JP2022074231A - Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry - Google Patents

Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry Download PDF

Info

Publication number
JP2022074231A
JP2022074231A JP2020184102A JP2020184102A JP2022074231A JP 2022074231 A JP2022074231 A JP 2022074231A JP 2020184102 A JP2020184102 A JP 2020184102A JP 2020184102 A JP2020184102 A JP 2020184102A JP 2022074231 A JP2022074231 A JP 2022074231A
Authority
JP
Japan
Prior art keywords
heat capacity
temperature
weight
speed
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020184102A
Other languages
Japanese (ja)
Inventor
圭智 古島
Yoshitomo Furushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Research Center Inc
Original Assignee
Toray Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Research Center Inc filed Critical Toray Research Center Inc
Priority to JP2020184102A priority Critical patent/JP2022074231A/en
Publication of JP2022074231A publication Critical patent/JP2022074231A/en
Pending legal-status Critical Current

Links

Images

Abstract

To investigate changes in relative weight of nanogram-sized polymer materials under isothermal condition using an FSC.SOLUTION: The present invention relates to a calorific value measurement method under an isothermal condition using fast scanning calorimetry. By repeating a cycle measurement in an order of isothermal heat treatment, quenching, and reheating, it becomes possible to track the decrease in weight due to the progress of thermal oxidation reaction at the isothermal condition as a change in heat capacity in real time. It is assumed that the relation of m=Cp,ti/Cp,t0 holds between a relative weight (m) and heat capacity (Cp,t). Here, Cp,ti represents heat capacity after ti seconds from the start of the isothermal condition, and Cp,t0 is heat capacity in an unreacted state immediately before the start of the isothermal condition.SELECTED DRAWING: Figure 5

Description

特許法第30条第2項適用申請有り ウェブサイトの掲載日 令和2年10月20日 ウェブサイトのアドレス https://doi.org/10.1016/j.tca.2020.178804 雑誌名 Thermochimica Acta 694(2020)178804、出版社ELSEVIERPatent Law Article 30, Paragraph 2 Application Applicable Website Publication Date October 20, 2nd Reiwa Website Address https: // doi. org / 10.1016 / j. tca. 2020.178804 Magazine name Thermochimica Acta 694 (2020) 178804, Publisher ELSEVIER

本発明は、高速カロリメトリー(以下、FSCと記すことがある。)を用いた等温下での熱重量測定方法に関する。 The present invention relates to a method for measuring thermogravimetric analysis under isothermal conditions using high-speed calorimetry (hereinafter, may be referred to as FSC).

熱重量測定法(以下、TGと記すことがある。)は、物質の温度を、調節されたプログラムに従って変化させながら、その物質の質量を温度関数として測定する手法である(非特許文献1)。従来のTG測定においては、測定1回あたり数mg~数百mgの試料が必要となるため、ナノグラムサイズの微量試料の測定は適用できなかった。さらに、等温下でのTG測定を行う場合において、従来のTG測定は目的温度までの昇温速度が、装置の構成上精々数十℃/minに制限されることから、目的温度に到達する前に試料の熱分解や熱酸化反応等が進行することも多い。このため、等温での正確なTG測定は低温域に限定されるという課題もある。 The thermogravimetric analysis method (hereinafter, may be referred to as TG) is a method of measuring the mass of a substance as a temperature function while changing the temperature of the substance according to a regulated program (Non-Patent Document 1). .. In the conventional TG measurement, a sample of several mg to several hundred mg is required for each measurement, so that the measurement of a trace amount of nanogram size cannot be applied. Furthermore, when performing TG measurement under isothermal temperature, the rate of temperature rise to the target temperature is limited to several tens of degrees Celsius / min at most due to the configuration of the device in the conventional TG measurement, so before reaching the target temperature. In many cases, thermal decomposition and thermal oxidation reaction of the sample proceed. Therefore, there is also a problem that accurate TG measurement at an isothermal temperature is limited to a low temperature range.

高速カロリメトリーは、示差走査型熱量計法(以下、DSCと記すことがある。)の一種であるが、従来のDSCよりも高速(数万℃/s)で昇温、冷却が可能であり、温度の高速走査時の試料からの熱の出入りを調べることができる手法である(非特許文献2-4)。高速カロリメトリーに用いる試料の重量は数ng~数百ngであり、従来の熱分析に用いられる数mg~数百mgに比べて微量である特徴も有する。従来、高速カロリメトリーは、産業における高速の熱処理プロセスを分析装置内で模擬し、その際の熱挙動を調べることを利用目的とすることが多く、高分子材料については、主に熱可塑性樹脂や熱硬化性樹脂のガラス転移、結晶化、融解における熱量、温度、速度論、比熱を調べるのに有効な手法として活用されてきた。 High-speed calorimetry is a type of differential scanning calorimeter (hereinafter sometimes referred to as DSC), but it can raise and cool at a higher speed (tens of thousands of ° C / s) than conventional DSCs. This is a method for investigating the inflow and outflow of heat from a sample during high-speed scanning of temperature (Non-Patent Document 2-4). The weight of the sample used for high-speed calorimetry is several ng to several hundred ng, and it is also characterized in that it is a small amount as compared with the several mg to several hundred mg used in the conventional thermal analysis. Conventionally, high-speed calorimetry is often used for the purpose of simulating a high-speed heat treatment process in an industry in an analyzer and investigating the thermal behavior at that time. For polymer materials, mainly thermoplastic resins and heat are used. It has been used as an effective method for investigating the amount of heat, temperature, velocity theory, and specific heat in glass transition, crystallization, and melting of curable resins.

齋藤安俊, 物質科学のための熱分析の基礎, 共立出版株式会社(1990)175-266.Yasutoshi Saito, Basics of Thermal Analysis for Material Science, Kyoritsu Shuppan Co., Ltd. (1990) 175-266. C. Schick, V. Mathot, Eds., Fast Scanning Calorimetry, Springer, Switzerland (2016).C. Schick, V. Mathot, Eds., Fast Scanning Calorimetry, Springer, Switzerland (2016). 古島 圭智,高速カロリメトリーの基礎-高分子の結晶化・融解挙動の解析-,繊維学会誌76(5) , (2020)191-196.Keitomo Furushima, Basics of High-Speed Calorimetry-Analysis of Polymer Crystallization / Melting Behavior-, Journal of the Textile Society 76 (5), (2020) 191-196. E. Zhuravlev, C. Schick, Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis, Thermochimica Acta 505 (2010) 14-21.E. Zhuravlev, C. Schick, Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis, Thermochimica Acta 505 (2010) 14-21.

本発明では、高速カロリメトリーを用いて、従来のTGでは取得できないナノグラムサイズの試料を用いて重量変化を捉えることが可能とする。さらに、目的温度まで高速で昇温させることができる為、目的温度に到達するまでの熱分解や熱酸化反応の進行を抑制することができ、厳密な等温下での熱重量測定を可能とする。 In the present invention, high-speed calorimetry can be used to capture weight changes using nanogram-sized samples that cannot be obtained with conventional TGs. Furthermore, since the temperature can be raised to the target temperature at high speed, it is possible to suppress the progress of thermal decomposition and thermal oxidation reaction until the target temperature is reached, and it is possible to measure the thermal weight under strict isothermal conditions. ..

上記課題を解決するため、本発明は以下の構成からなる。つまり、高速カロリメトリーを用いた等温下での熱重量測定方法である。 In order to solve the above problems, the present invention has the following configurations. That is, it is a method for measuring thermogravimetric analysis under isothermal conditions using high-speed calorimetry.

本発明における測定プロファイルを高分子材料(熱硬化性樹脂や熱可塑性樹脂)や低分子材料に適用することで、熱分解や熱酸化反応を制御することが可能となり、同一の試料片を用いて反応進行に伴う重量の変化を追跡することが可能となる。 By applying the measurement profile in the present invention to high molecular weight materials (thermosetting resin and thermoplastic resin) and low molecular weight materials, it becomes possible to control thermal decomposition and thermal oxidation reaction, and the same sample piece can be used. It is possible to track changes in weight as the reaction progresses.

本発明では、代表的な熱可塑性樹脂であるポリプロピレン(以下、PPと記すことがある)について、空気流下で室温から熱酸化反応温度(当該樹脂では270℃~300℃で実施)の間を高速(3000℃/s)で繰り返し昇降温させると、昇温あるいは冷却過程のFSC曲線の形状が変化しない(試料の比熱が変化していないことに相当)ことが確認できる。これは、熱酸化反応の速度よりも速く加熱冷却を行うことにより熱酸化反応の進行が抑制され、熱酸化反応に伴う試料の重量変化が起きていないことを意味する。 In the present invention, polypropylene (hereinafter, sometimes referred to as PP), which is a typical thermoplastic resin, is subjected to high speed between room temperature and thermal oxidation reaction temperature (implemented at 270 ° C to 300 ° C for the resin) under air flow. It can be confirmed that the shape of the FSC curve during the heating or cooling process does not change (corresponding to the fact that the specific heat of the sample does not change) when the temperature is repeatedly raised and lowered at (3000 ° C / s). This means that the progress of the thermal oxidation reaction is suppressed by performing heating and cooling faster than the rate of the thermal oxidation reaction, and the weight change of the sample due to the thermal oxidation reaction does not occur.

この現象を応用し、FSC内で樹脂を等温で熱処理させている途中で室温まで急冷することで反応進行を止めることができる。さらに、この状態から再度高速で昇温させると、再び反応を進行させることができる。この際得られる冷却過程と昇温過程のFSC曲線の各縦軸(熱流)の中点がFSC曲線のベースラインとなり、非特許文献4に従うと、FSC曲線のベースラインから実測の熱流までの幅が熱容量に相当する。この熱容量はそれ以前の等温熱処理の履歴を受けた試料の重量を反映し、熱酸化反応が進行していれば、重量は減少するため熱容量も低下していき、最終的には試料の重量はゼロとなりFSC曲線のベースラインと一致する。このように、等温での熱処理、急冷、再昇温の順でサイクル測定を繰り返すことにより、等温での熱酸化反応進行に伴う重量の減少を熱容量の変化としてリアルタイムで追跡することが可能となる。本発明では相対重量(m)と熱容量(Cp,t)の間にm=Cp,ti / Cp,t0の関係が成り立つと仮定している。ここで、Cp,tiは等温開始からti秒後の熱容量、Cp,t0は等温開始直前の未反応状態における熱容量である。 By applying this phenomenon, the reaction progress can be stopped by rapidly cooling to room temperature while the resin is being heat-treated at an isothermal temperature in FSC. Further, if the temperature is raised again at high speed from this state, the reaction can proceed again. The midpoint of each vertical axis (heat flow) of the FSC curves obtained at this time is the baseline of the FSC curve, and according to Non-Patent Document 4, the width from the baseline of the FSC curve to the actually measured heat flow. Corresponds to the heat capacity. This heat capacity reflects the weight of the sample that has undergone the history of isothermal heat treatment before that, and if the thermal oxidation reaction is in progress, the weight decreases and the heat capacity also decreases, and finally the weight of the sample. Is zero and coincides with the baseline of the FSC curve. In this way, by repeating the cycle measurement in the order of heat treatment at isothermal heat treatment, quenching, and reheating, it is possible to track the decrease in weight due to the progress of the thermal oxidation reaction at isothermal temperature as a change in heat capacity in real time. .. In the present invention, it is assumed that the relationship of m = Cp, ti / Cp, t0 holds between the relative weight (m) and the heat capacity (Cp, t). Here, Cp and ti are heat capacities ti seconds after the start of isothermal temperature, and Cp and t0 are heat capacities in the unreacted state immediately before the start of isothermal temperature.

空気流中で室温と等温保持温度(Tiso)の間を高速で昇温・冷却させた際に熱容量が変わらないことを確認するためのFSCの測定プロファイルの一例である。This is an example of an FSC measurement profile for confirming that the heat capacity does not change when the temperature is raised and cooled at high speed between room temperature and isothermal holding temperature (Tiso) in an air flow. PPに対して、図1の測定プロファイルでFSC測定を実施した結果である。This is the result of performing FSC measurement on PP using the measurement profile shown in Fig. 1. 等温空気流中での熱容量の変化を調べるためのFSCの測定プロファイルの一例である。This is an example of an FSC measurement profile for investigating changes in heat capacity in an isothermal air flow. 図3の測定プロファイルで実施した300℃における累計保持時間(Δttotal)の異なるPPのFSC曲線の重ね合わせである。It is a superposition of FSC curves of PPs having different cumulative holding times (Δt total ) at 300 ° C. performed in the measurement profile of FIG. 相対重量と270~300℃における保持時間の関係である。It is the relationship between the relative weight and the holding time at 270 to 300 ° C.

まず、高速カロリメトリーとして、10~10000℃/s間での昇温・冷却が可能なものが好ましい。等温の設定温度として室温~400℃間が好ましく、保持時間としては、1秒~6時間程の間が好ましい。測定雰囲気として、大気流、窒素ガス流、ヘリウムガス流が好ましく、流速としては0mL/min~200mL/minの間が例示される。 First, as high-speed calorimetry, those capable of raising and cooling the temperature between 10 and 10000 ° C./s are preferable. The isothermal set temperature is preferably between room temperature and 400 ° C., and the holding time is preferably between 1 second and 6 hours. The measurement atmosphere is preferably an atmospheric flow, a nitrogen gas flow, and a helium gas flow, and the flow velocity is exemplified between 0 mL / min and 200 mL / min.

分析の対象としては、高分子材料(熱硬化性樹脂や熱可塑性樹脂)が望ましく、具体的にはポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、ポリスチレン樹脂、芳香族ポリエーテルケトン、ポリビニル樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ユリア樹脂、アルキド樹脂が好ましく例示される。 Polymer materials (thermocurable resins and thermoplastic resins) are desirable for analysis, and specifically, polyester resins, polyolefin resins, polyamide resins, polyimide resins, polyphenylene sulfide resins, polystyrene resins, and aromatic polyether ketones. , Polyvinyl resin, epoxy resin, phenol resin, urethane resin, acrylic resin, melamine resin, unsaturated polyester resin, urea resin, and alkyd resin are preferably exemplified.

本発明における試料調製するパートとは、設定温度、設定時間は樹脂の種類に応じて自由に設定できる。例えば、PPでは、設定温度として室温~300℃間が好ましく例示される。FSC測定に供する試料の厚みとしては50μm以下が望ましく、PPでは2μm~20μmが例示される。 With respect to the sample preparation part in the present invention, the set temperature and the set time can be freely set according to the type of resin. For example, in PP, the set temperature is preferably between room temperature and 300 ° C. The thickness of the sample to be used for FSC measurement is preferably 50 μm or less, and 2 μm to 20 μm is exemplified for PP.

本発明における熱容量の測定パートとは、走査速度3000℃/sが好ましく例示される。Tisoから室温への冷却過程および室温からTisoまでの昇温過程で取得されるFSC曲線(縦軸は熱流、横軸は温度)の実験値を重ねて表示させた際に、冷却過程の熱流(Qc)および昇温過程の熱流(Qh)の中心の熱流(Qb=(Qc+Qh)/2)をベースライン点としたときに、結晶化、融解、ガラス転移等のない温度域の各温度におけるベースライン点をつないだ曲線をFSC曲線のベースラインとし、ベースラインとFSC曲線の実験値の差を熱容量(Cp)とする。すなわち、各温度におけるQb 、Qc、Qhの間にCp=|Qc-Qb|=|Qh-Qb|の関係が成り立つ。採用する熱容量の温度はPPでは溶融温度以上である200℃が好ましく例示される。また、熱容量の算出には冷却過程の熱流(Qc)を用いることが好ましく例示される。 As the heat capacity measuring part in the present invention, a scanning speed of 3000 ° C./s is preferably exemplified. When the experimental values of the FSC curves (vertical axis is heat flow, horizontal axis is temperature) acquired in the cooling process from Tiso to room temperature and the heating process from room temperature to Tiso are superimposed and displayed, the heat flow in the cooling process (heat flow (vertical axis is heat flow, horizontal axis is temperature)). When the heat flow (Qb = (Qc + Qh) / 2) at the center of the heat flow (Qh) in the Qc) and heating process is taken as the baseline point, each temperature in the temperature range where there is no crystallization, melting, glass transition, etc. The curve connecting the baseline points in is the baseline of the FSC curve, and the difference between the experimental values of the baseline and the FSC curve is the heat capacity (Cp). That is, the relationship of Cp = | Qc-Qb | = | Qh-Qb | holds between Qb, Qc, and Qh at each temperature. The temperature of the heat capacity to be adopted is preferably 200 ° C., which is equal to or higher than the melting temperature in PP. Further, it is preferable to use the heat flow (Qc) in the cooling process for calculating the heat capacity.

以下、本発明を実施例により説明する。測定にはMETTLER TOLEDO社製の高速カロリメトリーの装置であるFlash DSC 1を使用した。測定雰囲気として、50mL/minの空気流で実施した。 Hereinafter, the present invention will be described with reference to examples. The Flash DSC 1, a high-speed calorimetry device manufactured by METTLER TOLEDO, was used for the measurement. The measurement atmosphere was 50 mL / min air flow.

空気流中(流速は50mL/min)において、高速での昇温および冷却時に熱酸化反応が進行しないことを確認するため、PPに対して、図1の測定プロファイルでFSC測定を実施した結果を図2に示す。測定に供した試料厚みは2μmである。本実施例では、Tisoは270℃~300℃とした。図2には冷却過程のFSC曲線からFSC曲線のベースラインを差し引いた熱容量を示しており、1回目と50回目の昇降温のサイクルで、FSC曲線の形状は完全に一致する(図2には2本の熱容量曲線を重ねて表示させている)。この結果から、図1に記載の測定プロファイルで測定を行っても、試料の熱容量に変化を生じるほどの熱酸化反応は進行していないことが確認できる。熱容量が変化していないことから試料重量も変化していないことが示される。なお、一連の測定に用いる試料重量は1μg以下が好ましく、試料重量は非特許文献2の1.3.5(39頁から)に記載の方法に従い算出する。本実施例は試料重量として20ng~80ngの結果である。試料重量が変動すると熱遅れの影響により測定結果の再現性が低下する場合がある。試料重量や熱容量の測定の方法については、非特許文献2および非特許文献4を参考にすることが好ましい。 In order to confirm that the thermal oxidation reaction does not proceed during high-speed temperature rise and cooling in the air flow (flow velocity is 50 mL / min), the results of FSC measurement with the measurement profile shown in Fig. 1 for PP are shown. It is shown in FIG. The sample thickness used for the measurement is 2 μm. In this example, the temperature of Tiso was 270 ° C to 300 ° C. Figure 2 shows the heat capacity of the FSC curve during the cooling process minus the baseline of the FSC curve. The two heat capacity curves are superimposed and displayed). From this result, it can be confirmed that even if the measurement is performed using the measurement profile shown in FIG. 1, the thermal oxidation reaction does not proceed to such an extent that the heat capacity of the sample changes. Since the heat capacity has not changed, it is shown that the sample weight has not changed either. The sample weight used for a series of measurements is preferably 1 μg or less, and the sample weight is calculated according to the method described in 1.3.5 (from page 39) of Non-Patent Document 2. This example is the result of the sample weight of 20 ng to 80 ng. If the sample weight fluctuates, the reproducibility of the measurement results may decrease due to the effect of thermal delay. It is preferable to refer to Non-Patent Document 2 and Non-Patent Document 4 for the method of measuring the sample weight and the heat capacity.

図3にはTisoで任意の時間(ti;iはサイクル数)、例えば、1s等温させたFSCの測定プロファイル、図4には冷却過程のFSC曲線からFSC曲線のベースラインを差し引いた熱容量を示しており、Tisoでの累計保持時間(Δttotal=Σti)が長いほど、各温度における熱容量は小さくなることが確認できる。これは、300℃で保持させたにより、熱酸化反応が進行し、試料重量が減少したことを意味する。相対重量(m)と熱容量(Cp,t)の間にm=Cp,ti / Cp,t0の関係を認め、熱容量を相対質量に変換する。ここで、Cp,tiは等温開始からti秒後の熱容量、Cp,t0は等温開始直前の未反応状態における熱容量である。また、本例では200℃における熱容量の値を採用して、相対重量を見積もる。図5にはTisoを270~300℃の範囲で変えて実施したFSC測定より得られる相対重量とΔttotalの関係を示す。高温ほど相対重量が短時間で低下することが確認でき、これは高温ほど熱酸化反応が速く進行し、試料重量が早く低下することを意味する。 FIG. 3 shows the measurement profile of FSC that has been isothermally heated for any time (ti; i is the number of cycles) in Tiso, and FIG. 4 shows the heat capacity obtained by subtracting the baseline of the FSC curve from the FSC curve during the cooling process. It can be confirmed that the longer the cumulative holding time (Δt total = Σti) in Tiso, the smaller the heat capacity at each temperature. This means that the thermal oxidation reaction proceeded and the sample weight was reduced by keeping the sample at 300 ° C. The relationship of m = Cp, ti / Cp, t0 is recognized between the relative weight (m) and the heat capacity (Cp, t), and the heat capacity is converted to the relative mass. Here, Cp and ti are heat capacities ti seconds after the start of isothermal temperature, and Cp and t0 are heat capacities in the unreacted state immediately before the start of isothermal temperature. Moreover, in this example, the value of the heat capacity at 200 ° C. is adopted to estimate the relative weight. FIG. 5 shows the relationship between the relative weight and Δt total obtained from the FSC measurement performed by changing the Tiso in the range of 270 to 300 ° C. It can be confirmed that the higher the temperature, the shorter the relative weight decreases, which means that the higher the temperature, the faster the thermal oxidation reaction proceeds, and the faster the sample weight decreases.

Claims (6)

高速カロリメトリーを用いた等温下での熱重量測定方法。 A method for measuring thermogravimetric analysis under isothermal conditions using high-speed calorimetry. 高分子材料の熱分解、または、熱酸化反応による重量減少に起因する熱容量の変化を調べる、請求項1に記載の高速カロリメトリーを用いた等温下での熱重量測定方法。 The method for measuring thermal weight under isothermal temperature using high-speed calorimetry according to claim 1, wherein a change in heat capacity due to thermal decomposition of a polymer material or weight loss due to a thermal oxidation reaction is investigated. 測定プロファイルが、試料調製するパートと熱容量の測定パートが交互に繰り返される、高分子材料の、請求項1または2に記載の高速カロリメトリーを用いた等温下での熱重量測定方法。 The method for measuring the thermal weight of a polymer material under isothermal temperature using the high-speed calorimetry according to claim 1 or 2, wherein the measurement profile alternates between a sample preparation part and a heat capacity measurement part. 試料調製するパートが、設定温度、設定時間、走査速度を任意に決める、高分子材料の、請求項3に記載の高速カロリメトリーを用いた等温下での熱重量測定方法。 The method for measuring the thermal weight of a polymer material under isothermal temperature using the high-speed calorimetry according to claim 3, wherein the sample preparation part arbitrarily determines a set temperature, a set time, and a scanning speed. 熱容量の測定パートが、走査速度が100℃/s以上の冷却過程および再昇温過程を有し、目的とする等温測定の温度範囲まで実施する、高分子材料の、請求項3に記載の高速カロリメトリーを用いた等温下での熱重量測定方法。 The high speed according to claim 3, wherein the heat capacity measuring part has a cooling process and a reheating process having a scanning speed of 100 ° C./s or more and is carried out up to the temperature range of the desired isothermal measurement. A method for measuring heat weight under isothermal temperature using calorimetry. 等温開始前の熱容量を分母に、等温保持後の熱容量を分子として見積もった相対重量の時間変化を取得する、請求項1に記載の高速カロリメトリーを用いた等温下での熱重量測定方法。 The method for measuring heat weight under isothermal temperature using the high-speed calorimetry according to claim 1, wherein the heat capacity before the start of isothermal temperature is used as the denominator, and the heat capacity after maintaining the isotherm is used as the numerator to obtain the time change of the relative weight.
JP2020184102A 2020-11-04 2020-11-04 Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry Pending JP2022074231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184102A JP2022074231A (en) 2020-11-04 2020-11-04 Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184102A JP2022074231A (en) 2020-11-04 2020-11-04 Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry

Publications (1)

Publication Number Publication Date
JP2022074231A true JP2022074231A (en) 2022-05-18

Family

ID=81606044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184102A Pending JP2022074231A (en) 2020-11-04 2020-11-04 Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry

Country Status (1)

Country Link
JP (1) JP2022074231A (en)

Similar Documents

Publication Publication Date Title
Cangialosi et al. Direct evidence of two equilibration mechanisms in glassy polymers
Schawe et al. Material characterization by fast scanning calorimetry: practice and applications
Castro et al. Time and temperature dependent recovery of epoxy-based shape memory polymers
JP6043441B2 (en) Method and apparatus for material analysis
CN106770427A (en) A kind of heat analysis method for determining each phase constituent content of hypocrystalline macromolecular material
Del Barrio et al. Infrared thermography method for fast estimation of phase diagrams
JP2022074231A (en) Thermogravimetric measurement method under isothermal condition using fast scanning calorimetry
Schick et al. Differential scanning calorimetry and differential thermal analysis
Consul et al. Interlaminar strength in large‐scale additive manufacturing of slow crystallizing polyaryletherketone carbon composites
Keleshian et al. On the distortion and warpage of 7249 aluminum alloy after quenching and machining
Chang Heat capacities of polyethylene from 2 to 360 K. II. Two high density linear polyethylene samples and thermodynamic properties of crystalline linear polyethylene
JP7141608B2 (en) A method for measuring the glass transition temperature of thermosetting resins using high-speed calorimetry
Tropin et al. The calorimetric glass transition in a wide range of cooling rates and frequencies
US11092560B2 (en) Device and method for realizing high-speed temperature drop of micro material by droplet cooling
Delbreilh et al. Glass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry
McHugh et al. Determination and interpretation of changes in thermophysical properties of a carbon-fibre prepreg during cure
Luisi et al. Influence of purge gas and spacers on uncertainty of high-temperature heat flux DSC measurements
CN207717669U (en) The device for realizing minor material high speed cooling is cooled down using drop and quickly scans calorimeter
Marti et al. Heat capacity functions of polystyrene in glassy and in liquid amorphous state and glass transition: DSC and TMDSC study
Kondratov et al. Thermal cyclic tests of shrink polymeric products with the shape memory
US1189785A (en) Method of and apparatus for determining transformation-points.
RU123157U1 (en) DEVICE FOR TESTING RESISTANCE OF MATERIALS OF THERMAL FATIGUE
Lovisa et al. Quantitative determinations of the temperature dependence of diffusion phenomena in the FIM
James et al. New Trends, Challenges and Opportunities
Abdel-Goad Rheological Properties of Polyvinylacetate: Compliance and Relaxation Spectrum

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201125