JP7145544B2 - Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method - Google Patents

Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method Download PDF

Info

Publication number
JP7145544B2
JP7145544B2 JP2021506731A JP2021506731A JP7145544B2 JP 7145544 B2 JP7145544 B2 JP 7145544B2 JP 2021506731 A JP2021506731 A JP 2021506731A JP 2021506731 A JP2021506731 A JP 2021506731A JP 7145544 B2 JP7145544 B2 JP 7145544B2
Authority
JP
Japan
Prior art keywords
water
backwash
valve
filter
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021506731A
Other languages
Japanese (ja)
Other versions
JP2022515583A (en
Inventor
文香 夏
志慧 石
金成 李
双 宋
楚遥 越
宝秀 趙
杰 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Publication of JP2022515583A publication Critical patent/JP2022515583A/en
Application granted granted Critical
Publication of JP7145544B2 publication Critical patent/JP7145544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/16Upward filtration
    • B01D24/165Upward filtration the filtering material being supported by pervious surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/38Feed or discharge devices
    • B01D24/40Feed or discharge devices for feeding
    • B01D24/402Feed or discharge devices for feeding containing fixed liquid displacement elements or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4631Counter-current flushing, e.g. by air
    • B01D24/4636Counter-current flushing, e.g. by air with backwash shoes; with nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4668Regenerating the filtering material in the filter by moving the filtering element
    • B01D24/4673Regenerating the filtering material in the filter by moving the filtering element using rotary devices or vibration mechanisms, e.g. stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/48Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration
    • B01D24/4869Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration by level measuring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

本発明は、水処理の技術分野に属し、中小型給水処理、汚水高度処理及び工業再利用水処理に適用され、上向流変速式軽量懸濁濾材フィルタに関する。特に、節水型微小水量逆洗変速上向流式軽量濾材フィルタ及びその方法に関する。 The present invention belongs to the technical field of water treatment, and is applied to small and medium-sized water treatment, advanced sewage treatment and industrial reuse water treatment, and relates to an upward flow variable speed lightweight suspension media filter. More particularly, it relates to a water-saving, minute water volume backwash variable speed upward flow type lightweight filter media filter and its method.

濾過層濾過技術は、水と廃水処理過程における重要なプロセスである。一般には、材質が異なる粒状濾材を用いて厚さが一定の濾過層を構築し、粒子間の隙間により濾過チャンネルを形成し、これにより、滞留水中の浮遊不純物を遮断する。現在一般的に使用されるフィルタには、主に通常の圧濾器、バルブレス濾過池、繊維濾材濾過タンクなどのフィルタがある。通常のラピッドフィルタも最も伝統的なフィルタであり、一般には石英砂を濾過濾材として使用する。濾過方式は、下向流を使用する。濾過過程で遮断される汚染物を濾過層から剥離し、濾過層の汚物遮断能力を回復するために水で繰り返して洗い流す必要があるので、逆洗は、高速水流で濾過層を逆方向で押し上げる必要がある。そうすると、大量の洗浄水が消耗される一方、エネルギー消費量が増加する。バルブレス濾過池は、水力原理を利用し、自動逆洗の特徴を有するが、バルブレス濾過池の逆洗水量が大きく、逆洗が不十分である。汚水濾過の研究において、繊維濾材フィルタも一般的に使用されているフィルタであり、通常、濾材はファイバーボール及びファイバー束を使用する。このようなフィルタは、濾過速度が速く、詰まりにくいという利点を有するが、逆洗の水消費量が大きく、濾材が硬化しやすいという問題がある。 Filtration layer filtration technology is an important process in the water and wastewater treatment process. In general, granular filter media of different materials are used to construct a filter layer with a uniform thickness, and the gaps between the particles form filter channels, thereby blocking suspended impurities in the stagnant water. The filters commonly used at present mainly include filters such as ordinary pressure filters, valveless filter basins, and fiber filter media filtration tanks. Ordinary rapid filters are also the most traditional filters, generally using quartz sand as filtering media. The filtration scheme uses downward flow. Backwash pushes the filter layer in the opposite direction with a high-speed water flow, as the contaminants that are blocked during the filtration process need to be washed away from the filter layer repeatedly to restore the dirt-blocking ability of the filter layer. There is a need. Then, while a large amount of cleaning water is consumed, energy consumption increases. The valveless filter uses the hydraulic principle and has the characteristic of automatic backwashing, but the backwashing water volume of the valveless filter is large and the backwashing is insufficient. In the study of sewage filtration, fiber media filters are also commonly used filters, and media typically use fiber balls and fiber bundles. Such a filter has the advantages of high filtration speed and resistance to clogging.

上記問題に対して、近年、軽量懸濁濾材が中国において徐々に注目を集めている。発泡ポリスチレン粒子(EPS)軽量懸濁濾材は、新しい濾材として機械的強度が高く、汚物除去能力が高く、化学的性質が安定で、比重が水よりも小さく、濾過方式が簡単で、使用範囲が広いなどの利点を有するとともに、従来の石英砂濾過に比べ、軽量懸濁濾材による濾過は経済的には大きな優位性を有し、即ち、給水の緩衝セグメントにより沈殿できるため、支持層の必要がなく、構造が簡単で、製造コストが削減される。Degremont社(フランス)は、軽量濾材を使用して新しい上向流懸濁濾過池を開発した。それは独特な逆洗方式を有する。しかし、この濾過池は、通常の濾過池を反転したものだけであり、面積が大きい浮上防止フィルタプレート及びフィルタヘッドを取り付ける必要があるので、構造は複雑になる。また、濾過池の逆洗節水及び濾過速度は従来の濾過速度と相当するため、現在、このような上向流濾過池はある程度使用されているが、効果的に普及されていない。 In view of the above problems, lightweight suspended filter media have gradually attracted attention in China in recent years. Expanded polystyrene particles (EPS) lightweight suspension filter media is a new filter media with high mechanical strength, high dirt removal ability, stable chemical properties, lower specific gravity than water, simple filtration method, and wide range of applications. Compared to conventional quartz sand filtration, filtration with lightweight suspended filter media has a great economic advantage, namely, it can be settled by the buffer segment of the water supply, so there is no need for a support layer. , the structure is simple, and the manufacturing cost is reduced. Degremont (France) has developed a new upflow suspension filter bed using lightweight filter media. It has a unique backwash system. However, this filter is just an inverted version of a normal filter, and it is necessary to attach a large-area anti-floating filter plate and a filter head, which complicates the structure. In addition, since the backwashing water saving and filtration speed of the filter are comparable to those of the conventional filtration, such an upward flow filter has been used to some extent at present, but has not been effectively popularized.

現在、省エネと消費削減は水処理の発展の一つの方向である。従来の濾過設備は、通常大量の逆洗水を消耗する必要があるので、水量及びエネルギー消耗が増加し、逆洗廃水の処理が困難となる。逆洗過程においてガススプレーを増設することで消耗水量を減少できるが、通常の濾過池に対する単一のガススプレーは剥離した汚染物を濾過層から洗い落とすことができず、水による押し流しと組み合わせる必要があるため、エネルギーと水の消費の問題を根本的に解決することはできない。上向流式軽量濾材フィルタの開発は、上記問題にソリューションを提供することができる。 At present, energy saving and consumption reduction is one direction of the development of water treatment. Conventional filtration equipment usually needs to consume a large amount of backwash water, which increases water consumption and energy consumption, and makes it difficult to treat the backwash wastewater. Water consumption can be reduced by adding more gas sprays in the backwash process, but a single gas spray for normal filter basins cannot wash loose contaminants off the filter bed and must be combined with water washout. Therefore, it cannot fundamentally solve the problem of energy and water consumption. Development of an upflow lightweight media filter can provide a solution to the above problems.

本発明は、従来の上向流フィルタ技術に存在する欠点を克服するために、フィルタの形状及び組成を創造的に改良することにより、最適のフィルタ構造を実現し、濾過抵抗を低減させるとともに、変速流の圧力変化により自己圧縮機能を実現し、濾過精度を向上させる目的を達成し、逆洗過程では、遮断された汚物の重力作用を巧妙に利用し、ガス洗浄により不純物と濾材とを自然に分離し、微小水量の逆洗を実現し、逆洗の水消耗及びエネルギー消耗を大幅に減少させる。これによって、新しい微小水量逆洗変速上向流軽量懸濁濾材フィルタ及びその方法が開発される。 The present invention creatively improves the shape and composition of the filter to overcome the deficiencies existing in conventional upflow filter technology, thereby achieving an optimal filter structure, reducing filtration resistance, and The self-compression function is realized by the pressure change of the variable-speed flow, and the purpose of improving the filtration accuracy is achieved. to achieve backwashing with a small amount of water, greatly reducing water consumption and energy consumption in backwashing. Accordingly, a new low volume backwash variable upflow lightweight suspended media filter and method is developed.

上記目的を達成するために、本発明は以下の技術的手段を採用する。 In order to achieve the above object, the present invention employs the following technical means.

微小水量逆洗変速上向流式軽量濾材フィルタであって、
反応器1、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含み、
反応器1の内部には、給水/排泥領域2、逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5、及び集水領域6が区画されており、圧縮濾過領域5の上部には浮上防止フィルタプレート12が取り付けられ、浮上防止フィルタプレート12上にはフィルタヘッド13が取り付けられ、浮上防止フィルタプレート12の真上には蓋板14が取り付けられ、蓋板14の周囲にはガイドプレートが設けられ、蓋板14には排気バルブ9が設けられ、
給水/排泥領域2は反応器1の底部に位置し、逆洗剥離領域3は給水領域2の上部に位置し、逆洗剥離領域3は円筒状であり、逆洗剥離領域3の容積は、変速濾過領域4と圧縮濾過領域5との容積の和と等しく、処理される水中の汚物は、最初、変速濾過領域の濾層によって遮断され、
変速濾過領域4は逆洗剥離領域3の上部に位置し、この領域は、断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなることで、この領域の濾層が受ける上向きの濾過圧力は徐々に大きくなり、
圧縮濾過領域5は変速濾過領域4の上部に位置し、この領域は円筒状であり、その断面積が変速濾過領域4の上部の断面積と同じ、圧縮濾過領域5の初期水流速度は変速濾過領域4の最大水流速度であり、圧縮濾過領域5における濾層が受ける圧力は最大であり、濾過層は最も緻密である、フィルタ。
A very small amount of water backwash variable speed upward flow type lightweight filter media filter,
including reactor 1, feed water distribution system, gas backwash system, trace water backwash spray system, water collection system, and drainage/sludge system;
The interior of the reactor 1 is partitioned into a feed/sludge area 2, a backwash stripping area 3, a variable speed filtration area 4, a compression filtration area 5, and a water collection area 6. Above the compression filtration area 5, A floating prevention filter plate 12 is attached, a filter head 13 is attached on the floating prevention filter plate 12, a cover plate 14 is attached directly above the floating prevention filter plate 12, and a guide plate is provided around the cover plate 14. is provided, the cover plate 14 is provided with an exhaust valve 9,
The feed water/sludge removal zone 2 is located at the bottom of the reactor 1, the backwash stripping zone 3 is located above the feed water zone 2, the backwash stripping zone 3 is cylindrical, and the volume of the backwash stripping zone 3 is , equal to the sum of the volumes of the variable speed filtration zone 4 and the compression filtration zone 5, and the dirt in the water to be treated is initially blocked by the filtration layer of the variable speed filtration zone,
The variable-speed filtration area 4 is located above the backwash stripping area 3. This area has a truncated cone shape with a cross-sectional area that gradually decreases from bottom to top. , the upward filtration pressure received by the filtration layer in this region gradually increases,
The compression filtration area 5 is located above the variable speed filtration area 4, this area is cylindrical, and its cross-sectional area is the same as the cross-sectional area of the upper part of the transmission filtration area 4, and the initial water flow velocity of the compression filtration area 5 is equal to the speed filtration A filter where the maximum water flow velocity in zone 4, the pressure experienced by the filtration layer in compression filtration zone 5 is the greatest, and the filtration layer is the densest.

上記フィルタにおいて、処理される原水は給水/排泥領域2を通過して反応器1の底部に入り、順に逆洗剥離領域3、変速濾過領域4及び圧縮濾過領域5の濾層を通過して遮断されて濾過され、濾過水はフィルタヘッドを通過して蓋板14に当たり、蓋板14のガイドプレートを通過して清水槽15に流入し、さらに越流堰16を経て集水領域6に入り、最後に出水管17を介して水が清水タンク38に収集される。 In said filter, the raw water to be treated passes through the feed/sludge zone 2 into the bottom of the reactor 1 and passes in turn through the filter layers of the backwash stripping zone 3, the variable speed filtration zone 4 and the compression filtration zone 5. The filtered water passes through the filter head, hits the cover plate 14, passes through the guide plate of the cover plate 14, flows into the clean water tank 15, and further passes through the overflow weir 16 to the water collection area 6. Finally, the water is collected in the fresh water tank 38 via the water outlet pipe 17 .

上記フィルタにおいて、反応器内に充填される濾材は、粒径0.5~1mmの発泡ポリスチレン粒子36である。 In the above filter, the filter medium filled in the reactor is expanded polystyrene particles 36 having a particle size of 0.5 to 1 mm.

上記フィルタにおいて、給水配水システムは、原水タンク37、水ポンプ18、原水給水管10、給水バルブ25及び反射板11を含み、原水給水管10には給水バルブ25が取り付けられ、反射板11は給水管口の真下に位置し、水を均等に配給するために用いられ、原水タンク37は水ポンプ18の給水口に接続され、水ポンプ18の出水口は原水給水管10の給水バルブ25に接続され、反射板11は原水給水管10の管口の真下に位置し、処理される水は、水ポンプにより加圧され、原水給水管により反応器1の底部の給水/排泥領域2に輸送され、給水は反射板11により均等に配給される。 In the above filter, the water supply distribution system includes a raw water tank 37, a water pump 18, a raw water supply pipe 10, a water supply valve 25 and a reflector 11. The raw water supply pipe 10 is attached with the water supply valve 25, and the reflector 11 The raw water tank 37 is connected to the water supply port of the water pump 18, and the water outlet of the water pump 18 is connected to the water supply valve 25 of the raw water supply pipe 10. The reflector 11 is positioned directly below the mouth of the raw water supply pipe 10, and the water to be treated is pressurized by the water pump and transported to the water supply/sludge discharge area 2 at the bottom of the reactor 1 by the raw water supply pipe. and the water supply is evenly distributed by the reflector 11 .

上記フィルタにおいて、集水システムは、清水出水管17及び清水タンク38を含み、清水出水管17の一端は集水領域6に接続され、他端は清水タンク38に連通し、集水領域と清水タンク38の間には高低差があり、高低差により清水は自動的に清水タンクに流入する。 In the above filter, the water collecting system includes a fresh water outlet pipe 17 and a fresh water tank 38, one end of the fresh water outlet pipe 17 is connected to the water collecting area 6, the other end is connected to the fresh water tank 38, and the water collecting area and the fresh water are connected to each other. There is a height difference between the tanks 38, and the fresh water automatically flows into the fresh water tank due to the height difference.

上記フィルタにおいて、微量水逆洗スプレーシステムは、清水ポンプ19、微量水逆洗主管23、微量水逆洗バルブ30及びバルブ31、微量水逆洗スプレー分岐管8、濾材洗浄補助ノズル24、液面センサ35及び液面検知器34を含み、清水ポンプ19は清水タンク38に接続され、清水ポンプ19は微量水逆洗主管23、微量水逆洗バルブ30、バルブ31により微量水逆洗スプレー分岐管8に接続され、微量水逆洗スプレー分岐管8は周方向に沿って圧縮濾過領域5及び変速濾過領域4の外部に設けられ、各微量水逆洗スプレー分岐管8には複数の濾材洗浄補助ノズル24が設けられ、これにより水が圧縮濾過領域5及び変速濾過領域4の内部に導入され、液面センサ35は逆洗剥離領域3の頂部に設けられ、データ線により液面検知器34に接続され、逆洗過程において液面センサ35の水位検知結果に基づいて水位を逆洗剥離領域3の頂部に制御する。 In the above filter, the trace water backwash spray system includes a clean water pump 19, a trace water backwash main pipe 23, a trace water backwash valve 30 and a valve 31, a trace water backwash spray branch pipe 8, an auxiliary filter cleaning nozzle 24, and a liquid level. The fresh water pump 19 is connected to the fresh water tank 38, and the fresh water pump 19 is connected to the trace water backwash main pipe 23, the trace water backwash valve 30, and the trace water backwash spray branch pipe by the valve 31. 8 , the trace water backwash spray branch pipes 8 are provided circumferentially outside the compression filtration region 5 and the variable speed filtration region 4 , each trace water backwash spray branch pipe 8 having a plurality of filter media cleaning auxiliary Nozzles 24 are provided by which water is introduced into the interior of the compression filtration area 5 and the variable speed filtration area 4, and a liquid level sensor 35 is provided at the top of the backwash stripping area 3 and is connected to the liquid level sensor 34 by a data line. The water level is controlled to the top of the backwash stripping area 3 based on the water level detection result of the liquid level sensor 35 during the backwashing process.

上記フィルタにおいて、ガス逆洗システムは、空気圧縮機20、逆洗ガス管22、逆洗ガス管ノズル7、逆洗エアバルブ28及びチェックバルブ26、逆洗リリースバルブ9を含み、反応器1の排水管21には排水/排泥バルブ27が取り付けられ、反応器1内の逆洗ガス管22は、逆洗剥離領域3の底部にある管部に均等に分布する逆洗ガス管ノズル7が設けられ、逆洗ガス管22には逆洗エアバルブ28及び逆流を防止するチェックバルブ26が取り付けられ、反応器1の頂部の蓋板には排気バルブ9が設けられる。
上記フィルタにおいて、排水/排泥システムは、排水/排泥管21及び排水/排泥バルブ27を含み、排水/排泥管21は、給水/排泥領域2の底部に設けられ、排水/排泥管21には排水/排泥バルブ27が設けられる。
In the above filter, the gas backwash system includes an air compressor 20, a backwash gas pipe 22, a backwash gas pipe nozzle 7, a backwash air valve 28 and a check valve 26, a backwash release valve 9, and a discharge of the reactor 1. The pipe 21 is fitted with a drain/sludge valve 27 and the backwash gas pipe 22 in the reactor 1 is provided with backwash gas pipe nozzles 7 evenly distributed in the pipe section at the bottom of the backwash stripping zone 3. A backwash air valve 28 and a check valve 26 for preventing backflow are attached to the backwash gas pipe 22 , and an exhaust valve 9 is provided on the top plate of the reactor 1 .
In the above filter, the drain/sludge system includes a drain/sludge pipe 21 and a drain/sludge valve 27, and the drain/sludge pipe 21 is provided at the bottom of the water supply/sludge area 2 to drain/sludge. The mud pipe 21 is provided with a drain/sludge valve 27 .

上記フィルタにおいて、微小水量逆洗変速上向流式軽量濾材フィルタの作動操作の過程は、1濾過過程、2逆洗過程、及び3軽量濾層復位過程に分けられ、この3つの過程はサイクルで行われる。
(1)濾過過程:排水/排泥バルブ27、逆洗吸気バルブ28及び連通バルブ29を閉じ、給水バルブ25及び排気バルブ9を開き、給水ポンプ18を起動し、水ポンプ18により原水タンク37における処理される水を、給水管10を介して反応器1に送入し、処理される水が給水管10から反射板11を経て均等に配給され、濾過水流が上へ順に逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5を通過し、最後に水流がフィルタヘッドを通過して清水領域に入り、上昇する水流が蓋板14に当たったときに、出水がまず排ガス管から排出され、この場合、排気バルブ9を閉じることにより、水流がガイドプレートを通過して清水槽15に流入し、さらに越流堰16を通して集水領域6に流入し、最後出水管17を経て清水タンク38に入る。
In the above filter, the operation process of the small water volume backwash speed upflow lightweight filter media filter is divided into 1 filtration process, 2 backwash process, and 3 light filter layer restoration process, and these three processes are cycles. is done in
(1) Filtration process: Close the drainage/sludge valve 27, the backwash intake valve 28 and the communication valve 29, open the water supply valve 25 and the exhaust valve 9, start the water supply pump 18, and the water pump 18 in the raw water tank 37 The water to be treated is fed into the reactor 1 via the water supply pipe 10, the water to be treated is evenly distributed from the water supply pipe 10 through the reflector plate 11, and the filtered water flow is in turn up the backwash stripping zone 3. , the variable speed filtration region 4, the compression filtration region 5, and finally the water flow passes through the filter head into the fresh water region, and when the rising water flow hits the cover plate 14, the water is first discharged from the exhaust gas pipe. In this case, by closing the exhaust valve 9, the water flows through the guide plate into the fresh water tank 15, through the overflow weir 16 into the water collection area 6, and through the last outlet pipe 17 into the fresh water tank 38. to go into.

(2)逆洗過程:給水バルブ25を閉じ、排水/排泥バルブ27を開き、反応器1内の水位は、水の排水/排泥バルブ27からの排出に伴い徐々に下降し、濾材も下降し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を開き、微小水量スプレー水ポンプ19を起動し、濾材洗浄補助ノズル孔24のスプレー作用により圧縮濾過領域5の濾材を分散して下に移動させ、最後に液面センサ35及び液面検知器34により水位を逆洗剥離領域3の頂部に制御し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を閉じ、微小水量スプレー水ポンプ19を閉じ、逆洗吸気バルブ28、排気バルブ9を開き、空気圧縮機20を起動し、ガスが空気圧縮機20により加圧された後、空気圧縮機20、ガス量調節バルブ28、チェックバルブ26を経て反応器に入り、さらに逆洗ガス管ノズル7により吐出され、軽量濾材を5分-10分間撹拌することで、濾層が遮断した汚物がガスせん断作用及びそれ自体の重力作用により濾材から剥離され、そして、空気圧縮機20及びバルブ28を閉じ、沈殿作用により剥離した不純物を排水/排泥領域2に集中させ、沈殿時間が20分-30分間であり、さらに、排水/排泥バルブ27を開き、汚泥を、排泥管21を介して水流と共に排出し、逆洗過程を完成させる。 (2) Backwashing process: The water supply valve 25 is closed, the drain/sludge valve 27 is opened, the water level in the reactor 1 gradually decreases as the water is discharged from the drain/sludge valve 27, and the filter media At this time, the communication valve 29, the minute water amount water supply control valve 30 and the valve 31 are opened, the minute water amount spray water pump 19 is started, and the filter material in the compression filtration area 5 is dispersed by the spray action of the filter material cleaning auxiliary nozzle hole 24. Finally, the liquid level sensor 35 and the liquid level detector 34 control the water level to the top of the backwash stripping area 3. At this time, the communication valve 29, the minute water supply adjustment valve 30 and the valve 31 are turned on. Close, close the micro-water spray water pump 19, open the backwash intake valve 28 and the exhaust valve 9, start the air compressor 20, and after the gas is pressurized by the air compressor 20, the air compressor 20, the gas It enters the reactor through the volume control valve 28 and the check valve 26, and is discharged from the backwash gas pipe nozzle 7. By stirring the lightweight filter medium for 5 to 10 minutes, the filth blocked by the filter layer is sheared by the gas. and is stripped from the filter media by its own gravitational action, and the air compressor 20 and valve 28 are closed to concentrate the sedimentation stripped impurities in the drainage/sludge area 2, with a settling time of 20-30 minutes. Yes, and open the drain/sludge valve 27 to drain the sludge with the water flow through the sludge drain pipe 21 to complete the backwashing process.

(3)軽量濾層復位過程:逆洗が終了し、排泥した後、次の濾過過程に入る前に、軽量濾層復位を行う必要があり、まず、排水/排泥バルブ27及び逆洗エアバルブ28を閉じ、微小水量スプレー給水バルブ30及びバルブ31を開き、連通バルブ29及び排気バルブ9を開き、微小水量スプレー水ポンプ19を起動し、微小水量スプレー水ポンプ19の洗い流し作用により、水流は濾材洗浄補助ノズル孔24から反応器1内にスプレーされ、反応器1内の水位が徐々に上昇し、発泡ポリスチレン粒子EPS濾材36は比重が水より小さいため、上昇水流の押し上げにより自動復位が実現されるとともに、微小水量スプレーが上昇過程中の軽量濾材の分布を補助的に調整し、上昇濾材が浮上防止フィルタプレートにより遮断されるとともに水流の上向きの作用力により作用されることにより、濾過層は徐々に緻密に圧縮され、このとき、微小水量スプレー給水バルブ30及びバルブ31を閉じ、引き続き微小水量スプレー水ポンプ19の動作を5分-10分間保持した後、微小水量スプレー水ポンプ19及び連通バルブ29を閉じ、濾層の復位過程を完成させる。 (3) Lightweight filtration layer restoration process: After backwashing and sludge discharge, it is necessary to restore the lightweight filtration layer before entering the next filtration process. The backwash air valve 28 is closed, the micro-water spray water supply valve 30 and valve 31 are opened, the communication valve 29 and the exhaust valve 9 are opened, and the micro-water spray pump 19 is activated. The water stream is sprayed into the reactor 1 from the filter medium cleaning auxiliary nozzle hole 24, and the water level in the reactor 1 gradually rises. Since the expanded polystyrene particle EPS filter medium 36 has a lower specific gravity than water, it is automatically restored by being pushed up by the rising water stream. is realized, and the minute water spray assists in adjusting the distribution of the lightweight filter media during the ascending process, and the ascending filter media is blocked by the anti-floating filter plate and acted upon by the upward force of the water flow, The filter layer is gradually compacted, at this time, the micro-water spray water supply valve 30 and valve 31 are closed, and the micro-water spray water pump 19 continues to operate for 5-10 minutes, and then the micro-water spray water pump 19 is and close the communication valve 29 to complete the restoration process of the filter layer.

本発明は、従来のフィルタに比べ、以下の利点を有する。 The present invention has the following advantages over conventional filters.

(1)可変濾過断面の設計により、濾過速度が速くなるとともに、圧力が高くなる濾過状態が形成されることによって、濾過時に濾過層が水の力により自動的に緻密に圧縮される目的が達成されるとともに、従来の軽量濾材の濾過層その自体が緻密に圧縮することができず、孔隙が緩くて大きいという問題が解決される。
(2)逆洗時に、遮断された汚泥の重力作用を利用し、ガススプレーによる撹拌によりそれと濾材を分離し、重力により沈降させることで軽量濾材と分離し、逆洗水を必要とせず、節水で省エネである。
(3)初めて軽量濾材領域に濾材洗浄補助ノズル孔を設ける。これによって、逆洗開始時に圧縮された濾材が下へ移動するのを促進するとともに、逆洗後の濾材復位時にさらに微小水量で濾材に残留した不純物を洗い流し、濾過層の洗浄効果を高めることができる。
(1) The design of the variable filtration cross-section increases the filtration rate and creates a filtration state in which the pressure increases, thereby achieving the purpose of automatically compressing the filtration layer densely by the force of the water during filtration. At the same time, the problem that the filter layer itself of the conventional lightweight filter medium itself cannot be compactly compressed and the pores are loose and large is solved.
(2) At the time of backwashing, the blocked sludge is separated from the filter media by using the gravitational action of the intercepted sludge, and the sludge is separated from the filter media by agitating with a gas spray, and separated from the lightweight filter media by sedimentation by gravity. and save energy.
(3) For the first time, a filter medium cleaning auxiliary nozzle hole is provided in the lightweight filter medium region. This promotes the downward movement of the compressed filter media at the start of backwashing, and further flushes away impurities remaining in the filter media with a small amount of water when the filter media are restored after backwashing, thereby enhancing the cleaning effect of the filtration layer. can.

(4)上向流が水の圧縮作用により自動的に孔隙の大きいものから小さいものへの分布が実現され、濾過過程の段階原則が満たされるので、濾過抵抗が小さく、省エネである。 (4) The upward flow automatically realizes the distribution of pores from large to small due to the action of water compression, and the step principle of the filtration process is satisfied, so the filtration resistance is small and the energy is saved.

濾過時の動作原理図である。FIG. 4 is a principle diagram of operation during filtering; 逆洗時の動作原理図である。FIG. 4 is a principle diagram of operation during backwashing;

以下、具体的な実施例により本発明を詳しく説明する。 The present invention will be described in detail below with reference to specific examples.

本実施例に係る微小水量逆洗変速上向流式軽量濾材フィルタは反応器1、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含む。 The micro-water backwash speed upflow lightweight filter media filter according to the present embodiment includes a reactor 1, a feed water distribution system, a gas backwash system, a micro-water backwash spray system, a water collection system, and a drainage/drainage system. .

反応器1は、ステンレス鋼材質を採用する。反応器1の内部には、給水/排泥領域2、逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5、及び集水領域6が区画されている。変速濾過領域4及び圧縮濾過領域5に充填された濾材は発泡ポリスチレン粒子(EPS)36であり、粒径が0.5~1mmである。圧縮濾過領域5の上部に浮上防止フィルタプレート12が取り付けられ、浮上防止フィルタプレート12上にフィルタヘッド13が取り付けられ、浮上防止フィルタプレート12の真上に蓋板14が取り付けられ、蓋板14の周囲にガイドプレートが設けられ、蓋板14上に排気バルブ9が設けられる。
給水/排泥領域2は反応器1の底部に位置し、逆洗剥離領域3は給水領域2の上部に位置し、逆洗剥離領域3は円筒状であり、容積が変速濾過領域4と圧縮濾過領域5との容積の和と等しい。濾過領域に充填された濾材は発泡ポリスチレン粒子(EPS)であり、濾材の粒径は0.5~1mmである。処理される水中の汚物は最初変速濾過領域における濾層により遮断される。
変速濾過領域4は逆洗剥離領域3の上部に位置し、この領域は、断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなる。一般式Q=A・υから分かるように、水流速度が徐々に速くなるため、この領域の濾層が受ける上向きの濾過圧力は徐々に大きくなる。変速濾過領域4に充填された濾材は発泡ポリスチレン粒子(EPS)であり、濾材の粒径は0.5~1mmである。
The reactor 1 adopts stainless steel material. The interior of the reactor 1 is partitioned into a feed/sludge area 2 , a backwash stripping area 3 , a variable speed filtration area 4 , a compression filtration area 5 and a water collection area 6 . The filter media filled in the variable speed filtration area 4 and the compression filtration area 5 are expanded polystyrene particles (EPS) 36 with a particle size of 0.5 to 1 mm. An anti-floating filter plate 12 is attached to the top of the compression filtration area 5, a filter head 13 is attached on the anti-floating filter plate 12, a cover plate 14 is attached directly above the anti-floating filter plate 12, and the cover plate 14 is attached. A guide plate is provided around it, and an exhaust valve 9 is provided on the cover plate 14 .
The feed/sludge area 2 is located at the bottom of the reactor 1 , the backwash stripping area 3 is located above the feedwater area 2 , the backwash stripping area 3 is cylindrical and the volume is compressed with the variable speed filtration area 4 . equal to the sum of the volume with the filtering area 5; The filter medium filled in the filtering area is expanded polystyrene particles (EPS), and the particle size of the filter medium is 0.5-1 mm. Contaminants in the water being treated are initially blocked by the filtration layer in the variable speed filtration zone.
The variable-speed filtration area 4 is located above the backwash stripping area 3, and this area has a truncated cone shape with a cross-sectional area that gradually decreases from bottom to top. As can be seen from the general formula Q=A·ν, the upward filtration pressure exerted on the filtration layer in this region gradually increases because the water velocity gradually increases. The filter medium filled in the variable speed filtration area 4 is expanded polystyrene particles (EPS), and the particle size of the filter medium is 0.5 to 1 mm.

圧縮濾過領域5は変速濾過領域4の上部に位置し、この領域は円筒状であり、その断面積が変速濾過領域4の上部の断面積と同じ、圧縮濾過領域5の初期水流速度は変速濾過領域4の最大水流速度であり、圧縮濾過領域5における濾層が受ける圧力は最大であり、濾過層は最も緻密である。充填された濾材は発泡ポリスチレン粒子(EPS)であり、濾材の粒径は0.5~1mmである。 The compression filtration area 5 is located above the variable speed filtration area 4, this area is cylindrical, and its cross-sectional area is the same as the cross-sectional area of the upper part of the transmission filtration area 4, and the initial water flow velocity of the compression filtration area 5 is equal to the speed filtration At the maximum water flow velocity in zone 4, the pressure experienced by the filter layer in compression filter zone 5 is the highest and the filter layer is the densest. The filled filter medium is expanded polystyrene particles (EPS), and the particle size of the filter medium is 0.5-1 mm.

処理される原水は給水/排泥領域2を通過して反応器1の底部に入り、順に逆洗剥離領域3、変速濾過領域4及び圧縮濾過領域5の濾層を通過して遮断されて濾過され、濾過水はフィルタヘッドを通過して蓋板14に当たり、蓋板14のガイドプレートを通過して清水槽15に流入し、さらに越流堰16を経て集水領域6に入り、最後に出水管17を介して水が清水タンク38に収集される。 The raw water to be treated enters the bottom of the reactor 1 through the feed/drainage zone 2, passes through the filtration layers of the backwash stripping zone 3, the variable speed filtration zone 4 and the compression filtration zone 5 in turn and is blocked. After being filtered, the filtered water passes through the filter head, hits the cover plate 14, passes through the guide plate of the cover plate 14, flows into the clean water tank 15, passes through the overflow weir 16, enters the catchment area 6, and finally Water is collected in the fresh water tank 38 via the water outlet pipe 17 .

給水配水システムは、原水タンク37、水ポンプ18、原水給水管10、給水バルブ25及び反射板11を含み、原水給水管10には給水バルブ25が取り付けられ、反射板11は給水管口の真下に位置し、水を均等に配給するために用いられ、原水タンク37は水ポンプ18の給水口に接続され、水ポンプ18の出水口は原水給水管10の給水バルブ25に接続され、反射板11は原水給水管10の管口の真下に位置し、処理される水は、水ポンプにより加圧され、原水給水管により反応器1の底部の給水/排泥領域2に輸送され、給水は反射板11により均等に配給される。 The water supply distribution system includes a raw water tank 37, a water pump 18, a raw water supply pipe 10, a water supply valve 25, and a reflector 11. The raw water supply pipe 10 is attached with the water supply valve 25, and the reflector 11 is directly below the water supply pipe port. is used to evenly distribute water, the raw water tank 37 is connected to the water supply port of the water pump 18, the water outlet of the water pump 18 is connected to the water supply valve 25 of the raw water supply pipe 10, and the reflector 11 is located directly below the pipe mouth of the raw water feed pipe 10, the water to be treated is pressurized by a water pump and transported by the raw water feed pipe to the feed water / sludge discharge area 2 at the bottom of the reactor 1, where the feed water is Evenly distributed by reflector 11 .

集水システムは、清水出水管17及び清水タンク38を含み、清水出水管17の一端は集水領域6に接続され、他端は清水タンク38に連通し、集水領域と清水タンク38の間には高低差があり、高低差により清水は自動的に清水タンクに流入する。 The water collection system includes a fresh water outlet pipe 17 and a fresh water tank 38 , one end of the fresh water outlet pipe 17 is connected to the water collection area 6 and the other end communicates with the fresh water tank 38 , between the water collection area and the fresh water tank 38 . There is a difference in height, and the fresh water automatically flows into the fresh water tank due to the difference in height.

微量水逆洗スプレーシステムは、清水ポンプ19、微量水逆洗主管23、微量水逆洗バルブ30及びバルブ31、微量水逆洗スプレー分岐管8、濾材洗浄補助ノズル24、液面センサ35及び液面検知器34を含み、清水ポンプ19は清水タンク38に接続され、清水ポンプ19は微量水逆洗主管23、微量水逆洗バルブ30、バルブ31により微量水逆洗スプレー分岐管8に接続され、微量水逆洗スプレー分岐管8は周方向に沿って圧縮濾過領域5及び変速濾過領域4の外部に設けられ、各微量水逆洗スプレー分岐管8には複数の濾材洗浄補助ノズル24が設けられ、これにより水が圧縮濾過領域5及び変速濾過領域4の内部に導入され、液面センサ35は逆洗剥離領域3の頂部に設けられ、データ線により液面検知器34に接続され、逆洗過程において液面センサ35の水位検知結果に基づいて水位を逆洗剥離領域3の頂部に制御する。
微量水逆洗システムは2つの機能を有する。一つ目は、濾過終了後、逆洗段階に入り、逆洗スプレーの作用により緻密に圧縮された軽量濾材36を分散させ、逆洗剥離領域3に戻らせることである。二つ目は、逆洗終了後の濾材復位過程において、逆洗スプレーの作用により軽量濾材36の表面をさらに洗い流すとともに、濾材を均等に配列させる作用を奏する。
The trace water backwash spray system includes a clean water pump 19, a trace water backwash main pipe 23, a trace water backwash valve 30 and a valve 31, a trace water backwash spray branch pipe 8, an auxiliary filter cleaning nozzle 24, a liquid level sensor 35, and a liquid The fresh water pump 19 is connected to the fresh water tank 38, and the fresh water pump 19 is connected to the trace water backwash spray branch pipe 8 by the trace water backwash main pipe 23, the trace water backwash valve 30, and the valve 31. , the trace water backwash spray branch pipe 8 is provided outside the compression filtration area 5 and the variable speed filtration area 4 along the circumferential direction, and each trace water backwash spray branch pipe 8 is provided with a plurality of filter medium washing auxiliary nozzles 24. water is thereby introduced into the compression filtration area 5 and the variable speed filtration area 4, and the liquid level sensor 35 is provided at the top of the backwash stripping area 3 and is connected to the liquid level detector 34 by a data line to reverse In the washing process, the water level is controlled to the top of the backwash stripping area 3 based on the water level detection result of the liquid level sensor 35 .
The trace water backwash system has two functions. The first is to enter the backwashing stage after the end of filtration, and to disperse the densely compressed lightweight filter media 36 by the action of the backwash spray and return them to the backwash stripping area 3 . Secondly, in the process of restoring the filter media after the backwashing, the backwash spray further cleans the surface of the lightweight filter media 36 and evenly arranges the filter media.

ガス逆洗システムは、空気圧縮機20、逆洗ガス管22、逆洗ガス管ノズル7、逆洗エアバルブ28及びチェックバルブ26、逆洗リリースバルブ9を含み、反応器1の排水管21には排水/排泥バルブ27が取り付けられ、反応器1内の逆洗ガス管22は、逆洗剥離領域3の底部にある管部に均等に分布する逆洗ガス管ノズル7が設けられ、逆洗ガス管22には逆洗エアバルブ28及び逆流を防止するチェックバルブ26が取り付けられ、反応器1の頂部の蓋板には排気バルブ9が設けられる。
排水/排泥システムは、排水/排泥管21及び排水/排泥バルブ27を含み、排水/排泥管21は、給水/排泥領域2の底部に設けられ、排水/排泥管21には排水/排泥バルブ27が設けられる。
The gas backwash system includes an air compressor 20, a backwash gas pipe 22, a backwash gas pipe nozzle 7, a backwash air valve 28 and a check valve 26, a backwash release valve 9, and a drain pipe 21 of the reactor 1. A drain/sludge valve 27 is fitted and the backwash gas pipes 22 in the reactor 1 are provided with backwash gas pipe nozzles 7 evenly distributed in the pipe section at the bottom of the backwash stripping area 3 . A backwash air valve 28 and a check valve 26 for preventing backflow are attached to the gas pipe 22 , and an exhaust valve 9 is provided on the top cover plate of the reactor 1 .
The drain/sludge system includes a drain/sludge pipe 21 and a drain/sludge valve 27. The drain/sludge pipe 21 is provided at the bottom of the water supply/sludge area 2, and the drain/sludge pipe 21 is provided with a drain/sludge valve 27 .

具体的な作動過程
微小水量逆洗変速上向流式軽量濾材フィルタの作動操作の過程は、1濾過過程、2逆洗過程、及び3軽量濾層復位過程に分けられ、この3つの過程はサイクルで行われる。
Specific operation process The operation process of the small water volume backwash speed upflow lightweight filter media filter is divided into 1 filtration process, 2 backwash process, and 3 light filter layer restoration process, and these three processes are: done in cycles.

(1)濾過過程:排水/排泥バルブ27、逆洗吸気バルブ28及び連通バルブ29を閉じ、給水バルブ25及び排気バルブ9を開き、給水ポンプ18を起動し、水ポンプ18により原水タンク37における処理される水を、給水管10を介して反応器1に送入し、処理される水が給水管10から反射板11を経て均等に配給され、濾過水流が上へ順に逆洗剥離領域3、変速濾過領域4、圧縮濾過領域5を通過し、最後に水流がフィルタヘッドを通過して清水領域に入り、上昇する水流が蓋板14に当たったときに、出水がまず排ガス管から排出され、この場合、排気バルブ9を閉じることにより、水流がガイドプレートを通過して清水槽15に流入し、さらに越流堰16を通して集水領域6に流入し、最後出水管17を経て清水タンク38に入る。 (1) Filtration process: Close the drainage/sludge valve 27, the backwash intake valve 28 and the communication valve 29, open the water supply valve 25 and the exhaust valve 9, start the water supply pump 18, and the water pump 18 in the raw water tank 37 The water to be treated is fed into the reactor 1 via the water supply pipe 10, the water to be treated is evenly distributed from the water supply pipe 10 through the reflector plate 11, and the filtered water flow is in turn up the backwash stripping zone 3. , the variable speed filtration region 4, the compression filtration region 5, and finally the water flow passes through the filter head into the fresh water region, and when the rising water flow hits the cover plate 14, the water is first discharged from the exhaust gas pipe. In this case, by closing the exhaust valve 9, the water flows through the guide plate into the fresh water tank 15, through the overflow weir 16 into the water collection area 6, and through the last outlet pipe 17 into the fresh water tank 38. to go into.

(2)逆洗過程:給水バルブ25を閉じ、排水/排泥バルブ27を開き、反応器1内の水位は、水の排水/排泥バルブ27からの排出に伴い徐々に下降し、濾材も下降し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を開き、微小水量スプレー水ポンプ19を起動し、濾材洗浄補助ノズル孔24のスプレー作用により圧縮濾過領域5の濾材を分散して下に移動させ、最後に液面センサ35及び液面検知器34により水位を逆洗剥離領域3の頂部に制御し、このとき、連通バルブ29、微小水量給水調節バルブ30及びバルブ31を閉じ、微小水量スプレー水ポンプ19を閉じ、逆洗吸気バルブ28、排気バルブ9を開き、空気圧縮機20を起動し、ガスが空気圧縮機20により加圧された後、空気圧縮機20、ガス量調節バルブ28、チェックバルブ26を経て反応器に入り、さらに逆洗ガス管ノズル7により吐出され、軽量濾材を5分-10分間撹拌することで、濾層が遮断した汚物がガスせん断作用及びそれ自体の重力作用により濾材から剥離され、そして、空気圧縮機20及びバルブ28を閉じ、沈殿作用により剥離した不純物を排水/排泥領域2に集中させ、沈殿時間が20分-30分であり、さらに、排水/排泥バルブ27を開き、汚泥を、排泥管21を介して水流と共に排出し、逆洗過程を完成させる。 (2) Backwashing process: The water supply valve 25 is closed, the drain/sludge valve 27 is opened, the water level in the reactor 1 gradually decreases as the water is discharged from the drain/sludge valve 27, and the filter media At this time, the communication valve 29, the minute water amount water supply control valve 30 and the valve 31 are opened, the minute water amount spray water pump 19 is started, and the filter material in the compression filtration area 5 is dispersed by the spray action of the filter material cleaning auxiliary nozzle hole 24. Finally, the liquid level sensor 35 and the liquid level detector 34 control the water level to the top of the backwash stripping area 3. At this time, the communication valve 29, the minute water supply adjustment valve 30 and the valve 31 are turned on. Close, close the micro-water spray water pump 19, open the backwash intake valve 28 and the exhaust valve 9, start the air compressor 20, and after the gas is pressurized by the air compressor 20, the air compressor 20, the gas It enters the reactor through the volume control valve 28 and the check valve 26, and is discharged from the backwash gas pipe nozzle 7. By stirring the lightweight filter medium for 5 to 10 minutes, the filth blocked by the filter layer is sheared by the gas. and is stripped from the filter media by its own gravitational action, and the air compressor 20 and valve 28 are closed to concentrate the sedimentation stripped impurities in the drainage/sludge area 2, with a settling time of 20-30 minutes. Yes, and open the drain/sludge valve 27 to drain the sludge with the water flow through the sludge drain pipe 21 to complete the backwashing process.

(3)軽量濾層復位過程:逆洗が終了し、排泥した後、次の濾過過程に入る前に、軽量濾層復位を行う必要があり、まず、排水/排泥バルブ27及び逆洗エアバルブ28を閉じ、微小水量スプレー給水バルブ30及びバルブ31を開き、連通バルブ29及び排気バルブ9を開き、微小水量スプレー水ポンプ19を起動し、微小水量スプレー水ポンプ19の洗い流し作用により、水流が濾材洗浄補助ノズル孔24から反応器1内にスプレーされ、反応器1内の水位が徐々に上昇し、発泡ポリスチレン粒子EPS濾材36は比重が水より小さいため、上昇水流の押し上げにより自動復位が実現されるとともに、微小水量スプレーが上昇過程中の軽量濾材の分布を補助的に調整し、上昇濾材が浮上防止フィルタプレートにより遮断されるとともに水流の上向きの作用力により作用されることにより、濾過層は徐々に緻密に圧縮され、このとき、微小水量スプレー給水バルブ30及びバルブ31を閉じ、引き続き微小水量スプレー水ポンプ19の動作を5分-10分間保持した後、微小水量スプレー水ポンプ19及び連通バルブ29を閉じ、濾層の復位過程を完成させる。
(3) Lightweight filtration layer restoration process: After backwashing and sludge discharge, it is necessary to restore the lightweight filtration layer before entering the next filtration process. The backwash air valve 28 is closed, the micro-water spray water supply valve 30 and valve 31 are opened, the communication valve 29 and the exhaust valve 9 are opened, and the micro-water spray pump 19 is activated. A water stream is sprayed into the reactor 1 from the filter medium cleaning auxiliary nozzle hole 24, and the water level in the reactor 1 gradually rises. Since the expanded polystyrene particle EPS filter medium 36 has a lower specific gravity than water, it is automatically restored by being pushed up by the rising water stream. is realized, and the minute water spray assists in adjusting the distribution of the lightweight filter media during the ascending process, and the ascending filter media is blocked by the anti-floating filter plate and acted upon by the upward force of the water flow, The filter layer is gradually compacted, at this time, the micro-water spray water supply valve 30 and valve 31 are closed, and the micro-water spray water pump 19 continues to operate for 5-10 minutes, and then the micro-water spray water pump 19 is and close the communication valve 29 to complete the restoration process of the filter layer.

(4)反応器のメンテナンス:反応器が約1年間作動した後、濾材を交換又は補充する必要がある。濾材を交換又は補充する際に、排水/排泥バルブ27、逆洗補助バルブ30及びバルブ31を開き、バルブ25、逆洗エアバルブ28及び連通バルブ29を閉じる必要がある。濾材が水位に伴って下に移動し、液面検知器34に水位が濾材交換口の下縁以下の位置に下降したことが表示されるときに、排水/排泥バルブ27を閉じ、逆洗水ポンプ19の動作を停止させ、濾材交換口33を開き、濾材を補充又は交換する。濾材を加えた後、濾材交換口33を閉じ、濾過過程に従って濾過を開始する。 (4) Reactor maintenance: After about one year of reactor operation, the filter media need to be replaced or replenished. When replacing or replenishing the filter media, it is necessary to open the drainage/sludge valve 27, the backwash auxiliary valve 30 and the valve 31, and close the valve 25, the backwash air valve 28 and the communication valve 29. When the filter medium moves downward with the water level, and the liquid level detector 34 indicates that the water level has fallen below the lower edge of the filter medium exchange port, the drainage/sludge discharge valve 27 is closed to perform backwashing. The operation of the water pump 19 is stopped, the filter medium replacement port 33 is opened, and the filter medium is replenished or replaced. After adding the filter medium, the filter medium exchange port 33 is closed and filtration is started according to the filtration process.

本実施例において、上記濾過反応器を用いてある汚水処理場の二次沈殿池で処理された後の排水に対して高度処理を行う。表1から分かるように、反応器は水中濁度に対して良好な除去効果を有する。反応器への給水濁度は7.134~36.270NTUであるが、反応器からの排水濁度は1NTU以下に達することができ、濁度除去率は94.5%~97.7%である。 In this embodiment, advanced treatment is performed on the waste water treated in the secondary sedimentation tank of a sewage treatment plant using the filtration reactor. As can be seen from Table 1, the reactor has a good removal effect on water turbidity. The feed water turbidity to the reactor is 7.134-36.270 NTU, while the waste water turbidity from the reactor can reach below 1 NTU, and the turbidity removal rate is 94.5%-97.7%. be.

<表1>
表1:異なる給水濁度の水質処理効果

Figure 0007145544000001
<Table 1>
Table 1: Water treatment effect of different feed water turbidity
Figure 0007145544000001

理解され得るように、当業者は、以上の説明に基づいて改良又は変更することができ、これらの改良及び変更はいずれも本発明の保護範囲に含まれるべきである。 It is understood that persons skilled in the art may make improvements or changes based on the above description, and all these improvements and changes should fall within the protection scope of the present invention.

Claims (9)

微小水量逆洗変速上向流式軽量濾材フィルタであって、
反応器(1)、給水配水システム、ガス逆洗システム、微量水逆洗スプレーシステム、集水システム、及び排水/排泥システムを含み、
反応器(1)の内部には、給水/排泥領域(2)、逆洗剥離領域(3)、変速濾過領域(4)、圧縮濾過領域(5)、及び集水領域(6)が区画されており、圧縮濾過領域(5)の上部には浮上防止フィルタプレート(12)が取り付けられ、浮上防止フィルタプレート(12)上にはフィルタヘッド(13)が取り付けられ、浮上防止フィルタプレート(12)の真上には蓋板(14)が取り付けられ、蓋板(14)の周囲にはガイドプレートが設けられ、蓋板(14)には排気バルブ(9)が設けられ、
給水/排泥領域(2)は反応器(1)の底部に位置し、逆洗剥離領域(3)は給水領域(2)の上部に位置し、逆洗剥離領域(3)は円筒状であり、逆洗剥離領域(3)の容積は、変速濾過領域(4)と圧縮濾過領域(5)との容積の和と等しく、処理される水中の汚物は、最初、変速濾過領域の濾層によって遮断され、
変速濾過領域(4)は逆洗剥離領域(3)の上部に位置し、この領域は、断面積が下から上へ徐々に小さくなる円錐台状であり、給水流量が一定であり、断面積が小さくなることで、この領域の濾層が受ける上向きの濾過圧力は徐々に大きくなり、
圧縮濾過領域(5)は変速濾過領域(4)の上部に位置し、この領域は円筒状であり、その断面積が変速濾過領域(4)の上部の断面積と同じ、圧縮濾過領域(5)の初期水流速度は変速濾過領域(4)の最大水流速度であり、圧縮濾過領域(5)における濾層が受ける圧力は最大であり、濾過層は最も緻密であることを特徴とする、フィルタ。
A very small amount of water backwash variable speed upward flow type lightweight filter media filter,
including a reactor (1), a feed water distribution system, a gas backwash system, a trace water backwash spray system, a water collection system, and a drainage/sludge system;
The interior of the reactor (1) is divided into a feed/sludge area (2), a backwash stripping area (3), a variable speed filtration area (4), a compression filtration area (5) and a water collection area (6). An anti-floating filter plate (12) is mounted on the top of the compression filtration area (5), a filter head (13) is mounted on the anti-floating filter plate (12), and an anti-floating filter plate (12) is mounted on the anti-floating filter plate (12). ), a cover plate (14) is attached directly above the cover plate (14), a guide plate is provided around the cover plate (14), an exhaust valve (9) is provided on the cover plate (14),
The feed/sludge area (2) is located at the bottom of the reactor (1), the backwash stripping area (3) is located above the feedwater area (2), and the backwash stripping area (3) is cylindrical. There, the volume of the backwash stripping zone (3) is equal to the sum of the volumes of the variable speed filtration zone (4) and the compression filtration zone (5), and the contaminants in the water to be treated initially pass through the filtration of the variable speed filtration zone separated by layers,
The variable-speed filtration area (4) is located above the backwash stripping area (3), and this area has a truncated cone shape with a cross-sectional area that gradually decreases from bottom to top. becomes smaller, the upward filtration pressure applied to the filter layer in this region gradually increases,
The compression filtration area (5) is located above the variable speed filtration area (4), this area is cylindrical and has the same cross-sectional area as the cross-sectional area of the top of the transmission filtration area (4). ) initial water velocity is the maximum water velocity in the variable speed filtration zone (4), the pressure experienced by the filtration layer in the compression filtration zone (5) is the greatest, and the filtration layer is the densest, filter.
処理される原水は給水/排泥領域(2)を通過して反応器(1)の底部に入り、順に逆洗剥離領域(3)、変速濾過領域(4)及び圧縮濾過領域(5)の濾層を通過して遮断されて濾過され、濾過水はフィルタヘッドを通過して蓋板(14)に当たり、蓋板(14)のガイドプレートを通過して清水槽(15)に流入し、さらに越流堰(16)を経て集水領域(6)に入り、最後に出水管(17)を介して水が清水タンク(38)に収集されることを特徴とする、請求項1に記載のフィルタ。 The raw water to be treated passes through the feed/sludge zone (2) and enters the bottom of the reactor (1), followed in turn by the backwash stripping zone (3), the variable speed filtration zone (4) and the compression filtration zone (5). The filtered water passes through the filtration layer and is blocked and filtered, the filtered water passes through the filter head, hits the cover plate (14), passes through the guide plate of the cover plate (14) and flows into the clean water tank (15), Claim 1, further characterized in that the water enters the catchment area (6) via an overflow weir (16) and finally via an outlet pipe (17) the water is collected in a fresh water tank (38). filter. 反応器内に充填される濾材は、粒径0.5~1mmの発泡ポリスチレン粒子(36)であることを特徴とする、請求項1に記載のフィルタ。 The filter according to claim 1, characterized in that the filter medium packed in the reactor is expanded polystyrene particles (36) with a particle size of 0.5-1 mm. 給水配水システムは、原水タンク(37)、水ポンプ(18)、原水給水管(10)、給水バルブ(25)及び反射板(11)を含み、
原水給水管(10)には給水バルブ(25)が取り付けられ、反射板(11)は給水管口の真下に位置し、水を均等に配給するために用いられ、
原水タンク(37)は水ポンプ(18)の給水口に接続され、水ポンプ(18)の出水口は原水給水管(10)の給水バルブ(25)に接続され、反射板(11)は原水給水管(10)の管口の真下に位置し、
処理される水は、水ポンプにより加圧され、原水給水管により反応器(1)の底部の給水/排泥領域(2)に輸送され、給水は反射板(11)により均等に配給されることを特徴とする、請求項1に記載のフィルタ。
The water supply distribution system includes a raw water tank (37), a water pump (18), a raw water supply pipe (10), a water supply valve (25) and a reflector (11),
A water supply valve (25) is attached to the raw water supply pipe (10), and a reflector (11) is positioned directly below the water supply pipe mouth and used to evenly distribute the water,
The raw water tank (37) is connected to the water supply port of the water pump (18), the water outlet of the water pump (18) is connected to the water supply valve (25) of the raw water supply pipe (10), and the reflector (11) is connected to the raw water supply pipe (10). Located directly below the mouth of the water supply pipe (10),
The water to be treated is pressurized by a water pump and transported by a raw water supply pipe to the feed/sludge area (2) at the bottom of the reactor (1), and the feed water is evenly distributed by a reflector (11). 2. A filter according to claim 1, characterized in that:
集水システムは、清水出水管(17)及び清水タンク(38)を含み、清水出水管(17)の一端は集水領域(6)に接続され、他端は清水タンク(38)に連通し、集水領域と清水タンク(38)の間には高低差があり、高低差により清水は自動的に清水タンクに流入することを特徴とする、請求項1に記載のフィルタ。 The water collection system includes a fresh water outlet pipe (17) and a fresh water tank (38), one end of the fresh water outlet pipe (17) is connected to the water collection area (6) and the other end communicates with the fresh water tank (38). 2. A filter according to claim 1, characterized in that there is a height difference between the catchment area and the fresh water tank (38), the height difference automatically causing the fresh water to flow into the fresh water tank. 微量水逆洗スプレーシステムは、清水ポンプ(19)、微量水逆洗主管(23)、微量水逆洗バルブ(30)及びバルブ(31)、微量水逆洗スプレー分岐管(8)、濾材洗浄補助ノズル(24)、液面センサ(35)及び液面検知器(34)を含み、
清水ポンプ(19)は清水タンク(38)に接続され、清水ポンプ(19)は微量水逆洗主管(23)、微量水逆洗バルブ(30)、バルブ(31)により微量水逆洗スプレー分岐管(8)に接続され、微量水逆洗スプレー分岐管(8)は周方向に沿って圧縮濾過領域(5)及び変速濾過領域(4)の外部に設けられ、各微量水逆洗スプレー分岐管(8)には複数の濾材洗浄補助ノズル(24)が設けられ、これにより水が圧縮濾過領域(5)及び変速濾過領域(4)の内部に導入され、
液面センサ(35)は逆洗剥離領域(3)の頂部に設けられ、データ線により液面検知器(34)に接続され、逆洗過程において液面センサ(35)の水位検知結果に基づいて水位を逆洗剥離領域(3)の頂部に制御することを特徴とする、請求項1に記載のフィルタ。
The trace water backwash spray system includes a clean water pump (19), a trace water backwash main pipe (23), a trace water backwash valve (30) and a valve (31), a trace water backwash spray branch pipe (8), and a filter media cleaning. including an auxiliary nozzle (24), a liquid level sensor (35) and a liquid level detector (34),
A fresh water pump (19) is connected to a fresh water tank (38), and the fresh water pump (19) branches to a trace water backwash spray by a trace water backwash main pipe (23), a trace water backwash valve (30), and a valve (31). Connected to the pipe (8), the micro-water backwash spray branch pipe (8) is provided circumferentially outside the compression filtration area (5) and the variable speed filtration area (4), each micro-water backwash spray branch. the tube (8) is provided with a plurality of filter media cleaning auxiliary nozzles (24) through which water is introduced into the compression filtration zone (5) and the variable speed filtration zone (4);
A liquid level sensor (35) is installed at the top of the backwash stripping area (3) and connected to the liquid level detector (34) by a data line. 2. A filter according to claim 1, characterized in that the water level is controlled at the top of the backwash stripping zone (3) by means of a water level.
ガス逆洗システムは、空気圧縮機(20)、逆洗ガス管(22)、逆洗ガス管ノズル(7)、逆洗エアバルブ(28)及びチェックバルブ(26)、逆洗リリースバルブ(9)を含み、
反応器(1)の排水管(21)には排水/排泥バルブ(27)が取り付けられ、
反応器(1)内の逆洗ガス管(22)は、逆洗剥離領域(3)の底部にある管部に均等に分布する逆洗ガス管ノズル(7)が設けられ、逆洗ガス管(22)には逆洗エアバルブ(28)及び逆流を防止するチェックバルブ(26)が取り付けられ、
反応器(1)の頂部の蓋板には排気バルブ(9)が設けられることを特徴とする、請求項1に記載のフィルタ。
The gas backwash system includes an air compressor (20), a backwash gas line (22), a backwash gas line nozzle (7), a backwash air valve (28) and a check valve (26), a backwash release valve (9). including
The drain pipe (21) of the reactor (1) is fitted with a drain/sludge valve (27),
The backwash gas pipes (22) in the reactor (1) are provided with backwash gas pipe nozzles (7) evenly distributed in the pipe section at the bottom of the backwash stripping zone (3), the backwash gas pipes (22) is equipped with a backwash air valve (28) and a check valve (26) to prevent backflow,
2. Filter according to claim 1, characterized in that the lid plate at the top of the reactor (1) is provided with an exhaust valve (9).
排水/排泥システムは、排水/排泥管(21)及び排水/排泥バルブ(27)を含み、
排水/排泥管(21)は、給水/排泥領域(2)の底部に設けられ、排水/排泥管(21)には排水/排泥バルブ(27)が設けられることを特徴とする、請求項1に記載のフィルタ。
The drain/sludge system includes a drain/sludge pipe (21) and a drain/sludge valve (27),
The drain/sludge drain pipe (21) is installed at the bottom of the water supply/sludge drain zone (2), and the drain/sludge drain pipe (21) is provided with a drain/sludge valve (27). A filter according to claim 1.
請求項1に記載のフィルタの作動操作方法であって、
微小水量逆洗変速上向流式軽量濾材フィルタの作動操作の過程は、(1)濾過過程、(2)逆洗過程、及び(3)軽量濾層復位過程に分けられ、この3つの過程はサイクルで行われ、
(1)濾過過程:排水/排泥バルブ(27)、逆洗吸気バルブ(28)及び連通バルブ(29)を閉じ、給水バルブ(25)及び排気バルブ(9)を開き、給水ポンプ(18)を起動し、水ポンプ(18)により原水タンク(37)における処理される水を、給水管(10)を介して反応器(1)に送入し、処理される水が給水管(10)から反射板(11)を経て均等に配給され、濾過水流が上へ順に逆洗剥離領域(3)、変速濾過領域(4)、圧縮濾過領域(5)を通過し、最後に水流がフィルタヘッドを通過して清水領域に入り、上昇する水流が蓋板(14)に当たったときに、出水がまず排ガス管から排出され、この場合、排気バルブ(9)を閉じることにより、水流がガイドプレートを通過して清水槽(15)に流入し、さらに越流堰(16)を通して集水領域(6)に流入し、最後出水管(17)を経て清水タンク(38)に入り、
(2)逆洗過程:給水バルブ(25)を閉じ、排水/排泥バルブ(27)を開き、反応器(1)内の水位は、水の排水/排泥バルブ(27)からの排出に伴い徐々に下降し、濾材も下降し、このとき、連通バルブ(29)、微小水量給水調節バルブ(30)及びバルブ(31)を開き、微小水量スプレー水ポンプ(19)を起動し、濾材洗浄補助ノズル孔(24)のスプレー作用により圧縮濾過領域(5)の濾材を分散して下に移動させ、最後に液面センサ(35)及び液面検知器(34)により水位を逆洗剥離領域(3)の頂部に制御し、このとき、連通バルブ(29)、微小水量給水調節バルブ(30)及びバルブ(31)を閉じ、微小水量スプレー水ポンプ(19)を閉じ、逆洗吸気バルブ(28)、排気バルブ(9)を開き、空気圧縮機(20)を起動し、ガスが空気圧縮機(20)により加圧された後、空気圧縮機(20)、ガス量調節バルブ(28)、チェックバルブ(26)を経て反応器に入り、さらに逆洗ガス管ノズル(7)により吐出され、軽量濾材を5分-10分間撹拌することで、濾層が遮断した汚物がガスせん断作用及びそれ自体の重力作用により濾材から剥離され、そして、空気圧縮機(20)及びバルブ(28)を閉じ、沈殿作用により剥離した不純物を排水/排泥領域(2)に集中させ、沈殿時間が20分-30分間であり、さらに、排水/排泥バルブ(27)を開き、汚泥を、排泥管(21)を介して水流と共に排出し、逆洗過程を完成させ、
(3)軽量濾層復位過程:逆洗が終了し、排泥した後、次の濾過過程に入る前に、軽量濾層復位を行う必要があり、まず、排水/排泥バルブ(27)及び逆洗エアバルブ(28)を閉じ、微小水量スプレー給水バルブ(30)及びバルブ(31)を開き、連通バルブ(29)及び排気バルブ(9)を開き、微小水量スプレー水ポンプ(19)を起動し、微小水量スプレー水ポンプ(19)の洗い流し作用により、水流は濾材洗浄補助ノズル孔(24)から反応器(1)内にスプレーされ、反応器(1)内の水位が徐々に上昇し、発泡ポリスチレン粒子(EPS)濾材(36)は比重が水より小さいため、上昇水流の押し上げにより自動復位が実現されるとともに、微小水量スプレーが上昇過程中の軽量濾材の分布を補助的に調整し、上昇濾材が浮上防止フィルタプレートにより遮断されるとともに水流の上向きの作用力により作用されることにより、濾過層は徐々に緻密に圧縮され、このとき、微小水量スプレー給水バルブ(30)及びバルブ(31)を閉じ、引き続き微小水量スプレー水ポンプ(19)の動作を5分-10分間保持した後、微小水量スプレー水ポンプ(19)及び連通バルブ(29)を閉じ、濾層の復位過程を完成させることを特徴とする、方法。
A method of operating a filter according to claim 1, comprising:
The operation process of the micro-volume backwash variable speed upflow lightweight filter media filter is divided into (1) filtration process, (2) backwash process, and (3) lightweight filter layer restoration process, these three processes. is done in cycles and
(1) Filtration process: Close the drain/sludge valve (27), the backwash intake valve (28) and the communication valve (29), open the water supply valve (25) and the exhaust valve (9), and open the water supply pump (18). to feed the water to be treated in the raw water tank (37) by the water pump (18) into the reactor (1) through the water supply pipe (10), and the water to be treated flows into the water supply pipe (10) through the reflector (11), the filtered water flow passes upwards in order through the backwash stripping zone (3), the variable speed filtration zone (4), the compression filtration zone (5), and finally the water flow passes through the filter head into the fresh water area and the rising water flow hits the lid plate (14), the water is first discharged from the exhaust pipe, in this case by closing the exhaust valve (9) the water flow is diverted from the guide plate and into the fresh water tank (15), through the overflow weir (16) into the catchment area (6), and through the last outlet pipe (17) into the fresh water tank (38),
(2) Backwashing process: Close the water supply valve (25), open the drain/sludge valve (27), and the water level in the reactor (1) is adjusted to the discharge of the water from the drain/sludge valve (27). At this time, the communication valve (29), the minute water supply adjustment valve (30) and the valve (31) are opened, the minute water amount spray water pump (19) is started, and the filter material is washed. The spraying action of the auxiliary nozzle hole (24) disperses the filter material in the compression filtration area (5) and moves it downward, and finally the water level is measured by the liquid level sensor (35) and the liquid level detector (34) in the backwash stripping area. (3), at this time, close the communication valve (29), the micro-water supply adjustment valve (30) and the valve (31), close the micro-water spray water pump (19), and close the backwash intake valve ( 28), open the exhaust valve (9), start the air compressor (20), after the gas is pressurized by the air compressor (20), the air compressor (20), the gas amount control valve (28) , enters the reactor through the check valve (26), is further discharged from the backwash gas pipe nozzle (7), and agitates the lightweight filter medium for 5 to 10 minutes, so that the dirt blocked by the filter layer is sheared by the gas. and is stripped from the filter media by its own gravitational action, and the air compressor (20) and valve (28) are closed to concentrate the sedimentation stripped impurities in the drainage/sludge area (2), where the settling time is 20-30 minutes, then open the drain/sludge valve (27) and drain the sludge with the water flow through the drain pipe (21) to complete the backwashing process;
(3) Lightweight filtration layer restoration process: After backwashing and sludge discharge, it is necessary to restore the lightweight filtration layer before entering the next filtration process. ) and the backwash air valve (28), open the micro-water spray water supply valve (30) and valve (31), open the communication valve (29) and the exhaust valve (9), and turn on the micro-water spray water pump (19). The water flow is sprayed into the reactor (1) from the filtering medium washing auxiliary nozzle hole (24) by the washing action of the micro-volume spray water pump (19), and the water level in the reactor (1) gradually rises. , Expanded polystyrene particles (EPS) filter material (36) has a specific gravity smaller than that of water, so that the rising water flow pushes up to achieve automatic return, and the micro-water spray assists in adjusting the distribution of the lightweight filter material during the rising process. , the rising filter material is blocked by the anti-floating filter plate and acted by the upward acting force of the water flow, so that the filter layer is gradually compressed densely, at this time, the micro water spray water supply valve (30) and the valve ( 31), and continue to operate the micro-water spray water pump (19) for 5 to 10 minutes, then close the micro-water spray water pump (19) and the communication valve (29) to restore the filtration layer. A method characterized by completing.
JP2021506731A 2019-12-05 2020-01-17 Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method Active JP7145544B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911231163.XA CN110917679B (en) 2019-12-05 2019-12-05 Micro-water-quantity back-flushing variable-speed upward-flow light filter material filter and method thereof
CN201911231163.X 2019-12-05
PCT/CN2020/072602 WO2021109329A1 (en) 2019-12-05 2020-01-17 Micro-water quantity backwashing variable-speed upward-flow lightweight-filtering-material filter, and method thereof

Publications (2)

Publication Number Publication Date
JP2022515583A JP2022515583A (en) 2022-02-21
JP7145544B2 true JP7145544B2 (en) 2022-10-03

Family

ID=69856971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021506731A Active JP7145544B2 (en) 2019-12-05 2020-01-17 Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method

Country Status (3)

Country Link
JP (1) JP7145544B2 (en)
CN (1) CN110917679B (en)
WO (1) WO2021109329A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973273B (en) * 2021-02-07 2022-03-01 宁波财经学院 Automatic back flush filter equipment
CN113230724A (en) * 2021-06-22 2021-08-10 中联西北工程设计研究院有限公司 Filtration system for water supply and drainage
CN114470892A (en) * 2022-01-12 2022-05-13 武汉理工大学 Hydraulic spiral-flow type backwashing filter device and method
CN114813312B (en) * 2022-04-22 2023-06-02 河北理工工程管理咨询有限公司 Water supply pipeline pressure testing device for engineering supervision
CN115350527B (en) * 2022-09-14 2024-08-30 江苏永冠给排水设备有限公司 Novel suspension light filter material filter tank
CN116510519B (en) * 2023-07-04 2023-08-25 烟台高泽环保技术有限公司 STRO membrane element pre-rinsing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290773A (en) 2003-03-26 2004-10-21 Ngk Insulators Ltd Filtration apparatus
WO2007004245A1 (en) 2005-07-01 2007-01-11 Shott International S.R.L. Floating filtering particle filter for fluids with cleaning device and anti-reflux diffuser
CN203425572U (en) 2013-08-20 2014-02-12 上海奥迪菲环境工程有限公司 Upflow double-type deep-bed rapid filtering tank
JP2017042739A (en) 2015-08-28 2017-03-02 フジクリーン工業株式会社 Water treatment apparatus and water treatment method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3717251A (en) * 1970-09-03 1973-02-20 Q Hampton Method and apparatus for filtering solids
JPS5490767U (en) * 1977-12-10 1979-06-27
US5292436A (en) * 1992-05-13 1994-03-08 Kansas State University Research Foundation Tapered bed filtration apparatus
CN101791498B (en) * 2010-03-23 2013-08-14 卢正华 Valve control filter
JP6049005B2 (en) * 2012-05-31 2016-12-21 鎌田バイオ・エンジニアリング株式会社 Filtration device, filtration method thereof and backwashing method of filter medium
CN203196408U (en) * 2013-01-09 2013-09-18 中冶东方工程技术有限公司 Upward flowing type filtering equipment
CN203392952U (en) * 2013-07-09 2014-01-15 煤炭科学研究总院杭州环保研究院 Mine water treatment device for underground coal mines
CN203436875U (en) * 2013-08-06 2014-02-19 陈凤珠 Filter pond with variable flow rates
CN103657173A (en) * 2013-12-12 2014-03-26 王强 Upward flow filtering device using homogeneous heavy thick filter material
CN104817167B (en) * 2015-04-13 2016-09-21 安徽华骐环保科技股份有限公司 A kind of precipitation position back-flushing method for UBAF technique
CN105688497B (en) * 2016-03-03 2017-09-26 中国市政工程西北设计研究院有限公司天津分院 The anti-floating filter plate preparation method and anti-floating filter plate of upward current suspended filter material filter pool
CN206198789U (en) * 2016-09-26 2017-05-31 徐州工程学院 A kind of upward flow floating media filter
CN109293025B (en) * 2018-09-28 2022-02-11 河海大学 Water saving fixtures of small-size artifical carwash retrieval and utilization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290773A (en) 2003-03-26 2004-10-21 Ngk Insulators Ltd Filtration apparatus
WO2007004245A1 (en) 2005-07-01 2007-01-11 Shott International S.R.L. Floating filtering particle filter for fluids with cleaning device and anti-reflux diffuser
CN203425572U (en) 2013-08-20 2014-02-12 上海奥迪菲环境工程有限公司 Upflow double-type deep-bed rapid filtering tank
JP2017042739A (en) 2015-08-28 2017-03-02 フジクリーン工業株式会社 Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
WO2021109329A1 (en) 2021-06-10
JP2022515583A (en) 2022-02-21
CN110917679B (en) 2020-11-03
CN110917679A (en) 2020-03-27

Similar Documents

Publication Publication Date Title
JP7145544B2 (en) Backwash variable speed upward flow type lightweight filter medium filter with minute water volume and its method
CN204170467U (en) A kind of conventional rapid filter adopting combined water and air backwash
CN206045510U (en) Water process filtering ponds
CN101352629A (en) Water treatment system and water treatment device
CN104338350B (en) Automatic continuous cleaning and filtering quicksand device
CN102847352A (en) Water treatment method and device for synchronously realizing filtering and back washing
CN105617733A (en) Continuous sand filter water purifying device and filter and back flushing method
RO201400001U1 (en) Device and method for biological treatment and post-treatment of waste water
CN208561732U (en) System is cut down in the overflow of combined system pipe network and water pollution integration
CN201292297Y (en) Integral water purifier
CN216986709U (en) Unpowered sponge filler advanced treatment filter equipment
CN205635174U (en) Full -automatic water purifier
CN211863987U (en) Industrial pure water preparation system with filtering and purifying functions
CN211486826U (en) Water purification and filtration system capable of reducing backwashing water consumption
CN114470892A (en) Hydraulic spiral-flow type backwashing filter device and method
CN201988252U (en) Filtering basin with low water consumption in washing
CN109293025B (en) Water saving fixtures of small-size artifical carwash retrieval and utilization
CN203494236U (en) Novel high-efficiency active sand filtering system
CN217119608U (en) A high-efficient sand blocking device for active sand filtering pond sand washing water
CN201304286Y (en) Self-flow rotary drum precise filter
CN203342472U (en) Quicksand type filter
CN213977205U (en) Integrated grey water sedimentation and filtration device
CN110975357B (en) Industrial pure water preparation system for filtering and purifying
CN208747793U (en) A kind of glass reinforced plastic efficient sewage treatment installation
CN221386470U (en) Circulation washing separator tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7145544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150