JP7133161B2 - Deodorizing system - Google Patents

Deodorizing system Download PDF

Info

Publication number
JP7133161B2
JP7133161B2 JP2017159580A JP2017159580A JP7133161B2 JP 7133161 B2 JP7133161 B2 JP 7133161B2 JP 2017159580 A JP2017159580 A JP 2017159580A JP 2017159580 A JP2017159580 A JP 2017159580A JP 7133161 B2 JP7133161 B2 JP 7133161B2
Authority
JP
Japan
Prior art keywords
gas
treated
electromagnetic wave
deodorizing
wave irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017159580A
Other languages
Japanese (ja)
Other versions
JP2019037312A (en
Inventor
良行 菅原
俊 藤野
尭 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Sayrise Inc
Original Assignee
Metawater Co Ltd
Sayrise Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd, Sayrise Inc filed Critical Metawater Co Ltd
Priority to JP2017159580A priority Critical patent/JP7133161B2/en
Publication of JP2019037312A publication Critical patent/JP2019037312A/en
Application granted granted Critical
Publication of JP7133161B2 publication Critical patent/JP7133161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、脱臭システムに関し、特には、電磁波を利用した脱臭システムに関するものである。 TECHNICAL FIELD The present invention relates to a deodorizing system, and more particularly to a deodorizing system using electromagnetic waves.

従来、排ガス等の臭気成分を含むガスの脱臭方法として、薬液洗浄法、吸着法、生物脱臭法などが知られている。 Conventionally, chemical cleaning methods, adsorption methods, biological deodorization methods, and the like are known as methods for deodorizing gas containing odorous components such as exhaust gas.

具体的には、例えば特許文献1には、吸着法により糞尿臭を脱臭する脱臭装置として、所定の金属を含むゼオライトを吸着剤として用いた脱臭装置が開示されている。そして、特許文献1に記載の脱臭装置では、糞尿臭の原因となる臭気成分を除去する際に、電磁波を発生させる導波路を使用して吸着剤を加熱することにより、臭気成分を吸着した吸着剤を再生し、糞尿臭を効率的に脱臭している。 Specifically, for example, Patent Literature 1 discloses a deodorizing device that uses zeolite containing a predetermined metal as an adsorbent to deodorize excrement odors by an adsorption method. Then, in the deodorizing device described in Patent Document 1, when removing odorous components that cause manure odor, a waveguide that generates electromagnetic waves is used to heat the adsorbent, thereby adsorbing the odorous components. It regenerates the agent and efficiently deodorizes manure odor.

特開2001-321424号公報Japanese Patent Application Laid-Open No. 2001-321424

しかし、上記従来の脱臭装置には、脱臭効率を更に高めるという点において改善の余地があった。 However, the above conventional deodorizing device has room for improvement in terms of further increasing the deodorizing efficiency.

そこで、本発明は、脱臭効率に優れる脱臭システムを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a deodorizing system having excellent deodorizing efficiency.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の脱臭システムは、臭気成分を含む被処理ガスを脱臭する脱臭システムであって、前記被処理ガスに電磁波を照射する電磁波照射部と、前記電磁波照射部で電磁波を照射された被処理ガスを脱臭材と接触させる脱臭部とを備えることを特徴とする。このように、電磁波照射部および脱臭部を設け、被処理ガスを電磁波照射後に脱臭材と接触させれば、被処理ガスを効率的に脱臭することができる。 SUMMARY OF THE INVENTION An object of the present invention is to advantageously solve the above problems. It is characterized by comprising an electromagnetic wave irradiation part for irradiation and a deodorizing part for bringing the gas to be treated irradiated with the electromagnetic waves by the electromagnetic wave irradiation part into contact with the deodorizing material. By providing the electromagnetic wave irradiation section and the deodorizing section in this manner and bringing the gas to be processed into contact with the deodorizing material after the electromagnetic wave irradiation, the gas to be processed can be efficiently deodorized.

ここで、本発明の脱臭システムは、前記電磁波照射部の前段側に前記被処理ガスを加湿する加湿装置を有することが好ましい。電磁波照射部の前段側に加湿装置を設ければ、加湿した被処理ガスを電磁波照射部に供給することができるので、被処理ガスを効率的に電磁波処理し、脱臭効率を更に高めることができる。 Here, it is preferable that the deodorizing system of the present invention has a humidifying device for humidifying the gas to be treated on the upstream side of the electromagnetic wave irradiation section. If a humidifying device is provided on the upstream side of the electromagnetic wave irradiation section, the humidified gas to be treated can be supplied to the electromagnetic wave irradiation section, so that the gas to be treated can be efficiently subjected to electromagnetic wave treatment, and the deodorization efficiency can be further increased. .

また、本発明の脱臭システムは、前記電磁波照射部の前段側に前記被処理ガスを加熱する加熱装置を有することが好ましい。電磁波照射部の前段側に加熱装置を設ければ、加熱した被処理ガスを電磁波照射部に供給することができるので、被処理ガスを効率的に電磁波処理し、脱臭効率を更に高めることができる。 Further, the deodorizing system of the present invention preferably has a heating device for heating the gas to be treated on the upstream side of the electromagnetic wave irradiation section. If a heating device is provided on the upstream side of the electromagnetic wave irradiation section, the heated gas to be treated can be supplied to the electromagnetic wave irradiation section, so that the gas to be treated can be efficiently subjected to electromagnetic wave treatment and the deodorization efficiency can be further enhanced. .

ここで、本発明の脱臭システムは、前記脱臭材が液体であってもよい。液体の脱臭材を使用すれば、被処理ガス中に含まれていた臭気成分を効率的に吸収することができる。 Here, in the deodorizing system of the present invention, the deodorizing material may be liquid. If a liquid deodorizing material is used, it is possible to efficiently absorb the odorous components contained in the gas to be treated.

そして、前記液体は、高分子凝集剤の水溶液であることが好ましい。脱臭材として高分子凝集剤の水溶液を使用すれば、被処理ガス中に含まれていた臭気成分を更に効率的に吸収することができる。 The liquid is preferably an aqueous solution of a polymer flocculant. If an aqueous solution of a polymer flocculant is used as the deodorizing material, the malodorous components contained in the gas to be treated can be absorbed more efficiently.

また、本発明の脱臭システムは、前記液体に電磁波を照射する液体用電磁波照射装置を更に有することが好ましい。被処理ガスに加え、脱臭材として用いられる液体にも電磁波を照射すれば、被処理ガス中に含まれていた臭気成分を更に効率的に吸収することができる。 Moreover, it is preferable that the deodorizing system of the present invention further includes a liquid electromagnetic wave irradiation device for irradiating the liquid with electromagnetic waves. By irradiating electromagnetic waves not only on the gas to be treated but also on the liquid used as the deodorizing material, it is possible to more efficiently absorb the odorous components contained in the gas to be treated.

更に、本発明の脱臭システムは、前記脱臭材が多孔質部材であってもよい。脱臭材として多孔質部材を使用すれば、被処理ガス中に含まれていた臭気成分を効率的に吸着することができる。 Furthermore, in the deodorizing system of the present invention, the deodorizing material may be a porous member. If a porous member is used as a deodorizing material, it is possible to efficiently adsorb odorous components contained in the gas to be treated.

本発明の脱臭システムによれば、臭気成分を含む被処理ガスを効率的に脱臭することができる。 According to the deodorizing system of the present invention, it is possible to efficiently deodorize the gas to be treated that contains malodorous components.

本発明に従う脱臭システムの一例の概略構成を示す説明図である。It is an explanatory view showing a schematic structure of an example of a deodorizing system according to the present invention. 実施例1~4および比較例1~2で用いた脱臭システムの概略構成を示す説明図である。1 is an explanatory diagram showing a schematic configuration of a deodorizing system used in Examples 1-4 and Comparative Examples 1-2. FIG. 実施例5~7および比較例3~4で用いた脱臭システムの概略構成を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic configuration of a deodorizing system used in Examples 5-7 and Comparative Examples 3-4.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In addition, in each figure, the thing which attached|subjected the same code|symbol shall show the same component.

本発明の脱臭システムは、特に限定されることなく、臭気成分を含む被処理ガスを脱臭する際に用いることができる。 The deodorizing system of the present invention is not particularly limited, and can be used to deodorize a gas to be treated containing odorous components.

ここで、臭気成分としては、特に限定されることなく、例えば、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチル、酪酸、吉草酸、アンモニア、トリメチルアミン、アセトアルデヒド、ホルムアルデヒド、トルエン、スチレン、キシレン、プロピオン酸、酢酸エチル、酢酸ブチル、メチルイソブチルケトン、メチルエチルケトン、イソブタノール、プロピオンアルデヒド、ノルマルブチルアルデヒド、イソブチルアルデヒド、ノルマルバレルアルデヒド、イソバレルアルデヒド、アクロレイン、インドール、スカトール、ヘキサン、アセトンなどが挙げられる。 Here, the odor component is not particularly limited, and examples thereof include hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, butyric acid, valeric acid, ammonia, trimethylamine, acetaldehyde, formaldehyde, toluene, styrene, xylene, propion. acid, ethyl acetate, butyl acetate, methyl isobutyl ketone, methyl ethyl ketone, isobutanol, propionaldehyde, normal butyraldehyde, isobutyraldehyde, normal valeraldehyde, isovaleraldehyde, acrolein, indole, skatole, hexane, acetone and the like.

また、被処理ガスとしては、特に限定されることなく、例えば、飼料・肥料工場、食料品製造工場、自動車工場、塗装工場、塗料製造工場、印刷工場、半導体工場、電池工場、化学工場等の各種工場で生じる排ガス;下水処理場、し尿処理場、ゴミ処理場等の各種処理場で生じる排ガス;飲食店、公衆トイレ、ビルピット等の小規模施設で生じる排気;医療施設、研究施設、分析施設、畜産施設等の各種施設で生じる排気;などが挙げられる。 In addition, the gas to be treated is not particularly limited. Exhaust gas generated in various factories; Exhaust gas generated in various treatment plants such as sewage treatment plants, night soil treatment plants, and garbage disposal plants; Exhaust gas generated in small-scale facilities such as restaurants, public toilets, and building pits; Medical facilities, research facilities, and analysis facilities , exhaust gas generated in various facilities such as livestock facilities;

そして、本発明の脱臭システムは、被処理ガスに電磁波を照射する電磁波照射部と、電磁波照射部で電磁波を照射された被処理ガスを脱臭材と接触させる脱臭部とを備え、任意に、被処理ガスを加湿する加湿装置および/または被処理ガスを加熱する加熱装置を電磁波照射部の前段側に更に備えている。 The deodorizing system of the present invention comprises an electromagnetic wave irradiation unit for irradiating the gas to be treated with electromagnetic waves, and a deodorizing unit for bringing the gas to be treated, which has been irradiated with electromagnetic waves by the electromagnetic wave irradiation unit, into contact with a deodorizing material. A humidifying device that humidifies the processing gas and/or a heating device that heats the gas to be processed is further provided on the upstream side of the electromagnetic wave irradiation section.

具体的には、本発明の脱臭システムの一例は、図1に示すように、電磁波照射部30の前段側に任意に設けられた加湿装置10および加熱装置20と、電磁波照射部30と、電磁波照射部30の後段側に設けられた脱臭部40とを備えている。なお、図1に示す脱臭システム100では加湿装置10の後段側に加熱装置20を設けたが、本発明の脱臭システムでは、加熱装置20は加湿装置10の前段側に設けられていてもよいし、個別に設けられた加湿装置10および加熱装置20に替えて被処理ガスの加熱と加湿を同時に行う装置を用いてもよい。 Specifically, as shown in FIG. 1, an example of the deodorizing system of the present invention includes a humidifying device 10 and a heating device 20 arbitrarily provided on the upstream side of an electromagnetic wave irradiation unit 30, an electromagnetic wave irradiation unit 30, an electromagnetic wave A deodorizing section 40 provided on the rear stage side of the irradiation section 30 is provided. In the deodorizing system 100 shown in FIG. 1, the heating device 20 is provided on the rear side of the humidifying device 10, but in the deodorizing system of the present invention, the heating device 20 may be provided on the front side of the humidifying device 10. Alternatively, instead of the separately provided humidifying device 10 and heating device 20, a device that simultaneously heats and humidifies the gas to be treated may be used.

ここで、加湿装置10としては、被処理ガスを加湿可能であれば特に限定されることなく、例えば、気化式加湿器、水噴霧式加湿器、蒸気式加湿器などの任意の加湿器を用いることができる。被処理ガスの湿度が過度に低い場合には、静電気が発生し易いこと等に起因して、被処理ガスに電磁波を照射しても被処理ガスに含まれている成分が良好に電磁波処理されず、脱臭効率の向上効果が減少する。しかし、電磁波照射部30の前段側に加湿装置10を設ければ、冬季などの被処理ガスが低湿度になり易い環境下であっても、被処理ガスの湿度を十分に高め、脱臭効率を十分に向上させることができる。なお、電磁波照射部30で被処理ガスを良好に電磁波処理する観点からは、電磁波照射部30に供給する被処理ガスの湿度は35%RH以上とすることが好ましい。
なお、被処理ガスの加湿に使用する水には、電磁波を照射してもよい。そして、被処理ガスの加湿に用いる水に電磁波を照射する装置としては、特に限定されることなく、電磁波照射部30で使用し得る電磁波照射装置として後述する装置と同様の装置を用いることができる。
Here, the humidifier 10 is not particularly limited as long as it can humidify the gas to be processed, and any humidifier such as a vaporization humidifier, a water spray humidifier, and a steam humidifier can be used. be able to. If the humidity of the gas to be treated is excessively low, static electricity is likely to be generated. Therefore, the effect of improving the deodorizing efficiency is reduced. However, if the humidifying device 10 is provided on the upstream side of the electromagnetic wave irradiation unit 30, the humidity of the gas to be treated can be sufficiently increased and the deodorization efficiency can be improved even in an environment where the gas to be treated tends to be low in humidity, such as in winter. can be improved enough. From the viewpoint of good electromagnetic wave treatment of the gas to be treated in the electromagnetic wave irradiation unit 30, it is preferable that the humidity of the gas to be treated supplied to the electromagnetic wave irradiation unit 30 is 35% RH or higher.
The water used for humidifying the gas to be processed may be irradiated with electromagnetic waves. The device for irradiating the water used for humidifying the gas to be treated with electromagnetic waves is not particularly limited, and the same device as the electromagnetic wave irradiation device that can be used in the electromagnetic wave irradiation unit 30 and will be described later can be used. .

また、加熱装置20としては、被処理ガスを加熱可能であれば特に限定されることなく、例えば、コイルヒーター、バンドヒーター、マントルヒーターなどの任意の加熱装置を用いることができる。被処理ガスの温度が過度に低い場合には、湿度が低下し易いため、被処理ガスに電磁波を照射しても被処理ガスに含まれている成分が良好に電磁波処理されず、脱臭効率の向上効果が減少する。しかし、電磁波照射部30の前段側に加熱装置20を設ければ、冬季などの被処理ガスが低温になり易い環境下であっても、被処理ガスの温度を十分に高め、脱臭効率を十分に向上させることができる。なお、電磁波照射部30で被処理ガスを良好に電磁波処理する観点からは、電磁波照射部30に供給する被処理ガスの温度は10℃以上とすることが好ましい。 The heating device 20 is not particularly limited as long as it can heat the gas to be treated, and any heating device such as a coil heater, band heater, mantle heater, etc. can be used. If the temperature of the gas to be treated is excessively low, the humidity tends to decrease, so even if the gas to be treated is irradiated with electromagnetic waves, the components contained in the gas to be treated cannot be effectively treated with electromagnetic waves, and the deodorizing efficiency is reduced. Improvement effect is reduced. However, if the heating device 20 is provided on the upstream side of the electromagnetic wave irradiation unit 30, the temperature of the gas to be treated can be sufficiently increased and the deodorization efficiency can be sufficiently improved even in an environment where the gas to be treated tends to be low in temperature, such as in winter. can be improved to From the viewpoint of good electromagnetic wave treatment of the gas to be treated in the electromagnetic wave irradiation unit 30, the temperature of the gas to be treated supplied to the electromagnetic wave irradiation unit 30 is preferably 10° C. or higher.

更に、電磁波照射部30では、被処理ガスに電磁波を照射することが可能であれば特に限定されることなく、任意の電磁波照射装置を用いて被処理ガスに電磁波を照射することができる。 Further, in the electromagnetic wave irradiation unit 30, any electromagnetic wave irradiation device can be used to irradiate the gas to be processed with electromagnetic waves without any particular limitation as long as it is possible to irradiate the gas to be processed with electromagnetic waves.

ここで、電磁波照射装置としては、例えば、被処理ガスに電磁波を照射する電磁波発振部と、電磁波発振部と電気的に接続されており、電磁波発振部に交流電流を流すことにより電磁波を発生させる交流電流発生器とを備える装置を用いることができる。そして、電磁波発振部としては、特に限定されることなく、例えばコイル等を用いることができる。なお、コイルは、ダクトなどの被処理ガス流路内に設置してもよいし、ダクトなどの被処理ガス流路の外周に導線を巻き回して形成してもよい。また、交流電流発生器としては、特に限定されることなく、例えば特開2011-255345号公報や特開2013-167160号公報に記載の装置や、株式会社サイライズ製の「ウォーター・ウォッチャー」などを用いることができる。中でも。交流電流発生器としては、周波数が時間的に変化する方形波またはサイン波などの交流電流を発生させる交流電流発生器、並びに、単一周波数の交流電流または互いに周波数の異なる2つ以上の単一周波数の交流電流を発生させる交流電流発生器を用いることが好ましく、単一周波数の交流電流または互いに周波数の異なる2つ以上の単一周波数の交流電流を発生させる交流電流発生器を用いることがより好ましい。なお、交流電流発生器が発生する交流電流の周波数は、特に限定されることなく、例えば10Hz以上1MHz以下とすることができる。また、発生させる電磁波の磁束密度は、10mG以上とすることが好ましい。なお、磁束密度は、電磁波発振部上(例えば、コイルを形成するケーブル上)で測定することができる。 Here, as the electromagnetic wave irradiation device, for example, an electromagnetic wave oscillating section for irradiating an electromagnetic wave to the gas to be processed is electrically connected to the electromagnetic wave oscillating section, and an electromagnetic wave is generated by passing an alternating current through the electromagnetic wave oscillating section. A device with an alternating current generator can be used. The electromagnetic wave oscillator is not particularly limited, and a coil or the like can be used, for example. In addition, the coil may be installed in a flow path of the gas to be treated such as a duct, or may be formed by winding a conductive wire around the outer periphery of the flow path of the gas to be treated such as a duct. In addition, the AC current generator is not particularly limited. can be used. Among them. The alternating current generator includes an alternating current generator that generates an alternating current such as a square wave or a sine wave whose frequency changes over time, as well as an alternating current with a single frequency or two or more single waves with different frequencies. It is preferable to use an alternating current generator that generates an alternating current with a frequency, and more preferably an alternating current generator that generates an alternating current with a single frequency or two or more alternating currents with a single frequency that are different from each other. preferable. The frequency of the alternating current generated by the alternating current generator is not particularly limited, and can be, for example, 10 Hz or more and 1 MHz or less. Moreover, the magnetic flux density of the generated electromagnetic wave is preferably 10 mG or more. The magnetic flux density can be measured on the electromagnetic wave oscillator (for example, on the cable forming the coil).

そして、脱臭部40では、電磁波照射部30で電磁波を照射された被処理ガスと、脱臭材とを接触させて、被処理ガス中に含まれていた臭気成分などを除去する。なお、脱臭部40では、電磁波を照射された被処理ガスが脱臭材と接触するので、被処理ガスに電磁波を照射しない場合と比較し、臭気成分が効率的に除去される。この理由は、明らかではないが、電磁波の照射によって被処理ガス中に含まれている成分のゼータ電位が変化するためであると推察される。 Then, in the deodorizing section 40, the gas to be treated which has been irradiated with electromagnetic waves by the electromagnetic wave irradiation section 30 is brought into contact with a deodorizing material to remove odorous components contained in the gas to be treated. In the deodorizing unit 40, the gas to be treated that has been irradiated with electromagnetic waves comes into contact with the deodorizing material, so that odorous components are removed more efficiently than in the case where the gas to be treated is not irradiated with electromagnetic waves. Although the reason for this is not clear, it is presumed that the irradiation of the electromagnetic waves changes the zeta potential of the components contained in the gas to be treated.

ここで、脱臭材としては、臭気成分を吸収して除去する液体の脱臭材、臭気成分を吸着して除去する固体の脱臭材などの、任意の脱臭材を用いることができる。具体的には、液体の脱臭材としては、例えば、水、高分子凝集剤の水溶液などを用いることができ、中でも、臭気成分を効率的に吸収する観点からは、高分子凝集剤の水溶液が好ましい。また、固体の脱臭材としては、セラミック繊維等の無機繊維からなる無機繊維シートをハニカム状に加工してなる構造体、活性炭、ゼオライト、シリカ、アパタイト、金属有機構造体、高分子吸着材などの多孔質部材を用いることができる。 Here, as the deodorizing material, any deodorizing material can be used, such as a liquid deodorizing material that absorbs and removes malodorous components, or a solid deodorizing material that absorbs and removes malodorous components. Specifically, as the liquid deodorizing material, for example, water, an aqueous solution of a polymer flocculant, or the like can be used. preferable. Examples of solid deodorizing materials include structures formed by processing inorganic fiber sheets made of inorganic fibers such as ceramic fibers into a honeycomb shape, activated carbon, zeolite, silica, apatite, metal organic structures, polymer adsorbents, and the like. A porous member can be used.

そして、被処理ガスと脱臭材との接触は、ダクトなどの被処理ガス流路内への液体の脱臭材の散布または噴霧、或いは、固体の脱臭材を充填した容器内への被処理ガスの通気などの任意の手法を用いて行うことができる。 The contact between the gas to be treated and the deodorizing material can be achieved by spraying or spraying the liquid deodorizing material into the flow path of the gas to be treated, such as a duct, or by pouring the gas to be treated into a container filled with the solid deodorizing material. Any technique, such as aeration, can be used.

なお、脱臭部40において液体の脱臭材を使用する場合には、被処理ガスと接触させる前に液体に電磁波を照射するための液体用電磁波照射装置(図示せず)を設けることが好ましい。液体用電磁波照射装置を設け、電磁波を照射した液体を被処理ガスと接触させれば、被処理ガス中に含まれている臭気成分を更に効率的に吸収することができる。ここで、液体用電磁波照射装置としては、特に限定されることなく、電磁波照射部30で使用し得る電磁波照射装置として例示した装置と同様の装置を用いることができる。 When a liquid deodorizing material is used in the deodorizing unit 40, it is preferable to provide a liquid electromagnetic wave irradiation device (not shown) for irradiating the liquid with electromagnetic waves before contacting the gas to be treated. If an electromagnetic wave irradiation device for liquid is provided and the liquid irradiated with the electromagnetic wave is brought into contact with the gas to be treated, the malodorous components contained in the gas to be treated can be absorbed more efficiently. Here, the electromagnetic wave irradiation device for liquid is not particularly limited, and a device similar to the device exemplified as the electromagnetic wave irradiation device that can be used in the electromagnetic wave irradiation section 30 can be used.

また、液体の脱臭材として高分子凝集剤の水溶液を使用する場合、高分子凝集剤としては、両性高分子凝集剤、或いは、電磁波照射部30での電磁波の照射により被処理ガス中の成分に付与されるゼータ電位と反対の電荷を持つ高分子凝集剤を用いることが好ましく、電磁波照射部30での電磁波の照射により被処理ガス中の成分に付与されるゼータ電位と反対の電荷を持つ高分子凝集剤を用いることが更に好ましい。 Further, when an aqueous solution of a polymer flocculant is used as the liquid deodorant, the polymer flocculant may be an amphoteric polymer flocculant or a component in the gas to be treated by irradiation with electromagnetic waves in the electromagnetic wave irradiation unit 30. It is preferable to use a polymer flocculant having a charge opposite to the zeta potential to be imparted, and a high polymer flocculant having a charge opposite to the zeta potential imparted to the components in the gas to be treated by the irradiation of the electromagnetic waves in the electromagnetic wave irradiation unit 30. More preferably, a molecular flocculant is used.

以上、本発明の脱臭システムについて説明したが、本発明の脱臭システムは上述した内容に限定されるものではない。 Although the deodorizing system of the present invention has been described above, the deodorizing system of the present invention is not limited to the contents described above.

以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.

(実施例1)
図2に示す脱臭システム100Aを使用し、被処理ガスとしての静電塗装ブース排ガスを以下の条件で脱臭した。
ここで、脱臭システム100Aは、断面が900mm角の排気ダクト50と、排気ダクト50に導線を巻き回して形成したコイル31およびコイル31に交流電流を流すことにより電磁波を発生させる交流電流発生器32よりなる電磁波照射部30と、電磁波照射部30の後段側で排気ダクト50内に脱臭材としての高分子凝集剤水溶液を噴霧する脱臭部40とを備えている。なお、脱臭システム100Aは、排気ダクト50内に噴霧した高分子凝集剤水溶液を回収する機構としてのドレン(図示せず)も有している。
そして、被処理ガスおよび処理ガスの臭気濃度を臭気センサ(新コスモス電機製、XP-329)で測定し、臭気除去率を求めた。結果を表1に示す。
<脱臭条件>
・外気湿度:43%RH
・外気温:10℃
・排気ダクト内湿度:48%RH
・排気ダクト内温度:15℃
・排ガス流量:175m/分(流速:3.6m/秒)
・交流電流周波数:6kHzおよび6.5kHz
・電磁波が付与するゼータ電位:マイナス
・高分子凝集剤:アクリルアミド系の両性高分子凝集剤
・高分子凝集剤水溶液濃度:0.2~0.33%
・高分子凝集剤水溶液噴霧量:16mL/m-排ガス
(Example 1)
Using the deodorizing system 100A shown in FIG. 2, the electrostatic coating booth exhaust gas as the gas to be treated was deodorized under the following conditions.
Here, the deodorizing system 100A includes an exhaust duct 50 having a cross section of 900 mm square, a coil 31 formed by winding a conductive wire around the exhaust duct 50, and an alternating current generator 32 that generates an electromagnetic wave by passing an alternating current through the coil 31. and a deodorizing unit 40 for spraying an aqueous polymer flocculant solution as a deodorant into the exhaust duct 50 on the downstream side of the electromagnetic wave irradiating unit 30 . The deodorizing system 100</b>A also has a drain (not shown) as a mechanism for collecting the polymer coagulant aqueous solution sprayed into the exhaust duct 50 .
Then, the odor concentration of the gas to be treated and the gas to be treated was measured with an odor sensor (XP-329, manufactured by New Cosmos Electric) to obtain the odor removal rate. Table 1 shows the results.
<Deodorization conditions>
・ Outside air humidity: 43% RH
・Outside temperature: 10℃
・Humidity in exhaust duct: 48% RH
・Temperature inside exhaust duct: 15℃
・ Exhaust gas flow rate: 175 m 3 /min (flow velocity: 3.6 m / sec)
・AC current frequency: 6 kHz and 6.5 kHz
・Zeta potential imparted by electromagnetic waves: negative ・Polymer flocculant: acrylamide-based amphoteric polymer flocculant ・Polymer flocculant aqueous solution concentration: 0.2 to 0.33%
・Polymer flocculant aqueous solution spray amount: 16 mL/m 3 -exhaust gas

(実施例2)
脱臭条件を以下の条件に変更した以外は実施例1と同様にして被処理ガスとしての静電塗装ブース排ガスを脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を臭気センサ(新コスモス電機製、XP-329)で測定し、臭気除去率を求めた。結果を表1に示す。
<脱臭条件>
・外気湿度:43%RH
・外気温:10℃
・排気ダクト内湿度:48%RH
・排気ダクト内温度:15℃
・排ガス流量:175m/分(流速:3.6m/秒)
・交流電流周波数:0.5kHzおよび1kHz
・電磁波が付与するゼータ電位:プラス
・高分子凝集剤:アクリルアミド系の両性高分子凝集剤
・高分子凝集剤水溶液濃度:0.2~0.33%
・高分子凝集剤水溶液噴霧量:16mL/m-排ガス
(Example 2)
The electrostatic coating booth exhaust gas as the gas to be treated was deodorized in the same manner as in Example 1, except that the deodorizing conditions were changed to the following conditions.
Then, the odor concentration of the gas to be treated and the gas to be treated was measured with an odor sensor (XP-329, manufactured by New Cosmos Electric) to obtain the odor removal rate. Table 1 shows the results.
<Deodorization conditions>
・ Outside air humidity: 43% RH
・Outside temperature: 10℃
・Humidity in exhaust duct: 48% RH
・Temperature inside exhaust duct: 15℃
・ Exhaust gas flow rate: 175 m 3 /min (flow velocity: 3.6 m / sec)
・AC current frequency: 0.5 kHz and 1 kHz
・Zeta potential imparted by electromagnetic waves: positive ・Polymer flocculant: acrylamide-based amphoteric polymer flocculant ・Polymer flocculant aqueous solution concentration: 0.2 to 0.33%
・Polymer flocculant aqueous solution spray amount: 16 mL/m 3 -exhaust gas

(比較例1)
電磁波照射部30において電磁波の照射を行わなかった以外は実施例1と同様にして被処理ガスとしての静電塗装ブース排ガスを脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を臭気センサ(新コスモス電機製、XP-329)で測定し、臭気除去率を求めた。結果を表1に示す。
(Comparative example 1)
The electrostatic coating booth exhaust gas as the gas to be treated was deodorized in the same manner as in Example 1, except that the electromagnetic wave irradiation unit 30 did not irradiate the electromagnetic wave.
Then, the odor concentration of the gas to be treated and the gas to be treated was measured with an odor sensor (XP-329, manufactured by New Cosmos Electric) to obtain the odor removal rate. Table 1 shows the results.

Figure 0007133161000001
Figure 0007133161000001

(実施例3)
排気ダクト50の断面寸法が400mm角であること以外は実施例1で使用したものと同様の構成を有する脱臭システム100Aを使用し、被処理ガスとしての熱風乾燥炉(熱源:LPG)排ガスを以下の条件で脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を臭気センサ(新コスモス電機製、XP-329)で測定し、臭気除去率を求めた。また、被処理ガスおよび処理ガスのVOC(揮発性有機化合物)濃度をVOCモニター(RAE製、MiniRAE 3000)で測定し、VOC除去率を求めた。結果を表2に示す。
<脱臭条件>
・外気湿度:43%RH
・外気温:10℃
・ダクト内湿度:94%RH
・ダクト内温度:170℃
・排ガス流量:30m/分(流速:3.2m/秒)
・交流電流周波数:6kHzおよび6.5kHz
・電磁波が付与するゼータ電位:マイナス
・高分子凝集剤:アクリルアミド系の両性高分子凝集剤
・高分子凝集剤水溶液濃度:0.2~0.33%
・高分子凝集剤水溶液噴霧量:17.4mL/m-排ガス
(Example 3)
Using the deodorizing system 100A having the same configuration as that used in Example 1 except that the cross-sectional dimension of the exhaust duct 50 is 400 mm square, the hot air drying furnace (heat source: LPG) exhaust gas as the gas to be treated is treated as follows. was deodorized under the conditions of
Then, the odor concentration of the gas to be treated and the gas to be treated was measured with an odor sensor (XP-329, manufactured by New Cosmos Electric) to obtain the odor removal rate. Also, the VOC (volatile organic compound) concentrations of the gas to be treated and the gas to be treated were measured with a VOC monitor (MiniRAE 3000 manufactured by RAE) to determine the VOC removal rate. Table 2 shows the results.
<Deodorization conditions>
・ Outside air humidity: 43% RH
・Outside temperature: 10℃
・Humidity inside the duct: 94% RH
・Temperature inside the duct: 170℃
・ Exhaust gas flow rate: 30 m 3 /min (flow velocity: 3.2 m / sec)
・AC current frequency: 6 kHz and 6.5 kHz
・Zeta potential imparted by electromagnetic waves: negative ・Polymer flocculant: acrylamide-based amphoteric polymer flocculant ・Polymer flocculant aqueous solution concentration: 0.2 to 0.33%
・Polymer flocculant aqueous solution spray amount: 17.4 mL/m 3 -exhaust gas

(実施例4)
高分子凝集剤をアクリルアミド系のカチオン性高分子凝集剤に変更した以外は実施例3と同様にして被処理ガスとしての熱風乾燥炉排ガスを脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を臭気センサ(新コスモス電機製、XP-329)で測定し、臭気除去率を求めた。結果を表2に示す。
(Example 4)
Exhaust gas from a hot-air drying furnace as the gas to be treated was deodorized in the same manner as in Example 3, except that the polymer flocculant was changed to an acrylamide-based cationic polymer flocculant.
Then, the odor concentration of the gas to be treated and the gas to be treated was measured with an odor sensor (XP-329, manufactured by New Cosmos Electric) to obtain the odor removal rate. Table 2 shows the results.

(比較例2)
電磁波照射部30において電磁波の照射を行わなかった以外は実施例3と同様にして被処理ガスとしての熱風乾燥炉排ガスを脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を臭気センサ(新コスモス電機製、XP-329)で測定し、臭気除去率を求めた。また、被処理ガスおよび処理ガスのVOC(揮発性有機化合物)濃度をVOCモニター(RAE製、MiniRAE 3000)で測定し、VOC除去率を求めた。結果を表2に示す。
(Comparative example 2)
The hot-air drying furnace exhaust gas as the gas to be treated was deodorized in the same manner as in Example 3, except that the electromagnetic wave irradiation unit 30 did not irradiate the electromagnetic wave.
Then, the odor concentration of the gas to be treated and the gas to be treated was measured with an odor sensor (XP-329, manufactured by New Cosmos Electric) to obtain the odor removal rate. Also, the VOC (volatile organic compound) concentrations of the gas to be treated and the gas to be treated were measured with a VOC monitor (MiniRAE 3000 manufactured by RAE) to determine the VOC removal rate. Table 2 shows the results.

Figure 0007133161000002
Figure 0007133161000002

(実施例5)
図3に示す脱臭システム100Bを使用し、被処理ガスとしての厨房排気を以下の条件で脱臭した。
ここで、脱臭システム100Bは、厨房ダクト60に接続した直径100mmのフレキシブルダクト61と、フレキシブルダクト61に導線を巻き回して形成したコイル31およびコイル31に交流電流を流すことにより電磁波を発生させる交流電流発生器32よりなる電磁波照射部30と、排気ファン70を介してフレキシブルダクト61の後段側に接続されたフレキシブルダクト62と、塩化ビニル樹脂製の容器41(幅315mm×高さ315mm×奥行き1000mm)内に脱臭材としてセラミック繊維シートをハニカム状に加工してなる構造体42(幅200mm×高さ200mm×厚さ60mm)を3枚設置してなる脱臭部40と、脱臭部40の後段側に接続されたフレキシブルダクト63とを備えている。
そして、被処理ガスおよび処理ガスの臭気濃度を三点比較式臭袋法で測定し、臭気除去率を求めた。結果を表3に示す。
<脱臭条件>
・外気湿度:48%RH
・外気温:5℃
・ダクト内湿度:75%RH
・ダクト内温度:28℃
・排気温度:21℃
・排気量:0.94m/分(流速:2.0m/秒)
・交流電流周波数:6kHzおよび6.5kHz
・電磁波が付与するゼータ電位:マイナス
(Example 5)
The deodorizing system 100B shown in FIG. 3 was used to deodorize the kitchen exhaust as the gas to be treated under the following conditions.
Here, the deodorizing system 100B includes a flexible duct 61 with a diameter of 100 mm connected to the kitchen duct 60, a coil 31 formed by winding a conductive wire around the flexible duct 61, and an alternating current that generates electromagnetic waves by passing an alternating current through the coil 31. An electromagnetic wave irradiation unit 30 consisting of a current generator 32, a flexible duct 62 connected to the latter side of the flexible duct 61 via an exhaust fan 70, and a vinyl chloride resin container 41 (width 315 mm × height 315 mm × depth 1000 mm). ), a deodorizing section 40 in which three structures 42 (width 200 mm×height 200 mm×thickness 60 mm) formed by processing a ceramic fiber sheet into a honeycomb shape as a deodorizing material are installed in a deodorizing section 40, and a rear stage side of the deodorizing section 40. and a flexible duct 63 connected to the
Then, the odor concentrations of the gas to be treated and the gas to be treated were measured by the three-point comparison type odor bag method to obtain the odor removal rate. Table 3 shows the results.
<Deodorization conditions>
・Outdoor humidity: 48% RH
・Outside temperature: 5℃
・Humidity inside the duct: 75% RH
・Temperature inside the duct: 28℃
・Exhaust temperature: 21℃
・Exhaust volume: 0.94 m 3 /min (flow velocity: 2.0 m / sec)
・AC current frequency: 6 kHz and 6.5 kHz
・Zeta potential given by electromagnetic waves: Minus

(比較例3)
電磁波照射部30において電磁波の照射を行わなかった以外は実施例5と同様にして被処理ガスとしての厨房排気を脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を三点比較式臭袋法で測定し、臭気除去率を求めた。結果を表3に示す。
(Comparative Example 3)
Kitchen exhaust as the gas to be treated was deodorized in the same manner as in Example 5, except that the electromagnetic wave irradiation unit 30 did not irradiate the electromagnetic wave.
Then, the odor concentrations of the gas to be treated and the gas to be treated were measured by the three-point comparison type odor bag method to obtain the odor removal rate. Table 3 shows the results.

(実施例6)
容器41内に設置した構造体42の数を2枚に変更した以外は実施例5と同様にして被処理ガスとしての厨房排気を脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を三点比較式臭袋法で測定し、臭気除去率を求めた。結果を表3に示す。
(Example 6)
Kitchen exhaust as the gas to be treated was deodorized in the same manner as in Example 5 except that the number of structures 42 installed in the container 41 was changed to two.
Then, the odor concentrations of the gas to be treated and the gas to be treated were measured by the three-point comparison type odor bag method to obtain the odor removal rate. Table 3 shows the results.

(比較例4)
電磁波照射部30において電磁波の照射を行わなかった以外は実施例6と同様にして被処理ガスとしての厨房排気を脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を三点比較式臭袋法で測定し、臭気除去率を求めた。結果を表3に示す。
(Comparative Example 4)
Kitchen exhaust as the gas to be treated was deodorized in the same manner as in Example 6, except that the electromagnetic wave irradiation unit 30 did not irradiate the electromagnetic wave.
Then, the odor concentrations of the gas to be treated and the gas to be treated were measured by the three-point comparison type odor bag method to obtain the odor removal rate. Table 3 shows the results.

(実施例7)
脱臭条件を以下の条件に変更した以外は実施例5と同様にして被処理ガスとしての厨房排気を脱臭した。
そして、被処理ガスおよび処理ガスの臭気濃度を三点比較式臭袋法で測定し、臭気除去率を求めた。結果を表3に示す。
<脱臭条件>
・外気湿度:48%RH
・外気温:5℃
・ダクト内湿度:75%RH
・ダクト内温度:28℃
・排気温度:21℃
・排気量:0.94m/分(流速:2.0m/秒)
・交流電流周波数:0.5kHzおよび1kHz
・電磁波が付与するゼータ電位:プラス
(Example 7)
Kitchen exhaust as the gas to be treated was deodorized in the same manner as in Example 5, except that the deodorizing conditions were changed to the following conditions.
Then, the odor concentrations of the gas to be treated and the gas to be treated were measured by the three-point comparison type odor bag method to obtain the odor removal rate. Table 3 shows the results.
<Deodorization conditions>
・Outdoor humidity: 48% RH
・Outside temperature: 5℃
・Humidity inside the duct: 75% RH
・Temperature inside the duct: 28℃
・Exhaust temperature: 21℃
・Exhaust volume: 0.94 m 3 /min (flow velocity: 2.0 m / sec)
・AC current frequency: 0.5 kHz and 1 kHz
・Zeta potential given by electromagnetic waves: Plus

Figure 0007133161000003
Figure 0007133161000003

表1~3より、電磁波を照射した実施例1~7では、電磁波の照射を行わなかった比較例1~4と比較して、臭気除去率が向上していることが分かる。
また、表2の実施例3~4より、電磁波照射部30での電磁波の照射により被処理ガス中の成分に付与されるゼータ電位と反対の電荷を持つ高分子凝集剤を使用すると、臭気除去率を更に向上させ得ることが分かる。
From Tables 1 to 3, it can be seen that in Examples 1 to 7 in which electromagnetic waves were irradiated, the odor removal rate was improved compared to Comparative Examples 1 to 4 in which electromagnetic waves were not irradiated.
In addition, from Examples 3 and 4 in Table 2, it can be seen that when a polymer flocculant having a charge opposite to the zeta potential imparted to the components in the gas to be treated by the irradiation of the electromagnetic wave in the electromagnetic wave irradiation unit 30 is used, the odor can be removed. It can be seen that the rate can be further improved.

本発明の脱臭システムによれば、臭気成分を含む被処理ガスを効率的に脱臭することができる。 According to the deodorizing system of the present invention, it is possible to efficiently deodorize the gas to be treated that contains malodorous components.

10 加湿装置
20 加熱装置
30 電磁波照射部
31 コイル
32 交流電流発生器
40 脱臭部
41 容器
42 構造体
50 排気ダクト
60 厨房ダクト
61,62,63 フレキシブルダクト
70 排気ファン
100,100A,100B 脱臭システム
10 Humidifier 20 Heating device 30 Electromagnetic wave irradiation part 31 Coil 32 AC current generator 40 Deodorizing part 41 Container 42 Structure 50 Exhaust duct 60 Kitchen duct 61, 62, 63 Flexible duct 70 Exhaust fan 100, 100A, 100B Deodorizing system

Claims (4)

臭気成分を含む被処理ガスを脱臭する脱臭システムであって、
前記被処理ガスに電磁波を照射する電磁波照射部と、
前記電磁波照射部で電磁波を照射された被処理ガスを脱臭材と接触させる脱臭部と、を備え、
前記電磁波照射部は、前記被処理ガスに電磁波を照射する電磁波発振部としてのコイルと、前記コイルと電気的に接続されており、前記コイルに交流電流を流すことにより電磁波を発生させる交流電流発生器とを備え
前記脱臭材が、前記電磁波照射部での電磁波の照射により前記被処理ガス中の成分に付与されるゼータ電位と反対の電荷を持つ高分子凝集剤の水溶液である、脱臭システム。
A deodorizing system for deodorizing a gas to be treated containing odorous components,
an electromagnetic wave irradiation unit that irradiates the gas to be processed with an electromagnetic wave;
a deodorizing unit for bringing the gas to be treated, which has been irradiated with electromagnetic waves by the electromagnetic wave irradiation unit, into contact with a deodorizing material;
The electromagnetic wave irradiating section is electrically connected to a coil as an electromagnetic wave oscillating section for irradiating the gas to be treated with an electromagnetic wave, and is electrically connected to the coil, and generates an alternating current that generates an electromagnetic wave by passing an alternating current through the coil. and
The deodorizing system , wherein the deodorizing material is an aqueous solution of a polymer flocculant having a charge opposite to the zeta potential imparted to the components in the gas to be treated by the electromagnetic wave irradiation section .
前記電磁波照射部の前段側に前記被処理ガスを加湿する加湿装置を有する、請求項1に記載の脱臭システム。 2. The deodorizing system according to claim 1, further comprising a humidifying device for humidifying the gas to be treated on the upstream side of the electromagnetic wave irradiation section. 前記電磁波照射部の前段側に前記被処理ガスを加熱する加熱装置を有する、請求項1または2に記載の脱臭システム。 3. The deodorizing system according to claim 1, further comprising a heating device for heating the gas to be treated on the upstream side of the electromagnetic wave irradiation unit. 前記液体に電磁波を照射する液体用電磁波照射装置を更に有する、請求項1~3の何れかに記載の脱臭システム。 4. The deodorizing system according to any one of claims 1 to 3 , further comprising a liquid electromagnetic wave irradiation device for irradiating the liquid with electromagnetic waves.
JP2017159580A 2017-08-22 2017-08-22 Deodorizing system Active JP7133161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159580A JP7133161B2 (en) 2017-08-22 2017-08-22 Deodorizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159580A JP7133161B2 (en) 2017-08-22 2017-08-22 Deodorizing system

Publications (2)

Publication Number Publication Date
JP2019037312A JP2019037312A (en) 2019-03-14
JP7133161B2 true JP7133161B2 (en) 2022-09-08

Family

ID=65724649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159580A Active JP7133161B2 (en) 2017-08-22 2017-08-22 Deodorizing system

Country Status (1)

Country Link
JP (1) JP7133161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442116B2 (en) * 2019-06-05 2024-03-04 メタウォーター株式会社 Deodorization system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263056A (en) 1999-03-19 2000-09-26 Proud:Kk Liquid treatment method and liquid treatment system
JP2000300957A (en) 1999-04-16 2000-10-31 Tao:Kk Photocatalytic device for vapor-phase and hazardous material-treating method
JP2001218823A (en) 2000-02-08 2001-08-14 Takasago Thermal Eng Co Ltd Device for deodorizing kitchen exhaust
JP2008297507A (en) 2007-06-04 2008-12-11 Espo Chemical Corp Cleaning agent
JP2013167160A (en) 2012-02-14 2013-08-29 Ska Ltd Exhaust gas purification device and purification method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144725A (en) * 1980-04-11 1981-11-11 Mitsubishi Electric Corp Method for scrubbing and deodorizing malodorant gas
JPS6287161A (en) * 1985-10-14 1987-04-21 日本化成株式会社 Deodorizing method using ultraviolet rays
JPH0352617A (en) * 1989-07-18 1991-03-06 Mitsubishi Kakoki Kaisha Ltd Method for preventing dew condensation in dry deodorizing device
JPH08187428A (en) * 1995-01-10 1996-07-23 Tsunemasa Tsuchiya Substance modification by high-frequency eletromagnetic wave
JPH10216467A (en) * 1997-02-10 1998-08-18 Nippon Polyester Kk Method of deodorizing in snowfall district and upper surface open type deodorizing device
JP2014044085A (en) * 2012-08-24 2014-03-13 Teisan Konan Kotsu Co Ltd Method and apparatus for treating aqueous solution containing radioactive materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263056A (en) 1999-03-19 2000-09-26 Proud:Kk Liquid treatment method and liquid treatment system
JP2000300957A (en) 1999-04-16 2000-10-31 Tao:Kk Photocatalytic device for vapor-phase and hazardous material-treating method
JP2001218823A (en) 2000-02-08 2001-08-14 Takasago Thermal Eng Co Ltd Device for deodorizing kitchen exhaust
JP2008297507A (en) 2007-06-04 2008-12-11 Espo Chemical Corp Cleaning agent
JP2013167160A (en) 2012-02-14 2013-08-29 Ska Ltd Exhaust gas purification device and purification method

Also Published As

Publication number Publication date
JP2019037312A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
KR102101374B1 (en) Multifunctional air purifying device that removes indoor pollution by using pyrolysis
CN104955490B (en) Using the air cleaning unit of UV LED
JP5614559B2 (en) Methods and devices for disinfecting and deodorizing toilets
EA026778B1 (en) Method for disinfecting a given facility or equipment and a mobile disinfection unit for use in the method
CN103285718A (en) Deodorizing and sterilizing device for low-temperature plasma garbage station
KR20150104062A (en) Air purifying device of air cleaner
KR100842355B1 (en) Stench removing apparatus using ozone and oh radical
JP7133161B2 (en) Deodorizing system
KR102169827B1 (en) Odor removal apparatus of food waste
JP5310791B2 (en) Air purifier
KR100949164B1 (en) Photocatalytic reactor having a function of deodorization and sterilization air pollution and method of the same, and stand-alone a foul smell treatment apparatus using the same
KR102033472B1 (en) Plasma odor and germ remover
JPH1151430A (en) Table type air purifier
CN205073871U (en) Utilize device of supplementary refuse disposal leachate foul smell of ultrasonic atomization
KR20180132290A (en) Air sterilizer
CN207729736U (en) A kind of multifunctional air purifier
KR100601183B1 (en) Plasma humidification device with deodorization and sterilization function
JP4292799B2 (en) Contaminated air treatment apparatus and treatment method
JP2019103796A (en) Deodorizing apparatus for septic tank and method for deodorizing septic tank
TW201600161A (en) Device of photocatalyst VOC treatment for waste gas
KR20210059501A (en) Air sterilization system
WO2015186901A1 (en) Infrared anion air purifier
JP4771609B2 (en) Planter with air purifier
JPH09108325A (en) Deodorization device with adsorbent
CN203628919U (en) Ultraviolet ultrasonic humidifying and scenting device with disinfecting function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210901

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211022

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211026

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211119

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211130

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220517

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220628

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220705

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220802

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220819

R150 Certificate of patent or registration of utility model

Ref document number: 7133161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150