値が通常10以下、好ましくは7以下となる。一方、公知の結晶Aは通常30以上となる。そのため、本発明の結晶は、特に光学用途等、着色が問題となり得る分野で好適に用いることができる。 The YI value of the crystal of the present invention measured by the method described later is usually 10 or less, preferably 7 or less. On the other hand, the known crystal A is usually 30 or more. Therefore, the crystal of the present invention can be preferably used in a field where coloring may be a problem, particularly in optical applications.

更に本発明の結晶は包接体でない(ゲスト分子を包接していない)という特徴を有することができる。従って、公知の、結晶A中の芳香族炭化水素類の含量は3〜6重量%であるのに対し、本発明の結晶に含まれる芳香族炭化水素類の含量は通常1重量%以下、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下とすることができる。また、他の有機化合物を包接していないので、101.3kPaにおける沸点が150℃以下の有機溶媒の含有量を通常1重量%以下、好ましくは0.5重量%以下、更に好ましくは0.1重量%以下とすることも可能である。そのため、上記式(1)で表されるフルオレン骨格を有するアルコールを保管したり輸送したりする際、火災が起こりやすくなるといった防災上の懸念を低減させることが可能であることから、ポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料として好適に用いられることは勿論のこと、包接されているゲスト分子が問題となる分野、例えば医農薬用の原料(中間体)としても好適に用いることができる。 Further, the crystal of the present invention can have a characteristic that it is not an inclusion body (does not include a guest molecule). Therefore, the known content of aromatic hydrocarbons in the crystal A is 3 to 6% by weight, whereas the content of aromatic hydrocarbons contained in the crystals of the present invention is usually 1% by weight or less, preferably Can be 0.5% by weight or less, more preferably 0.1% by weight or less. Moreover, since it does not include other organic compounds, the content of the organic solvent having a boiling point of 150° C. at 101.3 kPa is usually 1% by weight or less, preferably 0.5% by weight or less, and more preferably 0.1% by weight or less. It is also possible to set the content to be less than or equal to weight %. Therefore, when storing or transporting the alcohol having the fluorene skeleton represented by the above formula (1), it is possible to reduce the risk of disasters such that a fire is likely to occur. It is not only preferably used as a resin material such as polyacrylate, polyurethane, and epoxy, but is also suitably used as a raw material (intermediate) for medical and agricultural chemicals, for example, in the field where the guest molecules included are a problem. be able to.

包接体であるか否かは、例えば、TG−DTA(示差熱熱重量同時測定)分析、X線解析、NMR分析といった方法の他、得られた結晶を、ゲスト分子の沸点以上となる条件で重量変化がない程度に十分に乾燥させた後、得られた結晶を溶媒に溶解させ、ガスクロマトグラフィーや高速液体クロマトグラフィーを用いて分析し、ゲスト分子に相当するピークがあるか否かで判断することができる。また、前記TG−DTA分析を用いる方法では、測定サンプルを一定の速度で昇温した際の重量変化と、それに伴う吸熱・発熱挙動を測定でき、重量変化と吸熱(又は発熱)とが同時に観測された時点で、ゲスト分子が放出されたことを判断することもできる。 Whether it is an inclusion body is determined by, for example, a method such as TG-DTA (differential thermogravimetric simultaneous measurement) analysis, X-ray analysis, and NMR analysis, as well as a condition that the obtained crystal has a boiling point of a guest molecule or more. After drying sufficiently so that there is no change in weight with, the obtained crystals are dissolved in a solvent and analyzed by gas chromatography or high performance liquid chromatography to determine whether there is a peak corresponding to the guest molecule. You can judge. Further, in the method using the TG-DTA analysis, the weight change when the measurement sample is heated at a constant rate and the endothermic/exothermic behavior accompanying it can be measured, and the weight change and the endothermic (or exothermic) are observed simultaneously It is also possible to determine that the guest molecule has been released at the time of the release.

<上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法>
本発明の結晶は、炭素数が4以上の鎖状ケトン類存在下、上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程(以下、反応工程と称することもある)、前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程(以下、晶析溶液調製工程と称することもある)及び前記晶析溶液から特定温度範囲で結晶を析出させ、析出した結晶を分離する工程(以下、晶析工程と称することもある)を経ることによって得られる。以下、各工程について詳述する。
<Method for producing alcohol having fluorene skeleton represented by the above formula (1)>
The crystal of the present invention is represented by the above formula (1) by reacting a phenol compound having a fluorene skeleton represented by the above formula (2) with ethylene carbonate in the presence of a chain ketone having 4 or more carbon atoms. A step of obtaining a reaction solution containing an alcohol having a fluorene skeleton (hereinafter, also referred to as a reaction step), containing a chain ketone having 4 or more carbon atoms from the reaction solution, and aromatic hydrocarbons And a step of preparing a crystallization solution in which the total content of cyclic ketones is less than 10% by weight (hereinafter, also referred to as a crystallization solution preparation step), and a crystal is precipitated from the crystallization solution within a specific temperature range. It is obtained by going through a step of separating the precipitated crystals (hereinafter sometimes referred to as a crystallization step). Hereinafter, each step will be described in detail.

<反応工程>
反応工程で用いられる、上記式(2)で表されるフルオレン骨格を有するフェノール化合物は市販品を用いても良く、また、酸触媒存在下、フルオレノンと2―フェニルフェノールとを反応させて製造することもできる。
<Reaction process>
The phenol compound having a fluorene skeleton represented by the above formula (2) used in the reaction step may be a commercially available product, and is also produced by reacting fluorenone with 2-phenylphenol in the presence of an acid catalyst. You can also

反応工程で用いられる炭素数が4以上の鎖状ケトン類として例えば、メチルエチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、2−ヘプタノン、2−オクタノン、ジイソブチルケトン等が挙げられる。炭素数が4以上の鎖状ケトン類を用いることによって、十分な反応速度が得られ、上記式(1)で表されるフルオレン骨格を有するアルコールが工業的有利に得られる。なお、炭素数4未満のケトン類を使用した場合、反応が進行しないか、進行したとしても反応速度が非常に遅くなり、また、環状ケトン類を使用した場合、反応は進行するものの、環状ケトン類が包接され包接体となる為、包接体でない上記式(1)で表されるフルオレン骨格を有するアルコールを得ることが困難となる。 Examples of chain ketones having 4 or more carbon atoms used in the reaction step include methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, 2-heptanone, 2-octanone, diisobutyl ketone and the like. By using a chain ketone having 4 or more carbon atoms, a sufficient reaction rate can be obtained, and an alcohol having a fluorene skeleton represented by the above formula (1) can be industrially advantageously obtained. It should be noted that when a ketone having less than 4 carbon atoms is used, the reaction does not proceed or the reaction rate becomes very slow even if it proceeds, and when a cyclic ketone is used, the reaction proceeds but the cyclic ketone Since the clathrates are included in the clathrate, it is difficult to obtain an alcohol having a fluorene skeleton represented by the above formula (1) that is not the clathrate.

炭素数が4以上の鎖状ケトン類の使用量は、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1重量倍に対し、通常0.1〜5重量倍、好ましくは0.5〜3重量倍である。これら炭素数が4以上の鎖状ケトン類は1種、あるいは必要に応じ2種以上混合して使用しても良い。 The amount of the chain ketone having 4 or more carbon atoms is usually 0.1 to 5 times by weight, preferably 0.5 to 1 times by weight the phenol compound having the fluorene skeleton represented by the above formula (2). ~3 times the weight. These chain ketones having 4 or more carbon atoms may be used alone or in combination of two or more, if necessary.

反応工程を実施する際、炭素数が4以上の鎖状ケトン類以外に芳香族炭化水素類、環状ケトン類以外の他の有機溶媒を併用しても良い。芳香族炭化水素類および環状ケトン類を併用した場合、晶析工程実施前に芳香族炭化水素類および環状ケトン類を除去する必要があるが、上記式(1)で表されるフルオレン骨格を有するアルコールに芳香族炭化水素類又は環状ケトン類が包接されやすいため、その除去が困難であり、その結果、得られる結晶は芳香族炭化水素類又は環状ケトン類を包接した結晶となりやすく、本発明の結晶を得ることが困難となる。 When carrying out the reaction step, an organic solvent other than aromatic hydrocarbons and cyclic ketones may be used together with the chain ketones having 4 or more carbon atoms. When aromatic hydrocarbons and cyclic ketones are used in combination, it is necessary to remove the aromatic hydrocarbons and cyclic ketones before carrying out the crystallization step, but it has a fluorene skeleton represented by the above formula (1). Since aromatic hydrocarbons or cyclic ketones are easily included in alcohol, it is difficult to remove them, and as a result, the obtained crystals are likely to be crystals in which aromatic hydrocarbons or cyclic ketones are included. It becomes difficult to obtain the crystals of the invention.

本発明で併用可能な芳香族炭化水類及び環状ケトン類以外の溶媒としては、上記式(2)で表されるフルオレン骨格を有するフェノール化合物及びエチレンカーボネートに対して不活性なものであれば良く、このような有機溶媒としては脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、エーテル類、グリコールジエーテル類、エステル類、脂肪族ニトリル類、アミド類、スルホキシド類等が例示される。より具体的には、脂肪族炭化水素としてペンタン、ヘキサン、ヘプタン等が、ハロゲン化脂肪族炭化水素類としてジクロロメタン、1,2−ジクロロエタン等が、エーテル類としてジ−イソ−プロピルエーテル、メチル−ターシャリー−ブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル等が、グリコールジエーテル類としてジグライム、トリグライム、トリエチレングリコールジブチルエーテル等が、エステル類として酢酸エチル、酢酸ブチル等が、脂肪族ニトリル類としてはアセトニトリル等が、アミド類としてジメチルホルムアミド、ジメチルアセトアミド等が、スルホキシド類としてジメチルスルホキシド等が例示される。これら併用可能な有機溶媒の中でも入手性や取扱性、及び反応性の良さから、101.3kPaにおける沸点が80℃以上のエーテル類又はグリコールジエーテル類が好適に用いられる。これら有機溶媒は1種類、あるいは必要に応じ2種類以上混合して使用しても良い。これら有機溶媒の使用量は、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1重量倍に対し、通常0.1〜5重量倍、好ましくは0.5〜3重量倍である。 As the solvent other than the aromatic hydrocarbons and cyclic ketones that can be used in the present invention, any solvent that is inert to the phenol compound having the fluorene skeleton represented by the above formula (2) and ethylene carbonate may be used. Examples of such organic solvents include aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, glycol diethers, esters, aliphatic nitriles, amides, sulfoxides and the like. More specifically, pentane, hexane, heptane and the like as aliphatic hydrocarbons, dichloromethane and 1,2-dichloroethane and the like as halogenated aliphatic hydrocarbons, di-iso-propyl ether, methyl-tertiary ether as ethers. Li-butyl ether, cyclopentyl methyl ether, diphenyl ether and the like, diglyme as glycol diethers, triglyme, triethylene glycol dibutyl ether and the like, ethyl acetate as esters, butyl acetate and the like, acetonitrile and the like as aliphatic nitriles, Examples of amides include dimethylformamide and dimethylacetamide, and examples of sulfoxides include dimethylsulfoxide. Among these organic solvents that can be used in combination, ethers or glycol diethers having a boiling point of 80° C. or higher at 101.3 kPa are preferably used because of their availability, handleability, and reactivity. These organic solvents may be used alone or, if necessary, as a mixture of two or more kinds. The amount of these organic solvents used is usually 0.1 to 5 times by weight, preferably 0.5 to 3 times by weight, with respect to 1 time by weight of the phenol compound having the fluorene skeleton represented by the above formula (2).

本発明で使用するエチレンカーボネートは、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1モルに対し通常、2〜10モル、好ましくは2〜4モル使用する。2モル以上使用することにより十分な反応速度を得ることができ、使用量を10モル以下とすることにより、より経済的に上記式(2)で表されるフルオレン骨格を有するアルコールを製造することができる。 The ethylene carbonate used in the present invention is usually used in an amount of 2 to 10 mol, preferably 2 to 4 mol, per 1 mol of the phenol compound having a fluorene skeleton represented by the above formula (2). A sufficient reaction rate can be obtained by using 2 moles or more, and an alcohol having a fluorene skeleton represented by the above formula (2) can be more economically produced by using the amount of 10 moles or less. You can

上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させる際、必要に応じ塩基性化合物存在下にて反応を行う。反応工程で用いられる塩基性化合物として例えば、炭酸塩類、炭酸水素塩類、水酸化物類、有機塩基類等が例示される。より具体的には炭酸塩類として炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等が、炭酸水素塩類として炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、炭酸水素セシウム等が、水酸化物類として水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が、有機塩基類としてトリエチルアミン、ジメチルアミノピリジン、トリフェニルホスフィン、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド等が例示される。これら塩基性化合物の中でも取扱性の良さの点から炭酸カリウム、炭酸ナトリウム、トリフェニルホスフィンが好適に使用される。これら塩基性化合物を使用する際の使用量は、上記式(2)で表されるフルオレン骨格を有するフェノール化合物1モルに対し、通常0.01〜1.0モル、好ましくは0.03〜0.2モルである。 When the phenol compound having a fluorene skeleton represented by the above formula (2) is reacted with ethylene carbonate, the reaction is carried out in the presence of a basic compound, if necessary. Examples of the basic compound used in the reaction step include carbonates, hydrogen carbonates, hydroxides, organic bases and the like. More specifically, the carbonates include potassium carbonate, sodium carbonate, lithium carbonate, cesium carbonate, etc., the hydrogencarbonates include potassium hydrogencarbonate, sodium hydrogencarbonate, lithium hydrogencarbonate, cesium hydrogencarbonate, etc., and the hydroxides include water. Examples of the organic bases include sodium oxide, potassium hydroxide and lithium hydroxide, and triethylamine, dimethylaminopyridine, triphenylphosphine, tetramethylammonium bromide, tetramethylammonium chloride and the like. Among these basic compounds, potassium carbonate, sodium carbonate and triphenylphosphine are preferably used from the viewpoint of easy handling. The amount of the basic compound used is usually 0.01 to 1.0 mol, preferably 0.03 to 0 mol, per 1 mol of the phenol compound having the fluorene skeleton represented by the above formula (2). 0.2 mol.

上記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとの反応は、上記式(2)で表されるフルオレン骨格を有するフェノール化合物、エチレンカーボネート、炭素数が4以上の鎖状ケトン類及び必要に応じ塩基性化合物、併用可能な有機溶媒を反応容器に添加し、通常30〜150℃、好ましくは100〜130℃で実施される。 The reaction between the phenol compound having the fluorene skeleton represented by the above formula (2) and ethylene carbonate is performed by the phenol compound having the fluorene skeleton represented by the above formula (2), ethylene carbonate, and a chain having 4 or more carbon atoms. Ketones and, if necessary, a basic compound, and an organic solvent that can be used in combination are added to a reaction vessel, and the reaction is usually carried out at 30 to 150°C, preferably 100 to 130°C.

こうして得られた上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液はそのまま濃縮・乾固した後、晶析溶液調製工程に用いても良く、水洗・吸着処理等の後処理や、晶析・カラム精製等の定法にて精製した後、晶析溶液調製工程に用いても良いが、下記する水洗工程を実施した後、晶析溶液調製工程にて用いることにより、上記式(1)で表されるフルオレン骨格を有するアルコールの純度をより向上させることが可能であることから好ましい。以下、水洗工程について詳述する。 The thus obtained reaction liquid containing the alcohol having the fluorene skeleton represented by the above formula (1) may be directly concentrated and dried, and then used in the crystallization solution preparation step, or after-treatment such as washing with water or adsorption treatment. Alternatively, it may be used in the crystallization solution preparation step after purification by a conventional method such as crystallization/column purification, but after performing the water washing step described below, by using it in the crystallization solution preparation step, the above formula is obtained. It is preferable because the purity of the alcohol having a fluorene skeleton represented by (1) can be further improved. Hereinafter, the washing step will be described in detail.

水洗工程は、得られた反応液に、反応で使用した上記式(2)で表されるフルオレン骨格を有するフェノール化合物1重量倍に対し0.1〜10重量倍、好ましくは0.5〜5重量倍の水を添加し、60〜95℃、好ましくは70〜90℃で撹拌し、その後静置、水層を分離することによって実施される。水を0.1重量倍以上使用することにより水洗工程の効果がより発現し、使用量を10重量倍以下とすることにより、容積効率を改善することが可能となる。また、水洗温度は60℃以上とすることにより、静置時の分液速度がより速くなり、95℃以下とすることにより、水洗時の上記式(1)で表されるフルオレン骨格を有するアルコールの分解を抑制することが可能となる。 In the water washing step, the obtained reaction liquid is 0.1 to 10 times by weight, preferably 0.5 to 5 times by weight, based on 1 time by weight of the phenol compound having the fluorene skeleton represented by the above formula (2) used in the reaction. It is carried out by adding water by weight and stirring at 60 to 95° C., preferably 70 to 90° C., and then allowing to stand and separating the aqueous layer. By using water in an amount of 0.1 times by weight or more, the effect of the water washing step can be more exerted, and by using the amount in an amount of 10 times by weight or less, it becomes possible to improve volume efficiency. Further, when the washing temperature is 60° C. or higher, the liquid separation speed during standing is higher, and when it is 95° C. or lower, the alcohol having the fluorene skeleton represented by the above formula (1) at the time of washing with water is used. It is possible to suppress the decomposition of.

水洗工程は必要に応じて複数回実施しても良い。また、水洗工程実施時、水と併せて塩基や酸を添加し、副生物等を分解・水層へと除去しても良い。 The water washing step may be carried out multiple times if necessary. Further, at the time of carrying out the water washing step, a base and an acid may be added together with water to decompose by-products and remove them into an aqueous layer.

<晶析溶液調製工程>
前述の方法で製造された反応液に芳香族炭化水素類及び/又は環状ケトン類が含まれている場合、蒸留・濃縮等の操作によって芳香族炭化水素類及び/又は環状ケトン類を除去し、晶析溶液中に含まれる芳香族炭化水素類及び環状ケトン類の合計含有量を10重量%未満、好ましくは5重量%以下とする必要がある。晶析溶液中に芳香族炭化水素類及び/又は環状ケトン類が10重量%以上含まれている場合、上記式(1)で表されるフルオレン骨格を有するアルコールが芳香族炭化水素類及び/又は環状ケトン類を包接してしまい、本発明の結晶が得られない。また、5重量%以下であっても、得られる結晶の一部が包接体となる場合がある為、結晶Aを確実に含まないようにするためには、晶析溶液中の芳香族炭化水素類及び環状ケトン類の合計含有量を1重量%未満とすることが好ましい。
<Crystallization solution preparation step>
When the reaction liquid produced by the above method contains aromatic hydrocarbons and/or cyclic ketones, the aromatic hydrocarbons and/or cyclic ketones are removed by an operation such as distillation/concentration, The total content of aromatic hydrocarbons and cyclic ketones contained in the crystallization solution must be less than 10% by weight, preferably 5% by weight or less. When the crystallization solution contains 10% by weight or more of aromatic hydrocarbons and/or cyclic ketones, the alcohol having a fluorene skeleton represented by the above formula (1) is aromatic hydrocarbons and/or The crystals of the present invention cannot be obtained because they enclose the cyclic ketones. Even if the amount is 5% by weight or less, a part of the obtained crystal may become an inclusion body. Therefore, in order to ensure that the crystal A is not contained, the aromatic carbonization in the crystallization solution is performed. The total content of hydrogens and cyclic ketones is preferably less than 1% by weight.

晶析溶液に含まれる炭素数が4以上の鎖状ケトン類は、上述した反応工程で使用され得る鎖状ケトン類と同じものが使用可能である。これら鎖状ケトン類は1種、あるいは必要に応じ2種以上混合して使用しても良い。晶析溶液に含まれる炭素数が4以上の鎖状ケトン類は、上記式(1)で表されるフルオレン骨格を有するアルコール1重量倍に対し、結晶Bを得る場合は0.5〜10重量倍、好ましくは1〜5重量倍に、結晶Cを得る場合は0.1〜5重量倍、好ましくは0.5〜4重量倍に、結晶Dを得る場合は1〜15重量倍、好ましくは2〜10重量倍とする。前述した使用量範囲とすることにより、晶析工程においてそれぞれ、所望の温度範囲で結晶を析出させやすくなることから好ましい。 As the chain ketones having 4 or more carbon atoms contained in the crystallization solution, the same chain ketones that can be used in the above-mentioned reaction step can be used. These chain ketones may be used alone or in combination of two or more if necessary. The chain ketone having a carbon number of 4 or more contained in the crystallization solution is 0.5 to 10 parts by weight in order to obtain the crystal B with respect to 1 part by weight of the alcohol having the fluorene skeleton represented by the formula (1). 1 to 5 times, preferably 1 to 5 times by weight, 0.1 to 5 times by weight, preferably 0.5 to 4 times by weight to obtain the crystal C, and 1 to 15 times by weight, preferably 1 to 15 times by weight, to obtain the crystal D. 2 to 10 times by weight. The use amount range described above is preferable because it facilitates precipitation of crystals in a desired temperature range in each crystallization step.

晶析溶液中には炭素数が4以上の鎖状ケトン類の他、得られる結晶B、C又はDの得量を向上する観点から、脂肪族炭化水素類(例えばヘキサン、ヘプタン、オクタン等)を併用することが好ましい。脂肪族炭化水素類を併用する場合の使用量は通常、上記式(1)で表されるフルオレン骨格を有するアルコール1重量倍に対し0.3〜5重量倍、好ましくは0.5〜3重量倍とする。また、上記式(1)で表されるフルオレン骨格を有するアルコールに不活性な脂肪族炭化水素類以外の溶媒(但し芳香族炭化水素類及び環状ケトン類を除く)を併用することも可能であるが、より確実に本発明の結晶を得る為には、脂肪族炭化水素類以外の他の溶媒は併用しないことが好ましい。 In the crystallization solution, in addition to chain ketones having 4 or more carbon atoms, aliphatic hydrocarbons (eg, hexane, heptane, octane, etc.) from the viewpoint of improving the yield of the obtained crystals B, C or D. Is preferably used in combination. When the aliphatic hydrocarbons are used in combination, the amount used is usually 0.3 to 5 times by weight, preferably 0.5 to 3 times by weight, based on 1 time by weight of the alcohol having the fluorene skeleton represented by the formula (1). Double. It is also possible to use a solvent other than the aliphatic hydrocarbons inert to the alcohol having the fluorene skeleton represented by the above formula (1) (however, excluding aromatic hydrocarbons and cyclic ketones) in combination. However, in order to more reliably obtain the crystal of the present invention, it is preferable not to use any other solvent other than the aliphatic hydrocarbons in combination.

<晶析工程>
前述の通り得られた晶析溶液は、晶析溶液に結晶が含まれている場合、該結晶を完溶させた後冷却し、結晶Bを得る場合は75〜85℃で結晶を析出させ、結晶Cを得る場合は90〜100℃で結晶を析出させ、結晶Dを得る場合は70℃以下で結晶を析出させる。以下、該温度範囲で結晶を析出させる方法について詳述する。
<Crystallization process>
The crystallization solution obtained as described above, when the crystallization solution contains crystals, the crystals are completely dissolved and then cooled, and when crystals B are obtained, the crystals are precipitated at 75 to 85° C., To obtain the crystal C, the crystal is deposited at 90 to 100° C., and to obtain the crystal D, the crystal is deposited at 70° C. or lower. Hereinafter, the method of precipitating crystals within the temperature range will be described in detail.

75〜85℃で結晶を析出させる場合、晶析溶液を75℃以上、晶析溶液の沸点以下、好ましくは100〜110℃まで加熱した後、0.3℃〜1.0℃/分、好ましくは0.5〜0.9℃/分で冷却し、その後75〜85℃で結晶を析出させる。
75〜85℃で結晶を析出させる方法としては、結晶が析出するまで同温度で撹拌を継続する方法、上記温度範囲で種晶を接種する方法等が例示される。種晶を添加する場合、結晶B、結晶C、結晶Dまたは公知の結晶Aでも良いが、より確実に結晶Bを得る為には結晶Bを種晶として用いることが好ましい。また、結晶析出後、一定時間同温度で保持し結晶を成長させる方が、より確実に本発明の結晶が得られるため好ましい。
When precipitating crystals at 75 to 85°C, the crystallization solution is heated to 75°C or higher and lower than the boiling point of the crystallization solution, preferably 100 to 110°C, and then 0.3°C to 1.0°C/minute, preferably Is cooled at 0.5 to 0.9° C./minute, and then crystals are precipitated at 75 to 85° C.
Examples of the method for precipitating crystals at 75 to 85° C. include a method in which stirring is continued at the same temperature until crystals are precipitated, and a method in which seed crystals are inoculated in the above temperature range. When a seed crystal is added, crystal B, crystal C, crystal D or a known crystal A may be used, but crystal B is preferably used as a seed crystal in order to obtain crystal B more reliably. Further, it is preferable to hold the same temperature for a certain period of time after crystal precipitation to grow the crystal, because the crystal of the present invention can be obtained more reliably.

90〜100℃で結晶を析出させる場合、晶析溶液を90℃以上、晶析溶液の沸点以下、好ましくは100〜110℃まで加熱した後、0.05℃〜0.5℃/分、好ましくは0.08〜0.3℃/分で冷却し、その後90〜100℃で結晶を析出させる。90〜100℃で結晶を析出させる方法としては、結晶が析出するまで同温度で撹拌を継続する方法、上記温度範囲で種晶を接種する方法等が例示される。種晶を添加する場合、結晶B、結晶C、結晶Dまたは公知の結晶Aでも良いが、より確実に結晶Cを得る為には結晶Cを種晶として用いることが好ましい。また、結晶析出後、一定時間同温度で保持し結晶を成長させる方が、より確実に本発明の結晶が得られるため好ましい。 When precipitating crystals at 90 to 100°C, the crystallization solution is heated to 90°C or higher and lower than the boiling point of the crystallization solution, preferably 100 to 110°C, and then 0.05°C to 0.5°C/minute, preferably Is cooled at 0.08 to 0.3° C./minute, and then crystals are precipitated at 90 to 100° C. Examples of the method for precipitating crystals at 90 to 100° C. include a method in which stirring is continued at the same temperature until crystals are precipitated, and a method in which seed crystals are inoculated in the above temperature range. When a seed crystal is added, it may be crystal B, crystal C, crystal D or a known crystal A, but crystal C is preferably used as a seed crystal in order to obtain crystal C more reliably. Further, it is preferable to hold the same temperature for a certain period of time after crystal precipitation to grow the crystal, because the crystal of the present invention can be obtained more reliably.

70℃以下で結晶を析出させる場合、晶析溶液を70℃以上、晶析溶液の沸点以下、好ましくは100〜110℃まで加熱した後、0.5℃〜2.0℃/分、好ましくは1.0〜1.5℃/分で冷却し、その後70℃以下で結晶を析出させる。70℃以下で結晶を析出させる方法としては、結晶が析出するまで同温度で撹拌を継続する方法、上記温度範囲で種晶を接種する方法等が例示される。種晶を添加する場合、結晶B、結晶C、結晶Dまたは公知の結晶Aでも良いが、より確実に結晶Dを得る為には結晶Dを種晶として用いることが好ましい。また、結晶析出後、一定時間同温度で保持し結晶を成長させる方が、より確実に本発明の結晶が得られるため好ましい。 When precipitating a crystal at 70° C. or lower, the crystallization solution is heated to 70° C. or higher and lower than the boiling point of the crystallization solution, preferably 100 to 110° C., and then 0.5° C. to 2.0° C./min, preferably It is cooled at 1.0 to 1.5° C./minute, and then crystals are precipitated at 70° C. or less. Examples of the method of precipitating crystals at 70° C. or lower include a method of continuing stirring at the same temperature until the precipitation of crystals, a method of inoculating a seed crystal in the above temperature range, and the like. When a seed crystal is added, it may be crystal B, crystal C, crystal D or a known crystal A, but crystal D is preferably used as a seed crystal in order to obtain crystal D more reliably. Further, it is preferable to hold the same temperature for a certain period of time after crystal precipitation to grow the crystal, because the crystal of the present invention can be obtained more reliably.

上述の通り所定の温度範囲で結晶を析出させた後、結晶析出温度と同温度で析出した結晶を分離しても良いが、より収率良く結晶を得る為には、30℃以下まで冷却した後、析出した結晶を分離することが好ましい。分離した結晶は必要に応じ乾燥を行い、結晶に付着した炭素数が4以上の鎖状ケトン類等を除去しても良い。 After precipitating the crystal in the predetermined temperature range as described above, the crystal precipitated at the same temperature as the crystal precipitation temperature may be separated, but in order to obtain a crystal with a higher yield, it was cooled to 30° C. or lower. After that, it is preferable to separate the precipitated crystal. The separated crystals may be dried if necessary to remove chain ketones having 4 or more carbon atoms attached to the crystals.

なお、本発明の結晶は包接体ではないため、反応・晶析工程で使用した炭素数が4以上の鎖状ケトン類等の沸点以上となる温度で乾燥することにより炭素数が4以上の鎖状ケトン類等を除去することが可能である為、結晶状態を保ちながら炭素数が4以上の鎖状ケトン類等を除去可能である。なお、公知の結晶Aの場合、包接している芳香族炭化水素類が放出される温度と結晶の融点が略同一である為、加熱により結晶Aから芳香族炭化水素類を除去しようとすると結晶が一旦溶融するため、芳香族炭化水素類の放出後、冷却すると結晶ではなく非晶質体となる。 Since the crystal of the present invention is not an inclusion complex, it is dried at a temperature not lower than the boiling point of the chain ketone having a carbon number of 4 or more used in the reaction/crystallization step, and thus the carbon number of 4 or more is obtained. Since it is possible to remove chain ketones and the like, it is possible to remove chain ketones and the like having 4 or more carbon atoms while maintaining the crystalline state. In the case of the known crystal A, the temperature at which the aromatic hydrocarbons included therein are released and the melting point of the crystal are substantially the same, so if the aromatic hydrocarbons are removed from the crystal A by heating, the crystal However, once it is melted, when it is cooled after releasing the aromatic hydrocarbons, it becomes an amorphous body instead of a crystal.

こうして得られた本発明の結晶は必要に応じ、吸着、水蒸気蒸留、再結晶などの通常の精製操作を繰り返し行うこともできるが、このような操作を実施しなくとも十分に高純度であり、また、包接体でない為、ポリカーボネート、ポリエステル、ポリアクリレート、ポリウレタン、エポキシなどの樹脂材料として好適に用いられることは勿論のこと、ゲスト分子が問題となる分野、例えば医農薬用の原料(中間体)としても好適に用いることができる。 The crystals of the present invention thus obtained, if necessary, adsorption, steam distillation, it is also possible to repeat normal purification operations such as recrystallization, but sufficiently high purity without performing such operations, Further, since it is not an inclusion body, it is not only suitably used as a resin material such as polycarbonate, polyester, polyacrylate, polyurethane, and epoxy, but also in a field where guest molecules are a problem, for example, raw materials (intermediates for medical and agricultural chemicals). ) Can also be preferably used.

以下に実施例および試験例を挙げて本発明を具体的に説明するが、本発明はこれに何ら限定されるものではない。なお、例中、各種測定は下記の方法で実施した。なお、以下実施例・比較例・参考例に記載した各成分の生成率(残存率)及び純度は下記条件で測定したHPLCの面積百分率である。 The present invention will be specifically described below with reference to examples and test examples, but the present invention is not limited thereto. In the examples, various measurements were carried out by the following methods. The production rate (residual rate) and purity of each component described in the following Examples, Comparative Examples, and Reference Examples are the area percentages of HPLC measured under the following conditions.

(1)HPLC純度
装置 :島津製作所製 LC−2010A、
カラム:SUMIPAX ODS A−211(5μm、4.6mmφ×250mm)、
移動相:純水/アセトニトリル(アセトニトリル30%→100%)、
流量 :1.0ml/min、カラム温度:40℃、検出波長:UV 254nm。
(1) HPLC purity device: Shimadzu LC-2010A,
Column: SUMPIPAX ODS A-211 (5 μm, 4.6 mmφ×250 mm),
Mobile phase: pure water/acetonitrile (acetonitrile 30%→100%),
Flow rate: 1.0 ml/min, column temperature: 40° C., detection wavelength: UV 254 nm.

(2)残存溶媒量、包接溶媒量の分析
溶媒の残存量、または上記式(1)で表されるフルオレン骨格を有するアルコールに包接されているゲスト分子(芳香族炭化水素類等)の含量については下記条件に基づくガスクロマトグラフィーにより定量を行った。
装置 :島津製作所製 GC−2014、
カラム:DB−1(0.25μm、0.25mmID×30m)、
昇温:40℃(5分保持)→20℃/min→250℃(10分保持)、
Inj温度:250℃、Det温度:300℃、スプリット比 1:10、
キャリアー:窒素54.4kPa(一定)、
サンプル調製方法:十分に乾燥させた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶100mgを10mlメスフラスコに量り取り、そこへあらかじめ調製していた1,2−ジメトキシエタンのアセトニトリル溶液(1,2−ジメトキシエタン400mgをアセトニトリル200mlに溶解したもの)をホールピペットで5ml加え、アセトニトリルでメスアップさせ溶解したものを試料溶液とした。
一方、残存量(包接量)を測定したい化合物10mgを10mlメスフラスコに量り取り、上述と同量の1,2−ジメトキシエタンのアセトニトリル溶液を加え、アセトニトリルでメスアップさせ溶解したものを標準溶液とした。
試料溶液及び標準溶液を上述の条件にて分析し、得られた各成分のピーク面積をデータ処理装置で求め、各成分の含量(重量%)を算出した。(内部標準法)
(2) Analysis of amount of residual solvent, amount of clathrate solvent The amount of residual solvent, or of the guest molecules (aromatic hydrocarbons, etc.) clathrated by the alcohol having the fluorene skeleton represented by the above formula (1) The content was quantified by gas chromatography under the following conditions.
Device: Shimadzu Corporation GC-2014,
Column: DB-1 (0.25 μm, 0.25 mm ID×30 m),
Temperature rise: 40°C (hold for 5 minutes) → 20°C/min → 250°C (hold for 10 minutes),
Inj temperature: 250° C., Det temperature: 300° C., split ratio 1:10,
Carrier: Nitrogen 54.4 kPa (constant),
Sample preparation method: 100 mg of fully dried alcohol crystals having a fluorene skeleton represented by the above formula (1) was weighed into a 10 ml volumetric flask, and 1,2-dimethoxyethane acetonitrile solution prepared in advance was placed therein. 5 ml of (400 mg of 1,2-dimethoxyethane dissolved in 200 ml of acetonitrile) was added with a whole pipette, and the solution was dissolved in acetonitrile to make a sample solution.
On the other hand, 10 mg of the compound whose residual amount (inclusion amount) is to be measured is weighed into a 10 ml measuring flask, the same amount of an acetonitrile solution of 1,2-dimethoxyethane as described above is added, and the solution dissolved in acetonitrile to make a standard solution is added. And
The sample solution and the standard solution were analyzed under the above conditions, the peak area of each obtained component was determined by a data processor, and the content (% by weight) of each component was calculated. (Internal standard method)

(3)包接体であることの確認のための分析
上記式(1)で表されるフルオレン骨格を有するアルコールの結晶5mgをアルミパンに精密に秤取し、(株)リガク社製示差熱天秤 TG−DTA8121を用い、下記操作条件で測定した。
(操作条件)
昇温速度:10℃/min、
測定範囲:30−250℃、
雰囲気 :開放、窒素250ml/min。
(3) Analysis for confirmation of inclusion body 5 mg of alcohol crystals having a fluorene skeleton represented by the above formula (1) was accurately weighed in an aluminum pan, and the differential heat manufactured by Rigaku Corporation was used. The balance TG-DTA8121 was used and it measured on the following operating conditions.
(Operating conditions)
Temperature rising rate: 10°C/min,
Measuring range: 30-250°C,
Atmosphere: Open, nitrogen 250 ml/min.

(4)示差走査熱量測定(DSC)
上記式(1)で表されるフルオレン骨格を有するアルコールの結晶5mgをアルミパンに精密に秤取し、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社:DSC7020)を用い、酸化アルミニウムを対照として下記操作条件で測定した。
(操作条件)
昇温速度:10℃/min、
測定範囲:30−250℃、
雰囲気 :開放、窒素40ml/min。
(4) Differential scanning calorimetry (DSC)
Precisely weighing 5 mg of an alcohol crystal having a fluorene skeleton represented by the above formula (1) in an aluminum pan, and using a differential scanning calorimeter (SII Nanotechnology Inc.: DSC7020), aluminum oxide was used as a control. It measured on the following operating conditions.
(Operating conditions)
Temperature rising rate: 10°C/min,
Measuring range: 30-250°C,
Atmosphere: Open, nitrogen 40 ml/min.

(5)粉末X線回折
上記式(1)で表されるフルオレン骨格を有するアルコールの結晶150mgをガラス試験板の試料充填部に充填し、粉末X線回折装置(スペクトリス社製:X’PertPRO)を用いて下記の条件で測定した。
X線源 :CuKα、
出力 :1.8kW(45kV−40mA)、
測定範囲 :2θ=5°〜70°、
スキャン速度:2θ=2°/min、
スリット :DS=1°、マスク=15mm、RS=可変(0.1mm〜)。
(5) Powder X-ray Diffraction 150 mg of an alcohol crystal having a fluorene skeleton represented by the above formula (1) was filled in a sample filling part of a glass test plate, and a powder X-ray diffractometer (Specttris: X'Pert PRO) was used. Was measured under the following conditions.
X-ray source: CuKα,
Output: 1.8 kW (45 kV-40 mA),
Measuring range: 2θ=5° to 70°,
Scan speed: 2θ=2°/min,
Slit: DS=1°, mask=15 mm, RS=variable (0.1 mm-).

(6)YI値
上記式(1)で表されるフルオレン骨格を有するアルコールの結晶12gを、純度99重量%以上のN,N―ジメチルホルムアミド30mlに溶解させ、以下の条件で得られたN,N―ジメチルホルムアミド溶液のYI値(黄色度)を測定した。
装置 :色差計(日本電色工業社製,SE6000)、
使用セル:光路長33mm 石英セル。
なお、測定に使用するN,N−ジメチルホルムアミド自身の着色が測定値に影響を与えないよう、事前にN,N−ジメチルホルムアミドの色相を測定して補正した。(ブランク測定)。
上述のブランク測定を実施したうえで、サンプルを測定した値を本発明におけるYI値とする。
(6) YI value 12 g of an alcohol crystal having a fluorene skeleton represented by the above formula (1) was dissolved in 30 ml of N,N-dimethylformamide having a purity of 99% by weight or more to obtain N, The YI value (yellowness) of the N-dimethylformamide solution was measured.
Device: Color difference meter (Nippon Denshoku Industries Co., Ltd., SE6000),
Cell used: Optical path length 33 mm Quartz cell.
The hue of N,N-dimethylformamide used in the measurement was measured and corrected in advance so that the coloring of N,N-dimethylformamide itself did not affect the measured value. (Blank measurement).
A value obtained by measuring the sample after performing the above blank measurement is set as the YI value in the present invention.

(7)嵩密度
実施例及び比較例で得られた結晶を10mlのメスシリンダーに5mlまで入れ、メスシリンダーに入った結晶の重量から嵩密度を算出した。
(7) Bulk density
The crystals obtained in Examples and Comparative Examples were placed in a 10 ml graduated cylinder up to 5 ml, and the bulk density was calculated from the weight of the crystals in the graduated cylinder.

<実施例1>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’−ビス(4−ヒドロキシー3−フェニルフェニル)フルオレン)120g(0.239mol)、炭酸カリウム2.8g(0.020mol)、エチレンカーボネート48g(0.545mol)、メチルイソブチルケトン(以下、MIBKと称することもある)180gを仕込み、120℃まで昇温し、同温度で6時間撹拌後、HPLCにて原料が消失していることを確認した。
得られた反応液を80℃まで冷却した後、MIBK180g、水180gを加え、80〜85℃で1時間撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、MIBK130g、ヘプタン210gを添加し、晶析溶液を得た。
得られた晶析溶液を100℃まで昇温し、30分間撹拌して結晶を完溶させた後、該晶析溶液を0.8℃/分で冷却することにより80℃で結晶を析出させ、同温度で2時間撹拌した。撹拌後、更に25℃まで冷却し、結晶を得た。
得られた結晶を内圧0.4kPaの減圧下、内温85〜90℃で9時間乾燥した所、MIBK及びヘプタンの合計含有量が0.2重量%となった為、乾燥終了とした。
<Example 1>
In a glass reactor equipped with a stirrer, a heating/cooling device, and a thermometer, a phenol compound having a fluorene skeleton represented by the above formula (2) (9,9'-bis(4-hydroxy-3-phenylphenyl)) Fluorene) 120 g (0.239 mol), potassium carbonate 2.8 g (0.020 mol), ethylene carbonate 48 g (0.545 mol), methyl isobutyl ketone (hereinafter sometimes referred to as MIBK) 180 g were charged, and the temperature was raised to 120°C. After warming and stirring at the same temperature for 6 hours, it was confirmed by HPLC that the raw materials had disappeared.
After cooling the obtained reaction liquid to 80 degreeC, MIBK180g and the water 180g were added, and it stirred at 80-85 degreeC for 1 hour, and left still, and isolate|separated the water layer. After repeating the same operation 3 times, 130 g of MIBK and 210 g of heptane were added to obtain a crystallization solution.
The obtained crystallization solution was heated to 100° C., stirred for 30 minutes to completely dissolve the crystals, and then the crystallization solution was cooled at 0.8° C./minute to precipitate crystals at 80° C. The mixture was stirred at the same temperature for 2 hours. After stirring, the mixture was further cooled to 25° C. to obtain crystals.
The obtained crystals were dried at an internal temperature of 85 to 90° C. for 9 hours under a reduced pressure of 0.4 kPa, and the total content of MIBK and heptane was 0.2% by weight.

得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:125g(収率:82%)
HPLC純度:98.6%
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量(MIBK及びヘプタンの含有量を含む):0.24重量%
YI値:5.2
DSC融解吸熱最大温度:175℃
嵩密度:0.5g/cm
The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.
Weight of crystals obtained: 125 g (yield: 82%)
HPLC purity: 98.6%
Content of organic solvent having a boiling point of 150° C. or lower at 101.3 kPa (including content of MIBK and heptane): 0.24% by weight
YI value: 5.2
DSC melting endothermic maximum temperature: 175°C
Bulk density: 0.5 g/cm 3

DSC分析チャートを図1に、粉末X線のパターンを図4に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表1に列挙する。表1に示す通り、本実施例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.7±0.2°、17.2±0.2°、18.3±0.2°、19.6±0.2°、20.8±0.2°および21.4±0.2°に特徴的な回折ピークを示した。(以下、本パターンと同様のX線ピークを有するものを「パターンB」と称することがある。) The DSC analysis chart is listed in FIG. 1, the pattern of powder X-rays is shown in FIG. 4, and the main peaks of powder X-rays (having a relative intensity of more than 5%) are listed in Table 1. As shown in Table 1, the alcohol having a fluorene skeleton represented by the above formula (1) obtained in this example has diffraction angles 2θ=7.7±0.2° and 17.2±0.2°. , 18.3±0.2°, 19.6±0.2°, 20.8±0.2° and 21.4±0.2°. (Hereinafter, a pattern having the same X-ray peak as this pattern may be referred to as "pattern B".)

<実施例2>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’−ビス(4−ヒドロキシー3−フェニルフェニル)フルオレン)138g(0.275mol)、炭酸カリウム3.1g(0.022mol)、エチレンカーボネート50.8g(0.577mol)、MIBK138gを仕込み、120℃まで昇温し、同温度で9時間撹拌後、HPLCにて原料が消失していることを確認した。
得られた反応液を80℃まで冷却した後、MIBK276g、水207gを加え、70〜75℃で2時間撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、MIBK55g、ヘプタン198gを添加し、晶析溶液を得た。
得られた晶析溶液を105℃まで昇温し、30分間撹拌して結晶を完溶させた後、該晶析溶液を0.1℃/分で冷却することにより95℃で結晶を析出させ、同温度で2時間撹拌した。その後、25℃まで冷却、濾過し、結晶を得た。
得られた結晶を内圧1.3kPaの減圧下、内温80〜90℃で3時間乾燥した所、MIBKの含有量が0.06重量%となった為、乾燥終了とした。
<Example 2>
In a glass reactor equipped with a stirrer, a heating/cooling device, and a thermometer, a phenol compound having a fluorene skeleton represented by the above formula (2) (9,9'-bis(4-hydroxy-3-phenylphenyl)) 138 g (0.275 mol) of fluorene), 3.1 g (0.022 mol) of potassium carbonate, 50.8 g (0.577 mol) of ethylene carbonate and 138 g of MIBK were charged, the temperature was raised to 120° C., and after stirring at the same temperature for 9 hours, It was confirmed by HPLC that the raw materials had disappeared.
After cooling the obtained reaction liquid to 80 degreeC, MIBK276g and the water 207g were added, it stirred at 70-75 degreeC for 2 hours, and after leaving still, the water layer was isolate|separated. After repeating the same operation 3 times, 55 g of MIBK and 198 g of heptane were added to obtain a crystallization solution.
The obtained crystallization solution was heated to 105° C., stirred for 30 minutes to completely dissolve the crystals, and then the crystallization solution was cooled at 0.1° C./minute to precipitate crystals at 95° C. The mixture was stirred at the same temperature for 2 hours. Then, it cooled to 25 degreeC and filtered, and the crystal|crystallization was obtained.
The obtained crystals were dried at an internal temperature of 80 to 90° C. for 3 hours under a reduced pressure of 1.3 kPa, and the MIBK content was 0.06% by weight.

得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:127g(収率:78%)
HPLC純度:98.7%
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量(MIBK及びヘプタンの含有量を含む):0.07重量%
YI値:7.0
DSC融解吸熱最大温度:195℃
嵩密度:0.6g/cm
The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.
Weight of crystals obtained: 127 g (yield: 78%)
HPLC purity: 98.7%
Content of organic solvent having a boiling point of 150° C. or lower at 101.3 kPa (including content of MIBK and heptane): 0.07% by weight
YI value: 7.0
DSC melting endotherm maximum temperature: 195°C
Bulk density: 0.6 g/cm 3

DSC分析チャートを図2に、粉末X線のパターンを図5に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表2に列挙する。表2に示す通り、本実施例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=14.9±0.2°、17.8±0.2°、18.9±0.2°、19.7±0.2°、20.0±0.2°および21.0±0.2°に特徴的な回折ピークを示した。
(以下、本パターンと同様のX線ピークを有するものを「パターンC」と称することがある。)
The DSC analysis chart is listed in FIG. 2, the powder X-ray pattern is listed in FIG. 5, and the main peaks of powder X-ray (having a relative intensity of more than 5%) are listed in Table 2. As shown in Table 2, the alcohol having a fluorene skeleton represented by the above formula (1) obtained in this example has diffraction angles 2θ=14.9±0.2° and 17.8±0.2°. , 18.9±0.2°, 19.7±0.2°, 20.0±0.2°, and 21.0±0.2°.
(Hereinafter, a pattern having the same X-ray peak as this pattern may be referred to as "pattern C".)

<実施例3>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’−ビス(4−ヒドロキシー3−フェニルフェニル)フルオレン)150g(0.298mol)、炭酸カリウム3.4g(0.025mol)、エチレンカーボネート65.7g(0.747mol)、メチルイソアミルケトン(以下、MIAKと称することもある)150gを仕込み、120℃まで昇温し、同温度で7時間撹拌後、HPLCにて原料が消失していることを確認した。
得られた反応液を90℃まで冷却した後、水150gを加え、85〜90℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、MIAK250gを添加し、晶析溶液を得た。
得られた晶析溶液を110℃まで昇温し、30分間撹拌して結晶を完溶させた後、該晶析溶液を0.3℃/分で98℃まで冷却し、同温度で、実施例2で得られた結晶20mgを種晶として接種し、10分撹拌した所、結晶が析出し始めた為、同温度で1時間撹拌した。撹拌後、更に22℃まで冷却した後、濾過し、結晶を得た。
得られた結晶を内圧1.3kPaの減圧下、内温80〜90℃で3時間乾燥した所、MIAKの含有量が0.07重量%となった為、乾燥終了とした。
<Example 3>
In a glass reactor equipped with a stirrer, a heating/cooling device, and a thermometer, a phenol compound having a fluorene skeleton represented by the above formula (2) (9,9'-bis(4-hydroxy-3-phenylphenyl)) Fluorene) 150 g (0.298 mol), potassium carbonate 3.4 g (0.025 mol), ethylene carbonate 65.7 g (0.747 mol), methyl isoamyl ketone (hereinafter sometimes referred to as MIAK) 150 g were charged, and 120° C. The temperature was raised to, and after stirring at the same temperature for 7 hours, it was confirmed by HPLC that the raw materials had disappeared.
The obtained reaction solution was cooled to 90° C., 150 g of water was added, the mixture was stirred at 85 to 90° C. for 30 minutes, and allowed to stand, and then the aqueous layer was separated. After repeating the same operation 3 times, 250 g of MIAK was added to obtain a crystallization solution.
The obtained crystallization solution was heated to 110° C., stirred for 30 minutes to completely dissolve the crystals, and then the crystallization solution was cooled to 98° C. at 0.3° C./minute and carried out at the same temperature. 20 mg of the crystal obtained in Example 2 was inoculated as a seed crystal, and after stirring for 10 minutes, crystals started to precipitate, so the mixture was stirred at the same temperature for 1 hour. After stirring, the mixture was further cooled to 22° C. and then filtered to obtain crystals.
The obtained crystals were dried under an internal pressure of 1.3 kPa under reduced pressure at an internal temperature of 80 to 90° C. for 3 hours. The content of MIAK was 0.07% by weight.

得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:112g(収率:64%)
HPLC純度:98.1%
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量(MIAKを含む):0.08重量%
YI値:1.7
DSC融解吸熱最大温度:195℃
嵩密度:0.8g/cm
X線回折パターン:パターンC
The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.
Weight of crystals obtained: 112 g (yield: 64%)
HPLC purity: 98.1%
Content of organic solvent having a boiling point of 150° C. or lower at 101.3 kPa (including MIAK): 0.08% by weight
YI value: 1.7
DSC melting endotherm maximum temperature: 195°C
Bulk density: 0.8 g/cm 3
X-ray diffraction pattern: Pattern C

<実施例4>
実施例1と同じスケール、同様の方法にて反応工程、水洗工程を行った後、得られた水洗工程後の反応液にMIBK240g、ヘプタン240gを添加し、晶析溶液を得た。
得られた晶析溶液を100℃まで昇温し、30分間撹拌して結晶を完溶させた後、該晶析溶液を1.5℃/分で冷却することにより69℃で結晶を析出させ、同温度で2時間撹拌した。撹拌後、更に20℃まで冷却した後、濾過し、結晶を得た。
得られた結晶を内圧1.3kPaの減圧下、内温80〜85℃で3時間乾燥した所、MIBK及びヘプタンの合計含有量が0.8重量%となった為、乾燥終了とした。
得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:107g(収率:76%)
HPLC純度:98.3%
101.3kPaにおける沸点が150℃以下の有機溶媒の含有量(MIBK及びヘプタンの含有量を含む):0.8重量%
YI値:4.5
DSC融解吸熱最大温度:169℃
嵩密度:1.5g/cm
<Example 4>
After performing the reaction step and the water washing step in the same scale and the same method as in Example 1, 240 g of MIBK and 240 g of heptane were added to the obtained reaction solution after the water washing step to obtain a crystallization solution.
The obtained crystallization solution was heated to 100° C., stirred for 30 minutes to completely dissolve the crystals, and then the crystallization solution was cooled at 1.5° C./minute to precipitate crystals at 69° C. The mixture was stirred at the same temperature for 2 hours. After stirring, the mixture was further cooled to 20° C. and then filtered to obtain crystals.
The obtained crystals were dried at an internal temperature of 80 to 85° C. for 3 hours under a reduced pressure of 1.3 kPa, and the total content of MIBK and heptane was 0.8% by weight.
The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.
Weight of crystals obtained: 107 g (yield: 76%)
HPLC purity: 98.3%
Content of organic solvent having a boiling point of 150° C. or lower at 101.3 kPa (including content of MIBK and heptane): 0.8% by weight
YI value: 4.5
DSC melting endotherm maximum temperature: 169℃
Bulk density: 1.5 g/cm 3

DSC分析チャートを図9に、粉末X線のパターンを図10に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表6に列挙する。表6に示す通り、本実施例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=9.8±0.2°、14.9±0.2°、17.6±0.2°、18.8±0.2°、19.4±0.2°、20.0±0.2および20.6±0.2°に特徴的な回折ピークを示した。(以下、本パターンと同様のX線ピークを有するものを「パターンD」と称することがある。) The DSC analysis chart is listed in FIG. 9, the powder X-ray pattern is listed in FIG. 10, and the main peaks of the powder X-ray (having a relative intensity of more than 5%) are listed in Table 6. As shown in Table 6, the alcohol having a fluorene skeleton represented by the above formula (1) obtained in this example has diffraction angles 2θ=9.8±0.2° and 14.9±0.2°. , 17.6±0.2°, 18.8±0.2°, 19.4±0.2°, 20.0±0.2 and 20.6±0.2° showed that. (Hereinafter, a pattern having an X-ray peak similar to this pattern may be referred to as "pattern D".)

<比較例1>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’−ビス(4−ヒドロキシー3−フェニルフェニル)フルオレン)40.0g(0.080mol)、エチレンカーボネート16.1g(0.183mol)、炭酸カリウム0.8g(0.006mol)およびトルエン40.0gを仕込み、110℃で11時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。
得られた反応液を85℃まで冷却した後、水68gを加え、80〜85℃で30分撹拌し、静置後、水層を分離した。同じ操作を3回繰り返した後、得られた有機溶媒層をディーンスターク装置を用いて還流下で脱水し、上記式(1)で表されるフルオレン骨格を有するアルコールが溶解した晶析溶液を得た。
得られた晶析溶液を0.3℃/分で冷却した所、65℃で結晶が析出し、同温度で2時間撹拌した。撹拌後、更に26℃まで冷却した後、濾過し、結晶を得た。
得られた結晶を内圧1.1kPaの減圧下、内温を68℃〜73℃で3時間乾燥したが、トルエンが4重量%含まれていた為、内温を110℃まで昇温し、同温度で更に3時間乾燥したが、トルエンの含量は4重量%のままであった。
<Comparative Example 1>
In a glass reactor equipped with a stirrer, a heating/cooling device, and a thermometer, a phenol compound having a fluorene skeleton represented by the above formula (2) (9,9'-bis(4-hydroxy-3-phenylphenyl)) Fluorene) 40.0 g (0.080 mol), ethylene carbonate 16.1 g (0.183 mol), potassium carbonate 0.8 g (0.006 mol) and toluene 40.0 g were charged, and the mixture was stirred at 110° C. for 11 hours and then subjected to HPLC. It was confirmed that the raw material peak was 1% or less.
The obtained reaction liquid was cooled to 85° C., 68 g of water was added, and the mixture was stirred at 80 to 85° C. for 30 minutes and allowed to stand, and then the aqueous layer was separated. After repeating the same operation 3 times, the obtained organic solvent layer was dehydrated under reflux using a Dean-Stark apparatus to obtain a crystallization solution in which an alcohol having a fluorene skeleton represented by the above formula (1) was dissolved. It was
When the obtained crystallization solution was cooled at 0.3° C./minute, crystals were precipitated at 65° C. and stirred at the same temperature for 2 hours. After stirring, the mixture was further cooled to 26° C. and then filtered to obtain crystals.
The obtained crystals were dried under an internal pressure of 1.1 kPa under reduced pressure at 68° C. to 73° C. for 3 hours. However, since 4 wt% of toluene was contained, the internal temperature was raised to 110° C. After further drying at temperature for 3 hours, the content of toluene remained 4% by weight.

得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:39.3g
HPLC純度:97.5%
トルエン含量:4.1重量%
DSC融解吸熱最大温度:151℃
嵩密度:0.3g/cm
The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.
Weight of crystals obtained: 39.3 g
HPLC purity: 97.5%
Toluene content: 4.1% by weight
DSC melting endotherm maximum temperature: 151°C
Bulk density: 0.3 g/cm 3

DSC分析チャートを図3に、粉末X線のパターンを図6に、粉末X線の主なピーク(5%を超える相対強度を有するもの)を表3に、TG−DTAの分析チャートを図7に列挙する。表3に示す通り、本比較例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。
また、高温・減圧下で乾燥を行ってもトルエンの残量が減少しなかったため、TG−DTA分析を行い包接体であるか否かを確認した所、図7に示す通り、トルエンの沸点以上の温度である約139℃で重量の減少が始まり、続いて約150℃に吸熱ピークが観測されたことから、本比較例で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、包接体であることが支持される。
The DSC analysis chart is shown in FIG. 3, the powder X-ray pattern is shown in FIG. 6, the main peaks of the powder X-ray (having a relative intensity exceeding 5%) are shown in Table 3, and the TG-DTA analysis chart is shown in FIG. Enumerate in. As shown in Table 3, the alcohol having a fluorene skeleton represented by the above formula (1) obtained in this comparative example has diffraction angles 2θ=7.6±0.2° and 15.6±0.2°. , 16.4 ± 0.2°, 18.7 ± 0.2°, 19.0 ± 0.2°, 20.5 ± 0.2° and 23.6 ± 0.2° Showed a peak.
Also, since the residual amount of toluene did not decrease even after drying under high temperature and reduced pressure, TG-DTA analysis was performed to confirm whether it was an inclusion complex. As shown in FIG. 7, the boiling point of toluene was At the above temperature of about 139° C., the weight started to decrease, and then an endothermic peak was observed at about 150° C. Therefore, it has the fluorene skeleton represented by the above formula (1) obtained in this comparative example. Alcohol is supported to be an inclusion body.

<比較例2>
攪拌器、加熱冷却器、および温度計を備えたガラス製反応器に、上記式(2)で表されるフルオレン骨格を有するフェノール化合物(9,9’−ビス(4−ヒドロキシー3−フェニルフェニル)フルオレン)30.0g(0.060mol)、エチレンカーボネート12.0g(0.136mol)、炭酸カリウム0.7g(0.005mol)、およびシクロヘキサノン30.0gを仕込み、140℃で7時間撹拌し、HPLCにて原料ピークが1%以下であることを確認した。
得られた反応液を90℃まで冷却した後、シクロヘキサノン23g、ヘプタン27gを加え、有機溶媒層を90℃に保ちながら洗浄水が中性となるまで水洗を行った。水洗後、得られた有機溶媒層をディーンスターク装置を用いて還流下で脱水し、上記式(1)で表されるフルオレン骨格を有するアルコールが溶解した晶析溶液を得た。
その後、70℃まで冷却し、70℃で1時間保温することで結晶を析出させた後、同温度で2時間撹拌した。撹拌後、更に19℃まで冷却した後、濾過し、結晶を得た。
得られた結晶を内圧1.1kPaの減圧下、内温を90℃で3時間乾燥したが、シクロヘキサノンが14重量%含まれていた為、内温を110℃まで昇温し、同温度で更に3時間乾燥したが、シクロヘキサノン含量は14重量%のままであった。
<Comparative example 2>
In a glass reactor equipped with a stirrer, a heating/cooling device, and a thermometer, a phenol compound having a fluorene skeleton represented by the above formula (2) (9,9'-bis(4-hydroxy-3-phenylphenyl)) 30.0 g (0.060 mol) of fluorene), 12.0 g (0.136 mol) of ethylene carbonate, 0.7 g (0.005 mol) of potassium carbonate, and 30.0 g of cyclohexanone were charged, and the mixture was stirred at 140° C. for 7 hours and then subjected to HPLC. It was confirmed that the raw material peak was 1% or less.
The obtained reaction liquid was cooled to 90° C., 23 g of cyclohexanone and 27 g of heptane were added, and the organic solvent layer was washed with water while keeping the organic solvent layer at 90° C. until the washing water became neutral. After washing with water, the obtained organic solvent layer was dehydrated under reflux using a Dean-Stark apparatus to obtain a crystallization solution in which an alcohol having a fluorene skeleton represented by the above formula (1) was dissolved.
Then, the mixture was cooled to 70° C. and kept at 70° C. for 1 hour to precipitate crystals, and then stirred at the same temperature for 2 hours. After stirring, the mixture was further cooled to 19° C. and then filtered to obtain crystals.
The obtained crystals were dried under reduced pressure of 1.1 kPa at an internal temperature of 90° C. for 3 hours. However, since cyclohexanone was contained at 14% by weight, the internal temperature was raised to 110° C. and further at the same temperature. After drying for 3 hours, the cyclohexanone content remained 14% by weight.

得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
得られた結晶の重さ:33.0g
HPLC純度:97.8%
シクロヘキサノン含量:14重量%
DSC融解吸熱最大温度:114℃
嵩密度:0.4g/cm
The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.
Weight of crystals obtained: 33.0 g
HPLC purity: 97.8%
Cyclohexanone content: 14% by weight
DSC melting endothermic maximum temperature: 114°C
Bulk density: 0.4 g/cm 3

また、高温・減圧下で乾燥を行ってもシクロヘキサノンの残量が減少しなかったため、TG−DTA分析を行い包接体であるか否かを確認した。TG−DTAの分析チャートを図8に示す。該チャートに示される通り、約114℃で重量の減少が始まり、併せて同温度で吸熱ピークが観測されたことから、本比較例2で得られた上記式(1)で表されるフルオレン骨格を有するアルコールは、包接体であることが支持される。 In addition, since the residual amount of cyclohexanone did not decrease even after drying at high temperature and reduced pressure, TG-DTA analysis was performed to confirm whether it was an inclusion complex. The analysis chart of TG-DTA is shown in FIG. As shown in the chart, the weight started to decrease at about 114° C. and the endothermic peak was also observed at the same temperature. Therefore, the fluorene skeleton represented by the above formula (1) obtained in Comparative Example 2 was obtained. Alcohols with are supported to be clathrates.

<比較例3>
スケールを10分の1とする以外は特開2001−206863号の実施例6に記載されている方法で仕込・反応を行い、65℃で1時間撹拌した段階で反応液を高速液体クロマトグラフィーで分析したが、上記式(2)で表されるフルオレン骨格を有するアルコールは殆ど生成しておらず、原料の9−フルオレノンが98%残存していた。そこで更に同温度で7時間撹拌を継続し、反応液を高速液体クロマトグラフィーで分析したが同様に反応は殆ど進行しておらず、原料の9−フルオレノンが97%残存していた。
そこで特開2001−206863号〔0019〕の記載に基づき、反応温度を65℃から100℃へと変更し同温度で撹拌を継続したところ、原料である9−フルオレノンの消失までに73時間必要であった。
該文献記載に基づく後処理を実施するため、得られた反応液を2分割し、一方にメタノール10g、もう一方にイソプロピルアルコール10gを加え60℃まで加温し、1時間撹拌を継続した後、それぞれ純水30gを加え、30℃まで冷却したが両方とも結晶は析出せず、それぞれ水と分離したタール状の液体が得られた。
<Comparative example 3>
Charge and reaction were carried out by the method described in Example 6 of JP 2001-206863 A except that the scale was reduced to 1/10, and the reaction solution was subjected to high performance liquid chromatography at the stage of stirring at 65° C. for 1 hour. As a result of analysis, almost no alcohol having a fluorene skeleton represented by the above formula (2) was produced, and 98% of 9-fluorenone as a raw material remained. Then, stirring was further continued at the same temperature for 7 hours, and the reaction solution was analyzed by high performance liquid chromatography. Similarly, the reaction hardly proceeded and 97% of 9-fluorenone as a raw material remained.
Then, based on the description of JP 2001-206863 [0019], the reaction temperature was changed from 65° C. to 100° C. and stirring was continued at the same temperature, and it took 73 hours until the raw material 9-fluorenone disappeared. there were.
In order to carry out a post-treatment based on the description of the literature, the obtained reaction solution was divided into two, 10 g of methanol was added to one side and 10 g of isopropyl alcohol was added to the other side, the mixture was heated to 60° C., and the mixture was stirred for 1 hour. 30 g of pure water was added to each, and the mixture was cooled to 30° C. However, crystals did not precipitate in both of them, and a tar-like liquid separated from water was obtained.

<比較例4>
9−フルオレノンの使用量を18gとして特開2009−256342号の実施例4記載の方法を追試した所、上記式(1)で表されるフルオレン骨格を有するアルコール20.7g(純度88.6%)を得た。得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
<Comparative example 4>
When the amount of 9-fluorenone used was 18 g and the method described in Example 4 of JP-A-2009-256342 was additionally tested, 20.7 g of an alcohol having a fluorene skeleton represented by the above formula (1) (purity: 88.6%) ) Got. The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.

キシレン含量:5.2重量%
YI値:46
DSC融解吸熱最大温度:146℃
嵩密度:0.3g/cm
Xylene content: 5.2% by weight
YI value: 46
DSC melting endotherm maximum temperature: 146°C
Bulk density: 0.3 g/cm 3

粉末X線の主なピーク(5%を超える相対強度を有するもの)を表4に示す。表4に示す通り、本比較例4で得られた、キシレンを包接する上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。 The major peaks of the powder X-rays (those with a relative intensity above 5%) are shown in Table 4. As shown in Table 4, the alcohol having a fluorene skeleton represented by the above formula (1) which clathrates xylene, obtained in Comparative Example 4, had diffraction angles 2θ=7.6±0.2°, 15. 6±0.2°, 16.4±0.2°, 18.7±0.2°, 19.0±0.2°, 20.5±0.2° and 23.6±0.2 It showed a characteristic diffraction peak at °.

<比較例5>
9−フルオレノンの使用量を9gとして特開2009−256342号の実施例2記載の方法を追試した所、上記式(1)で表されるフルオレン骨格を有するアルコール13.5g(純度74.7%)を得た。得られた上記式(1)で表されるフルオレン骨格を有するアルコールの結晶の各分析値は以下の通り。
<Comparative Example 5>
When the method described in Example 2 of JP-A-2009-256342 was additionally tested with 9 g of 9-fluorenone used, 13.5 g of an alcohol having a fluorene skeleton represented by the above formula (1) (purity: 74.7%) ) Got. The respective analytical values of the obtained crystals of alcohol having a fluorene skeleton represented by the above formula (1) are as follows.

トルエン含量:3.0重量%
YI値:83
DSC融解吸熱最大温度:126℃
嵩密度:0.2g/cm
Toluene content: 3.0% by weight
YI value: 83
DSC melting endothermic maximum temperature: 126°C
Bulk density: 0.2 g/cm 3

粉末X線の主なピーク(5%を超える相対強度を有するもの)を表5に示す。表5に示す通り、本比較例5で得られた、トルエンを包接する上記式(1)で表されるフルオレン骨格を有するアルコールは、回折角2θ=7.6±0.2°、15.6±0.2°、16.4±0.2°、18.7±0.2°、19.0±0.2°、20.5±0.2°および23.6±0.2°に特徴的な回折ピークを示した。 The major peaks of the powder X-rays (those with a relative intensity above 5%) are shown in Table 5. As shown in Table 5, the alcohol having a fluorene skeleton represented by the above formula (1) that clathrates toluene obtained in Comparative Example 5 has diffraction angles 2θ=7.6±0.2°, 15. 6±0.2°, 16.4±0.2°, 18.7±0.2°, 19.0±0.2°, 20.5±0.2° and 23.6±0.2 It showed a characteristic diffraction peak at °.

Figure 0006739137
Figure 0006739137

Figure 0006739137
Figure 0006739137

Figure 0006739137
Figure 0006739137

Figure 0006739137
Figure 0006739137

Figure 0006739137
Figure 0006739137

Figure 0006739137
Figure 0006739137

Claims (12)

示差走査熱量分析による融解吸熱最大温度が173〜176℃である、以下式(1)
Figure 0006739137
で表されるフルオレン骨格を有するアルコールの結晶。
The maximum melting endothermic temperature by differential scanning calorimetry is 173 to 176° C., which is expressed by the following formula (1).
Figure 0006739137
An alcohol crystal having a fluorene skeleton represented by.
Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=7.7±0.2°、17.2±0.2°、18.3±0.2°、19.6±0.2°、20.8±0.2°および21.4±0.2°にピークを有する、記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
Figure 0006739137
In the powder X-ray diffraction pattern by Cu-Kα ray, the diffraction angles 2θ=7.7±0.2°, 17.2±0.2°, 18.3±0.2°, 19.6±0.2. °, with a peak at 20.8 ± 0.2 ° and 21.4 ± 0.2 °, the alcohol having a fluorene skeleton represented by the following following formula (1) crystal.
Figure 0006739137
示差走査熱量分析による融解吸熱最大温度が190〜196℃である、記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
Figure 0006739137
Is a differential scanning calorimetry melting endotherm maximum temperature of 190-196 ° C. by crystals of alcohols having a fluorene skeleton represented by the following following formula (1).
Figure 0006739137
Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=14.9±0.2°、17.8±0.2°、18.9±0.2°、19.7±0.2°、20.0±0.2°および21.0±0.2°にピークを有する、記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
Figure 0006739137
In the powder X-ray diffraction pattern by Cu-Kα ray, the diffraction angles 2θ=14.9±0.2°, 17.8±0.2°, 18.9±0.2°, 19.7±0.2. °, with a peak at 20.0 ± 0.2 ° and 21.0 ± 0.2 °, the alcohol having a fluorene skeleton represented by the following following formula (1) crystal.
Figure 0006739137
示差走査熱量分析による融解吸熱最大温度が167〜170℃である、記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
Figure 0006739137
It is a differential scanning calorimetry melting endotherm maximum temperature of 167-170 ° C. due to crystals of an alcohol having a fluorene skeleton represented by the following following formula (1).
Figure 0006739137
Cu−Kα線による粉末X線回折パターンにおいて、回折角2θ=9.8±0.2°、14.9±0.2°、17.6±0.2°、18.8±0.2°、19.4±0.2°、20.0±0.2および20.6±0.2°にピークを有する、記式(1)で表されるフルオレン骨格を有するアルコールの結晶。
Figure 0006739137
In the powder X-ray diffraction pattern by Cu-Kα ray, the diffraction angles 2θ=9.8±0.2°, 14.9±0.2°, 17.6±0.2°, 18.8±0.2. °, 19.4 ± 0.2 °, with a peak at 20.0 ± 0.2 and 20.6 ± 0.2 °, crystal alcohols having a fluorene skeleton represented by the following following formula (1).
Figure 0006739137
包接体ではない、請求項1〜いずれか一項記載の上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。 Not a clathrate crystals of alcohols having a fluorene skeleton represented by the claims 1-6 to any one claim of the formula (1). 上記式(1)で表されるフルオレン骨格を有するアルコール12gを、純度99重量%以上のN,N−ジメチルホルムアミド30mLに溶解させた溶液の黄色度(YI値)が10以下となる、請求項1〜いずれか一項記載の、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。 A yellowness (YI value) of a solution obtained by dissolving 12 g of an alcohol having a fluorene skeleton represented by the formula (1) in 30 mL of N,N-dimethylformamide having a purity of 99% by weight or more is 10 or less. A crystal of an alcohol having a fluorene skeleton represented by the above formula (1) according to any one of 1 to 7 . 芳香族炭化水素類の含量が1重量%以下である、請求項1〜いずれか一項記載の、上記式(1)で表されるフルオレン骨格を有するアルコールの結晶。 The alcohol crystal having a fluorene skeleton represented by the above formula (1) according to any one of claims 1 to 9 , wherein the content of aromatic hydrocarbons is 1% by weight or less. 以下(a)〜(c)の工程をこの順で含む、請求項1又は2項記載の上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法。
(a)
炭素数が4以上の鎖状ケトン類存在下、下記式(2)
Figure 0006739137
で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
(b)
前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程。
(c)
前記晶析溶液から75〜85℃で結晶を析出させ、析出した結晶を分離する工程。
The method for producing an alcohol having a fluorene skeleton represented by the above formula (1) according to claim 1 or 2, which comprises the following steps (a) to (c) in this order.
(A)
In the presence of a chain ketone having 4 or more carbon atoms, the following formula (2)
Figure 0006739137
A step of reacting a phenol compound having a fluorene skeleton represented by and ethylene carbonate to obtain a reaction liquid containing an alcohol having a fluorene skeleton represented by the above formula (1).
(B)
A step of preparing a crystallization solution containing a chain ketone having 4 or more carbon atoms and a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight from the reaction solution.
(C)
A step of precipitating crystals from the crystallization solution at 75 to 85° C. and separating the precipitated crystals.
以下(d)〜(f)の工程をこの順で含む、請求項3又は4記載の上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法。
(d)
炭素数が4以上の鎖状ケトン類存在下、記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
Figure 0006739137
(e)
前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程。
(f)
前記晶析溶液から90〜100℃で結晶を析出させ、析出した結晶を分離する工程。
The method for producing an alcohol having a fluorene skeleton represented by the above formula (1) according to claim 3 or 4, which comprises the following steps (d) to (f) in this order.
(D)
Presence chain ketones number of 4 or more carbon atoms, by reacting a phenol compound with ethylene carbonate having a fluorene skeleton represented by the following following formula (2), having a fluorene skeleton represented by the above formula (1) A step of obtaining a reaction solution containing alcohol.
Figure 0006739137
(E)
A step of preparing a crystallization solution containing a chain ketone having 4 or more carbon atoms and a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight from the reaction solution.
(F)
A step of precipitating crystals from the crystallization solution at 90 to 100° C. and separating the precipitated crystals.
以下(g)〜(i)の工程をこの順で含む、請求項5又は6記載の上記式(1)で表されるフルオレン骨格を有するアルコールの製造方法。
(g)
炭素数が4以上の鎖状ケトン類存在下、記式(2)で表されるフルオレン骨格を有するフェノール化合物とエチレンカーボネートとを反応させ、上記式(1)で表されるフルオレン骨格を有するアルコールを含む反応液を得る工程。
Figure 0006739137
(h)
前記反応液から、炭素数が4以上の鎖状ケトン類を含有し、かつ芳香族炭化水素類及び環状ケトン類の合計含有量が10重量%未満である晶析溶液を調製する工程。
(i)
前記晶析溶液から70℃以下で結晶を析出させ、析出した結晶を分離する工程。
The method for producing an alcohol having a fluorene skeleton represented by the above formula (1) according to claim 5 or 6, which comprises the following steps (g) to (i) in this order.
(G)
Presence chain ketones number of 4 or more carbon atoms, by reacting a phenol compound with ethylene carbonate having a fluorene skeleton represented by the following following formula (2), having a fluorene skeleton represented by the above formula (1) A step of obtaining a reaction solution containing alcohol.
Figure 0006739137
(H)
A step of preparing a crystallization solution containing a chain ketone having 4 or more carbon atoms and a total content of aromatic hydrocarbons and cyclic ketones of less than 10% by weight from the reaction solution.
(I)
A step of precipitating crystals from the crystallization solution at 70° C. or lower and separating the precipitated crystals.
JP2016132178A 2015-07-21 2016-07-04 Crystal of alcohol having fluorene skeleton and method for producing the same Active JP6739137B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015144187 2015-07-21
JP2015144187 2015-07-21
JP2016089742 2016-04-27
JP2016089742 2016-04-27

Publications (2)

Publication Number Publication Date
JP2017200901A JP2017200901A (en) 2017-11-09
JP6739137B2 true JP6739137B2 (en) 2020-08-12

Family

ID=57833962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132178A Active JP6739137B2 (en) 2015-07-21 2016-07-04 Crystal of alcohol having fluorene skeleton and method for producing the same

Country Status (5)

Country Link
JP (1) JP6739137B2 (en)
KR (1) KR102614834B1 (en)
CN (2) CN111848370A (en)
TW (1) TWI658034B (en)
WO (1) WO2017014141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214364A (en) * 2016-05-30 2017-12-07 田岡化学工業株式会社 Method for producing alcohols having fluorene skeleton

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210063323A (en) 2018-09-19 2021-06-01 혼슈우 카가쿠고교 가부시키가이샤 Crystals of Bisfluorene Compounds
JP7358696B2 (en) 2018-09-19 2023-10-11 本州化学工業株式会社 Crystalline mixture of bisfluorene compounds
JP7134579B2 (en) * 2019-01-24 2022-09-12 田岡化学工業株式会社 Method for producing bisphenol compound having fluorene skeleton
JP2019108408A (en) * 2019-04-16 2019-07-04 田岡化学工業株式会社 Crystal of alcohol compound having fluorene skeleton and method for producing the same
CN114890877B (en) * 2022-01-28 2024-03-26 江苏永星化工股份有限公司 9, 9-bis [ 3-phenyl-4- (2-hydroxyethoxy) phenyl ] fluorene and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2977714B2 (en) 1993-10-04 1999-11-15 鐘紡株式会社 Polyester molding
JPH09255609A (en) * 1996-03-21 1997-09-30 Taoka Chem Co Ltd Production of 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene
JPH1045655A (en) * 1996-07-30 1998-02-17 Taoka Chem Co Ltd Production of fluorene derivative
JPH11158106A (en) * 1997-12-01 1999-06-15 Osaka Gas Co Ltd Production of 9,9-bis(4-(2-hydroxypropoxy)phenyl)fluorene
JP2001122828A (en) 1999-10-27 2001-05-08 Shinnakamura Kagaku Kogyo Kk Bifunctional (meth)acrylic ester composition and dihydric alcohol therefor
JP2001206863A (en) * 2000-01-25 2001-07-31 Osaka Gas Co Ltd Fluorene compound and method for the same
JP4671235B2 (en) * 2006-01-26 2011-04-13 田岡化学工業株式会社 Method for producing fluorene derivative
US8093434B2 (en) * 2007-02-15 2012-01-10 Taoka Chemical Company, Limited Crystal polymorph of fluorene derivative and production method thereof
JP5588105B2 (en) * 2007-12-26 2014-09-10 大阪瓦斯株式会社 Bifunctional (meth) acrylate with fluorene skeleton
JP5325627B2 (en) * 2008-03-27 2013-10-23 大阪瓦斯株式会社 Method for producing alcohol having fluorene skeleton
JP5285561B2 (en) 2009-09-30 2013-09-11 大阪瓦斯株式会社 Polyester resin having a fluorene skeleton
JP5437106B2 (en) 2010-02-19 2014-03-12 大阪ガスケミカル株式会社 Polyester resin having a fluorene skeleton
JP5501790B2 (en) 2010-02-19 2014-05-28 大阪ガスケミカル株式会社 Polyester resin having a fluorene skeleton
CN104144904A (en) * 2012-03-09 2014-11-12 本州化学工业株式会社 Method for producing 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene, crystal of said compound, and method for producing said crystal
JP6210555B2 (en) * 2014-04-03 2017-10-11 田岡化学工業株式会社 Method for recovering bisphenolfluorenes from a polyester resin having a fluorene structure
JP2016138071A (en) * 2015-01-29 2016-08-04 田岡化学工業株式会社 Method for producing bis hydroxyethyl ether of bisphenols

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214364A (en) * 2016-05-30 2017-12-07 田岡化学工業株式会社 Method for producing alcohols having fluorene skeleton
JP7290908B2 (en) 2016-05-30 2023-06-14 田岡化学工業株式会社 Method for producing alcohol having fluorene skeleton

Also Published As

Publication number Publication date
CN107848933A (en) 2018-03-27
JP2017200901A (en) 2017-11-09
CN107848933B (en) 2020-11-17
KR102614834B1 (en) 2023-12-15
TW201710231A (en) 2017-03-16
TWI658034B (en) 2019-05-01
CN111848370A (en) 2020-10-30
KR20180030851A (en) 2018-03-26
WO2017014141A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6739137B2 (en) Crystal of alcohol having fluorene skeleton and method for producing the same
JP6739136B2 (en) Crystal of alcohol having fluorene skeleton and method for producing the same
EP3805195B1 (en) Crystal of 2,2&#39;-bis(carboxymethoxy)-1,1&#39;-binaphthyl
JP6830304B2 (en) Method for Purifying Dihydroxy Compound with Fluorene Skeleton
JP6931984B2 (en) Crystals of alcohol compounds having a fluorene skeleton and methods for producing them
TWI740943B (en) Method for manufacturing alcohol compound having fluorene skeleton
JP6537388B2 (en) Inclusion compound using alcohols having a fluorene skeleton
JP6994299B2 (en) A method for purifying a dihydroxy compound having a fluorene skeleton
JP2017214364A (en) Method for producing alcohols having fluorene skeleton
JP7379770B2 (en) Crystalline form of bisfluorene compound
TW202110779A (en) Hexamethyl-substituted/dimethyl-substituted-4,4&#39;-bis(2-propene-1-ylosy)-1,1&#39;-biphenyl crystal body
JP2019108408A (en) Crystal of alcohol compound having fluorene skeleton and method for producing the same
JP7358696B2 (en) Crystalline mixture of bisfluorene compounds
JP2024056627A (en) Crystal of 9,9-bis(6-hydroxy-2-naphthyl)fluorene and method for producing same
JP2020158401A (en) Method for producing crystal of diol compound having fluorene skeleton
WO2020004207A1 (en) Crystalline body of 9,9-bis(4-hydroxyphenyl)-2,3-benzofluorene
TW202344494A (en) Biphenanthrene compound or alkali metal salt thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6739137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250