JP7142098B2 - coated tools and cutting tools - Google Patents

coated tools and cutting tools Download PDF

Info

Publication number
JP7142098B2
JP7142098B2 JP2020550365A JP2020550365A JP7142098B2 JP 7142098 B2 JP7142098 B2 JP 7142098B2 JP 2020550365 A JP2020550365 A JP 2020550365A JP 2020550365 A JP2020550365 A JP 2020550365A JP 7142098 B2 JP7142098 B2 JP 7142098B2
Authority
JP
Japan
Prior art keywords
layer
coated tool
holes
average value
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020550365A
Other languages
Japanese (ja)
Other versions
JPWO2020071244A1 (en
Inventor
忠 勝間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020071244A1 publication Critical patent/JPWO2020071244A1/en
Application granted granted Critical
Publication of JP7142098B2 publication Critical patent/JP7142098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本開示は、切削加工に用いられる被覆工具に関する。 TECHNICAL FIELD The present disclosure relates to coated tools used for cutting.

旋削加工及び転削加工のような切削加工に用いられる被覆工具としては、例えば特許文献1に記載の被覆工具が知られている。特許文献1に記載の切削工具では、超硬合金などで構成された基体の表面に、チタン(Ti)の化合物を含有する層(チタン化合物層)及び酸化アルミニウム(Al23)を含有する層(酸化アルミニウム層)を備えた被覆層が形成された被覆工具が記載されている。特許文献1に記載の被覆工具においては、チタン化合物層及び酸化アルミニウム層の界面に複数の空孔が形成されており、これら複数の空孔によって、衝撃緩和効果が得られることが記載されている。As a coated tool used for cutting such as turning and milling, for example, the coated tool described in Patent Document 1 is known. In the cutting tool described in Patent Document 1, a layer containing a compound of titanium (Ti) (titanium compound layer) and aluminum oxide (Al 2 O 3 ) are included on the surface of a substrate made of cemented carbide or the like. A coated tool is described which is provided with a coating layer with a layer (aluminum oxide layer). In the coated tool described in Patent Document 1, a plurality of pores are formed at the interface between the titanium compound layer and the aluminum oxide layer, and it is described that these pores provide an impact mitigation effect. .

特許文献2には、酸化アルミニウム結晶のうちΣ3~Σ29型の全対応粒界長に占める各構成原子共有格子点形態からなる対応粒界の割合が示された対応粒界分布グラフにおいて、Σ3~Σ29型の範囲内ではΣ3型に最高ピークが存在し、かつ、Σ3~Σ29型の範囲内に占める前記Σ3型の分布割合が70%以上であることで、酸化アルミニウム結晶同士の粒界強度を高め、高速断続切削加工において、すぐれた耐剥離性、耐チッピング性を発揮することが記載されている。 In Patent Document 2, in a corresponding grain boundary distribution graph showing the ratio of corresponding grain boundaries composed of each constituent atom shared lattice point form to the total corresponding grain boundary length of Σ3 to Σ29 types in aluminum oxide crystals, Σ3 to Within the range of the Σ29 type, the Σ3 type has the highest peak, and the distribution ratio of the Σ3 type within the range of the Σ3 to Σ29 type is 70% or more, so that the grain boundary strength between the aluminum oxide crystals is increased. It is described that it exhibits excellent peeling resistance and chipping resistance in high-speed interrupted cutting.

これらの特許文献に記載されているように、被覆工具においては、被覆層の耐衝撃性を高くすることが行われている。 As described in these patent documents, in coated tools, the impact resistance of the coating layer is increased.

特開2015-182209号公報JP 2015-182209 A 特開2016-005862号公報JP 2016-005862 A

本開示の被覆工具は、第1面を有する基体と、該基体の少なくとも前記第1面の上に位置する被覆層と、を備える。前記被覆層は、前記第1面の上に位置する、チタン化合物を含有する第1層と、該第1層の上に接して位置する、複数のα-酸化アルミニウム結晶を含有する第2層とを有する。該第2層は、前記第1面に直交する断面において、前記α-酸化アルミニウム結晶の粒界におけるΣ3~Σ29型の各結晶粒界長さの総和に占める各結晶粒界長さのうち、Σ3型の結晶粒界長さが最大である。前記被覆層は、前記第1層に、前記第1層及び前記第2層の境界に沿った方向に並んで位置する複数の空孔を有する。前記境界に沿う方向における前記空孔の幅の平均値が、隣り合う前記空孔の間隔の平均値よりも小さい。 A coated tool of the present disclosure comprises a substrate having a first surface and a coating layer overlying at least the first surface of the substrate. The coating layer includes a first layer containing a titanium compound located on the first surface and a second layer containing a plurality of α-aluminum oxide crystals located on and in contact with the first layer. and In the cross section orthogonal to the first surface, the second layer has a grain boundary length that accounts for the sum of the lengths of the Σ3 to Σ29 grain boundaries in the grain boundaries of the α-aluminum oxide crystal, The Σ3 type has the longest grain boundary length. The coating layer has a plurality of pores arranged in a direction along a boundary between the first layer and the second layer in the first layer. An average width of the pores along the boundary is smaller than an average spacing between adjacent pores.

本開示の切削工具は、第1端から第2端に向かって伸びる棒状であり、前記第1端の側に位置するポケットを有するホルダと、前記ポケット内に位置する、上述の被覆工具とを有する。 A cutting tool of the present disclosure is a rod-shaped holder extending from a first end toward a second end, and includes a holder having a pocket located on the side of the first end, and the above-described coated tool located in the pocket. have.

本開示の被覆工具を示す斜視図である。1 is a perspective view of a coated tool of the present disclosure; FIG. 図1に示す被覆工具におけるA-A断面の断面図である。FIG. 2 is a sectional view of the AA section in the coated tool shown in FIG. 1; 図2に示す被覆工具における被覆層付近の拡大図である。3 is an enlarged view of the vicinity of the coating layer in the coated tool shown in FIG. 2; FIG. 図3に示す領域B1の一例を示す拡大図である。4 is an enlarged view showing an example of a region B1 shown in FIG. 3; FIG. 図3に示す領域B1の他の例を示す拡大図である。4 is an enlarged view showing another example of region B1 shown in FIG. 3; FIG. 本開示の切削工具を示す平面図である。1 is a plan view of a cutting tool of the present disclosure; FIG. 図6に示す領域B2の拡大図である。7 is an enlarged view of a region B2 shown in FIG. 6; FIG.

以下、本開示の被覆工具1について、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、説明する上で必要な主要部材のみを簡略化して示したものである。したがって、被覆工具は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。 Hereinafter, the coated tool 1 of the present disclosure will be described in detail with reference to the drawings. However, each drawing referred to below shows only the main members necessary for the explanation in a simplified manner for convenience of explanation. Accordingly, the coated tool may comprise any components not shown in the referenced figures. Also, the dimensions of the members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective members, and the like.

<被覆工具>
図1及び図2に示すように、本開示の被覆工具1は、基体3及び被覆層5を備えている。基体3は、第1面7(図2における上面)と、第1面7と隣り合う第2面9(図2における側面)と、第1面7及び第2面9が交わる稜線の少なくとも一部に位置する切刃11とを有している。
<Coated tool>
As shown in FIGS. 1 and 2, the coated tool 1 of the present disclosure comprises a substrate 3 and a coating layer 5. As shown in FIG. The substrate 3 has a first surface 7 (upper surface in FIG. 2), a second surface 9 (side surface in FIG. 2) adjacent to the first surface 7, and at least one edge line where the first surface 7 and the second surface 9 intersect. It has a cutting edge 11 located in the part.

図1に示す例における基体3は四角板形状であり、第1面7が四角形である。そのため、第2面9の数は4つとなっている。第1面7の少なくとも一部がすくい面領域であり、第2面9の少なくとも一部が逃げ面領域である。なお、基体3の形状としては、四角板形状に限定されるものではなく、例えば第1面7が、三角形、五角形、六角形又は円形であってもよい。また、基体3は、板形状に限定されるものではなく、例えば柱形状であってもよい。 The substrate 3 in the example shown in FIG. 1 has a square plate shape, and the first surface 7 is a square. Therefore, the number of second surfaces 9 is four. At least part of the first surface 7 is a rake face area and at least part of the second surface 9 is a flank area. The shape of the substrate 3 is not limited to a rectangular plate shape, and the first surface 7 may be triangular, pentagonal, hexagonal, or circular, for example. Moreover, the base 3 is not limited to a plate shape, and may be columnar, for example.

基体3は、例えば、結合相となるコバルトおよびニッケルを含有しており、他にWCや窒化物や炭窒化物からなる硬質相を含有している。これらの硬質相の平均粒径は、硬度を高くする観点から3μm以下、さらに1μm以下であるとよい。 The substrate 3 contains, for example, cobalt and nickel as binding phases, and also contains hard phases made of WC, nitrides, and carbonitrides. The average grain size of these hard phases is preferably 3 μm or less, more preferably 1 μm or less, from the viewpoint of increasing hardness.

被覆層5は、基体3の少なくとも第1面7の上に位置している。被覆層5は、第1面7のみの上に位置していてもよく、また、基体3における第1面7以外の他の面の上に位置していてもよい。第1面7に加えて第2面9の上にも被覆層5が位置している。被覆層5は、切削加工における被覆工具1の耐摩耗性及び耐チッピング性などの特性を向上させるために備えられている。 The covering layer 5 is located on at least the first side 7 of the substrate 3 . The coating layer 5 may be positioned only on the first surface 7 or may be positioned on a surface other than the first surface 7 of the substrate 3 . A covering layer 5 is located on the second side 9 in addition to the first side 7 . The coating layer 5 is provided to improve properties such as wear resistance and chipping resistance of the coated tool 1 during cutting.

基体3は、第1面7及び第1面7の反対側に位置する面を貫通する貫通穴23を有していてもよい。貫通穴23は、被覆工具1をホルダに固定するための固定部材を挿入するために用いることができる。固定部材としては、例えばネジ及びクランプ部材が挙げられる。 The substrate 3 may have a through hole 23 passing through the first surface 7 and a surface located on the opposite side of the first surface 7 . The through hole 23 can be used to insert a fixing member for fixing the coated tool 1 to the holder. Fixing members include, for example, screws and clamping members.

基体3の大きさは特に限定されるものではないが、例えば、第1面7の一辺の長さが3~20mm程度に設定される。また、第1面7から第1面7の反対側に位置する面までの高さは5~20mm程度に設定される。 Although the size of the substrate 3 is not particularly limited, for example, the length of one side of the first surface 7 is set to approximately 3 to 20 mm. Moreover, the height from the first surface 7 to the surface located on the opposite side of the first surface 7 is set to about 5 to 20 mm.

被覆層5は、図3に示すように、第1層13及び第2層15を有している。第1層13は、第1面7の上に位置しており、チタン化合物を含有している。また、第2層15は、第1層13の上に接して位置しており、複数のα-酸化アルミニウム結晶(Al23)を含有している。The covering layer 5 has a first layer 13 and a second layer 15, as shown in FIG. A first layer 13 is located on the first surface 7 and contains a titanium compound. The second layer 15 is located on and in contact with the first layer 13 and contains a plurality of α-aluminum oxide crystals (Al 2 O 3 ).

第1層13に含有されているチタン化合物としては、例えば、チタンの炭化物、窒化物、酸化物、炭窒化物、炭酸化物及び炭窒酸化物が挙げられる。第1層13は、上記の化合物のいずれか1つのみを含有する構成であってもよく、また、上記の化合物のうち複数を含有する構成であってもよい。 Titanium compounds contained in the first layer 13 include, for example, carbides, nitrides, oxides, carbonitrides, carbonates, and carbonitrides of titanium. The first layer 13 may be configured to contain only one of the above compounds, or may be configured to contain more than one of the above compounds.

また、第1層13は、チタン化合物を含有しているものであれば、単層の構成であってもよく、また、複数の層が積層された構成であってもよい。例えば第1層13は、窒化チタン層17と、炭窒化チタン層19とが積層された構成であってもよい。第1層13が窒化チタン層17を有している場合には、基体3と第1層13との密着力がさらに高い。なお、窒化チタン層17および炭窒化チタン層19は、それぞれ窒化チタンおよび炭窒化チタンが主成分ということであり、他の成分を含有していてもよい。なお、上記の「主成分」とは、他の成分と比較して質量%の値が最も大きい成分であることを意味している。 Further, the first layer 13 may have a single-layer structure, or may have a structure in which a plurality of layers are laminated, as long as it contains a titanium compound. For example, the first layer 13 may have a structure in which a titanium nitride layer 17 and a titanium carbonitride layer 19 are laminated. When the first layer 13 has the titanium nitride layer 17, the adhesion between the substrate 3 and the first layer 13 is even higher. Titanium nitride layer 17 and titanium carbonitride layer 19 are mainly composed of titanium nitride and titanium carbonitride, respectively, and may contain other components. In addition, the above-mentioned "main component" means a component having the largest mass % value compared to other components.

なお、被覆層5は、第1層13及び第2層15のみによって構成されていてもよく、また、これらの層以外の層を有していてもよい。例えば、基体3及び第1層13の間に別の層が存在していてもよく、また、第2層15の上に別の層が存在していてもよい。 The coating layer 5 may be composed only of the first layer 13 and the second layer 15, or may have layers other than these layers. For example, another layer may be present between the substrate 3 and the first layer 13 and another layer may be present above the second layer 15 .

また、炭窒化チタン層19が、互いに組成の異なる複数の領域が積層された構成であってもよい。例えば、炭窒化チタン層19が、いわゆるMT(moderate temperature)-第1領域19aと、いわゆるHT(high temperature)-第2領域19bとが積層された構成であってもよい。 Alternatively, the titanium carbonitride layer 19 may have a structure in which a plurality of regions having different compositions are laminated. For example, the titanium carbonitride layer 19 may have a structure in which a so-called MT (moderate temperature)-first region 19a and a so-called HT (high temperature)-second region 19b are laminated.

第1層13が第1領域19a及び第2領域19bを有する場合において、第1層13が、第1領域19a及び第2領域19bの間に更に中間領域19cを有していてもよい。なお、上記の層及び領域の境界は、例えば、SEM写真又は透過電子顕微鏡(TEM:Transmission Electron Microscope)写真)を観察することにより、特定することが可能である。その特定は、各層を構成する元素の割合や、結晶の大きさや配向性の差異によって行うことができる。 When the first layer 13 has the first region 19a and the second region 19b, the first layer 13 may further have an intermediate region 19c between the first region 19a and the second region 19b. Note that the boundaries between the above layers and regions can be specified by observing, for example, SEM photographs or transmission electron microscope (TEM) photographs. The identification can be performed by the ratio of elements constituting each layer, and the difference in crystal size and orientation.

第2層15に含有されている酸化アルミニウムの結晶構造は、例えば、X線回折(XRD:X-Ray Diffraction)分析を行い、ピーク値の分布を観察することによって評価できる。 The crystal structure of the aluminum oxide contained in the second layer 15 can be evaluated by, for example, performing X-ray diffraction (XRD: X-Ray Diffraction) analysis and observing the distribution of peak values.

第1層13におけるチタン化合物の含有比率、及び、第2層15における酸化アルミニウムの含有比率は特定の値に限定されるものではない。一例として、第1層13がチタン化合物を主成分として含有しており、また、第2層15が酸化アルミニウムを主成分として含有している構成が挙げられる。なお、上記の「主成分」とは、上述と同じく、他の成分と比較して質量%の値が最も大きい成分であることを意味している。 The content ratio of the titanium compound in the first layer 13 and the content ratio of aluminum oxide in the second layer 15 are not limited to specific values. One example is a configuration in which the first layer 13 contains a titanium compound as a main component and the second layer 15 contains aluminum oxide as a main component. Incidentally, the above-mentioned "main component" means a component having the largest mass % value compared to other components, as described above.

第1層13はチタン化合物以外の成分を含有していてもよく、また、第2層15は酸化アルミニウム以外の成分を含有していてもよい。例えば、第1層13が酸化アルミニウムを含有する場合や第2層15がチタン化合物を含有する場合には、第1層13及び第2層15の接合性が向上する。 The first layer 13 may contain components other than the titanium compound, and the second layer 15 may contain components other than aluminum oxide. For example, when the first layer 13 contains aluminum oxide or the second layer 15 contains a titanium compound, the bondability between the first layer 13 and the second layer 15 is improved.

被覆層5は、図4に示すように、第1層13の内部に空孔21を有している。具体的には、基体3の第1面7に直交する断面において、被覆層5が、第1層13に、第1層13及び第2層15の境界16に沿った方向に並んで位置する複数の空孔21を有している。 The coating layer 5 has pores 21 inside the first layer 13, as shown in FIG. Specifically, in a cross section perpendicular to the first surface 7 of the substrate 3, the coating layer 5 is aligned with the first layer 13 in a direction along the boundary 16 between the first layer 13 and the second layer 15. It has a plurality of holes 21 .

また、第1面7に直交する断面において、第1面7に平行な方向での空孔21の幅w1の平均値が、隣り合う空孔21の間隔、すなわち第1部分Xの幅w2の平均値よりも小さい。このような構成を満たす被覆工具1は、第1部分Xの強度が低下することを抑えつつ、空孔21において高い耐衝撃性を得ることができる。 In the cross section perpendicular to the first surface 7, the average value of the width w1 of the holes 21 in the direction parallel to the first surface 7 is the distance between the adjacent holes 21, that is, the width w2 of the first portion X. Smaller than average. The coated tool 1 that satisfies such a configuration can obtain high impact resistance in the holes 21 while suppressing a decrease in the strength of the first portion X.

そのため、第1層13及び第2層15の接合性の低下を抑えつつ、空孔21によって衝撃を緩和する効果が得られる。 Therefore, it is possible to obtain the effect of mitigating the impact by the holes 21 while suppressing deterioration of the bondability between the first layer 13 and the second layer 15 .

なお、第1面7に平行な方向での空孔21の幅w1の平均値を評価する際に、第1面7に直交する断面に存在する全ての空孔21の幅w1を評価する必要はなく、断面において並んで位置する5~10個程度の空孔21の幅w1の平均値によって評価すればよい。例えば、第1面7に直交する断面において第1層13及び第2層15の境界16を含む10μm四方の領域を抽出し、この領域における空孔21の幅w1を測定すればよい。また、第1部分Xの幅w2の平均値は、断面において並んで位置する5~10個程度の空孔21での間隔の平均値によって評価すればよい。なお、本開示においては、他にも平均値を定める場合がある。これらはいずれも、5~10程度の値の平均値とするとよい。 In addition, when evaluating the average value of the width w1 of the holes 21 in the direction parallel to the first surface 7, it is necessary to evaluate the width w1 of all the holes 21 existing in the cross section perpendicular to the first surface 7. Instead, the average value of the width w1 of about 5 to 10 holes 21 positioned side by side in the cross section may be used for evaluation. For example, a 10 μm square area including the boundary 16 between the first layer 13 and the second layer 15 is extracted from the cross section orthogonal to the first surface 7, and the width w1 of the void 21 in this area is measured. Also, the average value of the width w2 of the first portion X may be evaluated by the average value of the intervals of about 5 to 10 holes 21 positioned side by side in the cross section. In addition, in this disclosure, other average values may be defined. Each of these values should be an average value of about 5 to 10 values.

空孔21は、第1層13に存在していればよい。例えば、図4に示すように第1層13内に位置している構成だけでなく、図5に示すように第1層13内及び第2層15内のそれぞれに位置している構成であってもよい。 The vacancies 21 need only exist in the first layer 13 . For example, not only the structure located in the first layer 13 as shown in FIG. 4 but also the structure located in each of the first layer 13 and the second layer 15 as shown in FIG. may

なお、空孔21が第1層13及び第2層15の境界16に沿って位置しているとは、複数の空孔21の第1層13及び第2層15の境界16までの間隔が、その平均値に対して±20%の範囲に収まっていることをいう。 Note that the fact that the holes 21 are positioned along the boundary 16 between the first layer 13 and the second layer 15 means that the distance between the plurality of holes 21 and the boundary 16 between the first layer 13 and the second layer 15 is , means that it falls within ±20% of the average value.

被覆工具1の耐熱性及び耐久性の観点から、第1層13に含まれるチタン化合物として炭窒化チタンを含有してもよい。このような構成を有すると、複数の空孔21が第1層13内に位置している際には被覆工具1の耐久性がさらに高められる。 From the viewpoint of heat resistance and durability of the coated tool 1 , titanium carbonitride may be contained as the titanium compound contained in the first layer 13 . With such a configuration, the durability of the coated tool 1 is further enhanced when the plurality of pores 21 are located within the first layer 13 .

これは、α-酸化アルミニウムと比較して炭窒化チタンの硬度は高いものの耐衝撃性が低いため、空孔21が第1層13内に位置している場合には、第1層13において空孔21による耐衝撃性を高めることができ、被覆工具1の耐久性がさらに高められるからである。 This is because, although titanium carbonitride has higher hardness than α-aluminum oxide, it has lower impact resistance. This is because the impact resistance of the holes 21 can be enhanced, and the durability of the coated tool 1 can be further enhanced.

空孔21の大きさとしては、特に限定されるものではないが、例えば、20~200nmに設定できる。空孔21の大きさが20nm以上である場合には、空孔21による衝撃緩和の効果を高めることができる。また、空孔21の大きさが、200nm以下の場合には、第1層13の強度を維持し易い。なお、空孔21の大きさとは、その空孔21の第1面7に直交する断面における幅w1の最大値を意味する。 Although the size of the holes 21 is not particularly limited, it can be set to 20 to 200 nm, for example. When the size of the holes 21 is 20 nm or more, the impact mitigation effect of the holes 21 can be enhanced. Moreover, when the size of the holes 21 is 200 nm or less, the strength of the first layer 13 can be easily maintained. The size of the hole 21 means the maximum value of the width w1 in the cross section of the hole 21 perpendicular to the first surface 7. As shown in FIG.

また、空孔21の形状としては、特に限定されるものではないが、第1面7に直交する断面において、第1面7に直交する方向における高さh1よりも第1面7に平行な方向の幅w1が大きい場合、言い換えれば、第1面7に平行な方向での空孔21の幅w1の平均値が、第1面7に直交する方向での空孔21の高さh1の平均値よりも大きい場合には、空孔21の比率を抑えつつ耐衝撃性をさらに高めることができる。これは、以下の理由による。 The shape of the holes 21 is not particularly limited, but in the cross section orthogonal to the first surface 7, the height h1 in the direction orthogonal to the first surface 7 is parallel to the first surface 7. When the width w1 in the direction is large, in other words, the average value of the width w1 of the holes 21 in the direction parallel to the first surface 7 is the height h1 of the holes 21 in the direction orthogonal to the first surface 7. When it is larger than the average value, the impact resistance can be further improved while suppressing the ratio of the voids 21 . This is for the following reasons.

切削加工物を製造するため被削材を切削加工する際に、被覆層5に対しては第1面7に直交する方向に切削負荷が加わり易い。このとき、空孔21が第1面7に直交する方向の高さh1よりも第1面7に平行な方向の幅w1が大きい形状である場合には、空孔21を必要以上に大きくすることなく、空孔21の広い範囲で切削負荷を吸収することができる。そのため、空孔21の比率を抑えつつ耐衝撃性をさらに高めることができる。なお、空孔21が第1面7に直交する方向の高さh1とは、空孔21が第1面7に直交する方向の高さh1の最大値である。 A cutting load is likely to be applied to the coating layer 5 in a direction orthogonal to the first surface 7 when cutting a work material to manufacture a machined product. At this time, if the hole 21 has a shape in which the width w1 in the direction parallel to the first surface 7 is larger than the height h1 in the direction orthogonal to the first surface 7, the hole 21 is made larger than necessary. Therefore, the cutting load can be absorbed over a wide range of the holes 21. Therefore, the impact resistance can be further improved while suppressing the ratio of the holes 21 . The height h1 of the holes 21 in the direction orthogonal to the first surface 7 is the maximum value of the height h1 of the holes 21 in the direction orthogonal to the first surface 7 .

具体的には、第1面7に平行な方向での空孔21の高さh1の平均値に対する第1面7に直交する方向での空孔21の幅w1の平均値の比率が1.2以上である場合には、空孔21の広い範囲で切削負荷を吸収しやすい。また、上記の比率が2以下である場合には、第1面7に直交する方向での空孔21の変形量が確保され易いので、空孔21において安定して切削負荷を吸収しやすい。また、断面における空孔21の形状が略円状であってもよい。 Specifically, the ratio of the average value of the width w1 of the holes 21 in the direction orthogonal to the first surface 7 to the average value of the height h1 of the holes 21 in the direction parallel to the first surface 7 is 1. When it is 2 or more, the cutting load is easily absorbed in a wide range of the holes 21 . Further, when the above ratio is 2 or less, the amount of deformation of the holes 21 in the direction orthogonal to the first surface 7 is likely to be secured, so that the holes 21 are likely to stably absorb the cutting load. Moreover, the shape of the holes 21 in the cross section may be substantially circular.

第1面7に直交する断面での第1面7及び第2面9の境界の最大高さをRzとした際に、第1面7に直交する方向での空孔21の高さh1の平均値がRzよりも小さい場合には、被覆層5の耐久性の低下を抑え易い。 When the maximum height of the boundary between the first surface 7 and the second surface 9 in the cross section orthogonal to the first surface 7 is Rz, the height h1 of the holes 21 in the direction orthogonal to the first surface 7 is When the average value is smaller than Rz, deterioration of the durability of the coating layer 5 can be easily suppressed.

第1層13における隣り合う空孔21間に位置する第1部分X及び複数の空孔21が変形することによって本開示の被覆工具1は高い耐衝撃性を備えている。ここで、第1面7に直交する方向での空孔21の幅の平均値がRzよりも小さい場合には、隣り合う空孔21を結ぶ仮想線が、空孔21の幅よりも大きく折れ曲がったジグザグ形状で示される。 The deformation of the first portion X and the plurality of holes 21 located between adjacent holes 21 in the first layer 13 provides the coated tool 1 of the present disclosure with high impact resistance. Here, when the average value of the width of the holes 21 in the direction orthogonal to the first surface 7 is smaller than Rz, the imaginary line connecting the adjacent holes 21 bends more than the width of the holes 21. shown in a zigzag shape.

仮想線が上記の形状で示される際には、仮に第1部分Xの一つに亀裂が生じた場合であっても、この亀裂が生じた第1部分Xの隣に位置する第1部分Xに亀裂が進展しにくい。そのため、被覆層5の耐久性が低下しにくい。 When the phantom line is shown in the above shape, even if a crack occurs in one of the first portions X, the first portion X located next to the cracked first portion X Cracks do not propagate easily. Therefore, the durability of the coating layer 5 is less likely to deteriorate.

また、第1面7に直交する断面において、空孔21から第1層13及び第2層15の境界16までの距離d1の平均値が、第1部分Xの幅w2の平均値よりも大きい場合にも、被覆層5の耐久性が低下しにくい。なお、空孔21から第1層13及び第2層15の境界16までの距離d1とは、空孔21における、境界16への距離の最小値である。 Further, in the cross section perpendicular to the first surface 7, the average value of the distance d1 from the hole 21 to the boundary 16 between the first layer 13 and the second layer 15 is larger than the average value of the width w2 of the first portion X. Even in this case, the durability of the coating layer 5 is less likely to deteriorate. The distance d1 from the hole 21 to the boundary 16 between the first layer 13 and the second layer 15 is the minimum distance from the hole 21 to the boundary 16 .

これは、上記の場合においては、第1部分Xと比較して空孔21から第1層13及び第2層15の境界16までの距離が十分に確保できるため、仮に第1部分Xの一つに亀裂が生じた場合であっても、この亀裂が第1層13及び第2層15の境界16に達しにくいからである。上記の亀裂が第1層13及び第2層15の境界16に達しにくいため、第1層13及び第2層15の接合性が低下しにくい。 This is because, in the above case, a sufficient distance from the holes 21 to the boundary 16 between the first layer 13 and the second layer 15 can be secured as compared with the first portion X. This is because even if a crack occurs in one layer, the crack hardly reaches the boundary 16 between the first layer 13 and the second layer 15 . Since the cracks described above do not easily reach the boundary 16 between the first layer 13 and the second layer 15, the bondability between the first layer 13 and the second layer 15 is unlikely to deteriorate.

空孔21は、第1層13に位置しており、第1層13及び第2層15の境界から離れて位置している。ここで、第1面7に直交する断面において、空孔21から第1層13及び第2層15の境界16までの距離d1の平均値が、第1面7に直交する方向での空孔21の高さh1の平均値よりも大きい場合には、被覆層5における耐衝撃性を高めつつ第1層13及び第2層15の接合性が低下しにくい。 The pores 21 are located in the first layer 13 and are located away from the boundary between the first layer 13 and the second layer 15 . Here, in the cross section perpendicular to the first surface 7, the average value of the distance d1 from the holes 21 to the boundary 16 between the first layer 13 and the second layer 15 is the number of holes in the direction perpendicular to the first surface 7 21, the bondability between the first layer 13 and the second layer 15 is less likely to decrease while the impact resistance of the coating layer 5 is increased.

これは、空孔21の大きさと比較して空孔21から第1層13及び第2層15の境界16までの距離が十分に確保できるため、切削負荷を吸収するため空孔21が変形する場合であっても、第1層13及び第2層15の境界16は変形しない、または、変形量が十分に小さくなるからである。第1層13及び第2層15の境界16が大きく変形しにくいため、第1層13及び第2層15の接合性が低下しにくい。 This is because the distance from the hole 21 to the boundary 16 between the first layer 13 and the second layer 15 can be sufficiently secured compared to the size of the hole 21, so that the hole 21 deforms to absorb the cutting load. Even in this case, the boundary 16 between the first layer 13 and the second layer 15 is not deformed, or the amount of deformation is sufficiently small. Since the boundary 16 between the first layer 13 and the second layer 15 is less likely to be greatly deformed, the bondability between the first layer 13 and the second layer 15 is less likely to deteriorate.

第1層13の上に位置する第2層15は、複数のα-酸化アルミニウム結晶を含有している。第2層の厚みは、例えば、2~20μmとするとよい。 A second layer 15 located on the first layer 13 contains a plurality of α-aluminum oxide crystals. The thickness of the second layer is preferably 2 to 20 μm, for example.

本開示の被覆工具1の第2層15は、基体3の第1面7に直交する断面において、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、測定範囲内に存在する結晶粒個々に電子線を照射してα-酸化アルミニウム結晶の粒界より対応粒界を測定した場合に、Σ3~Σ29型の各結晶粒界長さの総和に占める各結晶粒界長さのうちΣ3型の結晶粒界長さが最大である。このような構成を有する第2層15は、優れた耐剥離性、耐チッピング性を有する。基体3の断面は、研磨面として観察するとよい。 The second layer 15 of the coated tool 1 of the present disclosure, in a cross-section perpendicular to the first surface 7 of the substrate 3, was measured using a field emission scanning electron microscope and an electron backscatter diffraction device to measure crystal When individual grains are irradiated with an electron beam and the corresponding grain boundaries are measured from the grain boundaries of α-aluminum oxide crystals, The Σ3 type has the longest grain boundary length. The second layer 15 having such a structure has excellent peeling resistance and chipping resistance. The cross section of the substrate 3 should be observed as a polished surface.

上記の対応粒界は、電界放出型走査電子顕微鏡(FE-SEM)に電子線後方散乱回折装置(EBSD)を組み合わせた装置で計測することができる。FE-SEMは、例えば、日本電子社製のJSM-7100Fを用いるとよい。 The above-mentioned corresponding grain boundaries can be measured with an apparatus that combines a field emission scanning electron microscope (FE-SEM) with an electron beam backscattering diffractometer (EBSD). For the FE-SEM, for example, JSM-7100F manufactured by JEOL Ltd. may be used.

なお本開示の被覆工具1においては、対応粒界はΣ3型、Σ7型、Σ11型、Σ17型、Σ19型、Σ21型、Σ23型、Σ29型が含まれる。 In the coated tool 1 of the present disclosure, corresponding grain boundaries include Σ3 type, Σ7 type, Σ11 type, Σ17 type, Σ19 type, Σ21 type, Σ23 type, and Σ29 type.

本開示の被覆工具1は、Σ3~Σ29型の各結晶粒界長さの総和に占めるΣ3型の結晶粒界長さの割合は、60%以上であってもよい。このような構成を有すると、さらに優れた耐衝撃性を有する。 In the coated tool 1 of the present disclosure, the ratio of the Σ3 type grain boundary length to the total length of the Σ3 to Σ29 type grain boundaries may be 60% or more. With such a configuration, it has even better impact resistance.

本開示の被覆工具1は、優れた耐衝撃性を有する第1層13および第2層15を備えることから、さらに優れた耐衝撃性を発揮する。 Since the coated tool 1 of the present disclosure includes the first layer 13 and the second layer 15 having excellent impact resistance, it exhibits even better impact resistance.

<切削工具>
次に、本開示の切削工具101について図面を用いて説明する。
<Cutting tool>
Next, the cutting tool 101 of the present disclosure will be described with reference to the drawings.

本開示の切削工具101は、図6および図7に示すように、第1端(図6における上)から第2端(図6における下)に向かって延びる棒状体であり、第1端の側に位置するポケット103を有するホルダ105と、ポケット103に位置する上記の被覆工具1とを備えている。本開示の切削工具101においては、稜線における切刃として用いられる部分がホルダ105の先端から突出するように被覆工具1が装着されている。 The cutting tool 101 of the present disclosure, as shown in FIGS. 6 and 7, is a rod-shaped body extending from a first end (top in FIG. 6) toward a second end (bottom in FIG. 6). It comprises a holder 105 with a pocket 103 located on the side and the above-described coated tool 1 located in the pocket 103 . In the cutting tool 101 of the present disclosure, the coated tool 1 is attached so that the portion of the ridgeline that is used as the cutting edge protrudes from the tip of the holder 105 .

ポケット103は、被覆工具1が装着される部分であり、ホルダ105の下面に対して平行な着座面と、着座面に対して傾斜する拘束側面とを有している。また、ポケット103は、ホルダ105の第1端側において開口している。 The pocket 103 is a portion to which the covered tool 1 is mounted, and has a seating surface parallel to the lower surface of the holder 105 and a restraining side surface inclined with respect to the seating surface. Also, the pocket 103 is open on the first end side of the holder 105 .

ポケット103には被覆工具1が位置している。このとき、被覆工具1の下面がポケット103に直接に接していてもよく、また、被覆工具1とポケット103との間にシートを挟んでいてもよい。 A coated tool 1 is positioned in the pocket 103 . At this time, the lower surface of the covered tool 1 may be in direct contact with the pocket 103 , or a sheet may be sandwiched between the covered tool 1 and the pocket 103 .

被覆工具1は、稜線における切刃として用いられる部分がホルダ105から外方に突出するように装着される。被覆工具1は、ネジ107によって、ホルダ105に装着されている。すなわち、被覆工具1の貫通穴23にネジ107を挿入し、このネジ107の先端をポケット103に形成されたネジ孔(不図示)に挿入してネジ部同士を螺合させることによって、被覆工具1がホルダ105に装着されている。 The coated tool 1 is mounted so that the portion of the ridge used as the cutting edge protrudes outward from the holder 105 . The coated tool 1 is attached to the holder 105 by screws 107 . That is, by inserting a screw 107 into the through hole 23 of the coated tool 1, inserting the tip of the screw 107 into a screw hole (not shown) formed in the pocket 103, and screwing the threaded portions together, the coated tool can be obtained. 1 is attached to the holder 105 .

ホルダ105としては、鋼、鋳鉄などを用いることができる。特に、これらの部材の中で靱性の高い鋼を用いることが好ましい。 Steel, cast iron, or the like can be used as the holder 105 . In particular, among these members, it is preferable to use steel with high toughness.

図6、7に示す例では、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工が挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に上記の実施形態の被覆工具1を用いてもよい。 The examples shown in FIGS. 6 and 7 illustrate cutting tools used for so-called lathe turning. Turning includes, for example, inner diameter machining, outer diameter machining, and grooving. The cutting tools are not limited to those used for turning. For example, the coated tool 1 of the above embodiment may be used as a cutting tool used for milling.

<製造方法>
次に、本開示に係る被覆工具の製造方法の一例を説明する。
<Manufacturing method>
Next, an example of a method for manufacturing a coated tool according to the present disclosure will be described.

まず、基体3となる硬質合金を焼成によって形成しうる炭化物、窒化物、炭窒化物及び酸化物などから選択される無機物粉末に、金属粉末、カーボン粉末などを適宜添加及び混合して、混合粉末を作製する。次に、この混合粉末を公知の成形方法を用いて所定の工具形状に成形することによって成形体を作製する。成形方法としては、例えば、プレス成形、鋳込成形、押出成形及び冷間静水圧プレス成形などが挙げられる。上記の成形体を、真空中又は非酸化性雰囲気中にて焼成することによって基体3を作製する。なお、必要に応じて、基体3の表面に研磨加工及びホーニング加工を施してもよい。 First, metal powder, carbon powder, etc. are added and mixed as appropriate to an inorganic powder selected from carbides, nitrides, carbonitrides, oxides, etc. that can form a hard alloy that will be the base 3 by firing, to obtain a mixed powder. to make. Next, this mixed powder is molded into a predetermined tool shape using a known molding method to produce a compact. Examples of molding methods include press molding, cast molding, extrusion molding, and cold isostatic press molding. The substrate 3 is produced by firing the above compact in vacuum or in a non-oxidizing atmosphere. Incidentally, the surface of the substrate 3 may be subjected to polishing and honing as required.

なお、必要に応じて、基体3の表面に研磨加工及びホーニング加工を施してもよい。 Incidentally, the surface of the substrate 3 may be subjected to polishing and honing as required.

次に、基体3の表面に化学気相蒸着(CVD)法によって被覆層5を成膜する。 Next, a coating layer 5 is formed on the surface of the substrate 3 by a chemical vapor deposition (CVD) method.

まず、第1層13における窒化チタンを含有する層17(下地層)を成膜する。水素(H2)ガスに、0.5~10体積%の四塩化チタンガスと、10~60体積%の窒素ガスとを混合して、反応ガスとして用いられる第1混合ガスを作製する。第1混合ガスを10~20kPaのガス分圧でチャンバ内に導入し、830~870℃の温度域で窒化チタンを含有する層17を成膜する。First, the layer 17 (base layer) containing titanium nitride in the first layer 13 is formed. Hydrogen (H 2 ) gas is mixed with 0.5 to 10% by volume of titanium tetrachloride gas and 10 to 60% by volume of nitrogen gas to prepare a first mixed gas used as a reaction gas. A first mixed gas is introduced into the chamber at a gas partial pressure of 10 to 20 kPa, and a layer 17 containing titanium nitride is formed in a temperature range of 830 to 870.degree.

次に、第1層13における第1領域19aを成膜する。水素ガスに、0.5~10体積%の四塩化チタンガスと、5~60体積%の窒素ガスと、0.1~3体積%のアセトニトリルガスとを混合して、第2混合ガスを作製する。第2混合ガスを6~12kPaのガス分圧でチャンバ内に導入し、830~870℃の温度域でMT-炭窒化チタンを含有する第1領域19aを成膜する。 Next, the first region 19a in the first layer 13 is formed. Hydrogen gas is mixed with 0.5 to 10% by volume of titanium tetrachloride gas, 5 to 60% by volume of nitrogen gas, and 0.1 to 3% by volume of acetonitrile gas to prepare a second mixed gas. do. A second mixed gas is introduced into the chamber at a gas partial pressure of 6 to 12 kPa, and a first region 19a containing MT-titanium carbonitride is formed in a temperature range of 830 to 870.degree.

次に、中間領域19cを成膜する。水素ガスに、3体積%~30体積%の四塩化チタンガスと、3体積%~15体積%のメタンガスと、5体積%~10体積%の窒素ガスと、0.5体積%~5体積%の二酸化炭素(CO2)ガスとを混合して、第3混合ガスを作製する。第3混合ガスを6~12kPaのガス分圧でチャンバ内に導入し、900~1050℃の温度域で50~300nm程度の厚みの中間領域19cを成膜する。第3混合ガスが二酸化炭素ガスを含有していることによって、この中間領域19cに空孔21が形成される。上記の条件とすると、第1面7に直交する断面において、第1面7に平行な方向での空孔21の幅w1の平均値が、隣り合う空孔21の間隔w2の平均値よりも小さい被覆工具1を作製できる。Next, the intermediate region 19c is deposited. Hydrogen gas, 3% to 30% by volume titanium tetrachloride gas, 3% to 15% by volume methane gas, 5% to 10% by volume nitrogen gas, and 0.5% to 5% by volume is mixed with carbon dioxide (CO 2 ) gas to prepare a third mixed gas. A third mixed gas is introduced into the chamber at a gas partial pressure of 6 to 12 kPa, and an intermediate region 19c having a thickness of about 50 to 300 nm is formed in a temperature range of 900 to 1050.degree. Pores 21 are formed in this intermediate region 19c because the third mixed gas contains carbon dioxide gas. Under the above conditions, in the cross section orthogonal to the first surface 7, the average width w1 of the holes 21 in the direction parallel to the first surface 7 is larger than the average spacing w2 between the adjacent holes 21. A small coated tool 1 can be produced.

また、このとき中間領域19cの厚みが50~300nm程度と薄いため、中間領域19cに形成された空孔21を、第1層13及に第2層15の境界16に沿った方向に並んで位置させることが可能となる。 At this time, since the thickness of the intermediate region 19c is as thin as about 50 to 300 nm, the holes 21 formed in the intermediate region 19c are aligned in the direction along the boundary 16 between the first layer 13 and the second layer 15. It is possible to position.

次に、第1層13における第2領域19bを成膜する。水素ガスに、1~4体積%の四塩化チタンガスと、5~20体積%の窒素ガスと、0.1~10体積%のメタンガスと、0体積%~10体積%の二酸化炭素ガスとを混合して、第4混合ガスを作製する。第4混合ガスを5~45kPaのガス分圧でチャンバ内に導入し、950~1050℃の温度域で0.3~3μm程度の厚みのHT-炭窒化チタンを含有する第2領域19bを成膜する。 Next, the second region 19b in the first layer 13 is formed. 1 to 4% by volume of titanium tetrachloride gas, 5 to 20% by volume of nitrogen gas, 0.1 to 10% by volume of methane gas, and 0% to 10% by volume of carbon dioxide gas are added to hydrogen gas. By mixing, a fourth mixed gas is produced. A fourth mixed gas is introduced into the chamber at a gas partial pressure of 5 to 45 kPa to form a second region 19b containing HT-titanium carbonitride with a thickness of about 0.3 to 3 μm in a temperature range of 950 to 1050°C. film.

次に、第2層15を成膜する。成膜温度を1020℃~1050℃、ガス圧を3kPa~5kPaとし、反応ガスの組成が、水素ガスに、1.5体積%~10体積%の三塩化アルミニウム(AlCl3)ガスと、1.5体積%~5体積%の塩化水素(HCl)ガスと、5体積%~15体積%の二酸化炭素ガスと、0.05体積%~1.25体積%の硫化水素(H2S)ガスとを混合して、第5混合ガスを作製する。第5混合ガスをチャンバ内に導入し、第2層15を成膜する。Next, the second layer 15 is deposited. The deposition temperature is set to 1020° C. to 1050° C., the gas pressure is set to 3 kPa to 5 kPa, and the reaction gas composition is hydrogen gas and 1.5% to 10% by volume of aluminum trichloride (AlCl 3 ) gas. 5% to 5% by volume of hydrogen chloride (HCl) gas, 5% to 15% by volume of carbon dioxide gas, and 0.05% to 1.25% by volume of hydrogen sulfide (H 2 S) gas are mixed to prepare a fifth mixed gas. A fifth mixed gas is introduced into the chamber to deposit the second layer 15 .

このような成膜条件を用いると、本開示の構成を有する第2層15を製膜することができる。特に、第5混合ガスの組成として、水素ガスに、1.5体積%~2.5体積%の三塩化アルミニウム(AlCl3)ガスと、1.5体積%~2.5体積%の塩化水素(HCl)ガスと、5体積%~10体積%の二酸化炭素ガスと、0.75体積%~1.25体積%の硫化水素(H2S)ガスとを混合すると、前記第2層15のα-酸化アルミニウム結晶の粒界におけるΣ3~Σ29型の各結晶粒界長さの総和に占めるΣ3型の結晶粒界長さの割合を60%以上にすることができる。Using such deposition conditions, the second layer 15 having the configuration of the present disclosure can be deposited. In particular, the composition of the fifth mixed gas is hydrogen gas, 1.5% by volume to 2.5% by volume of aluminum trichloride (AlCl 3 ) gas, and 1.5% by volume to 2.5% by volume of hydrogen chloride. (HCl) gas, 5% to 10% by volume of carbon dioxide gas, and 0.75% to 1.25% by volume of hydrogen sulfide (H 2 S) gas are mixed to form the second layer 15. The ratio of the Σ3 type grain boundary length to the total length of the Σ3 to Σ29 type grain boundaries at the grain boundaries of α-aluminum oxide crystals can be 60% or more.

その後、必要に応じて、成膜した被覆層5の表面における切刃11が位置する部分を研磨加工する。このような研磨加工を行った場合には、切刃11への被削材の溶着が抑制され易くなるため、さらに耐欠損性に優れた被覆工具1となる。 After that, if necessary, the portion where the cutting edge 11 is located on the surface of the deposited coating layer 5 is polished. When such a polishing process is performed, welding of the work material to the cutting edge 11 is easily suppressed, so that the coated tool 1 further has excellent chipping resistance.

なお、上記の製造方法は、被覆工具1を製造する方法の一例である。したがって、被覆工具1は、上記の製造方法によって作製されたものに限定されないことは言うまでもない。例えば、第2層15の上に別途第3層を成膜してもよい。 In addition, said manufacturing method is an example of the method of manufacturing the coated tool 1. FIG. Therefore, it cannot be overemphasized that the covered tool 1 is not limited to what was produced by said manufacturing method. For example, a separate third layer may be deposited on the second layer 15 .

第1面7に直交する断面において、第1面7に平行な方向での空孔21の幅w1の平均値が、第1面7に直交する方向での空孔21の高さh1の平均値よりも大きい被覆工具1を作製するには、中間領域19cの成膜の際に時間調整を行い、中間領域19cを50~150nm程度の厚みに成膜するとよい。 In the cross section perpendicular to the first surface 7, the average value of the width w1 of the holes 21 in the direction parallel to the first surface 7 is the average value of the height h1 of the holes 21 in the direction perpendicular to the first surface 7. In order to manufacture a coated tool 1 larger than the value, it is preferable to adjust the time when forming the intermediate region 19c so that the intermediate region 19c has a thickness of about 50 to 150 nm.

第1面7に直交する断面において、空孔21から境界16までの距離d1の平均値が、第1面7に直交する方向での空孔21の高さh1の平均値よりも大きい被覆工具1を作製するには、中間領域19cの成膜の際に時間調整を行い、50~150nm程度の厚みに成膜したのち、第1層13における第2領域19bを、0.5~3μm程度の厚みに成膜するとよい。 In a cross section orthogonal to the first surface 7, the average value of the distance d1 from the pores 21 to the boundary 16 is larger than the average value of the height h1 of the pores 21 in the direction orthogonal to the first surface 7. 1, the time is adjusted when the intermediate region 19c is formed, and after the film is formed to a thickness of about 50 to 150 nm, the second region 19b in the first layer 13 is formed to a thickness of about 0.5 to 3 μm. It is preferable to form a film with a thickness of

第1面に直交する断面において、空孔21から境界16までの距離d1の平均値が、隣り合う空孔21の間隔w2の平均値よりも大きい被覆工具1を作製するには、第1層13における第2領域19bが、隣り合う空孔21の間隔w2の平均値よりも厚くなるように成膜するとよい。 In order to manufacture the coated tool 1 in which the average value of the distance d1 from the hole 21 to the boundary 16 in the cross section orthogonal to the first plane is larger than the average value of the interval w2 between the adjacent holes 21, the first layer It is preferable to form the film so that the second region 19 b in 13 is thicker than the average value of the interval w2 between the adjacent holes 21 .

1・・・被覆工具
3・・・基体
5・・・被覆層
7・・・第1面
9・・・第2面
11・・・切刃
13・・・第1層
15・・・第2層
16・・・境界(第1層及び第2層の境界)
17・・・窒化チタン層
19・・・炭窒化チタン層
19a・・第1領域
19b・・第2領域
19c・・中間領域
21・・・空孔
23・・・貫通穴
101・・・切削工具
103・・・ポケット
105・・・ホルダ
107・・・固定ネジ
DESCRIPTION OF SYMBOLS 1... Covered tool 3... Base|substrate 5... Coating layer 7... 1st surface 9... 2nd surface 11... Cutting edge 13... 1st layer 15... 2nd Layer 16 ... Boundary (boundary between the first layer and the second layer)
DESCRIPTION OF SYMBOLS 17... Titanium nitride layer 19... Titanium carbonitride layer 19a... 1st area|region 19b... 2nd area|region 19c... Intermediate area 21... Hole 23... Through hole 101... Cutting tool 103... Pocket 105... Holder 107... Fixing screw

Claims (7)

第1面を有する基体と、
該基体の少なくとも前記第1面の上に位置する被覆層と、を備えた被覆工具であって、
前記被覆層は、前記第1面の上に位置する、チタン化合物を含有する第1層と、該第1層の上に接して位置する、複数のα-酸化アルミニウム結晶を含有する第2層とを有し、
該第2層は、前記第1面に直交する断面において、前記α-酸化アルミニウム結晶の粒界におけるΣ3~Σ29型の各結晶粒界長さの総和に占める各結晶粒界長さのうち、Σ3型の結晶粒界長さが最大であり、
前記第1層は、MT-炭窒化チタンを含有する第1領域と、該第1領域よりも前記基体から離れて位置してHT-炭窒化チタンを含有する第2領域と、前記第1領域と前記第2領域との間に位置して厚みが50~300nmである中間領域とを有し、
前記被覆層は、前記中間領域に、前記第1層及び前記第2層の境界に沿った方向に並んで位置する複数の空孔を有し、前記境界に沿う方向における前記空孔の幅の平均値が、隣り合う前記空孔の間隔の平均値よりも小さい、被覆工具。
a substrate having a first surface;
a coating layer overlying at least the first surface of the substrate, comprising:
The coating layer includes a first layer containing a titanium compound located on the first surface and a second layer containing a plurality of α-aluminum oxide crystals located on and in contact with the first layer. and
In the cross section orthogonal to the first surface, the second layer has a grain boundary length that accounts for the sum of the lengths of the Σ3 to Σ29 grain boundaries in the grain boundaries of the α-aluminum oxide crystal, The grain boundary length of the Σ3 type is the maximum,
The first layer includes a first region containing MT-titanium carbonitride, a second region located farther from the substrate than the first region and containing HT-titanium carbonitride, and the first region. and an intermediate region having a thickness of 50 to 300 nm located between and the second region,
The coating layer has, in the intermediate region , a plurality of holes arranged side by side in a direction along the boundary between the first layer and the second layer, and the width of the holes in the direction along the boundary is A coated tool, the average value of which is smaller than the average value of the distances between the adjacent pores.
前記Σ3~Σ29型の各結晶粒界長さの総和に占めるΣ3型の結晶粒界長さの割合は、60%以上である、請求項1に記載の被覆工具。 2. The coated tool according to claim 1, wherein the ratio of the Σ3-type grain boundary length to the total length of the Σ3-Σ29-type grain boundaries is 60% or more. 前記第1層に含まれる前記チタン化合物として炭窒化チタンを含有する、請求項1または請求項2に記載の被覆工具。 The coated tool according to claim 1 or 2, wherein titanium carbonitride is contained as said titanium compound contained in said first layer. 前記第1面に直交する断面において、前記第1面に平行な方向での前記空孔の幅の平均値が、前記第1面に直交する方向での前記空孔の高さの平均値よりも大きい、請求項1~3のいずれかに記載の被覆工具。 In the cross section orthogonal to the first surface, the average width of the pores in the direction parallel to the first surface is greater than the average height of the pores in the direction orthogonal to the first surface. The coated tool according to any one of claims 1 to 3, which is also large. 前記第1面に直交する断面において、前記空孔から前記境界までの距離の平均値が、前記第1面に直交する方向での前記空孔の高さの平均値よりも大きい、請求項1~4のいずれかに記載の被覆工具。 2. An average value of distances from the pores to the boundary in a cross section orthogonal to the first surface is larger than an average value of heights of the pores in a direction orthogonal to the first surface. 4. The coated tool according to any one of 1 to 4. 前記第1面に直交する断面において、前記空孔から前記境界までの距離の平均値が、前記第1面に平行な方向での隣り合う前記空孔の間隔の平均値よりも大きい、請求項1~5のいずれかに記載の被覆工具。 3. In a cross section orthogonal to the first plane, an average value of distances from the holes to the boundary is larger than an average value of distances between adjacent holes in a direction parallel to the first plane. A coated tool according to any one of 1 to 5. 第1端から第2端に向かって伸びる棒状であり、前記第1端の側に位置するポケットを有するホルダと、
前記ポケット内に位置する、請求項1~6のいずれか1つに記載の被覆工具とを有する切削工具。
a rod-shaped holder extending from a first end toward a second end and having a pocket located on the side of the first end;
A cutting tool comprising a coated tool according to any one of claims 1 to 6 located within said pocket.
JP2020550365A 2018-10-03 2019-09-26 coated tools and cutting tools Active JP7142098B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018188176 2018-10-03
JP2018188176 2018-10-03
PCT/JP2019/037936 WO2020071244A1 (en) 2018-10-03 2019-09-26 Coated tool and cutting tool

Publications (2)

Publication Number Publication Date
JPWO2020071244A1 JPWO2020071244A1 (en) 2021-09-02
JP7142098B2 true JP7142098B2 (en) 2022-09-26

Family

ID=70055143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020550365A Active JP7142098B2 (en) 2018-10-03 2019-09-26 coated tools and cutting tools

Country Status (2)

Country Link
JP (1) JP7142098B2 (en)
WO (1) WO2020071244A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7302617B2 (en) * 2021-02-26 2023-07-04 株式会社タンガロイ coated cutting tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198735A (en) 2005-01-21 2006-08-03 Mitsubishi Materials Corp Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014526391A (en) 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries
WO2017146200A1 (en) 2016-02-24 2017-08-31 京セラ株式会社 Coated tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198735A (en) 2005-01-21 2006-08-03 Mitsubishi Materials Corp Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014526391A (en) 2011-09-16 2014-10-06 バルター アクチェンゲゼルシャフト Cutting tools coated with alpha-alumina with manipulated grain boundaries
WO2017146200A1 (en) 2016-02-24 2017-08-31 京セラ株式会社 Coated tool

Also Published As

Publication number Publication date
WO2020071244A1 (en) 2020-04-09
JPWO2020071244A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP7261806B2 (en) coated tools and cutting tools
JP7261805B2 (en) coated tools and cutting tools
JP7133629B2 (en) coated tools and cutting tools
JP7142097B2 (en) coated tools and cutting tools
JP7089039B2 (en) Covering tools and cutting tools
JP7018934B2 (en) Covering tools and cutting tools
US20160136786A1 (en) Coated cutting tool
JP7089038B2 (en) Covering tools and cutting tools
KR20180034564A (en) Cloth tool
WO2018181272A1 (en) Coated tool and cutting tool
JP7237831B2 (en) Coated tool, cutting tool, and method for manufacturing cut product
JP7142098B2 (en) coated tools and cutting tools
JP7142099B2 (en) coated tools and cutting tools
WO2022085429A1 (en) Coated tool and cutting tool provided with same
WO2023189127A1 (en) Cemented carbide, and coated tool and cutting tool using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7142098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150