JP7133835B2 - ceramic products - Google Patents

ceramic products Download PDF

Info

Publication number
JP7133835B2
JP7133835B2 JP2018081373A JP2018081373A JP7133835B2 JP 7133835 B2 JP7133835 B2 JP 7133835B2 JP 2018081373 A JP2018081373 A JP 2018081373A JP 2018081373 A JP2018081373 A JP 2018081373A JP 7133835 B2 JP7133835 B2 JP 7133835B2
Authority
JP
Japan
Prior art keywords
self
mass
glazed layer
ceramic product
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018081373A
Other languages
Japanese (ja)
Other versions
JP2019187612A (en
Inventor
伊織 野崎
志津恵 阿部
Original Assignee
株式会社ミヤオカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤオカンパニーリミテド filed Critical 株式会社ミヤオカンパニーリミテド
Priority to JP2018081373A priority Critical patent/JP7133835B2/en
Publication of JP2019187612A publication Critical patent/JP2019187612A/en
Application granted granted Critical
Publication of JP7133835B2 publication Critical patent/JP7133835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、陶磁器製品に関する。 The present invention relates to ceramic products.

調理等の用途において、熱伝導性を備えた陶磁器製品が利用されている(例えば、特許文献1参照)。この種の陶磁器製品には、熱伝導性を確保するために、炭化ケイ素(SiC)等からなる熱伝導性物質が添加されている。炭化ケイ素は、耐熱性、耐久性等に優れるため、この種の熱伝導性物質として広く用いられている。 2. Description of the Related Art Thermally conductive ceramic products are used in applications such as cooking (see, for example, Patent Document 1). A thermally conductive material such as silicon carbide (SiC) is added to this type of ceramic product in order to ensure thermal conductivity. Silicon carbide is widely used as this type of thermally conductive material because of its excellent heat resistance and durability.

ところで、陶磁器製品の素地は多孔質であり、水を吸い易いため、素地のままでは調理等の用途で使用することができない。そのため、その素地を被覆する形で、通常、ガラス質からなる非透水性の釉薬層が形成されている。なお、釉薬層は、液状の釉薬が素地に付与され、その後、焼成されることにより形成される。 By the way, since the base material of ceramic products is porous and easily absorbs water, the base material cannot be used for purposes such as cooking. Therefore, a non-water-permeable glaze layer made of glass is usually formed to cover the substrate. The glaze layer is formed by applying a liquid glaze to the substrate and then firing the substrate.

特開2016-10435号公報JP 2016-10435 A

しかしながら、この種の陶磁器製品の素地に、釉薬層を形成するために直接、釉薬が付与されると、素地中の炭化ケイ素が釉薬と反応して多量のガス(CO)が発生してしまう。このように素地からガスが発生すると、そのガスによる泡が陶磁器製品の表面(釉薬層)に形成されてしまい、見栄えの悪化や、熱伝導性の低下等を引き起こす虞があった。 However, when a glaze is applied directly to the base of this type of ceramic product to form a glaze layer, silicon carbide in the base reacts with the glaze to generate a large amount of gas (CO 2 ). . When gas is generated from the substrate in this manner, bubbles are formed by the gas on the surface (glaze layer) of the ceramic product, and there is a risk of deterioration of the appearance and deterioration of thermal conductivity.

従来は、釉薬層が形成される前に、予め素地の表面に炭化ケイ素を含まない下地層(例えば、エンゴーベ層)を形成しておき、その下地層に重ねる形で、釉薬層が形成されていた。そのため、従来の陶磁器製品の製造工程は複雑であった。また、下地層の種類や厚み等によっては、下地層の断熱作用により、陶磁器製品の熱伝導率が低下する虞もあった。 Conventionally, before the glaze layer is formed, an underlayer (for example, an engobe layer) that does not contain silicon carbide is formed on the surface of the substrate in advance, and the glaze layer is formed over the underlayer. rice field. Therefore, the manufacturing process of conventional ceramic products is complicated. In addition, depending on the type and thickness of the underlayer, the thermal conductivity of the ceramic product may be lowered due to the heat insulating effect of the underlayer.

本発明の目的は、表面に自己施釉層を備える陶磁器製品を提供することである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a ceramic product with a self-glazing layer on its surface.

前記課題を解決するための手段は、以下の通りである。即ち、
<1> 素地と、前記素地の表面に直接、形成されるガラス質状の自己施釉層とを備え、前記素地は、SiOを34.0~45.0質量%、Alを28.0~35.0質量%、MgOを6.0~10.0質量%、RO(Rは、アルカリ金属)を1.0~2.3質量%、及びSiCを10.5~26.5質量%含む陶磁器製品。
Means for solving the above problems are as follows. Namely
<1> A substrate and a vitreous self-glazed layer formed directly on the surface of the substrate, the substrate containing 34.0 to 45.0% by mass of SiO 2 and 28% Al 2 O 3 .0 to 35.0% by weight, 6.0 to 10.0% by weight of MgO, 1.0 to 2.3% by weight of R 2 O (R is an alkali metal), and 10.5 to 26% by weight of SiC. Ceramic products containing .5% by mass.

<2> 本体部と、前記本体部の表面に直接、形成されるガラス質状の自己施釉層からなる非透水面と、前記本体部の露出した表面からなる透水面とを備え、前記本体部のうち、少なくとも、前記自己施釉層からなる前記非透水面が形成される部分は、SiOを34.0~45.0質量%、Alを28.0~35.0質量%、MgOを6.0~10.0質量%、RO(Rは、アルカリ金属)を1.0~2.3質量%、及びSiCを10.5~26.5質量%含む素地からなる陶磁器製品。 <2> A main body, a non-permeable surface composed of a vitreous self-glazed layer formed directly on the surface of the main body, and a water permeable surface composed of an exposed surface of the main body, wherein the main body is Of these, at least the portion where the non-water-permeable surface composed of the self-glazed layer is formed contains 34.0 to 45.0% by mass of SiO 2 , 28.0 to 35.0% by mass of Al 2 O 3 , Ceramics comprising a matrix containing 6.0 to 10.0% by mass of MgO, 1.0 to 2.3% by mass of R 2 O (R is an alkali metal), and 10.5 to 26.5% by mass of SiC product.

<3> 炭化ケイ素と、タルク、粘土・カオリン、長石及びアルミナを含むコージェライト原料とを有する陶磁器製品用組成物であって、前記陶磁器製品用組成物の全質量に対する前記炭化ケイ素の含有割合が8~27質量%、前記タルクの含有割合が20~26質量%、前記粘土・カオリンの含有割合が21~31質量%、前記長石の含有割合が11~17質量%、及び前記アルミナの含有割合が16~23質量%である陶磁器製品用組成物。 <3> A ceramic product composition comprising silicon carbide and a cordierite raw material containing talc, clay/kaolin, feldspar and alumina, wherein the silicon carbide content relative to the total mass of the ceramic product composition is 8 to 27% by mass, the talc content is 20 to 26% by mass, the clay/kaolin content is 21 to 31% by mass, the feldspar content is 11 to 17% by mass, and the alumina content is is 16 to 23% by mass for ceramic products.

<4> 前記<2>に記載の陶磁器製品用組成物が焼成されてなる素地と、前記素地の表面に直接、形成され、前記陶磁器製品用組成物の一部が焼成されてなるガラス質状の自己施釉層とを備える陶磁器製品。 <4> A substrate obtained by firing the composition for ceramic products according to <2> above, and a vitreous state formed directly on the surface of the substrate and obtained by firing a part of the composition for ceramic products. A ceramic article comprising a self-glazed layer of

本発明によれば、表面に自己施釉層を備える陶磁器製品を提供することができる。 According to the present invention, it is possible to provide a ceramic product having a self-glazed layer on its surface.

実施形態1に係る陶磁器製品の断面構成を模式的に表した説明図Explanatory drawing schematically showing the cross-sectional structure of the ceramic product according to Embodiment 1 実施形態2に係る陶磁器製品の断面構成を模式的に表した説明図Explanatory drawing schematically showing the cross-sectional structure of the ceramic product according to Embodiment 2 実施形態3に係る陶磁器製品の断面構成を模式的に表した説明図Explanatory drawing schematically showing the cross-sectional structure of the ceramic product according to Embodiment 3 実施例1のトレイにおける表面付近の断面のマイクロスコープ画像(倍率:20倍)を示す図FIG. 10 is a view showing a microscopic image (magnification: 20 times) of a cross section near the surface of the tray of Example 1. 実施例1のトレイにおける表面付近の断面のSEM画像(倍率:100倍)を示す図FIG. 10 is a diagram showing a SEM image (magnification: 100 times) of a cross section near the surface of the tray of Example 1; 実施例1のトレイにおける自己施釉層の表面のSEM画像を示す図FIG. 2 shows an SEM image of the surface of the self-glazed layer in the tray of Example 1. 比較対象である一般的な陶磁器の素地表面のSEM画像(倍率:100倍)を示す図A diagram showing an SEM image (magnification: 100 times) of the surface of a general ceramic base for comparison 自己施釉層の分析用の試験片を示す写真Photograph showing specimen for analysis of self-glazed layer 自己施釉層の分析用の試験片の断面写真(倍率:60倍)Cross-sectional photograph of a test piece for analysis of the self-glazed layer (magnification: 60 times) 試験片の内部の粉砕物のX線回折パターンを示す図Figure showing the X-ray diffraction pattern of the pulverized material inside the test piece 試験片の皮膜の粉砕物のX線回折パターンを示す図A diagram showing an X-ray diffraction pattern of a pulverized product of the film of the test piece 透水性を有する参考例の試験片の粉砕物のX線回折パターンを示す図A diagram showing an X-ray diffraction pattern of a pulverized product of a test piece of a reference example having water permeability 実施形態4に係る陶磁器製品の断面構成を模式的に表した説明図Explanatory drawing schematically showing the cross-sectional configuration of the ceramic product according to Embodiment 4

<実施形態1>
(陶磁器製品)
本発明の実施形態1に係る陶磁器製品1を、図1を参照しつつ説明する。図1は、実施形態1に係る陶磁器製品1の断面構成を模式的に表した説明図である。本実施形態の陶磁器製品1は、熱伝導性を備えた調理器具(加熱プレート)であり、電子レンジやオーブンの中で使用される。陶磁器製品1は、所定の厚みを有する板状部材である。陶磁器製品1は、板状をなした素地2と、その素地2の表面に直接、形成される自己施釉層3とを備えている。自己施釉層3は、素地2全体を覆うように形成されている。
<Embodiment 1>
(Ceramic products)
A ceramic product 1 according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 is an explanatory view schematically showing a cross-sectional structure of a ceramic product 1 according to Embodiment 1. FIG. The ceramic product 1 of this embodiment is a cooking utensil (heating plate) with thermal conductivity, and is used in a microwave oven or an oven. A ceramic product 1 is a plate-like member having a predetermined thickness. A ceramic product 1 comprises a plate-shaped base 2 and a self-glazed layer 3 directly formed on the surface of the base 2. - 特許庁The self-glazed layer 3 is formed so as to cover the whole body 2 .

素地2は、炭化ケイ素(SiC)と、コージェライトとを含む焼結体からなる。なお、本発明の目的を損なわない限り、炭化ケイ素と共に、他の熱伝導性物質(例えば、土状黒鉛等の非晶質炭素、鱗片状黒鉛等の結晶質炭素、窒化ホウ素等)が使用されてもよい。 The base 2 is made of a sintered body containing silicon carbide (SiC) and cordierite. In addition to silicon carbide, other thermally conductive substances (for example, amorphous carbon such as earthy graphite, crystalline carbon such as flake graphite, boron nitride, etc.) may be used together with silicon carbide as long as the object of the present invention is not impaired. may

コージェライトは、MgO・Al・SiO系の焼結体であり、2MgO・2Al・5SiOの結晶を含んでいる。コージェライトは、タルク、粘土・カオリン、長石及びアルミナを含むコージェライト原料を焼成することで得られる。コージェライト原料は、タルク、粘土・カオリン、長石及びアルミナを、所定のミルで粉砕・混合して得られる粉末状の組成物からなる。 Cordierite is a sintered body of MgO.Al 2 O 3 .SiO 2 system and contains crystals of 2MgO.2Al 2 O 3 .5SiO 2 . Cordierite is obtained by firing cordierite raw materials containing talc, clay/kaolin, feldspar and alumina. The cordierite raw material is a powdery composition obtained by pulverizing and mixing talc, clay/kaolin, feldspar, and alumina in a predetermined mill.

素地2は、例えば、炭化ケイ素と、コージェライト原料とを含む、後述する陶磁器製品用組成物を焼成することで得られる。 The base material 2 is obtained, for example, by firing a later-described composition for ceramic products containing silicon carbide and a cordierite raw material.

焼成後の素地2の組成(質量%)は、例えば、SiO:34.0~45.0質量%、Al:28.0~35.0質量%、MgO:6.0~10.0質量%、RO:1.0~2.3質量%、SiC:10.5~26.5質量%である。本明細書において、Rは、アルカリ金属(Li,Na,K等)を表す。焼成後の素地2に含まれる各成分の割合がこのような範囲であると、素地2の表面に直接、ガラス質状の自己施釉層3が形成される。なお、素地2に含まれる成分の割合がこのような範囲になるのであれば、後述する陶磁器製品用組成物以外の組成物を利用して、陶磁器製品1を製造してもよい。 The composition (% by mass) of the green body 2 after firing is, for example, SiO 2 : 34.0 to 45.0 mass %, Al 2 O 3 : 28.0 to 35.0 mass %, MgO: 6.0 to 10. .0% by mass, R 2 O: 1.0 to 2.3% by mass, and SiC: 10.5 to 26.5% by mass. In this specification, R represents an alkali metal (Li, Na, K, etc.). When the ratio of each component contained in the green body 2 after firing is within such a range, the vitreous self-glazed layer 3 is formed directly on the surface of the green body 2 . Note that the ceramic product 1 may be manufactured using a composition other than the ceramic product composition described later, as long as the ratio of the components contained in the base material 2 is within such a range.

自己施釉層3は、素地2の表面を覆うガラス質状の皮膜からなり、素地2よりもシリカ(SiO)を多く含む。自己施釉層3は、他の層(例えば、下地層)を介在させずに、素地2の表面に直接、形成される。自己施釉層3は、素地2と同様、例えば、陶磁器製品用組成物(後述)を焼成することで得られる。陶磁器製品用組成物のうち、空気(酸素)に触れる表面部分が焼成されると、その部分に含まれる炭化ケイ素が酸化されて二酸化ケイ素(SiO)が生成し、そのような二酸化ケイ素が、従来の釉薬層のようなガラス質状の皮膜の形成に寄与しているものと推測される。このように陶磁器製品1の自己施釉層3は、従来の釉薬を使用することなく、陶磁器製品用組成物自体が焼成により変化して形成される自己施釉型(セルフグレージングタイプ)の皮膜である。 The self-glazed layer 3 is composed of a vitreous film covering the surface of the substrate 2 and contains more silica (SiO 2 ) than the substrate 2 . The self-glazed layer 3 is formed directly on the surface of the green body 2 without any other layer (eg, underlayer) intervening. The self-glazed layer 3 is obtained, for example, by firing a composition for ceramic products (described later), similarly to the base material 2 . When the surface portion of the ceramic product composition that is in contact with air (oxygen) is fired, the silicon carbide contained in that portion is oxidized to form silicon dioxide (SiO 2 ). It is presumed that this contributes to the formation of a vitreous film like the conventional glaze layer. Thus, the self-glazing layer 3 of the ceramic product 1 is a self-glazing type film formed by changing the ceramic product composition itself by firing without using a conventional glaze.

自己施釉層3は、従来の釉薬層と同様、非透水性である。また、自己施釉層3は、他の層を介在させずに、素地2の表面に直接、形成されるため、熱伝導性に優れる。自己施釉層3の厚みは、本発明の目的を損なわない限り、特に制限はないが、例えば、50μm~150μmである。なお、自己施釉層3は、従来の釉薬層では形成できないような、厚みの薄いものにすることも可能である。後述するように、自己施釉層3中に含まれる炭化ケイ素の割合は、素地2よりも少ない。 The self-glazed layer 3 is, like conventional glaze layers, impermeable to water. Moreover, since the self-glazed layer 3 is formed directly on the surface of the substrate 2 without intervening other layers, it has excellent thermal conductivity. The thickness of the self-glazed layer 3 is not particularly limited as long as it does not impair the object of the present invention, but it is, for example, 50 μm to 150 μm. It should be noted that the self-glazed layer 3 can also be made thin, which cannot be formed with a conventional glaze layer. As will be described later, the proportion of silicon carbide contained in the self-glazed layer 3 is less than in the green body 2 .

このような陶磁器製品1は、素地2からなる本体部20と、その本体部20の表面に直接、形成されるガラス質状の自己施釉層3からなる非透水面30とを備えている。 Such a ceramic product 1 comprises a main body 20 made of the base material 2 and a water-impermeable surface 30 made of the vitreous self-glazed layer 3 formed directly on the surface of the main body 20 .

(陶磁器製品用組成物)
陶磁器製品用組成物は、自己施釉層3を有する陶磁器製品1を製造するために利用される組成物(素地土)であり、炭化ケイ素(SiC)と、コージェライト原料とを含む。陶磁器製品用組成物において、陶磁器製品用組成物の全質量に対する炭化ケイ素の含有割合が8~27質量%(好ましくは10~25質量%)であり、タルクの含有割合が20~26質量%(好ましくは21~25質量%)であり、粘土・カオリンの含有割合が21~31質量%(好ましくは23~29質量%)であり、長石の含有割合が11~17質量%(好ましくは12~16質量%)であり、アルミナの含有割合が16~23質量%(好ましくは17~22質量%)である。陶磁器製品用組成物の各成分が、このような範囲であると、表面に自己施釉層3を有する陶磁器製品1を形成することができる。
(Composition for ceramic products)
The ceramic product composition is a composition (bath soil) used to manufacture the ceramic product 1 having the self-glazed layer 3, and contains silicon carbide (SiC) and a cordierite raw material. In the ceramic product composition, the content of silicon carbide is 8 to 27% by mass (preferably 10 to 25% by mass) relative to the total mass of the composition for ceramics, and the content of talc is 20 to 26% by mass ( preferably 21 to 25% by mass), a clay/kaolin content of 21 to 31% by mass (preferably 23 to 29% by mass), and a feldspar content of 11 to 17% by mass (preferably 12 to 16% by mass), and the content of alumina is 16 to 23% by mass (preferably 17 to 22% by mass). When each component of the composition for ceramic products is in such a range, the ceramic product 1 having the self-glazed layer 3 on the surface can be formed.

(陶磁器製品の製造方法)
ここで、本実施形態の陶磁器製品(素地2の表面に直接、自己施釉層3が形成された陶磁器製品1)は、例えば、上記陶磁器製品用組成物(素地土)を用いて、公知の成形方法(例えば、鋳込み成形法、ローラマシン成形法、押し出し成形法、プレス成形法等)により成形したのち、その成形体を1200℃~1280℃で焼成することで得られる。なお、上記陶磁器製品用組成物のスラリーを作製する際、水と共に、ケイ酸ナトリウムやポリカルボン酸系等の分散剤等が、適宜、添加・混合されてもよい。
(Method for manufacturing ceramic products)
Here, the ceramic product of the present embodiment (the ceramic product 1 in which the self-glazed layer 3 is formed directly on the surface of the base 2) is produced by, for example, using the above-described composition for ceramic products (base soil), and a known molding After molding by a method (for example, cast molding method, roller machine molding method, extrusion molding method, press molding method, etc.), the molded product is obtained by firing at 1200°C to 1280°C. When preparing the slurry of the composition for ceramic products, a dispersant such as sodium silicate or polycarboxylic acid may be appropriately added and mixed with water.

<実施形態2>
図2は、実施形態2に係る陶磁器製品1Aの断面構成を模式的に表した説明図である。本実施形態の陶磁器製品1Aは、実施形態1の陶磁器製品1の片面の自己施釉層3を、研磨装置(グラインダー、サンダー等)を利用して研磨して、素地2の表面4を露出させたものである。素地2は、多孔質状であり、ある程度の吸水性(透水性)を備えている。そのため、本実施形態の陶磁器製品1Aは、一方の面側に、非透水性の自己施釉層3が配され、他方の面側に、透水性の素地2の表面4(以下、透水面4)が配された構成となっている。実施形態1の陶磁器製品1が備える非透水性は、いわゆる焼締まりによって得られるものではないため、本実施形態のように、自己施釉層3を除去すれば、透水性(吸水性)の素地2が現れる。なお、本実施形態の場合、素地2が陶磁器製品1Aの本体部20Aを構成し、その表面に、自己施釉層3からなる非透水面30Aが形成されている。また、上記のように、自己施釉層3を除去して露出した素地2の表面4が、透水面40となる。
<Embodiment 2>
FIG. 2 is an explanatory view schematically showing the cross-sectional structure of the ceramic product 1A according to Embodiment 2. As shown in FIG. In the ceramic product 1A of the present embodiment, the self-glazed layer 3 on one side of the ceramic product 1 of Embodiment 1 is polished using a polishing device (grinder, sander, etc.) to expose the surface 4 of the base 2. It is. The substrate 2 is porous and has a certain degree of water absorption (permeability). Therefore, the ceramic product 1A of this embodiment has a non-water-permeable self-glazed layer 3 on one side, and a surface 4 (hereinafter, water-permeable surface 4) of the water-permeable base 2 on the other side. is arranged. Since the impermeability of the ceramic product 1 of Embodiment 1 is not obtained by so-called quenching, if the self-glazed layer 3 is removed as in this embodiment, the water-permeable (water-absorbing) base material 2 can be obtained. appears. In the case of this embodiment, the body 2 constitutes the main body portion 20A of the ceramic product 1A, and the water-impermeable surface 30A made of the self-glazed layer 3 is formed on the surface thereof. Further, as described above, the surface 4 of the green body 2 exposed by removing the self-glazed layer 3 becomes the permeable surface 40 .

このように、全表面に自己施釉層3が形成された陶磁器製品1から、一部の自己施釉層3を除去して、透水面4を形成したものを、陶磁器製品1Aとしてもよい。本実施形態の場合、例えば、調理方法に応じて、自己施釉層3が形成された面、又は透水面4を使い分けることができる。例えば、陶磁器製品1Aに吸水性が求められる場合、透水面4(図2の下側の面)を上側に向けた状態で、その上に調理対象物が載せられて、調理(加熱等)される。また、非透水性が必要な場合は、自己施釉層3が形成された面(図2の上側の面)を上側に向けた状態で、その上に調理対象物が載せられて調理(加熱等)される。 As described above, the ceramic product 1 having the self-glazed layer 3 formed on the entire surface may be partially removed to form the water-permeable surface 4, thereby forming the ceramic product 1A. In the case of this embodiment, for example, the surface on which the self-glazed layer 3 is formed or the permeable surface 4 can be used properly according to the cooking method. For example, when water absorption is required for the ceramic product 1A, the water permeable surface 4 (the lower surface in FIG. 2) is directed upward, and the object to be cooked is placed on it and cooked (heated, etc.). be. In addition, when water impermeability is required, the surface on which the self-glazed layer 3 is formed (the upper surface in FIG. ) is done.

<実施形態3>
図3は、実施形態3に係る陶磁器製品1Bの断面構成を模式的に表した説明図である。本実施形態の陶磁器製品1Bは、本体部20Bが2層構造となっている。本体部20Bの中心側にある芯材(素地)5は、上記陶磁器製品用組成物とは異なる他の組成物(以下、芯材用組成物)からなる。芯材用組成物は、上記陶磁器製品用組成物と同様、炭化ケイ素と、コージェライト原料とを含むものの、それらの各成分の配合割合が異なっている。芯材用組成物は、上記陶磁器製品用組成物とは異なり、焼成によって自己施釉層が形成されない組成物である。芯材用組成物の具体的な組成としては、例えば、後述する比較例1,2で使用されるものが挙げられる。芯材用組成物が焼成されて得られる芯材(素地)5は、自己施釉層は形成されないものの、形状安定性(寸法安定性)等に優れている。このような芯材(素地)5の表面に、上記陶磁器製品用組成物を含むスラリーが付与され、そのスラリーからなる層が焼成されると、上記実施形態1と同様の素地2B(外側芯層)と、その表面に直接、形成される自己施釉層3Bとが得られる。このように、自己施釉層を形成可能な陶磁器製品用組成物からなる層を、芯材(素地)5上に形成し、その層を焼成することで、陶磁器製品1Bの最表面に、非透水面30Bとなる自己施釉層3Bを形成してもよい。本実施形態の陶磁器製品1Bは、形状安定性に特に優れ、好ましい。
<Embodiment 3>
FIG. 3 is an explanatory view schematically showing the cross-sectional configuration of the ceramic product 1B according to Embodiment 3. As shown in FIG. The main body part 20B of the ceramic product 1B of this embodiment has a two-layer structure. The core material (base material) 5 on the center side of the main body 20B is made of a composition (hereinafter referred to as a core material composition) different from the above ceramic product composition. The core material composition contains silicon carbide and a cordierite raw material in the same manner as the ceramic product composition, but the blending ratio of each of these components is different. The composition for core material is a composition that does not form a self-glazed layer upon firing, unlike the composition for ceramic products. Specific compositions of the core composition include, for example, those used in Comparative Examples 1 and 2 described later. The core material (base material) 5 obtained by firing the core material composition does not form a self-glazed layer, but is excellent in shape stability (dimensional stability) and the like. A slurry containing the composition for a ceramic product is applied to the surface of such a core material (base) 5, and when the layer made of the slurry is fired, a base 2B (outer core layer) similar to that of the first embodiment is obtained. ) and a self-glazed layer 3B formed directly on its surface. In this way, a layer made of a composition for ceramic products capable of forming a self-glazed layer is formed on the core material (basis) 5, and the layer is fired, so that the outermost surface of the ceramic product 1B is impermeable to water. A self-glazed layer 3B may be formed to form the surface 30B. The ceramic product 1B of the present embodiment is particularly excellent in shape stability, which is preferable.

なお、芯材用組成物において、芯材用組成物の全質量に対する炭化ケイ素等の熱伝導性物質の含有割合が5~25質量%であり、タルクの含有割合が23~29質量%であり、粘土・カオリンの含有割合が28~39質量%であり、長石の含有割合が8~10質量%であり、アルミナの含有割合が17~21質量%である。 In the core composition, the content of the thermally conductive substance such as silicon carbide is 5 to 25% by mass and the content of talc is 23 to 29% by mass with respect to the total mass of the core composition. , the content of clay/kaolin is 28 to 39% by mass, the content of feldspar is 8 to 10% by mass, and the content of alumina is 17 to 21% by mass.

また、芯材(素地)5の組成(質量%)は、例えば、SiO:30~40質量%、Al:24~31質量%、MgO:5.0~8.0質量%、RO:0.9質量%以下、SiC:5~25質量%である。 The composition (% by mass) of the core material (base material) 5 is, for example, SiO 2 : 30 to 40% by mass, Al 2 O 3 : 24 to 31% by mass, MgO: 5.0 to 8.0% by mass, R 2 O: 0.9% by mass or less, SiC: 5 to 25% by mass.

<陶磁器製品の用途等>
陶磁器製品は、調理器具、調理容器、食器、セラミック炭等の様々な調理用途や、それ以外の用途に用いることができる。
<Uses of ceramic products>
Ceramic products can be used for various cooking purposes such as cooking utensils, cooking containers, tableware, ceramic charcoal, and other uses.

以下、実施例に基づいて本発明を更に詳細に説明する。なお、本発明はこれらの実施例により何ら限定されるものではない。 The present invention will be described in more detail below based on examples. In addition, the present invention is not limited at all by these examples.

1.実施例1~5のトレイ、及び比較例1~5のトレイの作製
直径200mmの円盤状のトレイ(陶磁器製品)を以下の方法により作製した。
(1)陶磁器製品用組成物の作製
表1に示される各配合量(質量部)のタルク、粘土・カオリン、長石、アルミナ、及び炭化ケイ素を、ミルで粉砕・混合することで、各実施例及び各比較例で使用する陶磁器製品用組成物(素地土)を作製した。
1. Preparation of Trays of Examples 1 to 5 and Comparative Examples 1 to 5 Disk-shaped trays (ceramic product) having a diameter of 200 mm were prepared by the following method.
(1) Preparation of a composition for ceramic products By pulverizing and mixing talc, clay/kaolin, feldspar, alumina, and silicon carbide in the respective amounts (parts by mass) shown in Table 1, each example And a ceramic product composition (base soil) used in each comparative example was prepared.

(2)成形体の作製
上記のようにして作製された各陶磁器用組成物に、それぞれ所定量の水及び分散剤を添加・混合して、各実施例及び各比較例のスラリー(含水率:約30質量%)を作製した。そして、それらのスラリーを、0.8MPaに加圧した状態で所定の石膏型内に流し込んで圧力鋳込み成形を行うことで、各実施例及び各比較例の円盤状の成形体を作製した。
(2) Production of Molded Body Predetermined amounts of water and a dispersing agent are added to and mixed with each ceramic composition produced as described above, and the slurry of each example and each comparative example (water content: about 30% by mass) was produced. Then, the slurries were pressurized to 0.8 MPa and poured into a predetermined gypsum mold to perform pressure casting, thereby producing disk-shaped compacts of each example and each comparative example.

Figure 0007133835000001
Figure 0007133835000001

(3)成形体の焼成
上記各成形体を、1250℃の温度条件で3時間焼成することで、実施例1~5のトレイ、及び比較例1~5のトレイを得た。
(3) Firing of Molded Body The molded bodies were fired at a temperature of 1250° C. for 3 hours to obtain trays of Examples 1-5 and Comparative Examples 1-5.

なお、焼成後のトレイの素地の組成(計算値、質量%)成を、表1に示した。表1中のRは、アルカリ金属(Li,Na,K等)を表す。 Table 1 shows the composition (calculated value, mass %) of the base material of the tray after firing. R in Table 1 represents an alkali metal (Li, Na, K, etc.).

2.確認試験
各実施例及び各比較例のトレイの表面状態を、目視で観察しつつ、各表面の吸水率(%)を測定した。結果は、表1に示した。なお、吸水率(%)の測定方法は、以下の通りである。
2. Confirmation Test The water absorption rate (%) of each surface was measured while visually observing the surface condition of the tray of each example and each comparative example. The results are shown in Table 1. The method for measuring water absorption (%) is as follows.

<吸水率の測定方法>
先ず、トレイの乾燥質量(W)を測定し、そして、そのトレイを3時間煮沸した。その後、煮沸後のトレイの質量(W)を測定し、以下に示される計算式より、吸水率(質量%)を求めた。
吸水率(質量%)=(W-W)/W×100
<Method for measuring water absorption>
First, the dry weight (W 1 ) of the tray was measured and then the tray was boiled for 3 hours. After that, the mass (W 2 ) of the tray after boiling was measured, and the water absorption (% by mass) was obtained from the formula shown below.
Water absorption (% by mass) = (W 2 - W 1 )/W 1 × 100

なお、表1において、自己施釉層の形成が認められ、かつ吸水率0.1%未満の場合を記号「〇」で表した。また、表1において、自己施釉層が形成されず、吸水率が0.1%以上の場合を記号「×(*1)」で表し、さらに、自己施釉層の形成は認められるものの、多数の泡が見られた場合を記号「×(*2)」で表した。 In addition, in Table 1, the case where the formation of a self-glazed layer was observed and the water absorption rate was less than 0.1% was indicated by the symbol "o". In Table 1, the case where the self-glazed layer is not formed and the water absorption rate is 0.1% or more is indicated by the symbol "x (*1)". The symbol "x (*2)" represents the case where bubbles were observed.

表1に示されるように、実施例1~5のトレイの表面には、何れも透水性の低い皮膜からなる自己施釉層が形成された。これに対し、長石の配合量が少ない(つまり、素地中のROが少ない)比較例1,2のトレイでは、自己施釉層の形成が不十分であり、吸水が見られた。また、比較例3のように、長石の配合量が多過ぎる(つまり、素地中のROが多過ぎる)と、トレイの表面に多数の泡が見られた。これは、長石が熔けて素地の表面に液層が形成され、その液層をCO(SiCの酸化により生成)が抜けていく際に、液層に泡が形成されたためと推測される。また、比較例4のように、炭化ケイ素(SiC)の配合量が多過ぎる(つまり、素地中のSiCが多過ぎる)と、トレイの表面に多数の泡が見られた。これは、炭化ケイ素の酸化により生成した二酸化炭素の量が多過ぎるためであると推測される。また、比較例5のように、炭化ケイ素(SiC)の配合量が少なすぎる(つまり、素地中のSiCが少な過ぎる)と、自己施釉層が形成されなかった。なお、比較例5では、自己施釉層が形成されていないものの、吸水率が低い値となっている理由は、焼締まりによるためと推測される。 As shown in Table 1, the surfaces of the trays of Examples 1 to 5 were all formed with a self-glazed layer consisting of a film with low water permeability. On the other hand, the trays of Comparative Examples 1 and 2, which contained less feldspar (that is, contained less R 2 O in the matrix), had insufficient formation of the self-glazed layer and exhibited water absorption. Also, as in Comparative Example 3, when the content of feldspar was too large (that is, the content of R 2 O in the matrix was too large), numerous bubbles were observed on the surface of the tray. It is presumed that this is because the feldspar melted to form a liquid layer on the surface of the substrate, and bubbles were formed in the liquid layer when CO 2 (produced by oxidation of SiC) passed through the liquid layer. Also, as in Comparative Example 4, when the amount of silicon carbide (SiC) compounded was too large (that is, the amount of SiC in the matrix was too large), numerous bubbles were observed on the surface of the tray. It is speculated that this is due to the excessive amount of carbon dioxide produced by the oxidation of silicon carbide. Also, as in Comparative Example 5, when the amount of silicon carbide (SiC) compounded was too small (that is, the amount of SiC in the matrix was too small), the self-glazed layer was not formed. In Comparative Example 5, although the self-glazed layer was not formed, the reason why the water absorption rate was low is presumed to be due to the tightness of the sintering.

3.実施例1のトレイにおける表面付近の断面のマイクロスコープ画像
マイクロスコープ(GOKOカメラ株式会社製、Electronic Macro Viewer EV-7)を利用して、実施例1のトレイの表面付近の断面を観察した。図4は、実施例1のトレイにおける表面付近の断面のマイクロスコープ画像(倍率:20倍)を示す図である。図4に示されるように、100μm以下の厚みであるものの、素地2の表面に皮膜状の自己施釉層31が形成されていることが確かめられた。自己施釉層31は、他の層を介することなく、素地21に対して直接、形成されていることが確かめられた。
3. Microscope Image of Cross Section Near Surface of Tray of Example 1 Using a microscope (Electronic Macro Viewer EV-7 manufactured by GOKO Camera Co., Ltd.), a cross section of the tray of Example 1 near the surface was observed. FIG. 4 is a diagram showing a microscopic image (magnification: 20 times) of a cross section near the surface of the tray of Example 1. FIG. As shown in FIG. 4, it was confirmed that a film-like self-glazed layer 31 was formed on the surface of the substrate 2, although the thickness was less than 100 μm. It was confirmed that the self-glazed layer 31 was formed directly on the substrate 21 without intervening other layers.

4.実施例1のトレイにおける素地の吸水率
実施例1のトレイの表面にある皮膜状の自己施釉層を、グラインダで除去し、素地を露出させた。そして、その素地について、吸水率を測定した。吸水率の測定は、上述したものと同様である。その結果、素地の吸水率は、9.20%であった。
4. Water Absorption Rate of Base in Tray of Example 1 The film-like self-glazed layer on the surface of the tray of Example 1 was removed with a grinder to expose the base. Then, the water absorption rate was measured for the substrate. Measurement of water absorption is similar to that described above. As a result, the water absorption rate of the substrate was 9.20%.

5.実施例1のトレイにおける表面付近のSEM画像
走査型電子顕微鏡(SEM、日本電子株式会社製、JSM-7001F)を利用して、実施例1のトレイにおける表面付近の断面を観察した。図5は、実施例1のトレイにおける表面付近の断面のSEM画像(倍率:100倍)を示す図である。図5に示されるように、内部(素地)には多数の気孔が見られるものの、表面付近では気孔が少ないことが確かめられた。図6は、実施例1のトレイにおける自己施釉層の表面のSEM画像(倍率:100倍)を示す図である。図6に示されるように、自己施釉層の表面には孔が少なく、かつ表面が平滑であることが確かめられた。なお、図7は、比較対象である一般的な陶磁器の素地表面のSEM画像(倍率:100倍)を示す図である。図7に示されるように、一般的な陶磁器の素地表面には、多数の孔が存在し、かつ表面が粗いことが確認される。
5. SEM image near the surface of the tray of Example 1 A cross section near the surface of the tray of Example 1 was observed using a scanning electron microscope (SEM, JSM-7001F manufactured by JEOL Ltd.). FIG. 5 is a SEM image (magnification: 100 times) of a cross section near the surface of the tray of Example 1. FIG. As shown in FIG. 5, it was confirmed that a large number of pores were found in the interior (base material), but few pores were found near the surface. 6 is a SEM image (magnification: 100 times) of the surface of the self-glazed layer in the tray of Example 1. FIG. As shown in FIG. 6, it was confirmed that the surface of the self-glazed layer had few pores and was smooth. FIG. 7 is a diagram showing an SEM image (magnification: 100 times) of the base surface of general ceramics for comparison. As shown in FIG. 7, it is confirmed that the base surface of general ceramics has a large number of pores and a rough surface.

6.自己施釉層の分析
上記のように、実施例1の自己施釉層は、厚みが100μm以下であり、それを単離することは技術的に困難である。そこで、以下に示される方法で、約2/3が自己施釉層31である試験片Sを作製し、その試験片Sから皮膜(主に、自己施釉層31)を除去して残った物(主に、素地21)の結晶組成と、除去した皮膜の結晶組成を比較することにした。
6. Analysis of Self-Glazed Layer As described above, the self-glazed layer of Example 1 has a thickness of 100 μm or less and is technically difficult to isolate. Therefore, by the method shown below, a test piece S in which about 2/3 is the self-glazed layer 31 is prepared, and the film (mainly the self-glazed layer 31) is removed from the test piece S, and the remaining material ( Mainly, the crystal composition of the substrate 21) was compared with the crystal composition of the removed coating.

<試験片Sの作製>
先ず、実施例1のスラリーに水を加えて、含水率約60%に調製した。そして、そのスラリーを所定の型に掛けることで薄膜を作製し、その薄膜を1250℃の温度条件で、3時間加熱することで、上記試験片S(厚み:約0.3mm)を得た。なお、試験片Sの組成は、上記実施例1の組成に対応する。
<Production of test piece S>
First, water was added to the slurry of Example 1 to adjust the water content to about 60%. Then, the slurry was applied to a predetermined mold to prepare a thin film, and the thin film was heated at a temperature of 1250° C. for 3 hours to obtain the test piece S (thickness: about 0.3 mm). The composition of the test piece S corresponds to the composition of Example 1 above.

図8は、自己施釉層31の分析用の試験片Sを示す写真であり、図9は、自己施釉層31の分析用の試験片Sの断面写真(倍率:60倍)である。図9に示されるように、試験片Sでは、内部にある層状の素地21を包むように自己施釉層31が形成されている。 FIG. 8 is a photograph showing a test piece S for analysis of the self-glazed layer 31, and FIG. 9 is a cross-sectional photograph of the test piece S for analysis of the self-glazed layer 31 (magnification: 60 times). As shown in FIG. 9, in the test piece S, the self-glazed layer 31 is formed so as to wrap the layered base 21 inside.

<試験片Sの内部、及び除去した皮膜の結晶組成の解析>
試験片Sから皮膜を除去して残った物(主に、素地21)の粉砕物について、粉末X線回折装置を利用して、X線回折パターンを測定した。結果は、図10に示した。また、試験片Sから除去した皮膜(主に、自己施釉層31)の粉砕物についても同様に、X線回折パターンを測定した。結果は、図11に示した。また、参考として、透水性を有する上記比較例1に対応する試験片の粉砕物についても同様に、X線回折パターンを測定した。結果は、図12に示した。
<Analysis of the inside of the test piece S and the crystal composition of the removed film>
The X-ray diffraction pattern of the pulverized material remaining after removing the film from the test piece S (mainly the substrate 21) was measured using a powder X-ray diffractometer. The results are shown in FIG. Also, the X-ray diffraction pattern of the pulverized film (mainly the self-glazed layer 31) removed from the test piece S was similarly measured. The results are shown in FIG. For reference, the X-ray diffraction pattern was similarly measured for the pulverized test piece corresponding to Comparative Example 1 having water permeability. The results are shown in FIG.

<X線回折パターンの結果について>
図10及び図11に示されるように、試験片Sの内部のX線回折パターンと、試験片Sの皮膜のX線回折パターンとは、基本的に同じピークが観測された。ただし、図11に示されるように、試験片Sの皮膜(主に、自己施釉層31)については、全体的にピーク強度が弱く、13~30°にかけてブロード(図11中のX)のパターンが見られ、さらに、22°付近のピークが僅かに高角度側(右側)にシフトする現象が見られた。22°付近のピークは、図11の矢印Iで示されるコージェライトのピークよりも、矢印IIで示されるシリカ(SiO)のピークに近いと言える。
<Results of X-ray diffraction pattern>
As shown in FIGS. 10 and 11, basically the same peaks were observed in the X-ray diffraction pattern inside the test piece S and the X-ray diffraction pattern of the film of the test piece S. However, as shown in FIG. 11, the film of test piece S (mainly, the self-glazed layer 31) has a weak peak intensity overall, and a broad pattern (X in FIG. 11) from 13 to 30°. was observed, and further, a phenomenon was observed in which the peak near 22° was slightly shifted to the high angle side (right side). It can be said that the peak around 22° is closer to the silica (SiO 2 ) peak indicated by arrow II than the cordierite peak indicated by arrow I in FIG. 11 .

以上より、試験片Sの皮膜(自己施釉層31)は、酸化の影響を受けるため、内部(素地21)よりもシリカが多く、コージェライトやSiCの割合が少ないと言える。このことから、純粋な自己施釉層31の場合、さらに、コージェライトやSiCの割合が少なくなると推測される。また、試験片Sの皮膜(自己施釉層31)では、ガラス状の物質が生成しており、その物質が、皮膜(自己施釉層31)の特性(平滑性、非透水性)に寄与していると推測される。 From the above, it can be said that the film (self-glazed layer 31) of the test piece S is affected by oxidation, so that it contains more silica than the inside (base 21) and contains less cordierite and SiC. From this, it can be inferred that the pure self-glazed layer 31 will have a smaller percentage of cordierite and SiC. In addition, in the film (self-glazed layer 31) of test piece S, a glass-like substance is produced, and this substance contributes to the properties (smoothness, water impermeability) of the film (self-glazed layer 31). presumed to be.

また、図10及び図12を比較すると、試験片Sの内部のX線回折パターンは、透水性を有する試験片の粉砕物のX線回折パターンと略同一のピークが得られることが確かめられた。 10 and 12, it was confirmed that the X-ray diffraction pattern of the interior of the test piece S has substantially the same peaks as the X-ray diffraction pattern of the ground material of the water-permeable test piece. .

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments explained by the above description and drawings, and the following embodiments are also included in the technical scope of the present invention.

図13は、実施形態4に係る陶磁器製品1Cの断面構成を模式的に表した説明図である。本実施形態の陶磁器製品1Cの本体部20Cは、焼成によって自己施釉層3Cが形成される陶磁器製品用組成物からなる素地2Cで構成される。そして、そのような素地2Cの表面の一部に、焼成によって自己施釉層が形成されない組成物(例えば、実施形態3で例示した芯材用組成物)からなる素地5Cからなる層が形成されている。素地5Cからなる層は、透水面40Cとなる。このような陶磁器製品1Cは、焼成によって自己施釉層3Cが形成される陶磁器製品用組成物(素地土)からなる成形体の表面の一部(例えば、板状の成形体の片面)に、焼成によって自己施釉層が形成されない前記組成物を含むスラリーを付与し、それを焼成することで得られる。このような陶磁器製品1Cは、表面の一部が素地5Cからなる透水面40Cとなり、自己施釉層3Cが形成される残りの表面が非透水面30Cとなる。 FIG. 13 is an explanatory view schematically showing the cross-sectional configuration of the ceramic product 1C according to Embodiment 4. As shown in FIG. A body portion 20C of the ceramic product 1C of the present embodiment is composed of a substrate 2C made of a ceramic product composition that forms a self-glazed layer 3C by firing. Then, on a part of the surface of the body 2C, a layer of the body 5C made of a composition that does not form a self-glazed layer by firing (for example, the core composition exemplified in Embodiment 3) is formed. there is The layer made of the substrate 5C becomes the permeable surface 40C. In such a ceramic product 1C, a part of the surface of a molded body (for example, one side of a plate-shaped molded body) made of a ceramic product composition (base soil) in which a self-glazed layer 3C is formed by firing is coated with a fired It is obtained by applying a slurry containing the composition that does not form a self-glazed layer by and firing it. A part of the surface of such a ceramic product 1C is a permeable surface 40C made of the matrix 5C, and the remaining surface on which the self-glazed layer 3C is formed is a non-permeable surface 30C.

1,1A,1B,1C…陶磁器製品、2,2B…素地、3,3B,3C…自己施釉層、20,20A,20B,20C…本体部、30,30A,30B,30C…非透水面、40,40C…透水面、S…試験片 1, 1A, 1B, 1C ... ceramic products, 2, 2B ... base material, 3, 3B, 3C ... self-glazed layer, 20, 20A, 20B, 20C ... main body, 30, 30A, 30B, 30C ... impermeable surface, 40, 40C... Permeable surface, S... Test piece

Claims (2)

素地と、前記素地の表面に直接、形成されるガラス質状の自己施釉層とを備え、
前記素地は、
SiOを34.0~45.0質量%、
Alを28.0~35.0質量%、
MgOを6.0~10.0質量%、
O(Rは、アルカリ金属)を1.0~2.3質量%、及び
SiCを10.5~26.5質量%含む熱伝導性を備えた陶磁器製品。
A body and a vitreous self-glazed layer formed directly on the surface of the body,
The base material is
34.0 to 45.0% by weight of SiO2 ,
28.0 to 35.0% by mass of Al 2 O 3 ,
6.0 to 10.0% by mass of MgO,
A thermally conductive ceramic product containing 1.0 to 2.3% by mass of R 2 O (R is an alkali metal) and 10.5 to 26.5% by mass of SiC.
本体部と、前記本体部の表面に直接、形成されるガラス質状の自己施釉層からなる非透水面と、前記本体部の露出した表面からなる透水面とを備え、
前記本体部のうち、少なくとも、前記自己施釉層からなる前記非透水面が形成される部分は、SiOを34.0~45.0質量%、Alを28.0~35.0質量%、MgOを6.0~10.0質量%、RO(Rは、アルカリ金属)を1.0~2.3質量%、及びSiCを10.5~26.5質量%含む素地からなる熱伝導性を備えた陶磁器製品。
A main body, a water-impermeable surface composed of a vitreous self-glazed layer directly formed on the surface of the main body, and a water-permeable surface composed of the exposed surface of the main body,
Of the main body, at least the portion where the water impermeable surface made of the self-glazed layer is formed contains 34.0 to 45.0% by mass of SiO 2 and 28.0 to 35.0% Al 2 O 3 . % by mass, 6.0 to 10.0% by mass of MgO, 1.0 to 2.3% by mass of R 2 O (R is an alkali metal), and 10.5 to 26.5% by mass of SiC A ceramic product with thermal conductivity consisting of.
JP2018081373A 2018-04-20 2018-04-20 ceramic products Active JP7133835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018081373A JP7133835B2 (en) 2018-04-20 2018-04-20 ceramic products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018081373A JP7133835B2 (en) 2018-04-20 2018-04-20 ceramic products

Publications (2)

Publication Number Publication Date
JP2019187612A JP2019187612A (en) 2019-10-31
JP7133835B2 true JP7133835B2 (en) 2022-09-09

Family

ID=68387931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018081373A Active JP7133835B2 (en) 2018-04-20 2018-04-20 ceramic products

Country Status (1)

Country Link
JP (1) JP7133835B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851299A (en) * 2021-03-02 2021-05-28 佛山市东鹏陶瓷有限公司 Low-cost glazing-free sanitary ceramic and preparation method thereof
CN113651606B (en) * 2021-09-17 2022-12-02 景德镇陶瓷大学 Health-care functional self-release glaze ceramic suitable for low-expansion ceramic cooker and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247730A (en) 1999-02-26 2000-09-12 Noritake Co Ltd Ceramic tube and its production
JP2016010435A (en) 2014-06-27 2016-01-21 株式会社ミヤオカンパニ−リミテド Ceramic container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580429U (en) * 1992-03-31 1993-11-02 久米彦 眞田 Ceramic heat-resistant plate for cookware

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247730A (en) 1999-02-26 2000-09-12 Noritake Co Ltd Ceramic tube and its production
JP2016010435A (en) 2014-06-27 2016-01-21 株式会社ミヤオカンパニ−リミテド Ceramic container

Also Published As

Publication number Publication date
JP2019187612A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
KR101506083B1 (en) Heat-insulating material
Smeacetto et al. Protective coatings for carbon bonded carbon fibre composites
JP7133835B2 (en) ceramic products
Capoglu A novel low-clay translucent whiteware based on anorthite
Honda et al. Fabrication and thermal conductivity of highly porous alumina body from platelets with yeast fungi as a pore forming agent
CN102884024B (en) For the crucible in photovoltaic field
JP6873427B2 (en) Manufacturing method of porous ceramics
JP6528879B2 (en) Large ceramic plate and method of manufacturing the same
TWI226880B (en) Alumina-mullite porous refractory material in a sheet form and their production
JP2008007400A (en) Molding die for glass hard disk substrate
JP5928694B2 (en) Alumina sintered body and manufacturing method thereof
Kim et al. Optimization for permeability and electrical resistance of porous alumina-based ceramics
JP5716910B2 (en) Ceramics and manufacturing method thereof
KR101315631B1 (en) Method for preparing heat-resistant ceramic by lithium solution penetration
Piva et al. Sintering and crystallization of plates prepared from coarse glass ceramic frits
Hasanuzzaman et al. Investigation of methods to prevent pin‐holing defect in tableware ceramic industry
KR101343808B1 (en) Composite for low temperature sinterable porcelain and manufacturing method of low temperature sinterable porcelain
Wang et al. Characterization of anorthite-based porcelain prepared by using wollastonite as a calcium source
KR100719899B1 (en) High density, high strength, no crack earthen bowl manufacture method
KR20150061130A (en) Composition used for manufacturing thermal-resistant ceramic ware with high density and high thermal resistance and method for manufacturing thermal-resistant ceramic ware using the same
Hanna et al. Oxidation resistance, compressive strength and thermal shock resistance of SiC ceramics prepared by two processing routes
JP2002173367A (en) Low temperature firing porcelain composition, manufacturing method thereof and printed wiring board using the same
JP7432206B2 (en) Ceramic manufacturing method, ceramic manufacturing granules and their manufacturing method
Xu et al. Effect of zirconia addition amount in glaze on mechanical properties of porcelain slabs
Rui et al. Effect of TiO2 Addition on Properties of Al2O3 Ceramics Prepared by Digital Light Printing (DLP)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220823

R150 Certificate of patent or registration of utility model

Ref document number: 7133835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150