JP7135664B2 - Fluid pipe connection structure and fluid pipe connection method - Google Patents

Fluid pipe connection structure and fluid pipe connection method Download PDF

Info

Publication number
JP7135664B2
JP7135664B2 JP2018180064A JP2018180064A JP7135664B2 JP 7135664 B2 JP7135664 B2 JP 7135664B2 JP 2018180064 A JP2018180064 A JP 2018180064A JP 2018180064 A JP2018180064 A JP 2018180064A JP 7135664 B2 JP7135664 B2 JP 7135664B2
Authority
JP
Japan
Prior art keywords
diameter portion
peripheral surface
enlarged diameter
reduced diameter
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018180064A
Other languages
Japanese (ja)
Other versions
JP2020051485A (en
Inventor
知徳 冨永
和正 久積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018180064A priority Critical patent/JP7135664B2/en
Publication of JP2020051485A publication Critical patent/JP2020051485A/en
Application granted granted Critical
Publication of JP7135664B2 publication Critical patent/JP7135664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joints With Sleeves (AREA)

Description

本発明は、流体管の連結構造および流体管の連結方法に関する。 TECHNICAL FIELD The present invention relates to a fluid tube connection structure and a fluid tube connection method.

水道管には、例えば特許文献1に記載されたようなダクタイル鋳鉄管が一般的に用いられる。ダクタイル鋳鉄管は、強度や延性に優れ、また継手を鋳造によって一体的に形成できる点で有利である。一方、水道管に鋼管を用いる場合、従来は溶接接合が用いられてきたが、例えば特許文献2に記載されたような継手部材を用いることによって施工を簡略化することも提案されている。 For water pipes, ductile cast iron pipes such as those described in Patent Document 1, for example, are generally used. Ductile cast iron pipes are advantageous in that they are excellent in strength and ductility and joints can be integrally formed by casting. On the other hand, when using steel pipes for water pipes, welding has been conventionally used, but it has been proposed to simplify construction by using a joint member as described in Patent Document 2, for example.

特開平8-269614号公報JP-A-8-269614 特開平6-117591号公報JP-A-6-117591

しかしながら、継手部材を用いて鋼管を連結する場合、溶接接合や、ダクタイル鋳鉄管で管体と継手とが一体的に形成されている場合に比べて部品の数は増え、構造は複雑になる。また、溶接を用いない場合には接着剤などを用いて鋼管に継手部材を接続することになるが、接着剤の長期耐久性は鋼管や継手部材に比べて高くない。 However, when connecting steel pipes using a joint member, the number of parts increases and the structure becomes more complicated than when the pipe body and the joint are integrally formed by welding or ductile cast iron pipes. Further, when welding is not used, an adhesive or the like is used to connect the joint member to the steel pipe, but the long-term durability of the adhesive is not as high as that of the steel pipe or the joint member.

そこで、本発明は、簡単な構造で鋼管を連結でき、高い耐久性を実現することが可能な、新規かつ改良された流体管の連結構造および流体管の連結方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a novel and improved fluid pipe connecting structure and method for connecting steel pipes, which can connect steel pipes with a simple structure and achieve high durability. .

本発明のある観点によれば、軸方向端部に拡径部が形成される第1の流体管と、軸方向端部に拡径部の中に挿入される縮径部が形成される第2の流体管と、拡径部を外側から貫通し、且つ縮径部に途中まで貫入して非貫通の係止手段とを含み、拡径部の内周面は縮径部の外周面に密着する、流体管の連結構造が提供される。 According to one aspect of the present invention, a first fluid pipe having an enlarged diameter portion formed at an axial end thereof and a first fluid pipe having a reduced diameter portion inserted into the enlarged diameter portion formed at an axial end thereof. 2, and a locking means that penetrates the enlarged diameter portion from the outside and does not penetrate the reduced diameter portion halfway, the inner peripheral surface of the enlarged diameter portion being in contact with the outer peripheral surface of the reduced diameter portion. A tight-fitting fluid conduit connection structure is provided.

本発明の別の観点によれば、第1の流体管の軸方向端部に形成される拡径部の中に、第2の流体管の軸方向端部に形成される縮径部を挿入する工程と、拡径部の内周面を縮径部の外周面に密着させる工程と、拡径部を外側から貫通し、且つ縮径部に途中まで貫入して非貫通の係止手段を貫入させる工程とを含む、流体管の連結方法が提供される。 According to another aspect of the present invention, the reduced diameter portion formed at the axial end of the second fluid pipe is inserted into the enlarged diameter portion formed at the axial end of the first fluid pipe. a step of closely contacting an inner peripheral surface of the enlarged diameter portion with an outer peripheral surface of the reduced diameter portion; and penetrating.

本発明によれば、別途の継手部材が必要とされないため構造が簡単であり、拡径部の内周面と縮径部との外周面との密着によって高い止水性と耐久性を実現することができる流体管の連結構造および流体管の連結方法が得られる。 According to the present invention, since a separate joint member is not required, the structure is simple, and the tight contact between the inner peripheral surface of the enlarged diameter portion and the outer peripheral surface of the reduced diameter portion realizes high water resistance and durability. It is possible to obtain a fluid pipe connection structure and a fluid pipe connection method.

本発明の一実施形態に係る流体管の連結方法の工程の一部を示す図である。FIG. 4 is a diagram showing a part of steps of a method for connecting fluid pipes according to an embodiment of the present invention; 本発明の一実施形態に係る流体管の連結構造を示す断面図である。1 is a cross-sectional view showing a connection structure for fluid tubes according to an embodiment of the present invention; FIG. 土中の流体管に作用する主たる外力について説明するための図である。FIG. 4 is a diagram for explaining main external forces acting on a fluid pipe in soil; 流体管の曲げの分類について説明するための図である。FIG. 4 is a diagram for explaining classification of bending of a fluid pipe; 流体管の曲げの分類について説明するための図である。FIG. 4 is a diagram for explaining classification of bending of a fluid pipe; 流体管の曲げの分類について説明するための図である。FIG. 4 is a diagram for explaining classification of bending of a fluid pipe;

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

図1は、本発明の一実施形態に係る流体管の連結方法の工程の一部を示す図である。図1(A)に示されるように、流体管1(第1の流体管)と流体管2(第2の流体管)とが連結される。流体管1および流体管2は、いずれも中間部分において内径d、外径Dであり、液体、気体など各種流体を流通させることが可能な鋼管である。流体管1は、プレス加工などによって、軸方向端部に形成された長さLの拡径部11において内径がdからdまで拡大する逆テーパー形状に成形されている。一方、流体管2は、プレス加工などによって、軸方向端部に形成された長さLの縮径部21において外径がDからDまで縮小するテーパー形状に成形されている。流体管1の拡径部11には、後述する非貫通ねじ3を挿通させて、非貫通ねじ3の流体管1に対する位置決め及び縮管部21への貫入の際のガイドに供される貫通孔31が予め形成されていてもよい。 FIG. 1 is a diagram showing part of the steps of a method for connecting fluid pipes according to an embodiment of the present invention. As shown in FIG. 1A, a fluid tube 1 (first fluid tube) and a fluid tube 2 (second fluid tube) are connected. Fluid pipe 1 and fluid pipe 2 are both steel pipes having an inner diameter d and an outer diameter D at their intermediate portions and capable of circulating various fluids such as liquid and gas. The fluid tube 1 is formed into a reverse tapered shape by press working or the like so that the inner diameter expands from d to d1 at an enlarged diameter portion 11 having a length L1 formed at the axial end. On the other hand, the fluid tube 2 is formed into a tapered shape by press working or the like so that the outer diameter is reduced from D to D1 at the reduced diameter portion 21 of length L2 formed at the end in the axial direction. A non-penetrating screw 3, which will be described later, is inserted through the expanded diameter portion 11 of the fluid pipe 1, and the through hole serves as a guide for positioning the non-penetrating screw 3 with respect to the fluid pipe 1 and for penetrating the contracted pipe portion 21. 31 may be preformed.

図1(B)に示されるように、流体管2の縮径部21を流体管1の拡径部11の中に挿入する。このとき、拡径部11の内周面12、または縮径部21の外周面22のいずれか、または両方に、止水材4を塗布してもよい。止水材4は、例えば水膨張性を有するエラストマーであり、例えば天然ゴム、またはクロロプレンゴムに、澱粉系、セルロース系、ポリアクリル酸塩系、ポリビニルアルコール系などの高分子物質を配合したものである。この工程で止水材4を塗布することによって、連結構造の完成後は拡径部11の内周面12と縮径部21の外周面22との間に止水材4の薄い層が介在し、流体管1と流体管2との間の止水性をさらに向上させることができる。 As shown in FIG. 1B, the reduced diameter portion 21 of the fluid tube 2 is inserted into the enlarged diameter portion 11 of the fluid tube 1 . At this time, the water stop material 4 may be applied to either or both of the inner peripheral surface 12 of the enlarged diameter portion 11 and the outer peripheral surface 22 of the reduced diameter portion 21 . The water stop material 4 is, for example, an elastomer having water-swelling properties, and is made by blending a macromolecular substance such as starch, cellulose, polyacrylate, or polyvinyl alcohol into natural rubber or chloroprene rubber. be. By applying the water-stopping material 4 in this step, a thin layer of the water-stopping material 4 is interposed between the inner peripheral surface 12 of the enlarged diameter portion 11 and the outer peripheral surface 22 of the reduced diameter portion 21 after the completion of the connection structure. As a result, the water cutoff between the fluid pipe 1 and the fluid pipe 2 can be further improved.

図1(C)に示されるように、流体管1および流体管2のいずれか、または両方を軸圧縮方向に移動させることによって、縮径部21の外周面22を拡径部11の内周面12に密着させる。ここで、拡径部11の内周面12と縮径部21の外周面22とが密着した後に、流体管1および流体管2にさらに軸方向の圧縮力を加えると、密着性がさらに向上する。上記のような密着を可能にするために、拡径部11における内周面12の縦断面勾配(d-d)/Lと、縮径部21における外周面22の縦断面勾配(D-D)/Lとはほぼ等しくなるように設計されている。なお、図示された例では縮径後の流体管2の外径Dが流体管1の内径dに等しく、拡径後の流体管1の内径dが流体管2の外径Dに等しくなっているが、必ずしもそうでなくてよく、D<dまたはd>Dであって拡径部11または縮径部21の一方が他方を越えて延出する場合、およびD>dまたはd<Dであって拡径部11と縮径部21との間に重なり合わない部分がある場合も許容される。 As shown in FIG. 1(C), by moving either or both of the fluid tube 1 and the fluid tube 2 in the axial compression direction, the outer peripheral surface 22 of the reduced diameter portion 21 is moved to the inner peripheral surface of the enlarged diameter portion 11 . It is brought into close contact with the surface 12 . Here, after the inner peripheral surface 12 of the enlarged diameter portion 11 and the outer peripheral surface 22 of the reduced diameter portion 21 are brought into close contact with each other, if an axial compressive force is further applied to the fluid pipes 1 and 2, the adhesion is further improved. do. In order to enable close contact as described above, the vertical cross-sectional gradient (d 1 - d) / L 1 of the inner peripheral surface 12 at the enlarged diameter portion 11 and the vertical cross-sectional gradient (D −D 1 )/L 2 are designed to be approximately equal. In the illustrated example, the outer diameter D1 of the fluid pipe 2 after diameter reduction is equal to the inner diameter d of the fluid pipe 1 , and the inner diameter d1 of the fluid pipe 1 after diameter expansion is equal to the outer diameter D of the fluid pipe 2. but not necessarily, if D 1 <d or d 1 >D and one of the enlarged diameter portion 11 or the reduced diameter portion 21 extends beyond the other, and D 1 >d Alternatively, a case where d 1 <D and there is a non-overlapping portion between the enlarged diameter portion 11 and the reduced diameter portion 21 is also allowed.

図1(A)から図1(C)に示された工程によって流体管2の縮径部21の外周面22が流体管1の拡径部11の内周面12に密着した後に、図2の断面図に示すように、拡径部11の外側から縮径部21まで非貫通ねじ3を貫入させることによって、流体管1と流体管2との間を固定する。非貫通ねじ3は、拡径部11を外側から貫通する一方で、縮径部21には途中まで貫入するが貫通はせず、非貫通ねじの先端部(ねじ頭とは反対側の端部)は流体管21の管内部には進入しない態様となっていて、流体管21の気密性に影響を与えないようになっている。非貫通ねじ3は、例えば金属用のスレッドローリングねじである。この場合、縮径部21側にねじ孔がなくても、非貫通ねじ3を貫入させることができる。拡径部11側に貫通孔31を形成しないことも可能であるが、前述のように縮径部21側に非貫通ねじ3を貫入させるときのガイドにもなるため、貫通孔31を形成する方が作業は容易になる。この場合、貫通孔31はねじ加工されていなくてもよい。また、非貫通ねじ3を貫入させるために、縮径部21側にねじ加工されていない非貫通孔を形成してもよい。ただし、拡径部11と縮径部21との位置関係は縮径部21を拡径部11の中に挿入する工程が終わるまで確定しないため、縮径部21側の非貫通孔は拡径部11の内周面12を縮径部21の外周面22に密着させる工程の後に形成することが望ましい。 After the outer peripheral surface 22 of the diameter-reduced portion 21 of the fluid tube 2 is brought into close contact with the inner peripheral surface 12 of the enlarged-diameter portion 11 of the fluid tube 1 by the steps shown in FIGS. As shown in the cross-sectional view of FIG. 2, the fluid tube 1 and the fluid tube 2 are fixed by penetrating the non-through screw 3 from the outside of the enlarged diameter portion 11 to the reduced diameter portion 21 . The non-penetrating screw 3 penetrates the enlarged diameter portion 11 from the outside, while penetrating partway through the reduced diameter portion 21 but not penetrating it. ) does not enter into the inside of the fluid tube 21 so as not to affect the airtightness of the fluid tube 21 . The non-through screw 3 is, for example, a thread rolling screw for metal. In this case, the non-through screw 3 can be penetrated even if there is no screw hole on the reduced diameter portion 21 side. Although it is possible not to form the through-hole 31 on the enlarged diameter portion 11 side, the through-hole 31 is formed on the reduced diameter portion 21 side because it also serves as a guide for inserting the non-through screw 3 into the reduced diameter portion 21 side as described above. It will make your work easier. In this case, the through hole 31 may not be threaded. Further, a non-through hole, which is not threaded, may be formed on the reduced diameter portion 21 side in order to insert the non-through screw 3 . However, since the positional relationship between the diameter-enlarged portion 11 and the diameter-reduced portion 21 is not determined until the step of inserting the diameter-reduced portion 21 into the diameter-reduced portion 11 is completed, the non-through hole on the diameter-reduced portion 21 side is It is desirable to form it after the step of bringing the inner peripheral surface 12 of the portion 11 into close contact with the outer peripheral surface 22 of the reduced diameter portion 21 .

なお、非貫通ねじ3としてスレッドローリングねじ以外のねじを用いることも可能である。この場合、拡径部11側の貫通孔31はねじ加工され、縮径部21側にも非貫通ねじ3を貫入させるためのねじ加工された非貫通孔が形成される。縮径部21側の非貫通孔については拡径部11の内周面12を縮径部21の外周面22に密着させる工程の後に形成することが望ましい点はスレッドローリングねじの例と同様である。本実施形態では拡径部11を外側から貫通して縮径部21に途中まで貫入する非貫通の係止手段として非貫通ねじ3を用いているが、ピンなどの他の非貫通の係止手段を用いることも可能である。 It is also possible to use a screw other than a thread rolling screw as the non-penetrating screw 3 . In this case, the through hole 31 on the enlarged diameter portion 11 side is threaded, and a threaded non-through hole for inserting the non-through screw 3 is also formed on the reduced diameter portion 21 side. As in the example of the thread rolling screw, it is desirable that the non-through hole on the side of the reduced diameter portion 21 is formed after the process of bringing the inner peripheral surface 12 of the enlarged diameter portion 11 into close contact with the outer peripheral surface 22 of the reduced diameter portion 21. be. In this embodiment, the non-penetrating screw 3 is used as a non-penetrating locking means that penetrates the enlarged diameter portion 11 from the outside and partially penetrates the diameter reducing portion 21. It is also possible to use means.

以上のような工程によって構成される本実施形態に係る流体管の連結構造は、流体管1および流体管2に形成された拡径部11および縮径部21がそれぞれ継手として機能するため、別途の継手部材を必要とせず、構造が簡単である。また、拡径部11と縮径部21とが軸圧縮方向への挿入によって密着するため、溶接は必要とされない。上述したように拡径部11および縮径部21の縦断面勾配が適切に設計されていれば、拡径部11の内周面12と縮径部21の外周面22との間の密着によって高い止水性が得られる。止水性は、止水材4を塗布することによってさらに向上させることもできるが、上記の通り止水材4のみに依存して止水性を得ているものではないため、たとえ止水材4が経年変化しても止水性が維持され、高い耐久性が実現される。流体管1と流体管2とは、縮径部21が拡径部11に密着した状態で非貫通ねじ3を用いて固定されるが、非貫通ねじ3は縮径部21の内側まで貫通するものではないため、ねじ孔を介して流体が漏出することはない。 In the fluid tube connection structure according to the present embodiment, which is configured by the steps described above, the diameter-enlarged portion 11 and the diameter-reduced portion 21 formed in the fluid tubes 1 and 2 function as joints, respectively. The structure is simple because no joint member is required. Further, since the enlarged diameter portion 11 and the reduced diameter portion 21 are brought into close contact by being inserted in the axial compression direction, welding is not required. As described above, if the longitudinal cross-sectional gradients of the enlarged diameter portion 11 and the reduced diameter portion 21 are appropriately designed, the tight contact between the inner peripheral surface 12 of the enlarged diameter portion 11 and the outer peripheral surface 22 of the reduced diameter portion 21 causes High water stoppage can be obtained. Water stoppage can be further improved by applying the water stoppage material 4, but as described above, water stoppage is not achieved by relying only on the water stoppage material 4, so even if the water stoppage material 4 is It maintains its water-tightness even after aging and achieves high durability. The fluid pipe 1 and the fluid pipe 2 are fixed with the reduced diameter portion 21 in close contact with the enlarged diameter portion 11 using the non-penetrating screw 3 , but the non-penetrating screw 3 penetrates to the inside of the reduced diameter portion 21 . fluid cannot leak through the threaded hole.

上記のような流体管の連結構造は、拡径部11と縮径部21とが重なった部分において流体管の板厚が実質的に倍になっているため、流体管1,2の周方向および径方向について高い耐応力性を示す。土中の流体管に作用する主たる外力は、図3に示すように土圧および上載荷重である。流体管1,2の軸方向については、拡径部11の内周面12と縮径部21の外周面22との間に作用する摩擦力および非貫通ねじ3の支圧力によって耐応力性を得ることになるが、流体管の場合は周方向に作用する応力に比べて軸方向に作用する応力が小さいため、例えば図4に示す拡径部11と縮径部21との重なり長さLが流体管1,2の外径Dの0.7倍(0.7D)程度である場合にも実用に足る軸方向の耐応力性を得ることができる。 In the connecting structure of the fluid pipes as described above, since the plate thickness of the fluid pipes is substantially doubled at the portion where the diameter-enlarged portion 11 and the diameter-reduced portion 21 overlap, the fluid pipes 1 and 2 are and high stress resistance in the radial direction. The main external forces acting on fluid pipes in the soil are earth pressure and surcharge loads, as shown in FIG. In the axial direction of the fluid pipes 1 and 2, the stress resistance is enhanced by the frictional force acting between the inner peripheral surface 12 of the enlarged diameter portion 11 and the outer peripheral surface 22 of the reduced diameter portion 21 and the bearing force of the non-through screw 3. However, in the case of a fluid pipe, the stress acting in the axial direction is smaller than the stress acting in the circumferential direction. Even when 3 is about 0.7 times (0.7D) the outer diameter D of the fluid pipes 1 and 2, it is possible to obtain practically sufficient axial stress resistance.

ここで、図4A、図4B、および図4C(A-A線、B-B線、およびC-C線は、各図の間での断面の対応関係を示す)には、流体管の軸に対して鉛直方向に発生する曲げB、水平方向に発生する曲げB、および流体管に対する板曲げBが示されている。偏土水圧や地震荷重などから発生する曲げB,Bにより、流体管の軸方向に大きな応力が発生することが想定される場合には、図2に示した重なり長さLを流体管1,2の外径Dの2倍(2D)程度まで延伸し、これに応じて拡径部11および縮径部21の長さL,L(図1(A)参照)を決定してもよい。 4A, 4B, and 4C (where lines AA, BB, and CC indicate cross-sectional correspondences among the figures) illustrate the axis of the fluid tube. A bend B A occurring vertically to the , a bend B B occurring horizontally to the fluid tube, and a plate bend B C to the fluid tube are shown. When it is assumed that a large stress is generated in the axial direction of the fluid pipe due to bending B A and B B caused by unbalanced soil water pressure, seismic load, etc., the overlapping length L 3 shown in FIG. The pipes 1 and 2 are stretched to about twice the outer diameter D (2D), and the lengths L 1 and L 2 (see FIG. 1A) of the enlarged diameter portion 11 and the reduced diameter portion 21 are determined accordingly. You may

なお、上記の例では、拡径部が形成される第1の流体管と縮径部が形成される第2の流体管との間の連結方法、および連結構造について説明したが、3本以上の流体管を連結することも可能である。この場合、軸方向の一方の端部に拡径部が形成され、他方の端部に縮径部が形成された流体管、または、軸方向の両方の端部に拡径部または縮径部のいずれかが形成された流体管が用いられる。 In the above example, the connection method and connection structure between the first fluid pipe having the enlarged diameter portion and the second fluid pipe having the reduced diameter portion were described. of fluid lines can be connected. In this case, a fluid pipe having an enlarged diameter portion formed at one axial end and a reduced diameter portion formed at the other end, or an enlarged diameter portion or a reduced diameter portion formed at both axial ends. is used.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

1…流体管、11…拡径部、12…内周面、2…流体管、21…縮径部、22…外周面、3…非貫通ねじ、31…ねじ孔、4…止水材。 DESCRIPTION OF SYMBOLS 1... Fluid pipe, 11... Expanded diameter part, 12... Inner peripheral surface, 2... Fluid pipe, 21... Reduced diameter part, 22... Outer peripheral surface, 3... Non-penetrating screw, 31... Screw hole, 4... Water stop material.

Claims (6)

軸方向端部に逆テーパー形状の拡径部が形成される第1の管と、
軸方向端部に前記拡径部の中に挿入されるテーパー形状の縮径部が形成される第2の管と、
前記拡径部を外側から貫通し、且つ前記縮径部に途中まで貫入して非貫通の係止手段と
を含み、
前記拡径部の内周面は前記縮径部の外周面に密着する、流体管の連結構造。
a first steel pipe having an enlarged diameter portion with a reverse tapered shape formed at an axial end thereof;
a second steel pipe formed with a tapered diameter- reduced portion inserted into the enlarged diameter portion at its axial end;
locking means that penetrates the enlarged diameter portion from the outside and partially penetrates the reduced diameter portion and does not penetrate,
A connection structure for fluid pipes, wherein the inner peripheral surface of the enlarged diameter portion is in close contact with the outer peripheral surface of the reduced diameter portion.
前記拡径部の内周面と前記縮径部の外周面との間に止水材が介在する、請求項1に記載の流体管の連結構造。 2. The connecting structure of fluid pipes according to claim 1, wherein a water stop material is interposed between the inner peripheral surface of the enlarged diameter portion and the outer peripheral surface of the reduced diameter portion. 前記非貫通の係止手段は、スレッドローリングねじである、請求項1または請求項2に記載の流体管の連結構造。 3. The fluid tube connection structure according to claim 1, wherein said non-penetrating locking means is a thread rolling screw. 第1の管の軸方向端部に形成される逆テーパー形状の拡径部の中に、第2の管の軸方向端部に形成されるテーパー形状の縮径部を挿入する工程と、
前記拡径部の内周面を前記縮径部の外周面に密着させる工程と、
前記拡径部を外側から貫通し、且つ前記縮径部に途中まで貫入して非貫通の係止手段を貫入させる工程と
を含む、流体管の連結方法。
a step of inserting the tapered reduced diameter portion formed at the axial end of the second steel pipe into the reverse tapered enlarged diameter portion formed at the axial end of the first steel pipe; ,
a step of bringing the inner peripheral surface of the enlarged diameter portion into close contact with the outer peripheral surface of the reduced diameter portion;
and a step of penetrating the enlarged diameter portion from the outside and partially penetrating the reduced diameter portion to insert a non-penetrating locking means.
前記拡径部の内周面または前記縮径部の外周面の少なくともいずれかに止水材を塗布する工程をさらに含む、請求項4に記載の流体管の連結方法。 5. The method of connecting fluid pipes according to claim 4, further comprising the step of applying a waterproofing material to at least one of the inner peripheral surface of the enlarged diameter portion and the outer peripheral surface of the reduced diameter portion. 前記拡径部に前記非貫通の係止手段を挿通するための貫通孔を形成する工程と、
前記拡径部の内周面を前記縮径部の外周面に密着させる工程の後に、前記縮径部に前記非貫通の係止手段を貫入させるための非貫通孔を形成する工程と
をさらに含む、請求項4または請求項5に記載の流体管の連結方法。
forming a through hole for inserting the non-penetrating locking means in the enlarged diameter portion;
a step of forming a non-through hole for inserting the non-penetrating locking means in the reduced diameter portion after the step of bringing the inner peripheral surface of the enlarged diameter portion into close contact with the outer peripheral surface of the reduced diameter portion; 6. A method of connecting fluid tubes according to claim 4 or claim 5, comprising:
JP2018180064A 2018-09-26 2018-09-26 Fluid pipe connection structure and fluid pipe connection method Active JP7135664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018180064A JP7135664B2 (en) 2018-09-26 2018-09-26 Fluid pipe connection structure and fluid pipe connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180064A JP7135664B2 (en) 2018-09-26 2018-09-26 Fluid pipe connection structure and fluid pipe connection method

Publications (2)

Publication Number Publication Date
JP2020051485A JP2020051485A (en) 2020-04-02
JP7135664B2 true JP7135664B2 (en) 2022-09-13

Family

ID=69996434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180064A Active JP7135664B2 (en) 2018-09-26 2018-09-26 Fluid pipe connection structure and fluid pipe connection method

Country Status (1)

Country Link
JP (1) JP7135664B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015083846A (en) 2013-10-25 2015-04-30 日本管洗工業株式会社 Connection structure of pressure piping
KR101557082B1 (en) 2015-02-23 2015-10-02 주식회사 용전 Band Clamp and Structure for Connecting Plastic Pipes Using the Same
US20160186904A1 (en) 2013-05-08 2016-06-30 Labomatic Instruments Ag Connecting system and method for connecting fluid-conducting components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160186904A1 (en) 2013-05-08 2016-06-30 Labomatic Instruments Ag Connecting system and method for connecting fluid-conducting components
JP2015083846A (en) 2013-10-25 2015-04-30 日本管洗工業株式会社 Connection structure of pressure piping
KR101557082B1 (en) 2015-02-23 2015-10-02 주식회사 용전 Band Clamp and Structure for Connecting Plastic Pipes Using the Same

Also Published As

Publication number Publication date
JP2020051485A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP5027981B2 (en) Internal swaging fitting
UA122858C2 (en) Steel-pipe threaded joint
BRPI0707924A2 (en) gas-tight tubular fitting
JP7135664B2 (en) Fluid pipe connection structure and fluid pipe connection method
CN105431665A (en) 4-round thread form
KR20200119025A (en) Apparatus for coupling pipes
AU2019283403B2 (en) Fitting for connection to at least one pipe
RU2592083C2 (en) Extensible anchor bolt
JP2015074924A (en) Steel pipe column structure
US10975990B2 (en) Apparatus and method for strengthening welded-lap joints for steel pipeline
KR20110005531U (en) Coupling for pipe arrangement
CN211599826U (en) End connector suitable for concrete pipeline repair
CN104280462A (en) Ultrasonic detection device
CN113389962A (en) High-pressure sealing joint for end part of flexible pipeline
JP4773745B2 (en) Seismic joint device for manhole
JP6776683B2 (en) Gap water stop structure, gap water stop method and member with tubular body
RU170082U1 (en) THREADED CONNECTION OF PLASTERS OF THE SYSTEM OF ELIMINATION OF LOSSES OF CASING
JP4593409B2 (en) Expandable flexible joint structure
RU2162184C1 (en) Method of pipe connection for transportation of corrosive liquids
CN216813267U (en) Pipeline connecting sleeve
JPH1163337A (en) Flexible expansion joint and manufacture thereof
RU2233399C1 (en) Pipe line
JP2018204645A (en) Pipe joint
JP2006348488A (en) Connection structure, shield tunnel, and shield tunnel construction method
JP2008045944A (en) Hydraulic pressure testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7135664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151