JP7133318B2 - Freezer and refrigerant recovery method - Google Patents

Freezer and refrigerant recovery method Download PDF

Info

Publication number
JP7133318B2
JP7133318B2 JP2018021706A JP2018021706A JP7133318B2 JP 7133318 B2 JP7133318 B2 JP 7133318B2 JP 2018021706 A JP2018021706 A JP 2018021706A JP 2018021706 A JP2018021706 A JP 2018021706A JP 7133318 B2 JP7133318 B2 JP 7133318B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
electronic expansion
instruction
power switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021706A
Other languages
Japanese (ja)
Other versions
JP2019138538A (en
Inventor
義之 鵜飼
修治 嘉戸
崇 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIZAKI KABUSHIKI KAISHA
Original Assignee
HOSHIZAKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIZAKI KABUSHIKI KAISHA filed Critical HOSHIZAKI KABUSHIKI KAISHA
Priority to JP2018021706A priority Critical patent/JP7133318B2/en
Publication of JP2019138538A publication Critical patent/JP2019138538A/en
Application granted granted Critical
Publication of JP7133318B2 publication Critical patent/JP7133318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍装置、および冷媒回収方法に関し、詳しくは、冷凍装置における冷媒を回収する技術に関する。 TECHNICAL FIELD The present invention relates to a refrigerating device and a refrigerant recovery method, and more particularly to a technique for recovering refrigerant in a refrigerating device.

従来の、冷凍装置における冷媒を回収する技術としては、例えば特許文献1に示された技術が知られている。特許文献1では、圧縮機の底部に電磁誘導加熱装置を配設して、電磁誘導加熱装置によって圧縮機を加熱しながら、圧縮機に接続された冷媒回収回路を運転することによって、冷媒を完全に回収する技術が開示されている。 As a conventional technique for recovering refrigerant in a refrigeration system, for example, the technique disclosed in Patent Document 1 is known. In Patent Document 1, an electromagnetic induction heating device is provided at the bottom of a compressor, and a refrigerant recovery circuit connected to the compressor is operated while the compressor is heated by the electromagnetic induction heating device, thereby completely removing the refrigerant. is disclosed.

特開平10-306961号公報JP-A-10-306961

しかしながら、膨張弁として、弁の開度制御をステッピングモータの回転角度に応じて行う電磁膨張弁が使用される場合、冷媒を回収する際の電磁膨張弁の開度によっては、冷媒の回収に時間を要するという不都合が発生することが考えられる。すなわち、通常、冷媒回収の際には、冷凍装置の電源をオフしたまま行われ、それによって電磁膨張弁の開閉制御を行うことができない。そのため、冷媒回収を行う際、前回の冷凍装置のオフ時の電磁膨張弁の開度のままで冷媒回収を行うと、前回オフ時の開度によっては、冷媒回収に必要以上の時間を要する虞があった。 However, when an electromagnetic expansion valve that controls the opening of the valve according to the rotation angle of the stepping motor is used as the expansion valve, it takes time to recover the refrigerant depending on the opening of the electromagnetic expansion valve when recovering the refrigerant. It is conceivable that the inconvenience of requiring That is, normally, refrigerant recovery is performed with the power supply of the refrigeration system turned off, so that the opening/closing control of the electromagnetic expansion valve cannot be performed. Therefore, when collecting refrigerant, if the refrigerant is collected with the opening degree of the electromagnetic expansion valve when the refrigerating device was turned off last time, it may take longer than necessary to collect the refrigerant depending on the opening degree when the refrigerating device was turned off last time. was there.

本明細書に開示される技術は、上記のような事情に基づいて完成されたものであって、電子膨張弁を備えた冷凍装置において効率良く冷媒を回収できる冷凍装置、および冷媒回収方法を提供する。 The technology disclosed in the present specification has been perfected based on the circumstances described above, and provides a refrigeration system and a refrigerant recovery method capable of efficiently recovering refrigerant in a refrigeration system equipped with an electronic expansion valve. do.

本明細書に開示される冷凍装置は、蒸発器と凝縮器とを含む冷媒回路を備えた冷凍装置において、前記凝縮器と前記蒸発器との間に設けられた電子膨張弁と、ユーザの操作によって前記冷媒回路を循環する冷媒の回収を指示する指示信号を生成する指示部と、ユーザに冷媒回収の準備完了を報知する報知部と、前記電子膨張弁の開度を制御する制御部とを含み、前記制御部は、前記指示部から前記指示信号を受け取ったか否かを判断する判断処理と、前記指示信号を受け取ったと判断した場合に前記電子膨張弁を全開させる全開処理と、前記電子膨張弁が全開したか否かを判断する全開判断処理と、前記電子膨張弁が全開したと判断した場合、冷媒回収の準備完了を、前記報知部を介してユーザに報知する報知処理とを実行する。
本構成によれば、冷媒の回収時に電子膨張弁が必ず全開とされている。そのため、電子膨張弁を備えた冷凍装置において効率良く冷媒を回収できる。
The refrigerating apparatus disclosed in the present specification is a refrigerating apparatus having a refrigerant circuit including an evaporator and a condenser, wherein an electronic expansion valve provided between the condenser and the evaporator and an operation by a user are performed. an instruction unit for generating an instruction signal for instructing recovery of the refrigerant circulating in the refrigerant circuit, a notification unit for notifying a user of the completion of preparation for refrigerant recovery, and a control unit for controlling the degree of opening of the electronic expansion valve. the control unit performs determination processing for determining whether or not the instruction signal has been received from the instruction unit; full-open processing for fully opening the electronic expansion valve when it is determined that the instruction signal has been received; full-open determination processing for determining whether or not the valve is fully opened; and notification processing for notifying the user of the completion of refrigerant collection preparation via the notification unit when it is determined that the electronic expansion valve is fully opened. .
According to this configuration, the electronic expansion valve is always fully opened when the refrigerant is recovered. Therefore, refrigerant can be efficiently recovered in a refrigerating device having an electronic expansion valve.

上記冷凍装置において、当該冷凍装置への電力の供給をオンオフする電源スイッチと、当該冷凍装置を操作する操作スイッチと、を備え、前記指示部は、前記電源スイッチと前記操作スイッチとによって構成され、前記指示信号は、ユーザによって前記操作スイッチがオンされた状態において前記電源スイッチがオンされたことによって生成される信号であるようにしてもよい。
本構成によれば、電源スイッチおよび操作スイッチは冷媒回収に関係なく事前に冷凍装置に備えられた既存の部品であり、冷媒回収のために新たな専用部品を追加することなく指示信号を生成することができる。すなわち、何ら部品を追加することなく、電子膨張弁を備えた冷凍装置において効率良く冷媒を回収できる。
The above refrigeration apparatus includes a power switch that turns on and off the supply of power to the refrigeration apparatus, and an operation switch that operates the refrigeration apparatus, wherein the instruction unit is configured by the power switch and the operation switch, The instruction signal may be a signal generated when the power switch is turned on while the operation switch is turned on by a user.
According to this configuration, the power switch and the operation switch are existing parts that are provided in the refrigeration system in advance regardless of refrigerant recovery, and the instruction signal is generated without adding new dedicated parts for refrigerant recovery. be able to. That is, the refrigerant can be efficiently recovered in a refrigeration system having an electronic expansion valve without adding any parts.

また、本明細書に開示される冷媒回収方法は、冷媒回路の凝縮器と蒸発器との間に設けられた電子膨張弁を備えた冷凍装置において、前記冷媒回路を循環する冷媒を回収する冷媒回収方法であって、ユーザからの冷媒回収の指示にしたがって前記電子膨張弁を全開させ、前記電子膨張弁が全開したことをユーザに報知し、前記電子膨張弁が全開したことの報知後に、前記冷媒の回収を開始する。 Further, a refrigerant recovery method disclosed in the present specification is a refrigerating apparatus having an electronic expansion valve provided between a condenser and an evaporator of a refrigerant circuit, wherein the refrigerant recovers the refrigerant circulating in the refrigerant circuit. In the recovery method, the electronic expansion valve is fully opened according to a refrigerant recovery instruction from a user, the user is notified that the electronic expansion valve is fully opened, and after the notification that the electronic expansion valve is fully opened, the Start recovery of refrigerant.

上記冷媒回収方法において、前記冷凍装置は、冷凍装置への電力の供給をオンオフする電源スイッチと、前記冷凍装置を操作する操作スイッチと、を備え、前記冷媒回収の指示は、ユーザによって前記操作スイッチがオンされた状態において前記電源スイッチがオンされたことによって行われるようにしてもよい。 In the above refrigerant recovery method, the refrigerating device includes a power switch for turning on and off power supply to the refrigerating device, and an operation switch for operating the refrigerating device. is turned on and the power switch is turned on.

本発明の冷凍装置および冷媒回収方法によれば、電子膨張弁を備えた冷凍装置において効率良く冷媒を回収できる。 According to the refrigerating apparatus and refrigerant recovery method of the present invention, refrigerant can be efficiently recovered in a refrigerating apparatus having an electronic expansion valve.

本発明に係る冷凍装置の外観を示す概略的な正面図Schematic front view showing the appearance of a refrigeration apparatus according to the present invention 冷凍装置の概略的な構成図Schematic diagram of the refrigeration system 制御部の接続を示す概略的なブロック図Schematic block diagram showing connection of control unit 冷媒回収に係る処理を示すフローチャートFlowchart showing processing related to refrigerant recovery 電子膨張弁の開閉制御にかかる参考例を示すグラフGraph showing a reference example of opening/closing control of an electronic expansion valve

本発明に係る一実施形態を図1から図4を参照して説明する。なお、本実施形態では、図1および図2に示されるように、冷凍装置が製氷機1に適用された例が示されるが、冷凍装置は製氷機に限られない。すなわち、製氷機1は、冷凍装置の一例である。冷凍装置は、圧縮機、蒸発器、および凝縮器等を含む冷媒回路を備えた装置であればよく、例えば、冷凍庫であってもよい。 An embodiment according to the present invention will be described with reference to FIGS. 1 to 4. FIG. In this embodiment, as shown in FIGS. 1 and 2, an example in which the refrigerating device is applied to the ice maker 1 is shown, but the refrigerating device is not limited to the ice maker. That is, the ice maker 1 is an example of a refrigerating device. The refrigerating device may be any device provided with a refrigerant circuit including a compressor, an evaporator, a condenser, etc., and may be, for example, a freezer.

1.製氷機(冷凍装置)の構成
図2に示されるように、製氷機1は、大きくは製氷部10、冷媒回路20、および制御部30を備える。また、製氷機1は、図1に示されるように、ハウジング4および氷を放出する放出機構40を含む。
1. Configuration of Ice Maker (Refrigerating Device) As shown in FIG. The ice maker 1 also includes a housing 4 and a release mechanism 40 for releasing ice, as shown in FIG.

ハウジング4には、製氷機1への電力の供給をオンオフする電源スイッチ2、と、操作に係る各種表示を行う表示部3が設けられている。電源スイッチ2は例えば、ブレーカであり、表示部3は、例えば、液晶ディスプレイ(LCD)である。表示部3は、後述する、電子膨張弁の全開をユーザに報知する報知部の一例である。また、放出機構40には、放出される氷の量を選択して放出させる3個の操作スイッチ41が設けられている。 The housing 4 is provided with a power switch 2 for turning on/off power supply to the ice maker 1, and a display section 3 for displaying various displays related to operations. The power switch 2 is, for example, a breaker, and the display section 3 is, for example, a liquid crystal display (LCD). The display unit 3 is an example of a notification unit that notifies the user that the electronic expansion valve is fully open, which will be described later. Also, the discharge mechanism 40 is provided with three operation switches 41 for selecting and discharging the amount of ice to be discharged.

電源スイッチ2と操作スイッチ41は、後述する、ユーザの操作によって冷媒の回収を指示する指示信号Scを生成する指示部の一例である。本実施形態では、指示信号Scは、ユーザによって何れか1個の操作スイッチ41がオンされた状態において電源スイッチ2がオンされたことによって生成される。言い換えれば、指示信号Scは、操作スイッチ41のオン信号と、電源スイッチ2のオン信号とのAND信号である。 The power switch 2 and the operation switch 41 are an example of an instruction unit that generates an instruction signal Sc for instructing recovery of the refrigerant by a user's operation, which will be described later. In this embodiment, the instruction signal Sc is generated by turning on the power switch 2 while any one of the operation switches 41 is turned on by the user. In other words, the instruction signal Sc is an AND signal of the ON signal of the operation switch 41 and the ON signal of the power switch 2 .

製氷部10は、製氷水タンク11、ポンプモータ12、送水管13、散水管14、および製氷板15等を含む。 The ice making unit 10 includes an ice making water tank 11, a pump motor 12, a water pipe 13, a sprinkler pipe 14, an ice making plate 15, and the like.

製氷水タンク11に貯蔵された製氷水は、ポンプモータ12によって送水管13に供給され、送水管13を介して散水管14に送られる。そして、製氷水は散水管14によって製氷板15に供給され、製氷板15の製氷面側を流下して製氷水タンク11に戻る。すなわち、製氷水は、ポンプモータ12によって循環し、循環中に製氷板15において冷却され氷となる。 The ice-making water stored in the ice-making water tank 11 is supplied to the water pipe 13 by the pump motor 12 and sent to the sprinkler pipe 14 via the water pipe 13 . The ice-making water is supplied to the ice-making plate 15 through the sprinkler pipe 14, flows down the ice-making surface side of the ice-making plate 15, and returns to the ice-making water tank 11.例文帳に追加That is, the ice-making water is circulated by the pump motor 12 and cooled by the ice-making plate 15 during circulation to become ice.

また、製氷部10は、給水管16、給水弁17、導水管18、排水弁19等を含む。給水管16および給水弁17を介して製氷水タンク11に製氷水が供給され、導水管18および排水弁19を介して製氷水タンク11から不要な製氷水を排水することができる。 The ice making unit 10 also includes a water supply pipe 16, a water supply valve 17, a water conduit 18, a drain valve 19, and the like. Ice making water is supplied to the ice making water tank 11 through the water supply pipe 16 and the water supply valve 17 , and unnecessary ice making water can be discharged from the ice making water tank 11 through the water conduit 18 and the drain valve 19 .

冷媒回路20は、周知の構成である、圧縮機(コンプレッサ)21、凝縮器22、膨張弁23、蒸発管24、およびをファンモータ27等含む。圧縮機21は冷媒ガスを圧縮し、凝縮器22は圧縮された冷媒ガスを冷却して液化させる。膨張弁23は、液化冷媒を膨張させ、蒸発管24は膨張した液化冷媒を気化させて製氷板15を冷却する。その際、製氷板15に氷が形成される。なお、本実施形態において膨張弁23は、パルス信号Psのパルス数によって回転角度が制御されるステッピングモータMを含み、ステッピングモータMの回転角度に応じて弁の開度が制御される電子膨張弁である。 The refrigerant circuit 20 includes a compressor 21, a condenser 22, an expansion valve 23, an evaporator tube 24, a fan motor 27, etc., which are well-known structures. The compressor 21 compresses the refrigerant gas, and the condenser 22 cools and liquefies the compressed refrigerant gas. The expansion valve 23 expands the liquefied refrigerant, and the evaporation pipe 24 evaporates the expanded liquefied refrigerant to cool the ice making plate 15 . At that time, ice is formed on the ice making plate 15 . In this embodiment, the expansion valve 23 includes a stepping motor M whose rotation angle is controlled by the number of pulses of the pulse signal Ps, and an electronic expansion valve whose valve opening is controlled according to the rotation angle of the stepping motor M. is.

また、冷媒回路20は、ホットガス弁(HV)25およびバイパス管26を含む。バイパス管26は、圧縮機21と蒸発管24との間を接続し、除氷運転時にホットガス弁25を開いて高温の冷媒ガスを蒸発管24に供給する。 Refrigerant circuit 20 also includes a hot gas valve (HV) 25 and a bypass pipe 26 . The bypass pipe 26 connects between the compressor 21 and the evaporator pipe 24 , opens the hot gas valve 25 during the deicing operation, and supplies high-temperature refrigerant gas to the evaporator pipe 24 .

また、冷媒回路20は、蒸発管24の入口の冷媒温度evainTを検出するための入口温度センサS1、および蒸発管24の出口の冷媒温度evaoutTを検出するための出口温度センサS2と、を含む。冷媒温度evainTおよび冷媒温度evaoutTは、製氷運転時において電子膨張弁23の開度を、例えば、過熱度ΔTによって制御する際に使用される。ここでは、過熱度ΔT=evaoutT-evainT とされる。 The refrigerant circuit 20 also includes an inlet temperature sensor S1 for detecting the refrigerant temperature evainT at the inlet of the evaporator tube 24, and an outlet temperature sensor S2 for detecting the refrigerant temperature evaoutT at the outlet of the evaporator tube 24. The refrigerant temperature evainT and the refrigerant temperature evaoutT are used when controlling the degree of opening of the electronic expansion valve 23 during the ice making operation, for example, by the degree of superheat ΔT. Here, the degree of superheat ΔT=evaoutT−evainT.

また、冷媒回路20には、圧縮機21に接続され、冷媒回路20を循環する冷媒を回収するための冷媒配管28およびチャージポート29が設けられている。チャージポート29は、冷媒の回収時に周知の冷媒回収装置に接続される。 The refrigerant circuit 20 is also provided with a refrigerant pipe 28 and a charge port 29 that are connected to the compressor 21 and collect the refrigerant circulating through the refrigerant circuit 20 . The charge port 29 is connected to a known refrigerant recovery device during refrigerant recovery.

制御部30は、CPU31およびメモリ32を含む。メモリ32には、CPU31が実行する各種のプログラムが格納されている。また、メモリ32には、プログラム実行中に取得した、および算出した各種データが格納される。 Control unit 30 includes CPU 31 and memory 32 . Various programs executed by the CPU 31 are stored in the memory 32 . In addition, the memory 32 stores various data obtained and calculated during execution of the program.

制御部30は、図3に示されるように、電源スイッチ2、表示部3、ポンプモータ12、圧縮機21、電子膨張弁23、ホットガス弁25、操作スイッチ41、入口温度センサS1、および出口温度センサS2等に、電気的に接続されている。 As shown in FIG. 3, the control unit 30 includes a power switch 2, a display unit 3, a pump motor 12, a compressor 21, an electronic expansion valve 23, a hot gas valve 25, an operation switch 41, an inlet temperature sensor S1, and an outlet temperature sensor S1. It is electrically connected to the temperature sensor S2 and the like.

2.冷媒回収処理
次いで、メモリ32に格納された所定のプログラムにしたがって、制御部30によって実行される製氷機の冷媒回収処理、詳しくは、冷媒回収の準備処理について図4を参照して説明する。なお、冷媒回収処理には、冷媒回収方法が含まれる。
2. Refrigerant Recovery Processing Next, refrigerant recovery processing for the ice maker, more specifically, refrigerant recovery preparation processing, which is executed by the controller 30 according to a predetermined program stored in the memory 32, will be described with reference to FIG. Note that the refrigerant recovery process includes a refrigerant recovery method.

冷媒回収処理においては、制御部30は、詳しくは、CPU31は、まず、操作スイッチ41および電源スイッチ2(指示部)から指示信号Sc、言い換えれば、操作スイッチ41のオン信号と電源スイッチ2のオン信号とのAND信号を受け取ったか否かを判断する判断処理(ステップS10)を実行する。指示信号Scを受け取ってない場合(ステップS10:NO)、制御部30は冷媒回収モードに移行せず、待機状態にある。 In the refrigerant recovery process, the control unit 30, more specifically, the CPU 31, first receives an instruction signal Sc from the operation switch 41 and the power switch 2 (instruction unit). A judgment process (step S10) for judging whether or not an AND signal with a signal is received is executed. If the instruction signal Sc has not been received (step S10: NO), the controller 30 does not enter the refrigerant recovery mode and is in a standby state.

一方、指示信号Scを受け取った場合(ステップS10:YES)、制御部30は、冷媒回収モードに移行し(ステップS20)、電子膨張弁(EEV:Electronic Expansion Valve)23の全開処理(ステップS30)を実行する。全開処理では、制御部30は、電子膨張弁23を全開させるパルス数のパルス信号Psを生成し、パルス信号Psによって開度が全開となるように電子膨張弁23を制御する。 On the other hand, when the instruction signal Sc is received (step S10: YES), the control unit 30 shifts to the refrigerant recovery mode (step S20) and fully opens the electronic expansion valve (EEV) 23 (step S30). to run. In the full-opening process, the control unit 30 generates a pulse signal Ps with the number of pulses for fully opening the electronic expansion valve 23, and controls the electronic expansion valve 23 so that the opening is fully opened by the pulse signal Ps.

次いで、制御部30は、電子膨張弁23が全開したか否かを判断する全開判断処理(ステップS40)を実行する。なお、ここで、CPU31は、電子膨張弁23が全開したか否かの判断を、例えば、パルス信号Psのパルス数をカウントし、全開させる所定のパルス数のパルスが電子膨張弁23に送信されたか否かによって行う。電子膨張弁23が全開していないと判断した場合(ステップS40:NO)、制御部30は待機する。一方、電子膨張弁23が全開したと判断した場合(ステップS40:YES)、冷媒回収の準備完了を、表示部(報知部)3を介してユーザに報知する報知処理(ステップS50)を実行する。制御部30は、表示部3に、例えば、「EEV全開完了」と表示させて、電子膨張弁23が全開状態にあることをユーザに報知する。これによって、冷媒回収の準備処理は終了する。 Next, the control unit 30 executes a full-open determination process (step S40) for determining whether or not the electronic expansion valve 23 is fully opened. Here, the CPU 31 determines whether or not the electronic expansion valve 23 is fully opened. For example, the CPU 31 counts the number of pulses of the pulse signal Ps. or not. If it is determined that the electronic expansion valve 23 is not fully opened (step S40: NO), the controller 30 waits. On the other hand, if it is determined that the electronic expansion valve 23 is fully opened (step S40: YES), a notification process (step S50) is executed to notify the user of completion of preparation for refrigerant recovery through the display section (notification section) 3. . The control unit 30 causes the display unit 3 to display, for example, "EEV fully opened" to inform the user that the electronic expansion valve 23 is in the fully opened state. This completes the refrigerant collection preparation process.

冷媒回収の準備処理が終了すると、すなわち、報知処理によるユーザへの報知後に、ユーザは、回収タンク、回収ポンプ等を備えた周知の冷媒回収装置を用いて、冷媒回収作業を開始する。その際、電子膨張弁23が全開されているため、効率良く冷媒を回収できる。 When the refrigerant recovery preparation process is completed, that is, after the user is notified by the notification process, the user starts the refrigerant recovery operation using a well-known refrigerant recovery device including a recovery tank, a recovery pump, and the like. At that time, since the electronic expansion valve 23 is fully opened, the refrigerant can be recovered efficiently.

3.本実施形態の効果
本実施形態では、冷媒の回収時に電子膨張弁23が必ず全開とされている。そのため、電子膨張弁23を備えた製氷機(冷凍装置)1において効率良く冷媒を回収できる。
3. Effects of this Embodiment In this embodiment, the electronic expansion valve 23 is always fully opened when the refrigerant is recovered. Therefore, the refrigerant can be efficiently recovered in the ice maker (freezer) 1 provided with the electronic expansion valve 23 .

また、ユーザの操作によって冷媒の回収を指示する指示信号Scを生成する指示部としての電源スイッチ2および操作スイッチ41は、冷媒回収に関係なく事前に製氷機1に備えられた既存の部品である。そのため、冷媒回収のために新たな専用部品を追加することなく指示信号Scを生成することができる。すなわち、何ら専用部品を追加することなく、電子膨張弁23を備えた製氷機1において効率良く冷媒を回収できる。 In addition, the power switch 2 and the operation switch 41 as an instruction unit for generating an instruction signal Sc for instructing recovery of the refrigerant by a user's operation are existing parts provided in the ice making machine 1 in advance regardless of the recovery of the refrigerant. . Therefore, the instruction signal Sc can be generated without adding a new dedicated component for refrigerant recovery. That is, the refrigerant can be efficiently recovered in the ice making machine 1 provided with the electronic expansion valve 23 without adding any special parts.

4.参考例
次に、図5を参照して、電子膨張弁23の開閉制御に関する参考例を説明する。
電子膨張弁23の開度の制御方法として、通常、過熱度ΔTを一定とするように電子膨張弁23の開度を操作量とした、古典的なPID制御がよく用いられている。PID制御を用いる場合、制御量が正負となる通常のPID制御では操作量を増やす場合と減らす場合において何ら区別の必要がない。しかしながら、過熱度ΔTは通常、負とならない非負の制御量であり、この場合、操作量を増やす場合と減らす場合において何らの区別が必要となる特殊事情が存在する。
4. REFERENCE EXAMPLE Next, a reference example relating to the opening/closing control of the electronic expansion valve 23 will be described with reference to FIG.
As a method of controlling the opening of the electronic expansion valve 23, classical PID control is often used, in which the opening of the electronic expansion valve 23 is used as an operation variable so as to keep the degree of superheat ΔT constant. When PID control is used, there is no need to distinguish between increasing and decreasing the manipulated variable in normal PID control in which the controlled variable is positive and negative. However, the degree of superheat ΔT is normally a non-negative controlled variable, and in this case, there is a special circumstance where it is necessary to distinguish between when the manipulated variable is increased and when it is decreased.

このような特殊事情を考慮した電子膨張弁の開閉制御の例として、例えば、従来、特開平11-83205号公報に開示された技術が知られている。ここで開示された技術では、圧縮機の吐出管温度を検出する吐出管温度センサを備え、吐出管温度に基づいて、電子膨張弁の開度を「開きにくく閉じやすく」することで、言い換えれば、電子膨張弁の「開速度は遅く、閉速度は速く」することで、上記特殊事情に起因する問題を解決するようにしている。 As an example of opening/closing control of an electronic expansion valve in consideration of such special circumstances, the technique disclosed in Japanese Patent Application Laid-Open No. 11-83205, for example, is conventionally known. The technology disclosed herein is provided with a discharge pipe temperature sensor that detects the temperature of the discharge pipe of the compressor. , the electronic expansion valve is "slowly opened and fast closed" to solve the problems caused by the above special circumstances.

しかしながら、過熱度ΔTに基づいて電子膨張弁の開閉制御す場合、上記したように、過熱度ΔTを把握するために入口温度センサS1および出口温度センサS2が必要であり、さらに吐出管温度センサを備えることは、コスト的に負担が生じる。そのため、参考例では、吐出管温度センサを備えることなく、電子膨張弁の開度を「開きにくく閉じやすく」できる技術が示される。 However, when controlling the opening and closing of the electronic expansion valve based on the degree of superheat ΔT, as described above, the inlet temperature sensor S1 and the outlet temperature sensor S2 are necessary to grasp the degree of superheat ΔT. Being prepared is costly. Therefore, in the reference example, a technique is presented in which the degree of opening of the electronic expansion valve can be "difficult to open and easy to close" without providing a discharge pipe temperature sensor.

すなわち、参考例では、図5に示されるように、過熱度ΔTを一定とするように電子膨張弁23の開度を操作量としたPID制御(あるいはPI制御)において、開度補正ゲインGshを過熱度ΔTに応じて変化させる例が示される。
すなわち、過熱度ΔTが3℃以下と小さく、電子膨張弁23が大きく開いていて冷媒の流量が大きい場合には、開度補正ゲインGshが小さく設定される。一方、過熱度ΔTが10℃以上と大きく、電子膨張弁23が閉じていて冷媒の流量が小さい場合には、開度補正ゲインGshが大きく設定されている。
That is, in the reference example, as shown in FIG. 5, in PID control (or PI control) in which the opening degree of the electronic expansion valve 23 is used as a manipulated variable so as to keep the degree of superheat ΔT constant, the opening correction gain Gsh is set to An example of changing according to the degree of superheat ΔT is shown.
That is, when the degree of superheat ΔT is as small as 3° C. or less, the electronic expansion valve 23 is wide open, and the flow rate of the refrigerant is large, the opening degree correction gain Gsh is set small. On the other hand, when the degree of superheat ΔT is as large as 10° C. or more, the electronic expansion valve 23 is closed, and the flow rate of the refrigerant is small, the opening degree correction gain Gsh is set large.

また、過熱度ΔTが3℃から10℃の間では開度補正ゲインGshが、過熱度ΔTに比例して、言い換えれば、電子膨張弁23が閉まるに応じて、大きくなるように設定されている。そのため、電子膨張弁23を開いた状態から閉じる場合には、開度補正ゲインGshが大きくなるため速く閉じること(閉速度を速くすること)ができる。一方、電子膨張弁23を閉じた状態から開ける場合には、開度補正ゲインGshが小さくなるため遅く開くこと(開速度を遅くすること)ができる。すなわち、参考例では、吐出管温度センサを備えることなく、過熱度ΔTに応じた開度補正ゲインGshの設定によって、電子膨張弁23の開度を「開きにくく閉じやすく」することができる。 Further, when the degree of superheat ΔT is between 3° C. and 10° C., the opening correction gain Gsh is set to increase in proportion to the degree of superheat ΔT, in other words, as the electronic expansion valve 23 closes. . Therefore, when the electronic expansion valve 23 is closed from the open state, the opening degree correction gain Gsh becomes large, so that the electronic expansion valve 23 can be closed quickly (increase the closing speed). On the other hand, when the electronic expansion valve 23 is opened from the closed state, the opening degree correction gain Gsh becomes small, so that it can be opened slowly (reduced opening speed). That is, in the reference example, the opening degree of the electronic expansion valve 23 can be made "difficult to open and easy to close" by setting the opening degree correction gain Gsh according to the degree of superheat ΔT without providing a discharge pipe temperature sensor.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. can be implemented with various changes.

(1)上記実施形態では、指示部が、電源スイッチ2と操作スイッチ41とによって構成され、指示信号は、ユーザによって操作スイッチがオンされた状態において電源スイッチがオンされたことによって生成される信号である例を示したが、指示部および指示信号はこれに限られない。例えば、指示部として、ユーザによって操作される冷媒回収専用のスイッチを別途設け、そのスイッチの信号を指示信号とするようにしてもよい。 (1) In the above embodiment, the instruction section is composed of the power switch 2 and the operation switch 41, and the instruction signal is a signal generated when the power switch is turned on while the operation switch is turned on by the user. , but the indicator and the indicator signal are not limited to this. For example, as the instruction section, a separate switch dedicated to refrigerant recovery that is operated by the user may be separately provided, and the signal of the switch may be used as the instruction signal.

(2)上記実施形態では、報知部を表示部3によって構成する例を示したが、これに限られない。報知部は、例えば、音によって報知する電子ブザー等であってもよい。 (2) In the above-described embodiment, an example in which the notification unit is configured by the display unit 3 is shown, but the present invention is not limited to this. The notification unit may be, for example, an electronic buzzer or the like that notifies by sound.

1…製氷機(冷凍装置)、2…電源スイッチ(指示部)、3…表示部(報知部)、20…冷媒回路、22…凝縮器、23…電子膨張弁、24…蒸発器、30…制御部、31…CPU(制御部)、41…操作スイッチ(指示部)。 DESCRIPTION OF SYMBOLS 1... Ice maker (refrigerating device), 2... Power switch (indication part), 3... Display part (notification part), 20... Refrigerant circuit, 22... Condenser, 23... Electronic expansion valve, 24... Evaporator, 30... Control part 31... CPU (control part) 41... Operation switch (instruction part).

Claims (2)

蒸発器と凝縮器とを含む冷媒回路を備えた冷凍装置において、
前記凝縮器と前記蒸発器との間に設けられ、開度に応じて、前記冷媒回路を循環する冷媒の流量が調整される電子膨張弁と、
ユーザの操作によって、前記冷媒が前記冷媒回路を循環可能なモードから、前記冷媒回路を循環する前記冷媒の回収を行う冷媒回収モードへの移行を指示する指示信号を生成する指示部と、
前記電子膨張弁の開度を制御する制御部とを含み、
前記制御部は、
前記冷媒が前記冷媒回路を循環可能な前記モードで待機した状態において、前記指示部から前記指示信号を受け取ったか否かを判断する判断処理と、
前記指示信号を受け取ったと判断した場合に前記電子膨張弁を全開させる全開処理を実行し、
当該冷凍装置への電力の供給をオンオフする電源スイッチと、
当該冷凍装置を操作する操作スイッチと、を備え、
前記指示部は、前記電源スイッチと前記操作スイッチとによって構成され、
前記指示信号は、前記電源スイッチがオフの状態でユーザによって前記操作スイッチがオンされた状態において、前記電源スイッチがオフからオンにされたことによって生成される信号である冷凍装置。
In a refrigeration system with a refrigerant circuit including an evaporator and a condenser,
an electronic expansion valve that is provided between the condenser and the evaporator and adjusts the flow rate of the refrigerant circulating in the refrigerant circuit according to the degree of opening;
an instruction unit that generates an instruction signal for instructing a transition from a mode in which the refrigerant can circulate in the refrigerant circuit to a refrigerant recovery mode in which the refrigerant circulating in the refrigerant circuit is recovered by a user's operation;
a control unit that controls the degree of opening of the electronic expansion valve;
The control unit
a determination process of determining whether or not the instruction signal has been received from the instruction unit in a standby state in the mode in which the refrigerant can circulate in the refrigerant circuit;
executing full-open processing for fully opening the electronic expansion valve when it is determined that the instruction signal has been received ;
a power switch that turns on and off power supply to the refrigeration system;
and an operation switch for operating the refrigeration device,
The instruction unit is configured by the power switch and the operation switch,
The instruction signal is a signal generated when the power switch is turned on when the power switch is off and the operation switch is turned on by a user .
冷媒回路の凝縮器と蒸発器との間に設けられ、開度に応じて、前記冷媒回路を循環する冷媒の流量が調整される電子膨張弁と、前記電子膨張弁の開度を制御する制御部とを備えた冷凍装置において、前記冷媒回路を循環する前記冷媒を回収する冷媒回収方法であって、An electronic expansion valve provided between a condenser and an evaporator of a refrigerant circuit and adapted to adjust the flow rate of refrigerant circulating in the refrigerant circuit according to the degree of opening; and a control for controlling the degree of opening of the electronic expansion valve. A refrigerant recovery method for recovering the refrigerant circulating in the refrigerant circuit in a refrigeration system comprising:
前記制御部は、前記冷媒が前記冷媒回路を循環可能なモードから、前記冷媒回路を循環する前記冷媒の回収を行う冷媒回収モードへ移行させるための、ユーザからの冷媒回収の指示に対応した指示信号を受け取ると、前記電子膨張弁を全開させる処理を実行し、The control unit provides an instruction corresponding to a refrigerant recovery instruction from a user for shifting from a mode in which the refrigerant can circulate in the refrigerant circuit to a refrigerant recovery mode in which the refrigerant circulating in the refrigerant circuit is recovered. Upon receiving the signal, executing processing to fully open the electronic expansion valve,
前記冷凍装置は、冷凍装置への電力の供給をオンオフする電源スイッチと、前記冷凍装置を操作する操作スイッチと、を備え、The refrigeration system includes a power switch that turns on and off power supply to the refrigeration system, and an operation switch that operates the refrigeration system,
前記冷媒回収の指示に対応した前記指示信号は、前記電源スイッチがオフの状態でユーザによって前記操作スイッチがオンされた状態において、前記電源スイッチがオフからオンにされたことによって生成される、冷媒回収方法。The instruction signal corresponding to the instruction to recover the refrigerant is generated by turning the power switch from off to on when the operation switch is turned on by a user while the power switch is off. collection method.
JP2018021706A 2018-02-09 2018-02-09 Freezer and refrigerant recovery method Active JP7133318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021706A JP7133318B2 (en) 2018-02-09 2018-02-09 Freezer and refrigerant recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021706A JP7133318B2 (en) 2018-02-09 2018-02-09 Freezer and refrigerant recovery method

Publications (2)

Publication Number Publication Date
JP2019138538A JP2019138538A (en) 2019-08-22
JP7133318B2 true JP7133318B2 (en) 2022-09-08

Family

ID=67693665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021706A Active JP7133318B2 (en) 2018-02-09 2018-02-09 Freezer and refrigerant recovery method

Country Status (1)

Country Link
JP (1) JP7133318B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115164454B (en) * 2022-07-11 2024-02-27 珠海格力电器股份有限公司 Control method and control device for electronic expansion valve body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314878A (en) 2002-04-22 2003-11-06 Mitsubishi Heavy Ind Ltd Control method for air conditioner, and air conditioner
JP2010091126A (en) 2008-10-03 2010-04-22 Sanden Corp Refrigerating machine
JP2012220117A (en) 2011-04-11 2012-11-12 Fujitsu General Ltd Refrigerant recovery method of air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225168A (en) * 1990-01-30 1991-10-04 Nippondenso Co Ltd Refrigerant recovery device
JP3212632B2 (en) * 1991-04-22 2001-09-25 東芝キヤリア株式会社 Refrigeration cycle with refrigerant recovery mode
JPH05164437A (en) * 1991-12-12 1993-06-29 Hitachi Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314878A (en) 2002-04-22 2003-11-06 Mitsubishi Heavy Ind Ltd Control method for air conditioner, and air conditioner
JP2010091126A (en) 2008-10-03 2010-04-22 Sanden Corp Refrigerating machine
JP2012220117A (en) 2011-04-11 2012-11-12 Fujitsu General Ltd Refrigerant recovery method of air conditioner

Also Published As

Publication number Publication date
JP2019138538A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP5574028B1 (en) Air conditioner
JP5590195B1 (en) Air conditioner
JP6580149B2 (en) Refrigeration cycle equipment
EP2840324A1 (en) Outdoor unit of air conditioner and air conditioner
JP6528623B2 (en) Air conditioner
JP2018066502A (en) Air conditioner
CN113483477B (en) Method for recycling and controlling oil stain in pipe of outdoor unit
JP6398324B2 (en) Heat pump water heater
JP2017067301A (en) Air conditioning device
JP6834561B2 (en) Air conditioner
JP6575669B2 (en) Ice making system
JP2019078411A (en) Air conditioner
JP6965736B2 (en) Air conditioner
JP7133318B2 (en) Freezer and refrigerant recovery method
JP4954684B2 (en) How to operate an automatic ice machine
JP4804528B2 (en) Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
JP2009121768A (en) Automatic ice making machine and control method for it
JP2016090092A (en) Air conditioner
KR20180093342A (en) Method for controlling of air conditioner
JP6459800B2 (en) Air conditioner
JP4411758B2 (en) Air conditioner
JP6930127B2 (en) Air conditioner
JP6559332B2 (en) Refrigeration cycle equipment
JP5469935B2 (en) Ice machine
JP7308978B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7133318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150