JP7141608B2 - A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry - Google Patents

A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry Download PDF

Info

Publication number
JP7141608B2
JP7141608B2 JP2018233119A JP2018233119A JP7141608B2 JP 7141608 B2 JP7141608 B2 JP 7141608B2 JP 2018233119 A JP2018233119 A JP 2018233119A JP 2018233119 A JP2018233119 A JP 2018233119A JP 7141608 B2 JP7141608 B2 JP 7141608B2
Authority
JP
Japan
Prior art keywords
glass transition
transition temperature
temperature
isothermal
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018233119A
Other languages
Japanese (ja)
Other versions
JP2020094911A (en
Inventor
圭智 古島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Research Center Inc
Original Assignee
Toray Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Research Center Inc filed Critical Toray Research Center Inc
Priority to JP2018233119A priority Critical patent/JP7141608B2/en
Publication of JP2020094911A publication Critical patent/JP2020094911A/en
Application granted granted Critical
Publication of JP7141608B2 publication Critical patent/JP7141608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 展示日 平成30年11月2日 展示会名 日本熱測定学会主催の熱分析・熱測定に関する討論会(第54回熱測定討論会) 開催場所 東京工業大学 すずかけ台キャンパス(神奈川県横浜市緑区長津田町4259)Application of Article 30, Paragraph 2 of the Patent Act Exhibition date: November 2, 2018 Exhibition name: The 54th Thermal Analysis and Thermal Analysis Symposium held by the Japan Society of Calorimetry Venue Tokyo Institute of Technology Suzukakedai Campus (4259 Nagatsuta-cho, Midori-ku, Yokohama City, Kanagawa Prefecture)

本発明は、高速カロリメトリー(以下、FSCと記すことがある。)を用いた熱硬化性樹脂のガラス転移温度の測定方法に関する。 The present invention relates to a method for measuring the glass transition temperature of a thermosetting resin using fast calorimetry (hereinafter sometimes referred to as FSC).

高速カロリメトリーは、示差走査型熱量計法(以下、DSCと記すことがある。)の一種であるが、従来のDSCよりも高速(数万℃/s)で昇温、冷却が可能であり、温度の高速走査時の熱の出入りを調べることができる手法である(非特許文献1-3)。また、DSC曲線からのガラス転移温度の読み取りについては、ASTM E1356-03などの国際規格がある(非特許文献4)。 High-speed calorimetry is a type of differential scanning calorimeter method (hereinafter sometimes referred to as DSC). This is a technique that can examine heat input and output during high-speed temperature scanning (Non-Patent Documents 1 to 3). Further, there are international standards such as ASTM E1356-03 for reading the glass transition temperature from the DSC curve (Non-Patent Document 4).

従来は、熱処理途中で反応を止めた試料を調製しようとした際には、DSCや加熱炉内で熱処理を施した後、素早くとり出し、液体窒素などの冷媒に浸漬させる方法や空冷がとられていた。この方法では、冷却時の温度遅れや処理時間を制御することができないため、従来の方法で調製した試料をDSC測定した場合には、試料片間の硬化進行の変動や、試料組成のムラ、測定間の変動等を反映し、正確なガラス転移温度を捉えることが難しかった。 Conventionally, when trying to prepare a sample that stopped the reaction during heat treatment, after heat treatment in a DSC or a heating furnace, quickly take it out and immerse it in a coolant such as liquid nitrogen or air cooling. was With this method, it is not possible to control the temperature delay during cooling or the processing time. It was difficult to obtain an accurate glass transition temperature due to fluctuations between measurements.

高速カロリメトリーは、産業における高速の熱処理プロセスを分析装置内で模擬し、その際の熱挙動を調べることが可能となる。 High-speed calorimetry simulates high-speed heat treatment processes in industry in analyzers, enabling investigation of thermal behavior during that process.

高分子材料については、主に熱可塑性樹脂のガラス転移、結晶化、融解における熱量、温度、速度論を調べるのに有効な手法として活用されてきた。 For polymer materials, it has been used as an effective method to investigate the heat quantity, temperature, and kinetics in the glass transition, crystallization, and melting of mainly thermoplastic resins.

C. Schick, V. Mathot, Eds., Fast Scanning Calorimetry, Springer, Switzerland (2016).C. Schick, V. Mathot, Eds., Fast Scanning Calorimetry, Springer, Switzerland (2016). 古島 圭智, 戸田 昭彦, 高速カロリメトリーを用いた高分子結晶の融解挙動の解析, 熱測定Vol.45, no.3 (2018)106-111.Yoshitomo Furushima, Akihiko Toda, Analysis of melting behavior of polymer crystals using high-speed calorimetry, Thermal Measurement Vol.45, no.3 (2018) 106-111. Yoshitomo Furushima, Akihiko Toda, Christoph Schick, Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry, Polymer Crystallization 1(2018)e10005, 1-10.Yoshitomo Furushima, Akihiko Toda, Christoph Schick, Crystallization, recrystallization, and melting of polymer crystals on heating and cooling examined with fast scanning calorimetry, Polymer Crystallization 1(2018)e10005, 1-10. ASTM E1356-03ASTM E1356-03

しかしながら、FSCを熱硬化性樹脂の分析に用いた事例は報告されていなかった。その理由として、熱硬化性樹脂では硬化熱量や硬化物のガラス転移温度を調べることが主目的とされることが多く、それらの値は汎用のDSCでも十分に検出できるたことが考えられる。本発明は高速カロリメトリーを用いた熱硬化性樹脂の硬化中のガラス転移温度の変化を測定することを可能とする。 However, there have been no reports of using FSC for the analysis of thermosetting resins. The reason for this is that, with thermosetting resins, the main purpose is often to investigate the amount of heat required for curing and the glass transition temperature of the cured product, and these values can be sufficiently detected even with a general-purpose DSC. The present invention makes it possible to measure the change in glass transition temperature during curing of thermosetting resins using rapid calorimetry.

上記課題を解決するため、本発明は以下の構成からなる。つまり、等温、または、非等温、または、それらを組み合わせた高速カロリメトリーを用いた熱硬化性樹脂のガラス転移温度の測定方法である。 In order to solve the above problems, the present invention has the following configuration. That is, methods for measuring the glass transition temperature of thermosetting resins using fast calorimetry, either isothermal, non-isothermal, or a combination thereof.

本発明における測定プロファイルを熱硬化性樹脂に適用することで、硬化反応を制御することが可能となり、同一の試料片を用いて反応進行に伴うガラス転移温度の変化をリアルタイムで追跡することが可能となる。 By applying the measurement profile in the present invention to thermosetting resin, it becomes possible to control the curing reaction, and it is possible to track the change in the glass transition temperature accompanying the progress of the reaction in real time using the same sample piece. becomes.

本発明では、代表的な熱硬化性樹脂であるエポキシ樹脂について、未硬化の状態の-80℃から硬化温度(当該樹脂では130℃)の間を高速(2000℃/s)で昇降温させるとガラス転移温度が変化しないことが確認できる。これは、加熱冷却を高速で行うことにより硬化の進行が抑制されることを意味する。この現象を応用し、FSC内で熱硬化性樹脂を等温あるいは非等温で熱処理させている途中でガラス転移温度以下まで急冷することで反応進行を止めることができる。この状態から再度高速で昇温させ、FSC曲線からガラス転移温度を読み取ることができる。このガラス転移温度はそれ以前の等温または非等温の熱処理の履歴を受けた試料の硬化状態を反映し、硬化が進行していれば、ガラス転移温度は上昇する。等温あるいは非等温での熱処理、急冷、再昇温の順でサイクル測定を繰り返すことにより、等温あるいは非等温での熱処理時の反応進行に伴うガラス転移温度の変化をリアルタイムで追跡することが可能となる。 In the present invention, for epoxy resin, which is a typical thermosetting resin, if the temperature is raised and lowered at high speed (2000°C/s) from -80°C in the uncured state to the curing temperature (130°C for this resin), It can be confirmed that the glass transition temperature does not change. This means that the progress of curing is suppressed by performing heating and cooling at high speed. By applying this phenomenon, the progress of the reaction can be stopped by rapidly cooling the thermosetting resin to below the glass transition temperature during isothermal or non-isothermal heat treatment in the FSC. From this state, the temperature is raised again at high speed, and the glass transition temperature can be read from the FSC curve. This glass transition temperature reflects the cured state of a sample that has undergone a history of previous isothermal or non-isothermal heat treatments, and as curing progresses, the glass transition temperature increases. By repeating the cycle measurement in the order of isothermal or non-isothermal heat treatment, quenching, and reheating, it is possible to track the change in the glass transition temperature accompanying the reaction progress during the isothermal or non-isothermal heat treatment in real time. Become.

高速の昇温、冷却時にガラス転移温度が変わらないことを確認するためのFSCの測定プロファイルの一例である。This is an example of an FSC measurement profile for confirming that the glass transition temperature does not change during high-speed heating and cooling. エポキシ樹脂の未硬化物に対して、図1の測定プロファイルでFSC測定を実施した結果である。FIG. 1 shows the results of FSC measurement performed on an uncured epoxy resin using the measurement profile shown in FIG. 等温でのガラス転移温度の変化を調べるためのFSCの測定プロファイルの一例である。It is an example of an FSC measurement profile for investigating the isothermal glass transition temperature change. 図3の測定プロファイルで実施した硬化温度における累計時間の異なるFSC曲線の重ね合わせである。FIG. 4 is a superimposition of FSC curves with different cumulative times at curing temperatures performed with the measurement profile of FIG. 3 ; FIG. 硬化温度における等温時間とガラス転移温度の関係である。It is the relationship between the isothermal time at the curing temperature and the glass transition temperature. 非等温でのガラス転移温度の変化を調べるためのFSCの測定プロファイルの一例である。It is an example of the FSC measurement profile for examining the non-isothermal change in the glass transition temperature. 2℃/minで昇温中のガラス転移温度の変化である。It is the change of the glass transition temperature during heating at 2°C/min.

まず、高速カロリメトリーとして、10~10000℃/s間での昇温・冷却が可能なものが好ましい。等温の設定温度として室温~300℃間が好ましく、保持時間としては、材料生産における熱処理プロセスの条件に応じて1s~6時間程の間が好ましい。非等温とは昇温や冷却を意味し、走査速度としては材料生産における熱処理プロセスの条件に応じて1℃/min~3000℃/s間が好ましく例示される。測定雰囲気として、大気流、窒素ガス流、ヘリウムガス流が好ましく、流速としては10mL/min~200mL/minの間が例示される。等温および非等温を組み合わせた条件とは、材料生産における熱処理プロセスの条件に合わせて上述の等温および非等温の条件を交互に繋げることを意味する。 First, as a high-speed calorimeter, one capable of heating and cooling at 10 to 10000° C./s is preferable. The isothermal setting temperature is preferably between room temperature and 300° C., and the holding time is preferably between 1 s and 6 hours depending on the conditions of the heat treatment process in material production. Non-isothermal means heating or cooling, and the scanning speed is preferably between 1° C./min and 3000° C./s depending on the conditions of the heat treatment process in material production. Air flow, nitrogen gas flow, and helium gas flow are preferable as the measurement atmosphere, and the flow rate is exemplified between 10 mL/min and 200 mL/min. By combined isothermal and non-isothermal conditions is meant alternating the isothermal and non-isothermal conditions mentioned above in line with the conditions of the heat treatment process in material production.

分析の対象としては、未硬化または部分硬化した熱硬化性樹脂であり、具体的にはエポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ユリア樹脂、アルキド樹脂、ポリイミド樹脂が好ましい。なかでも、エポキシ樹脂が好ましい。 The objects of analysis are uncured or partially cured thermosetting resins, specifically epoxy resins, phenolic resins, urethane resins, acrylic resins, melamine resins, unsaturated polyester resins, urea resins, alkyd resins, and polyimides. Resins are preferred. Among them, epoxy resin is preferable.

本発明における試料調製するパートとは、樹脂の硬化条件であり、設定温度・設定時間・走査速度は樹脂の種類に応じて自由に設定できる。例えば、エポキシ樹脂では、設定温度として室温~300℃間、走査速度1℃/min~3000℃/sが好ましく例示される。 The sample preparation part in the present invention is the curing conditions of the resin, and the set temperature, set time, and scanning speed can be freely set according to the type of resin. For example, for epoxy resin, the set temperature is preferably between room temperature and 300° C., and the scanning speed is between 1° C./min and 3000° C./s.

本発明におけるガラス転移温度の測定パートにおいては、未硬化状態の試料のガラス転移温度よりも-10℃以上低温まで冷却することが好ましい。再昇温時にはFSC曲線にガラス転移の階段状シグナルの全容が捉えられる温度、例えば300℃までが望ましい。再昇温時には冷却する直前の温度よりも高くなってもよく、その場合は、昇温測定後に冷却過程する直前の温度まで急冷する。例えば、エポキシ樹脂では、走査速度500~3000℃/sが好ましく例示される。 In the measurement part of the glass transition temperature in the present invention, it is preferable to cool the uncured sample to −10° C. or more lower than the glass transition temperature. When reheating, it is desirable to set the FSC curve to a temperature at which the entire stepwise signal of the glass transition can be captured, for example, up to 300°C. When the temperature is reheated, it may be higher than the temperature immediately before cooling. In that case, after measuring the temperature rise, the material is rapidly cooled to the temperature just before the cooling process. For example, epoxy resin preferably has a scanning speed of 500 to 3000° C./s.

以下、本発明を実施例により説明する。測定にはMETTLER TOLEDO社製の高速カロリメトリーの装置であるFlash DSC 1を使用した。測定雰囲気として、10mL/minの窒素ガス流で実施した。 EXAMPLES The present invention will now be described with reference to Examples. Flash DSC 1, a high-speed calorimeter manufactured by METTLER TOLEDO, was used for the measurement. The measurement atmosphere was a nitrogen gas flow of 10 mL/min.

高速での昇温および冷却時に硬化反応が進行しないことを確認するため、エポキシ樹脂の未硬化物に対して、図1の測定プロファイルでFSC測定を実施した結果を図2に示す。本実施例では、硬化温度(Tiso)は130℃とし、ガラス転移温度以下まで冷却される温度として、-80℃を採用した。図2には昇温時のFSC曲線を示しており、1から20回目の昇降温のサイクルで、FSC曲線の形状は完全に一致しており、非特許文献4の方法で読み取ったガラス転移温度(Tg)も一致する。この結果から、図1に記載の測定プロファイルで測定を行っても、Tgに変化を生じるほどの反応は進行していないことが確認できる。なお、一連の測定に用いる試料重量は1μg以下が好ましく、試料重量は非特許文献1の1.3.5(39頁~)に記載の方法に従い算出する。試料重量が変動すると熱遅れの影響により測定結果の再現性が低下する場合がある。測定後に試料の直上に標準物質を乗せて融解開始温度の確認および温度補正をすることが好ましい。標準物質としては高純度インジウムが好ましく、融解開始温度としては156.6℃を用い、温度補正は156.6℃から実測の高純度インジウムの融解開始温度(単位は℃)を差し引いた値について、FSC曲線の実測温度に加えて曲線全体を平行移動させる。10℃以上FSC曲線を平行移動する必要がある場合は、測定結果を非採用とし、試料重量を半分以下にして再測定することが好ましい。試料重量や測定の方法については、非特許文献1および非特許文献2を参考にすることが好ましい。 In order to confirm that the curing reaction does not proceed during high-speed heating and cooling, FSC measurement was performed on the uncured epoxy resin using the measurement profile shown in FIG. 1. The results are shown in FIG. In this example, the curing temperature (Tiso) was 130°C, and -80°C was used as the temperature for cooling to the glass transition temperature or lower. Fig. 2 shows the FSC curve at the time of heating, and in the 1st to 20th heating and cooling cycles, the shape of the FSC curve is completely consistent, and the glass transition temperature read by the method of Non-Patent Document 4 (Tg) also match. From this result, it can be confirmed that even if the measurement is performed with the measurement profile shown in FIG. 1, the reaction does not progress enough to cause a change in Tg. The sample weight used in a series of measurements is preferably 1 μg or less, and the sample weight is calculated according to the method described in Non-Patent Document 1, 1.3.5 (from page 39). If the sample weight fluctuates, the reproducibility of the measurement results may decrease due to the effect of thermal lag. After the measurement, it is preferable to place a standard substance directly on the sample to confirm the melting start temperature and correct the temperature. High-purity indium is preferable as a reference material, and 156.6°C is used as the melting start temperature. Translate the entire curve in addition to the temperature. If it is necessary to shift the FSC curve in parallel by 10°C or more, it is preferable to disregard the measurement result and reduce the weight of the sample to half or less and re-measure. It is preferable to refer to Non-Patent Document 1 and Non-Patent Document 2 for sample weight and measurement method.

図3にはTisoで任意の時間、例えば、5s等温させたFSCの測定プロファイル、図4には昇温時のFSC曲線を示しており、Tisoでの累計時間(Dttotal)が長いほど、Tgが高温側へ変化していることが確認できる。これは、高温保持により硬化反応が進行したことを意味する。図5にはTisoを変えて実施したFSC測定より得られるTgとDttotalの関係を示す。高温ほどTgが短時間で上昇することが確認でき、これは高温ほど硬化が速く進行したことを意味する。図6には非等温でのTgの変化を調べるためのFSCの測定プロファイルを示しており、図7には2℃/minで昇温中のTgの変化を示す。材料生産における熱処理プロセスの条件に合うように図3と図6の測定プロファイルを組合せることにより、等温および非等温での熱処理中のガラス転移温度変化を調べることが可能となる。 Fig. 3 shows the measurement profile of FSC at Tiso for an arbitrary time, for example, 5 s isothermal, and Fig. 4 shows the FSC curve at the time of temperature rise. It can be confirmed that changes to the high temperature side. This means that the curing reaction proceeded by holding at a high temperature. Fig. 5 shows the relationship between Tg and Dt total obtained from FSC measurements performed with different Tiso. It can be confirmed that the higher the temperature, the shorter the Tg rises, which means that the higher the temperature, the faster the curing progressed. FIG. 6 shows the FSC measurement profile for investigating the non-isothermal change in Tg, and FIG. 7 shows the change in Tg during heating at 2° C./min. Combining the measurement profiles of FIG. 3 and FIG. 6 to match the conditions of the heat treatment process in material production makes it possible to study the glass transition temperature changes during isothermal and non-isothermal heat treatments.

Claims (4)

等温、または、非等温、または、それらを組み合わせて、測定プロファイルが、試料調製するパートとガラス転移温度の測定パートが交互に繰り返され、熱硬化性樹脂を測定の対象として、設定温度を室温~300℃、および、走査速度を500~3000℃/sに設定し、速カロリメトリーを用いた熱硬化性樹脂のガラス転移温度の測定方法。 Isothermal, non-isothermal, or a combination thereof , the measurement profile alternately repeats the sample preparation part and the glass transition temperature measurement part . A method for measuring the glass transition temperature of a thermosetting resin using high- speed calorimetry at 300°C and a scanning speed of 500-3000 °C/s . 熱硬化性樹脂の硬化中の、請求項1に記載の高速カロリメトリーを用いた熱硬化性樹脂のガラス転移温度の測定方法。 A method for measuring the glass transition temperature of a thermoset using rapid calorimetry according to claim 1 during curing of the thermoset. 試料調製するパートが、設定温度、設定時間、走査速度を任意に決める請求項1または2に記載の高速カロリメトリーを用いた熱硬化性樹脂のガラス転移温度の測定方法。 3. The method for measuring the glass transition temperature of a thermosetting resin using high-speed calorimetry according to claim 1 or 2 , wherein the sample preparation part arbitrarily determines the set temperature, set time and scanning speed. ガラス転移温度の測定パートが、ラス転移の全容を捉えることができる温度範囲で実施する請求項1または2に記載の高速カロリメトリーを用いた熱硬化性樹脂のガラス転移温度の測定方法。
3. The method of measuring the glass transition temperature of a thermosetting resin using high-speed calorimetry according to claim 1 or 2 , wherein the measurement part of the glass transition temperature is carried out in a temperature range capable of capturing the entire glass transition.
JP2018233119A 2018-12-13 2018-12-13 A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry Active JP7141608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233119A JP7141608B2 (en) 2018-12-13 2018-12-13 A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233119A JP7141608B2 (en) 2018-12-13 2018-12-13 A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry

Publications (2)

Publication Number Publication Date
JP2020094911A JP2020094911A (en) 2020-06-18
JP7141608B2 true JP7141608B2 (en) 2022-09-26

Family

ID=71084933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233119A Active JP7141608B2 (en) 2018-12-13 2018-12-13 A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry

Country Status (1)

Country Link
JP (1) JP7141608B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523060A (en) 2008-06-06 2011-08-04 パーキンエルマー・ヘルス・サイエンシズ・インコーポレーテッド Calorimeter, method using the same, and control system therefor
US20160238465A1 (en) 2013-10-22 2016-08-18 Nanjing University A stage-type fast scanning calorimetry which can be integrated with other structure characterization approaches

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474385A (en) * 1992-03-02 1995-12-12 Ta Instruments, Inc. Method and apparatus for parsed dynamic differential analysis
US5224775C2 (en) * 1992-03-02 2002-04-23 Ta Instr Inc Method and apparatus for modulated differential analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523060A (en) 2008-06-06 2011-08-04 パーキンエルマー・ヘルス・サイエンシズ・インコーポレーテッド Calorimeter, method using the same, and control system therefor
US20160238465A1 (en) 2013-10-22 2016-08-18 Nanjing University A stage-type fast scanning calorimetry which can be integrated with other structure characterization approaches

Also Published As

Publication number Publication date
JP2020094911A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
Drummer et al. A novel approach for understanding laser sintering of polymers
Xie et al. Characterization on surface mechanical properties of Ti–6Al–4V after shot peening
Jonas et al. The critical strain for dynamic transformation in hot deformed austenite
Menary et al. Biaxial deformation and experimental study of PET at conditions applicable to stretch blow molding
Kosugi et al. Accuracy evaluation of surface temperature profiling by a laser ultrasonic method
JP7141608B2 (en) A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry
Gschwandl et al. Thermal conductivity measurement of industrial rubber compounds using laser flash analysis: Applicability, comparison and evaluation
Consul et al. Interlaminar strength in large‐scale additive manufacturing of slow crystallizing polyaryletherketone carbon composites
Keleshian et al. On the distortion and warpage of 7249 aluminum alloy after quenching and machining
Otsuka et al. Effect of volume expansion on transformation plasticity during ferrite and martensite transformation of steel
Yoshizawa et al. Specific heat of the NH4Cl1-xBrx system
Risitano et al. Experimental study to verify the fatigue limit found by thermal analysis of specimen surface in mono axial traction test
Terpiłowski et al. A study of thermal diffusivity of carbon-epoxy and glass-epoxy composites using the modified pulse method
JP2022074231A (en) Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry
Stankevich et al. Measurement of thermal cycle at multi-pass layer build-up with different travel path strategies during DLMD process
Appel Thermally activated dislocation processes in NaCl single crystals (I)
Tsuji et al. Investigation of photothermoelasticity by means of heating
JP5831209B2 (en) Method for estimating thermal history of coal distillates
Engelhardt et al. Diffusion in a temperature gradient–a single cycle method to determine frequency factor and activation energy of solid diffusion coefficients in alloys
Savvides et al. Thermal conductivity of thin crystals of pure silicon
Gabbott et al. Differential scanning calorimetry
Marikhin et al. Fourier transform infrared spectroscopic study of the kinetics of a first-order phase transition in tridecanoic acid CH 3 (CH 2) 11 COOH
Kim et al. One-level, two-point method for estimation of thermal diffusivity by the converging thermal-wave technique
Xu et al. Calculation models of interlamellar spacing of pearlite in high-speed 82B rod
Skubisz et al. Determination of Emissivity Characteristics for Controlled Cooling of Nickel-Alloy Forgings

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20181226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7141608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150