JP7131871B1 - Symmetric streamline blade spiral wind turbine - Google Patents

Symmetric streamline blade spiral wind turbine Download PDF

Info

Publication number
JP7131871B1
JP7131871B1 JP2022022770A JP2022022770A JP7131871B1 JP 7131871 B1 JP7131871 B1 JP 7131871B1 JP 2022022770 A JP2022022770 A JP 2022022770A JP 2022022770 A JP2022022770 A JP 2022022770A JP 7131871 B1 JP7131871 B1 JP 7131871B1
Authority
JP
Japan
Prior art keywords
wind
blade
wing
wind turbine
symmetrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022022770A
Other languages
Japanese (ja)
Other versions
JP2022173988A (en
Inventor
明久 松園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of JP7131871B1 publication Critical patent/JP7131871B1/en
Publication of JP2022173988A publication Critical patent/JP2022173988A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】風向速の激変や台風等でも発電でき、騒音や鳥害等も生ぜず何処でも設置出来且つ、景観に溶け込み易い自然な曲線美も備えた風力発電機を提供する。【解決手段】風車翼を自らの抗力で自律的に制御できるように、表裏対称の流線形状にして2面で風を受ける。翼長をインボリュート曲線形状に形成することで、回転時の翼前縁での斜めからの大気進入による摩擦抵抗や風切り音、バードストライク等抑えることができる。また、翼が抗力で風下側に自律的に撓り易く螺旋形状翼に動的に立体変形することで揚力も増し、その柔軟構造から強風も逸らし過剰な抗力を逃がすことで揚力を得る。更に、風向きが激変しても狭い角度の自律的ヨー制御で俊敏に追従でき、常に同一方向に回転する風車翼を得ることができる。併せて空中設置等も容易になる。【選択図】図2To provide a wind power generator capable of generating power even under a drastic change in wind direction and speed, a typhoon or the like, being installable anywhere without causing noise or bird damage, and having a natural curvaceous beauty that easily blends into the scenery. SOLUTION: A wind turbine blade is made into a symmetrical streamline shape so that it can be autonomously controlled by its own drag force, and receives wind from two sides. By forming the blade length into an involute curve shape, it is possible to suppress frictional resistance, wind noise, bird strikes, etc. due to oblique air intrusion at the leading edge of the blade during rotation. In addition, the wing is easy to bend to the leeward side due to drag, and the dynamic three-dimensional deformation of the helical wing increases lift, and the flexible structure deflects strong winds and releases excessive drag to obtain lift. Furthermore, even if the direction of the wind changes abruptly, it is possible to obtain a wind turbine blade that can agilely follow the wind through autonomous yaw control with a narrow angle and that always rotates in the same direction. At the same time, installation in the air, etc. becomes easier. [Selection drawing] Fig. 2

Description

本発明は流体力学の基本技術である、風の抗力を活かして翼形状をダイナミックに変化させることにより弱風から強風迄、効率よく揚力を得て回転駆動エネルギーとして取り出し易くし、更に運転中の風切り音等を抑えて人に優しく、何処でも設置可能な風力発電用風車技術に関するものである。
The present invention utilizes the drag force of the wind, which is a basic technology of fluid dynamics, to dynamically change the shape of the wing to efficiently obtain lift from weak to strong winds, making it easier to extract rotational drive energy. The present invention relates to a wind turbine technology for wind power generation that suppresses wind noise, etc., is friendly to people, and can be installed anywhere.

風力発電は昼夜24時間、天候に関わらず風さえあれば、誰もが手ごろに安全・安心に発電できる優れた手段であるが、送電ロスの少ない消費地に近い都心部や市街地では風が弱く、またビル風、ベランダ風などで風向速が激変して出力不安定化や、風切り音やバードストライク等の問題がある。しかし、世界のCO2環境規制は年々厳しく、風力発電が益々重要となっており、軽風域(1.6~3.3m/秒:気象庁風力定義)から台風等迄の全風域でも安定して発電出来、細かな制御が不要で、耐久性も備えた風力発電技術の向上が急がれている。 Wind power generation is an excellent means of generating electricity 24 hours a day, 24 hours a day, 7 days a week, regardless of the weather, as long as there is wind. In addition, there are problems such as output instability, wind noise and bird strikes due to sudden changes in wind direction and speed due to wind from buildings and verandas. However, the world's CO2 environmental regulations are becoming stricter year by year, and wind power generation is becoming more and more important. There is an urgent need to improve wind power generation technology that can generate electricity, does not require detailed control, and has durability.

そこで、「翼の両端を軸に固定する風力原動機の翼製作」の通り、紙で作る「かざぐる」まのように捩じって、後方に戻した公知の特許(特許文献1:本書類添付図12、13)があるが、本出願特許は、流体力学の基本である翼断面を対称流線形状翼で、片方で支えた渦巻き翼形状と、風圧で自律的で動的な螺旋形状変化による迎え角増強構造に加え、表裏2面風向き形状による、回転方向不変機能等、コンセプトや特徴、機能構造が全く異なる。 Therefore, according to the ``Production of wind power generator blades in which both ends of the wing are fixed to the shaft'', a known patent (Patent Document 1: this document) twists it like a "pinwheel" made of paper and returns it backward Although there are attached figures 12 and 13), the patent of this application is a symmetrical streamlined blade, which is the basis of fluid dynamics, a spiral blade shape supported by one side, and a spiral shape that is autonomous and dynamic due to wind pressure In addition to the structure that increases the angle of attack by changing, the concept, features, and functional structure are completely different, such as the function that does not change the rotation direction due to the two-sided wind direction shape.

次に、翼形状の後縁が曲がった構成の類似例として公知の特許(特許文献2:本書類添付図14、15)の請求項1の「プロペラ翼の先端部が、プロペラ翼の正面方向へ傾斜され、傾斜部が形成されている」と請求項2の「前記傾斜部は、その中心線がプロペラ長手方向に対して25度~50の範囲で傾斜している」あるが、本出願特許では、静的な傾きはなくフラットで、対称流線翼と全く異なり、表裏2面と均等で全く異なり、どちらか風が有る側の風下に自律的に撓ることもできる構造と、夫々大きく根本的に異なり、また、請求項4では「プロペラ翼の先端縁部に受風部が大きく設定され、該受風部はプロペラ翼の正面において、基部の幅より先端方が幅広に設定されている」とあるが、本特許は、先端も幅は変わらず形状も曲線で全く異なる。 Next, as a similar example of a configuration in which the blade-shaped trailing edge is bent, in claim 1 of a known patent (Patent Document 2: Figures 14 and 15 attached to this document), "the tip of the propeller blade is in the front direction of the propeller blade. and an inclined portion is formed,” and Claim 2, “The center line of the inclined portion is inclined in the range of 25 degrees to 50 degrees with respect to the longitudinal direction of the propeller.” In the patent, there is no static inclination and it is flat, completely different from a symmetrical streamline wing. In claim 4, "the wind receiving part is set to be large at the tip edge of the propeller blade, and the wind receiving part is set wider at the tip than at the base in front of the propeller blade." However, in this patent, the tip and width remain the same and the shape is completely different with a curve.

また、請求項6の「前記受風部の縦方向中間において、傾斜横溝が形成され、該傾斜横溝の回転後部位が、翼の回転前部位からも、受風部の基端部位及び先端部位からも、深く後方に傾斜している」や、請求項7の「プロペラの翼先端部が、プロペラ正面方向に傾斜され、傾斜部が形成されていることを特徴」とあるが、本特許は、翼先端も均等で静的にも偏って傾斜せず、風圧で風下に自律的に前後に撓る構造であるので全く異なる。 In addition, in claim 6, "an inclined lateral groove is formed in the middle of the wind receiving part in the longitudinal direction, and the post-rotation part of the inclined lateral groove is located near the base end part and the tip part of the wind receiving part from the pre-rotation part of the blade. It is deeply slanted rearward even from the front", and claim 7 "is characterized in that the wing tip of the propeller is slanted in the front direction of the propeller and an inclined portion is formed", but this patent does not , the tip of the wing is even and does not tilt statically.

更に、本発明の図7の両側に風車を配置する構造が少し似ている公知の特許(特許文献3:本書類添付図16)があり、請求項1では「風力発電機用風車を風上側と風下側に配置し、同一軸で連結する構造」と、請求項4では「流線形の発電機室上部に方向舵を取り付ける構造」とあるように、風向きは1方向のみで、同一軸で連結する構造だが、本出願特許では方向舵は無く、請求項2の特徴である、表裏2面方向の風受けでも風車回転方向が変わらない構造で且つ、前後の風車を反転させて、回転子と回転する従来の固定子相当側発電機を反転させて相対差で2倍の出力を得る原理、構造、機能共全く異なる。 Furthermore, there is a known patent (Patent Document 3: Fig. 16 attached to this document) in which the structure of arranging wind turbines on both sides of Fig. 7 of the present invention is somewhat similar, and claim 1 states, "Wind turbine for wind power generator on the windward side. The wind direction is only one direction, and it is connected on the same axis However, in the patent of the present application, there is no rudder, and it is a structure in which the wind turbine rotation direction does not change even if the wind is received in the front and back directions, which is the feature of claim 2. The principle, structure, and function are completely different from that of a conventional stator-equivalent side generator that is reversed to obtain double the output with a relative difference.

次に渦巻き形状を切り出す公知の特許(特許文献4:本書類添付図17、18、19)があるが、請求項1で「平板部に渦巻き状の切り込みを有し、中心部側を伸長させた状態で三次元形状の螺旋ブレードを配置することを特徴とするブレード平板」と、回転中心軸部は「蚊取り線香」似で、図17の各種例から、翼の外周(先端)側も平板から切り出し繋がったままで中心部側を伸ばしただけの構造の渦巻き螺旋形状だが、本出願特許の翼は、対称流線翼形状で表裏両面に迎え角を有し、表裏2面で受風でき、翼の先端は解放されて、表裏に撓り伸び縮みする動的な螺旋構造で基本翼構造が全く異なる。
また図17の各種の「平板を切り出し、縦に伸ばして螺旋構造」では、螺旋面の斜面で風が抜けて回したい模様だが、平板切り出しままで風が抜ける空きが無く、風が抜けても最適な迎え角度が無さそうで、回り難く「高効率な切り込み形状を有する羽根部材を提供する」と述べてはいるが傾き方向、角度等詳細不明で、風を強く受ければ平板のため、通常は前縁部で剥離が起きてカルマン渦が発生し易く、また翼が薄い為振動し易く騒音も出て、中心側と先端が纏められて受風面がより狭い等、基本の部分が流体力学的に疑問な構造に対し、本出願特許の翼は、平板で無く、断面が対称流線翼形状で、翼の断面に丸みの前縁と、反対側の後縁に向かって表裏対称に段々と薄くなっていく、対称流線湾曲形状法面翼(100)を長尺方向にインボリュート曲線(1101)構造で先端は解放され、7種の特徴を有し基本構造が全く異なる。
Next, there is a known patent for cutting out a spiral shape (Patent Document 4: Figures 17, 18, and 19 attached to this document). A blade flat plate characterized by arranging a three-dimensional spiral blade in a state where it is in a state of being flat ”, and the rotation center shaft part is similar to “mosquito coil”, and from various examples in FIG. Although it is a spiral spiral shape with a structure in which the center side is only extended while being cut out and connected, the blade of this patent application has a symmetrical streamline blade shape with an angle of attack on both front and back sides, and can receive wind on both front and back sides. The tip of the is released, and the basic wing structure is completely different with a dynamic spiral structure that bends and contracts on the front and back.
In addition, in the various “cut out flat plate and stretch it vertically to create a spiral structure” in FIG. It seems that there is no optimum angle of attack, and it is difficult to turn. In addition, because the blade is thin, it is easy to vibrate and generate noise. In contrast to the dynamically questionable structure, the blade of this patent application is not a flat plate, but has a symmetrical streamline blade shape in cross section. The gradually thinning symmetrical streamline curved slope blade (100) is extended in the longitudinal direction with an involute curve (1101) structure, the tip of which is open, and has 7 types of characteristics, and the basic structure is completely different.

更に構成として、本書類添付図18、特許文献4の図31は、左右にスパイラル風車を置いて両端と中央で支える構造で、相互が別々に逆転する方向が示され、中央の「35は2つの軸体31と接続されているローターおよびステーターの回転により発電する発電機」と、「風(41)」と左風のみの対応で、請求項には説明が無く、発電機の逆転対応構造の説明もなく詳細不明だが、本出願特許は表裏何方から風が吹いても反転出来る翼構造と3軸反転発電機(701)や、詳細な構造説明(図8)で、比較できる範囲では異なる。 Further, as a configuration, FIG. 18 attached to this document and FIG. 31 of Patent Document 4 show a structure in which spiral windmills are placed on the left and right and supported at both ends and the center, and the directions of reversing each other are shown separately. A generator that generates electricity by the rotation of the rotor and stator connected to the two shafts 31", "Wind (41)", and only the left wind, and there is no explanation in the claim. Although the details are unknown without explanation, the patent of this application is a wing structure that can be reversed even if the wind blows from the front and back, a triaxial reversing generator (701), and a detailed structural explanation (Fig. 8). .

また本書類添付図19、特許文献4の図42の「連結型傾斜式風力発電機の概念的な正面図」は、表裏2面方向対応出来ない構造の片面風車の為、図19上では左右、前後に4倍並べた構造は、本発明の表裏対応図9と異なり、重要な吊り下げ構造や電力取り出し方法の詳細構造は無く、「(実施の形態7)」等では情報不足で、仕組み、構造、内容が比較できない。

In addition, Fig. 19 attached to this document and Fig. 42 of Patent Document 4, "Conceptual Front View of Connected Tilting Wind Power Generator", are single-sided wind turbines with a structure that cannot be used in two directions. , The structure that is arranged four times in front and back is different from the front and back correspondence FIG. , structure and content are not comparable.

特開2006-17093 両端固定風力原動機用翼製作方法 (本書類添付図12、13)Japanese Unexamined Patent Application Publication No. 2006-17093 Method for manufacturing blades for fixed-end wind power generator (Figs. 12 and 13 attached to this document) 特開2006-152957 プロペラ並びに横軸風車 (本書類添付図14,15)Japanese Patent Laid-Open No. 2006-152957 Propeller and Horizontal Axis Wind Turbine (Figures 14 and 15 attached to this document) 特開2013-241928 可搬式双輪型風力発電機 (本書類添付図16)Japanese Patent Laid-Open No. 2013-241928 Portable twin-wheel wind power generator (Fig. 16 attached to this document) 特許第6103411号 ブレード平板、それを用いた発電機およびその組み立てキット、送風装置およびその組み立てキット(本書類添付図17.18.19)Patent No. 6103411 Blade flat plate, generator using it and its assembly kit, blower and its assembly kit (Fig. 17.18.19 attached to this document)

「飯塚尚彦発行「基礎流体力学」2010年4月8日産業図書株式会社出版P59~75、P120~143他"Naohiko Iizuka ``Fundamental Fluid Dynamics'' April 8, 2010 Published by Sangyo Tosho Co., Ltd. P59-75, P120-143, etc.

欧州の過激なLCA(ライフ・サイクル・アセスメント)規制は、太陽光パネルさえもライフサイクル・コストや設置環境破壊問題等も考えると、今後の長期的な安全性や技術的成熟度等から、最も現実的で確実なクリーン電力取得手段は風力発電となるが、昼夜、天候に関係なく発電できる大型主流の風力発電をもっと小型で身近に使い易く普及させることが急務である。
Europe's radical LCA (Life Cycle Assessment) regulations are the most important in terms of future long-term safety and technological maturity, considering the life cycle cost of even solar panels and the problem of installation environment destruction. Wind power generation is a realistic and reliable means of obtaining clean power, but there is an urgent need to popularize large-scale, mainstream wind power generation that can generate power day and night, regardless of the weather.

風力発電を手軽に使い易くする為には、不安定な弱風域から、暴風、台風等の厳しい運用環境や、住宅街や日陰、北面等でも昼夜静かに発電でき、また高層ビル、マンション等ビル風の激変する風向速に対しては、細かな制御が要らず維持管理等が容易な風車翼構造で、長期間安定稼働できる耐久性が必要であり、そのためには、風車翼の高機能化の手段として風の抗力を増やさずに揚力だけを大きく増やせ、同時に静音化や環境配慮等、課題も実現することが必要である。 In order to make it easy to use wind power generation, it is possible to generate power quietly day and night from unstable weak wind areas, severe operating environments such as storms and typhoons, residential areas, shades, north faces, etc., and high-rise buildings, condominiums, etc. A wind turbine blade structure that does not require detailed control and is easy to maintain and manage against the rapidly changing wind direction and speed of building wind, and durability that enables stable operation for a long period of time is required. As a means of reducing wind resistance, it is necessary to greatly increase only lift without increasing wind resistance, and at the same time, it is necessary to realize issues such as noise reduction and environmental friendliness.

以下説明図における最大4桁の符号番号の付与ルールとして、頭最大2桁は図面番号で、下2桁がその図面内で出現する追番だが、共通部位が他の図面で再度現れ説明する場合は、更に頭最大2桁目の図面番号と「―」ハイフォンを付与し、複数表示する場合は、更に末尾に「―と小文字の英字」を付与し、また代表例だけに付与することもある。 As a rule for assigning code numbers of up to four digits in the following explanatory diagrams, the first two digits are the drawing number, and the last two digits are the number that appears in the drawing, but if the common part appears again in another drawing and is explained In addition, the drawing number of the first two digits and "-" hyphen are added, and when displaying more than one, "- and lowercase letters" are added at the end, and sometimes only representative examples are given .

請求項1の課題解決手段として、風力発電等の風車(200)を構成する、複数枚の翼(100)に関し先ず、風向速が激変する運用環境下では、外部からの制御が難しくなること等から、細かな迎え角制御を不要化する構造として、丸みを持った前縁(102)から、等しく徐々に薄く絞っていき、途中の両側面では表裏対象な斜面状の法面を形成しながら、後縁(103)で後縁角(111)を持って閉じられた、表裏対称流線形状の取り付け穴側(112)の断面形状(101)の通り、表裏の夫々の面には同時に後縁角(111)の半分ずつの固定した表面側迎え角(116)と、等しく対称な裏面側迎え角(117)を形成し、 As a means for solving the problem of claim 1, regarding a plurality of blades (100) constituting a windmill (200) such as a wind power generation, first, it becomes difficult to control from the outside in an operating environment where the wind direction and speed change drastically. Therefore, as a structure that eliminates the need for fine angle-of-attack control, from the rounded front edge (102), it is gradually narrowed down equally, forming symmetrical slopes on both sides along the way. As shown in the cross-sectional shape (101) of the mounting hole side (112) of the front and back symmetrical streamline shape closed with the trailing edge angle (111) at the trailing edge (103). forming a fixed face angle of attack (116) of each half of the edge angle (111) and an equally symmetrical back face angle of attack (117);

更に風車回転時に、抗力を抑えて揚力を大きく増やせ、静音化も実現する手段として、翼の前縁側(102)を曲線状の外側に、反対の後縁側(103)を内側にして、歯車設計における摩擦の起きない転がり関数である、インボリュート曲線(1101)上に重ねた、湾曲形状翼(11-100)の様に、取り付け穴(112)に近い部分では曲がりが大きい湾曲形状を形成し、翼先端(108)に行くに従って前縁側の曲がりを徐々に少なくしたインボリュート曲線形状(106)の翼を構成することにより、断面形状(曲線形状中央の101)を保って全体翼形状として、先端部に行くに従って、大気方向(1110)に対し、より浅く、斜角(1111)に進入する構造により空気抵抗が減り、それによる抗力と静音化も図れる、対称流線湾曲形状法面翼(100)が形成され、また同時に、この翼に表面風(114)又は、裏面風(115)の何方が当たれば、風に対して直角方向となる、翼弦線(113)方向で且つ、前縁(102)方向に揚力が生まれる原理から、翼の表裏の何方からの風を受けても揚力の方向が常に変わらない構造の対称流線湾曲形状法面翼(100)が形成される。 Furthermore, when the wind turbine rotates, as a means of suppressing the drag and greatly increasing the lift and realizing noise reduction , the leading edge side (102) of the blade is curved outside and the opposite trailing edge side (103) is inside the gear design. Forming a curved shape with a large bend near the mounting hole (112) like the curved blade (11-100) superimposed on the involute curve (1101), which is a rolling function that does not cause friction in the By constructing an involute curved blade (106) in which the curvature of the leading edge side is gradually reduced toward the blade tip (108), the cross-sectional shape (101 at the center of the curved shape) is maintained and the overall blade shape is obtained. As it goes to the air direction (1110), the structure that enters at an oblique angle (1111) reduces air resistance, resulting in drag and noise reduction. is formed, and at the same time, if either the front wind (114) or the back wind (115) hits this blade, it will be perpendicular to the wind, in the direction of the chord line (113) and the leading edge ( 102) Based on the principle that lift is generated in the direction, a symmetrical streamline curved slope wing (100) is formed that has a structure in which the direction of lift does not change regardless of whether the wind is received from either the front or back of the wing.

次に、請求項2の課題解決手段として、この対称流線湾曲形状法面翼(100)で、風向き反転対応制御も不要化する風車(200)を構成する手段として、風車回転軸中心(201)側から、風車外周先端(202)まで、横軸型風車の中心面となる回転掃過円盤面(206)と平行に、対称流線湾曲形状法面翼(100)の中心線(113)に沿って、各翼の前縁側(2-102)が回転方向(203)の前方側に、後縁(2-103)側が反対の回転方向後方側となるように、必要枚数の翼を等間隔に複数枚並べて、対称流線翼渦巻式風車(200)を構成することにより、各翼(2-100-a、b、c)の表面又は裏面のどちらかに風が当たれば、各翼の表面側迎え角(116)と対称な裏面側迎え角(117)への風圧により、各翼の前縁(2-102)方向に揚力が生まれ加算されることで、風向きが激変反転しても常に定まった回転方向(203)に回る機能の、対称流線翼渦巻式風車(200)が形成される。 Next, as a means for solving the problem of claim 2, the symmetrical streamline curved slope blade (100) is used as a means for configuring a wind turbine (200) that eliminates the need for control for reversing the wind direction . ) side to the wind turbine outer peripheral tip (202), in parallel with the rotating sweeping disk surface (206) which is the center plane of the horizontal axis type wind turbine, the center line (113) of the symmetrical streamline curved slope blade (100) , so that the leading edge side (2-102) of each blade is on the forward side in the direction of rotation (203) and the trailing edge (2-103) side is on the rear side in the opposite direction of rotation. By arranging a plurality of blades at intervals to form a symmetrical streamline blade spiral wind turbine (200), if the wind hits either the front surface or the rear surface of each blade (2-100-a, b, c), each blade Due to the wind pressure to the front side angle of attack (116) and the symmetrical back side angle of attack (117), lift is generated in the direction of the leading edge (2-102) of each wing and added, resulting in a drastic change in the wind direction. A symmetrical streamline vane volute wind turbine (200) is formed, which always rotates in a fixed direction of rotation (203) .

また、対称流線湾曲形状法面翼(100)の柔軟構造が生み出す、抗力による翼形状変化により揚力を獲得する手段として、風車の各回転翼外周先端側(202)が、その時の風向きの風下となるZ軸方向(207)の前後に風力の強さの度合いに応じ、
風車後方からの風圧(305)での自律的な立体的構造変化機能で、前方向螺旋形状(3―100―a、b、c)のように撓れば、各翼が、大きな翼弦ねじれ撓り傾き迎え角(302)と、同時に、各翼の長尺方向に沿った長い曲線した法面も撓って風下に螺旋状に傾き、各翼で長尺方向ねじれ撓り迎え角(303)とで生じる揚力が、風車翼中央から先端部故に大きなトルクとして得られて回転方向(304)に加算されて回り
またこの風向きとは反対に、風車前方からの風圧(505)による自律的な立体的構造変化機能で、前方向螺旋形状(5―100―a、5―100―b、5―100―c)のように撓れば、各翼が大きな翼弦ねじれ撓り傾き迎え角(502)と、同時に、各翼の長尺方向に沿った長い曲線した法面も撓って風下に螺旋状に傾き、各翼で長尺方向ねじれ撓り迎え角(503)とで生じる揚力が、風車翼中央から先端部故に大きなトルクとして得られ、
共に何方からの風に対しても、常に定まった回転方向(504)に加算されて回る、風向き急反転対応の自律的抗力いなし制御手段による、揚力獲得機能に加え、
In addition, as a means of obtaining lift by changing the blade shape due to drag, which is created by the flexible structure of the symmetrical streamlined curved slope blade (100), the outer peripheral tip side (202) of each rotor blade of the wind turbine is placed on the leeward side of the wind at that time Depending on the degree of wind strength in the Z-axis direction (207),
With the function of autonomous three-dimensional structural change under wind pressure (305) from the rear of the wind turbine, if it bends like a forward spiral shape (3-100-a, b, c), each blade will have a large chordal twist. At the same time as the bending tilt angle of attack (302), the long curved slope along the longitudinal direction of each wing also bends and helically tilts downwind, giving each wing the longitudinal twist bending angle of attack (303). ) is obtained as a large torque from the center of the wind turbine blade to the tip, and is added in the direction of rotation (304) ,
In addition, opposite to this wind direction, the forward spiral shape (5-100-a, 5-100-b, 5-100-c) is formed by the autonomous three-dimensional structure change function due to the wind pressure (505) from the front of the windmill. , each wing will have a large chordal twist deflection tilt angle of attack (502), and at the same time, the long curved slope along the longitudinal direction of each wing will also flex and spirally tilt downwind. , the lift generated by the torsional deflection angle of attack (503) in the longitudinal direction of each blade is obtained as a large torque from the center of the wind turbine blade to the tip,
In addition to the lift acquisition function by the autonomous drag control means for sudden reversal of the wind direction, which is always added to the fixed rotation direction (504) regardless of the wind from any direction,

更に、不安定な弱風域の揚力獲得手段として、弱風(601)環境で、複数の対称流線湾曲形状法面翼(6-100―a、b、c)の各後縁部(103)と先端部(108)のそれぞれに、翼の中心線でもある翼弦線(109)上に並行で且つ、その翼の後縁(103)より薄い柔軟構造の後縁分割フラップ(6-104)と、弱風揚力補強先端フラップ(6-105)を取り付けることにより、対称流線湾曲形状法面翼(100)の曲線形状(106)部が撓らない弱風(601)でも、自律的に、各フラップ(105,104)だけが、その時の弱風(601)の風下方向に撓ることで、各翼の先端フラップ(6-105)が、弱風(601)に対する迎え角代表図(602)を形成し、前縁(102)方向に揚力が生まれ、翼先端部故に、トルクの大きい定まった方向の回転力が得られる、弱風揚力補強手段も有する。
Furthermore, as a means for obtaining lift in an unstable weak wind region, in a weak wind (601) environment, each trailing edge (103 ) and tip (108), a flexible structure trailing edge split flap (6-104) parallel to the chord line (109), which is also the centerline of the wing, and thinner than the trailing edge (103) of the wing. ) and a weak wind lift reinforcing tip flap (6-105), the curved shape (106) part of the symmetrical streamline curved slope wing (100) does not bend even in weak wind (601), autonomously In addition, only each flap (105, 104) bends in the downwind direction of the weak wind (601) at that time, so that the tip flap (6-105) of each wing changes the angle of attack representative diagram against the weak wind (601) (602) is formed, lift is generated in the direction of the leading edge (102), and because of the tip of the wing, it also has a weak wind lift force reinforcement means that can obtain a rotational force in a fixed direction with a large torque.

請求項3の課題解決手段として、発電性能を倍以上に引き上げ、空中でも発電出来る設置容易化機能を生み出す概念として、
広い受風機能を有する風車(200)を左右に2台、反対向きに並べ、左右どちらからの風を受けても常にお互いに反転する風車構造(710)を構成して且つ、この左右の夫々の風車の間に、発電機の筐体側も逆回転できる構造の、新発明の3重軸反転発電機(701)を連結させることで、回転子側永久磁石(801)が、反転側電機子コイル(802)の内部で回る構造となり、相対的に2倍の磁束変化を引き出すことで、2倍以上の発電性能と、同時に軽量化されて空中設置容易化となる手段を更に詳しく述べれば、
As a means for solving the problem of claim 3, as a concept that doubles the power generation performance and creates a function that facilitates installation that can generate power even in the air,
Two windmills (200) having a wide wind-receiving function are arranged on the left and right in opposite directions to form a windmill structure (710) that is always reversed to each other regardless of whether the wind is received from either the left or right, and each of the left and right is configured. By connecting the newly invented triple-axis reversing generator (701), which is structured so that the housing side of the generator can also rotate in reverse, between the windmills, the rotor-side permanent magnet (801) is connected to the reversing-side armature In more detail, the structure that rotates inside the coil (802) draws out a relatively doubled magnetic flux change, thereby doubling or more the power generation performance and at the same time reducing the weight and facilitating installation in the air.

先ず、空中で支え固定できる高張力ワイヤー(805)と、外部からの制御線及び電力取り出し線(806)を一緒に貫通させ、吊るせる中空構造の1重めの軸の固定中心軸(705)を置き、
2重軸目の左側中空回転軸(809)上で、左側風車(702)から、発電機の左側の三重軸ベアリング(807)と、右側の三重軸ベアリング(808)で回転軸(809)軸を支えて貫通させ、回転子側永久磁石(801)と連結して、上方向に回転(803)させ、
更に、2重軸目の右側中空回転軸(810)上で右側風車(704)と両端反転駆動式3重軸反転発電機(701)を連結させ、反転側電機子コイル(802)と連結して一体で下方向に逆回転(804)させる構造により、回転子側永久磁石(801)が、反転側電機子コイル(802)の周りに被さって内部で回る構造の、両翼軸端吊り下げ式3重軸反転風力発電機(800)が構成され2倍の電気エネルギーが発生し、
そして、この電力を電気的な接続を維持して回転できる、整流回路内蔵型スリップリング付連結器(703)を介し、送電線(806)で取り出すことにより、従来型より発電能力対重量比性能が向上し且つ、空中設置と連結接続も容易化された構造から、従来は設置困難な、山間地の谷間の空中や、鉄塔やタワー間の空中、崖の上下間の空中設置手段等の具現化により、従来の設置場所制限を解消し、風力発電の設置拡大が可能となる。
First, the high-tension wire (805) that can be supported and fixed in the air, and the control line and the power extraction line (806) from the outside are penetrated together, and the fixed center shaft (705) of the first-layer shaft of the hollow structure that can be hung. and
On the left hollow rotary shaft (809) of the secondary shaft, from the left windmill (702), the left triple shaft bearing (807) of the generator and the rotary shaft (809) axis with the right triple shaft bearing (808) is supported and penetrated, connected to the rotor side permanent magnet (801), rotated upward (803),
Furthermore, the right windmill (704) and the double shaft reversing drive type triple shaft reversing generator (701) are connected on the right hollow rotating shaft (810) of the second axis, and are connected with the reversing side armature coil (802). Rotor-side permanent magnet (801) wraps around the reversing-side armature coil (802) and rotates inside it. A triple-axis inverted wind power generator (800) is configured to generate twice the electrical energy,
Then, this electric power can be rotated while maintaining electrical connection, and by taking it out through a transmission line (806) through a coupler (703) with a built-in rectifying circuit and a slip ring, the power generation capacity to weight ratio performance is higher than that of the conventional type. In addition, from the structure that facilitates installation in the air and connection connection, installation in the air in the valleys of mountainous areas, in the air between steel towers and towers, in the air between the top and bottom of cliffs, etc. This will eliminate the existing restrictions on installation locations and enable the expansion of wind power generation installations.

翼と風車の発明の効果として、丸みを持った前縁(102)から、表面と対称に裏面にも等しい斜面状の法面を形成し、夫々の面は同様に後縁角(111)の半分ずつの固定した表面側迎え角(116)と、等しく対称な裏面側迎え角(117)により、激変する自然環境での迎え角制御を不要化され、従来の中型翼程度では迎え角制御のためのエレキ、メカ制御装置の複雑な機構が不要となってコストが削減され、耐久性も向上する。 As an effect of the blade and windmill invention, the rounded leading edge (102) forms a sloping slope that is symmetrical to the front and equal to the back, each of which similarly has a trailing edge angle (111). The fixed front side angle of attack (116) and the equally symmetrical back side angle of attack (117) eliminate the need for angle of attack control in a rapidly changing natural environment. This eliminates the need for a complicated electric and mechanical control device for this purpose, reducing costs and improving durability.

また、翼を長尺方向に真っすぐに伸ばし大型化して揚力を高め、発電出力を上げようとすると、風車回転径の長さの二乗に比例して抗力が急増するが、インボリュート曲線(1101)上に重ねた、湾曲形状翼(11-100)の様に、翼先端(108)に行くに従って前縁側の曲がりを徐々に緩くしたインボリュート曲線形状(106)で翼を構成することにより、先端部に行くに従って直径が増加して大気方向(1110)速度が増加しても、より浅い斜角(1111)で進入する曲線形状になり空気抵抗の増加は抑えられ(符号番号0028での式)その抗力による静音化やバードストライク等も同時に抑えられる効果に加え、
暴風雨等では粘性増による空気密度係数相当への影響も抑えられることから、台風時等の大きな空気抵抗(圧力抗力)が少なくなり風車も壊れ難くなる。
更に、翼の表裏の何方から風を受けても個々の揚力の方向が常に変わらず、合成された回転方向も変わらない効果と、
風向きが急反転しても常に定まった回転方向(203)に回る機能から、風向き反転対応制御も不要とした効果
受風面積も増え且つ、風車翼中央から先端迄が長くなるため駆動トルクも増すことによる風車駆動力向上の効果に加え、
In addition, when the wings are extended straight in the longitudinal direction to increase the lift force and increase the power generation output, the drag force increases rapidly in proportion to the length of the wind turbine rotation diameter squared, but on the involute curve (1101) By configuring the blade with an involute curve shape (106) in which the curve on the leading edge side gradually softens as it goes to the tip (108), like the curved blade (11-100) superimposed on the tip, Even if the diameter increases as it goes and the speed in the direction of the atmosphere (1110) increases, it becomes a curved shape that enters at a shallower oblique angle (1111), and the increase in air resistance is suppressed (formula with reference number 0028) The drag force In addition to the effect of suppressing noise and bird strikes at the same time,
Since the influence on the air density coefficient equivalent due to the increase in viscosity due to storms etc. is suppressed, the large air resistance (pressure drag) during typhoons etc. is reduced and the windmill is less likely to break.
Furthermore, the direction of the individual lift force does not change even if the wind is received from either the front or back of the wing, and the combined direction of rotation does not change.
Even if the wind direction suddenly reverses, the function always rotates in a fixed direction (203), which eliminates the need for wind direction reversal control and increases the wind receiving area. In addition to the effect of improving the wind turbine driving force by increasing

更に、風車のインボリュート曲線形状翼の長尺化による柔軟構造により、風の抗力を活かした立体方向の翼形状の自律的な動的迎え角形成による揚力増強効果として、風車の各回転翼外周先端側(202)が、その時の風向きの風下となるZ軸方向(207)の風車後方又は前方からの風圧(305、又は505)による抗力による立体的構造変化で、前方(図3)又は後方(図5)に螺旋形状に撓れば、各翼が、大きな翼弦ねじれ撓り傾き迎え角(302、又は502)と、同時に、各翼の長尺方向に沿った長い曲線した法面も撓って風下に螺旋状に傾き、各翼で長尺方向ねじれ撓り迎え角(303、又は503)で生じる揚力が、風車翼中央から先端部故に大きなトルクとして得られて回転方向(304、又は504)に加算されて回る風向き急反転対応風車の自律的いなし制御機能の効果に加え、
弱風(601)時の動作として、複数の対称流線湾曲形状法面翼の後縁部(103)と先端部(108)のそれぞれに、柔軟構造の後縁分割フラップ(代表として6-104)と、弱風揚力補強先端フラップ(6-105―a、b、c)を取り付けることにより、その時の弱風(601)の風下方向に撓ることで、各翼の先端フラップ(6-105)が、弱風(601)に対する迎え角代表図(602)を形成し、前縁(102)方向に揚力が生まれ、翼先端部故に、トルクの大きい定まった方向の回転力が得られる、弱風揚力補強効果も得られる。
Furthermore, due to the flexible structure of the involute curved blades of the wind turbine, the outer circumference tip of each rotor blade of the wind turbine is enhanced by the autonomous dynamic angle of attack formation of the three-dimensional blade shape that makes use of the drag force of the wind. The side (202) is leeward of the wind direction at that time, and the front (Fig. 3) or rear ( 5), each wing provides a large chordal twist deflection tilt angle of attack (302 or 502) and, at the same time, a long curved slope along the length of each wing. , and the lift generated by each blade at the torsional deflection angle of attack (303 or 503) in the longitudinal direction is obtained as a large torque from the center of the wind turbine blade to the tip, and is rotated in the direction of rotation (304 or 504), in addition to the effect of the autonomous control function of the wind turbine that responds to a sudden reversal of wind direction,
Flexible structure trailing edge split flaps (typically 6-104 ) and light wind lift reinforcing tip flaps (6-105-a, b, c), by bending in the downwind direction of the weak wind (601) at that time, the tip flaps of each wing (6-105 ) forms an angle of attack representative diagram (602) against a weak wind (601), and lift is generated in the direction of the leading edge (102), and because of the tip of the wing, a rotational force in a fixed direction with a large torque is obtained. Wind uplift reinforcement effect is also obtained.

請求項3の効果として、更に新たな効果である、広い受風機能(401、402)を有するこの風車(200)を左右に2台、反対向きに並べ、左右どちらからの風を受けても常にお互いに反転する風車構造(710)を構成して且つ、この左右の夫々の風車の間に、発電機の筐体側も逆転できる概念を持った、新開発の3重軸反転発電機(701)を連結させることで相対的に2倍速磁束変化が生まれ発電能力対重量比性能向上による一体化と軽量化効果から、空中設置と連結接続も容易化された構造から、従来はタワー設置困難な山間地の谷間の空中や、鉄塔やタワー間の空中、崖の上下間の空中設置等の容易化により、設置場所制限を減らし、消費地に近い場所でのより効率的な風力発電の設置拡大効果が見込める。

As an effect of claim 3, two windmills (200) having a wide wind receiving function (401, 402) are arranged on the left and right in opposite directions, which is a new effect, and even if the wind is received from either the left or right, A newly developed triple shaft reversing generator (701) with a concept that the windmill structure (710) that is always reversed to each other is configured and the housing side of the generator can also be reversed between the left and right windmills. ), a relatively double-speed magnetic flux change is created, and due to the integration and weight reduction effect due to the improvement of the power generation capacity to weight ratio , the structure that facilitates aerial installation and connection connection makes it difficult to install a tower in the past. By facilitating installation in valleys in mountainous areas, in the air between steel towers and towers, and between the top and bottom of cliffs, restrictions on installation locations are reduced, and more efficient wind power generation can be installed near consumption areas. An expansion effect can be expected.

対称流線湾曲形状法面翼の斜視図である。It is a perspective view of a symmetrical streamline curved slope blade. 対称流線翼渦巻式風車の全景斜視図である。1 is a full perspective view of a symmetrical streamline blade spiral wind turbine; FIG. 風車後方からの風圧で風車前方に撓った(しなった)対称流線翼渦巻式風車図である。FIG. 10 is a diagram of a symmetrical streamline blade spiral windmill that is bent forward by wind pressure from the rear of the windmill. 風圧が弱く撓らない状態の静的な対称流線翼渦巻式風車図である。FIG. 10 is a diagram of a static symmetrical streamline blade spiral windmill in a state where wind pressure is weak and does not bend. 風車前方からの風圧で後方に撓った対称流線翼渦巻式風車図である。FIG. 10 is a view of a symmetrical streamline blade spiral windmill bent backward by wind pressure from the front of the windmill. 弱風でフラップだけが前方(逆風では後方)に撓った対称流線翼渦巻式風車図である。It is a diagram of a symmetrical streamline blade spiral windmill in which only the flaps are flexed forward in a weak wind (rearward in a headwind). 両翼端軸吊り下げ反転式風力発電装置の全景斜視図である。FIG. 2 is a full perspective view of a reversible wind power generator with both wing tip shafts suspended; 両翼端軸吊り下げ式3重軸反転発電機の内部構造図(両翼端はカット)である。FIG. 2 is an internal structural diagram of a dual wing tip shaft suspension type triple shaft reversing generator (both wing tips are cut). 山頂間、谷間間等への吊り下げ式風力発電線の適用例図である。It is an application example figure of a suspension type wind-power-generation line between mountaintops, valleys, etc. FIG. 対称流線翼渦巻式風車の性能評価用試作プロト写真である。It is a prototype photograph for performance evaluation of a symmetrical streamline blade spiral wind turbine. インボリュート曲線に対称流線湾曲形状法面翼を1枚重ねた風車構成説明図である。It is a wind turbine configuration explanatory diagram in which one symmetrical streamline curved slope blade is superimposed on an involute curve. 特許文献1の図1である。FIG. 1 of Patent Document 1. FIG. 特許文献1の図5である。FIG. 5 of Patent Document 1. FIG. 特許文献2の代表図である。FIG. 2 is a representative diagram of Patent Document 2; 特許文献2の図8である。FIG. 8 of Patent Document 2. FIG. 特許文献3の図1である。FIG. 1 of Patent Document 3. FIG. 特許文献4の図23である。FIG. 23 of Patent Document 4. FIG. 特許文献4の図35である。FIG. 35 of Patent Document 4. FIG. 特許文献4の図42である。FIG. 42 of Patent Document 4. FIG.

請求項1の、翼の取り付け穴(112)側の断面形状(101)から発明の実施例を述べれば、風力発電等の風車を構成する複数枚の翼に関し、丸みを持った前縁(102)の、表裏の翼厚(107)から、等しく徐々に薄く絞っていき、途中の両側面では表裏対象な斜面を形成しながら、後縁(103)で後縁角(111)を持って閉じられた、表裏対称流線形状の断面形状(101)は、表面と対称に裏面にも等しい斜面状の法面を形成し、夫々の面は後縁角(111)の半分ずつの固定した表面側迎え角(116)と、等しく対称な裏面側迎え角(117)を形成して揚力を得易い基本形態を構成し、
この断面形状(101)による、対称流線湾曲形状法面翼(100)への実施例として、前縁(102)での空気抵抗を先端に行くに従って減らす率が大きい、インボリュート曲線(1101)を取り入れて、翼の長尺方向に、前縁側(102)を曲線状の外側に、反対の後縁側(103)を内側にして、インボリュート曲線形状(106)翼を構成することにより、空気抵抗率を規則的に減らせる対称流線湾曲形状法面翼(100)が形成される。
To describe an embodiment of the invention from the cross-sectional shape (101) on the blade mounting hole (112) side of claim 1, regarding a plurality of blades that constitute a wind turbine such as a wind power generation, the rounded front edge (102) ), the front and back wing thickness (107) is gradually reduced to be equally thin, and while forming symmetrical slopes on both sides in the middle, the trailing edge (103) closes with the trailing edge angle (111). The symmetrical streamlined cross-sectional shape (101) formed on the front and back forms sloped slopes that are symmetrical to the front and the same on the back, and each face is a fixed surface that is half the trailing edge angle (111). Forming a side angle of attack (116) and a back side angle of attack (117) that are equally symmetrical to form a basic form that facilitates obtaining lift,
As an example of the symmetrical streamlined curved slope wing (100) with this cross-sectional shape (101), an involute curve (1101) is used, in which the air resistance at the leading edge (102) is greatly reduced toward the tip. Incorporating, along the length of the wing, with the leading edge side (102) on the outside of the curve and the opposite trailing edge side (103) on the inside to form an involute curved (106) airfoil, the air resistance A symmetrical streamlined curved slope wing (100) is formed that can regularly reduce .

ここで、この風車の重要な特徴の一つである回転時の翼の空気抵抗(圧力抗力)による騒音等を劇的に減らす実施例に関し、曲線形状翼の形態を図11と重ね試算すれば、
空気抵抗=CD値×正面風圧面積(=Sin(曲線翼の前縁の長尺方向の斜角進入角(1107とか1111)と、大気の流れ方向に相当する回転円の接線(1106、1110)との角度θ))×(速度の2乗)×空気密度/2
上記式で、翼の前縁(102)の抗力係数CD値と空気密度を一定に、1/2を共に省略すれば、
インボリュート曲線(1101)上の対称流線湾曲形状法面翼(11-100)と風車回転サイズ比円を重ねた風車説明(図11)において、
先ず速度差として、風車の回転中心(1102)から先端(11-202)までの翼の長尺方向に対応した、回転半径RL(1108)を3等分してプロットすれば、各点の回転半径と速度は比例することから、中心点P0(1102)、点P1(1103:RL/3)、点P2(1104:RL/3×2)、点P3(1108:RL)となり、点P1での回転時の速度を基準値=1とすれば、残り2箇所の速度の2乗値は、点P2=4、点P3=9、から、夫々のポイントのプロット位置での空気抵抗値を試算すれば、
インボリュート曲線形状の翼(11―100)では、点P2の斜角進入角(1107)≒Sin(26度)=0.43と、点P3の斜角進入角(1111)≒Sin(17度)=0.29、より
点P1+P2+P3=1+ 4×0.43+ 9×0.29= 5.33 となるが、
対する、旧来型直線翼(1112)では共にSin(90度)=1で、点P1+P2+P3=1+4+9=14
より、5.33/14=0.38、と、旧来型直線翼比で空気抵抗を、0.38倍に減らせる
Here, with respect to an embodiment that dramatically reduces noise due to air resistance (pressure drag) of the blades during rotation, which is one of the important features of the wind turbine, the configuration of the curved blades can be calculated by overlapping with FIG. ,
Air resistance = CD value x frontal wind pressure area (= Sin (the oblique approach angle (1107 or 1111) in the longitudinal direction of the leading edge of the curved blade and the tangent line (1106, 1110) of the rotation circle corresponding to the air flow direction) angle θ)) × (square of velocity) × air density / 2
In the above equation, if the drag coefficient CD value of the leading edge (102) of the wing and the air density are constant and 1/2 is omitted,
In the description of the wind turbine (Fig. 11) in which the symmetric streamline curved slope blade (11-100) on the involute curve (1101) and the wind turbine rotation size ratio circle are superimposed,
First, as a speed difference, if we divide the rotation radius RL (1108) corresponding to the longitudinal direction of the blade from the rotation center (1102) of the wind turbine to the tip (11-202) into three equal parts, we can plot the rotation of each point Since the radius and speed are proportional, the center point P0 (1102), point P1 (1103: RL/3), point P2 (1104: RL/3×2), point P3 (1108: RL), and at point P1 If the speed at the time of rotation is set to a reference value of 1, the squared value of the speed at the remaining two points is the point P2 = 4 and the point P3 = 9, and the air resistance value at the plotted position of each point is calculated. if,
In the involute curved blade (11-100), the oblique approach angle of point P2 (1107) ≈ Sin (26 degrees) = 0.43 and the oblique approach angle of point P3 (1111) ≈ Sin (17 degrees) = 0.29, so that
Point P1+P2+P3=1+4*0.43+9*0.29 =5.33 ,
On the other hand, in the conventional straight wing (1112), Sin (90 degrees) = 1, and points P1 + P2 + P3 = 1 + 4 + 9 = 14
As a result, 5.33/14=0.38, the air resistance can be reduced by 0.38 times compared to the conventional straight blade .

特に、翼(11-100)の先端(1108)の空気抵抗は、従来型の直線翼風車(1113)比で、(1/0.29)3.5倍優れ、前縁(102)での風切り音も抑えられ、障害物等も緩やかな増加で転がして押しのける動作で、バードストライク等も生じ難く、
また、インボリュート曲線の効果として、暴風雨の粘性に対しては、空気密度が大きくなることから、雨風時の大きな空気抵抗(圧力抗力)が少なくなることから、台風時等などでは壊れ難くなる。
更に、同じく従来型の直線翼風車(1112)に比べ、翼中央から先端迄(P1~P3)の実翼長が(P2長×π/2/P2長=π/2)と約1.5倍長くなり、受風接触面積も増えることから、駆動トルクも増す特徴を有する風車形態となる。なお翼(100)の長尺方向の長さは、インボリュート曲線(1101)に沿って、その基礎円(1103)1周程度まで伸長させることが出来る。
In particular, the air resistance at the tip (1108) of the blade (11-100) is (1/0.29) 3.5 times better than the conventional straight blade wind turbine (1113), and the leading edge (102) has Wind noise is also suppressed, and obstacles, etc., roll and push away with a gentle increase, making bird strikes less likely to occur.
In addition, as an effect of the involute curve, the air density increases with respect to the viscosity of the rainstorm, so the large air resistance (pressure drag) during rain and wind is reduced, so it is difficult to break during a typhoon.
Furthermore, compared to the conventional straight blade wind turbine (1112), the actual blade length from the blade center to the tip (P1 to P3) is (P2 length × π/2/P2 length = π/2), which is about 1.5. Since the length is doubled and the area of contact with the wind is increased, the wind turbine configuration has the characteristic of increasing the driving torque. The length of the wing (100) in the longitudinal direction can be extended along the involute curve (1101) to about one lap of the base circle (1103).

請求項2の風車(200)に関する実施例として、風車回転軸中心(201)側から、各翼の回転外周先端(202)まで、横軸型風車の中心面となる回転掃過円盤面(206)と平行に、対称流線湾曲形状法面翼(100)の中心線(113)に沿って、各翼の前縁側(2-102)が回転方向(203)の前方側に、後縁(2-103)側が反対の回転方向後方側となるように、必要枚数翼を等間隔で等角度に複数翼並べることにより、回転時の前縁(102)での空気抵抗等が減らせる形態の対称流線翼渦巻式風車(200)が構築でき、
各翼(2-100-a、b、c)の、Z軸方向(207)の表面又は裏面のどちらかに風が当たれば、各翼の表面側迎え角(116)と対称な裏面側迎え角(117)への風圧により、風に対して直角方向となる、翼弦線(113)方向で且つ、前縁(102)方向に揚力が生まれる原理から、風向きが激変反転しても常に定まった回転方向(203)に回る形態が構成される。
As an embodiment of the wind turbine (200) of claim 2, from the wind turbine rotating shaft center (201) side to the rotation outer peripheral tip (202) of each blade, a rotating sweeping disc surface (206) that becomes the center plane of the horizontal axis type wind turbine is provided. ), along the centerline (113) of the symmetrical streamlined curved slope blade (100), the leading edge side (2-102) of each blade is forward in the direction of rotation (203) and the trailing edge ( 2-103) By arranging the required number of blades at equal intervals and at the same angle so that the side 2-103) is on the rear side in the opposite direction of rotation, the air resistance at the leading edge (102) during rotation can be reduced. A symmetrical streamline blade spiral wind turbine (200) can be constructed,
If the wind hits either the front side or the back side of each blade (2-100-a, b, c) in the Z-axis direction (207), the back side attack angle symmetrical with the front side angle of attack (116) of each blade Due to the wind pressure on the corner (117) , lift is generated in the direction of the chord line (113) and in the direction of the leading edge (102), which is perpendicular to the wind. A configuration is configured that rotates in a defined direction of rotation (203).

また本風車は、表裏2面(401、402)の広い受風機能がある為、何方に風が当たっても、風向き急反転時等の風向き追従は全く不要で、仮に真横(404、405)からの風に対しても、風向き変化時の追従角度幅は90度(±45)以下と少なく、風車翼(2-100-a、b、c)への抗力による自律的な風向き追従で迅速に対応でき、試作評価結果からも方向舵は不要で、
更にZ軸立体方向(図3、図5)に撓り(しなり)易い構造から、強い風に対しては抗力を風下に往なし(いなし)やすく柔軟で、その後退角度は迎い角度(302、303、502、503)を形成するため長くて広い翼の揚力が生じ、円盤状の掃過面(206)は風車翼中央から先端部故に、大きなトルクが得られ、最適な翼構造形態となる。
In addition, since this wind turbine has a wide wind receiving function on the front and back sides (401, 402), even if the wind hits any direction, it is not necessary to follow the wind direction when the wind direction suddenly reverses . Even against the wind from the north, the following angle width is less than 90 degrees (±45) when the wind direction changes. , and from the prototype evaluation results, no rudder is required.
Furthermore, due to the structure that easily bends in the three-dimensional direction of the Z axis (Fig. 3, Fig. 5), the resistance against strong winds is easily transferred to the leeward, and the receding angle is the angle of attack ( 302, 303, 502, 503), the lift of the long and wide blade is generated, and the disk-shaped sweep surface (206) is from the center to the tip of the wind turbine blade, so large torque can be obtained, and the optimal blade structure form becomes.

なお、台風等、暴風時に対しては、風速の変化による発生電力の変動に対し、力率調整しながら負荷をかけて遅く回転させながら自律的な制御に任せて発電させる方が、従来型風車のようにブレーキを掛けて止め、巨大な風力に対抗して難しくなる迎え角度や風向きを制御して強風を往なすよう停止させるより、破壊に至らず安全と言える。
In the case of storms such as typhoons, it is better to generate power by autonomous control while adjusting the power factor and applying a load to rotate slowly, in response to fluctuations in generated power due to changes in wind speed. It can be said that it is safer and does not lead to destruction than stopping by applying the brakes like , controlling the angle of attack and the direction of the wind, which becomes difficult to counter the huge wind force, and stopping the strong wind.

請求項3の両翼端軸吊り下げ反転式風力発電装置(700)に関する実施例として、広い受風機能を有する前述の風車(200)を左右に2台、反対向きに並べ、左右どちらからの風を受けても常にお互いに反転する風車構造(710)を構成して且つ、この左右の夫々の風車の間に、発電機の筐体側も逆転できる、3重軸反転発電機(701)を連結させることで、電機子コイル(802)と、回転子側永久磁石(801)との間で相対的に2倍速磁束変化を与えて発電性能を倍以上に引き上げ、同時に風量が多い高所の空中設置(902、903)を容易化した両翼端軸吊り下げ反転式風力発電装置(700)が構成される。 As an embodiment of the reversible wind power generator (700) suspended on both wing tip shafts of claim 3, two wind turbines (200) having a wide wind receiving function are arranged in opposite directions on the left and right, and the wind is A windmill structure (710) that always inverts each other even when receiving power is formed, and between the left and right windmills, a triple shaft inversion generator (701) that can also invert the housing side of the generator is connected. By doing so, a double-speed magnetic flux change is given relatively between the armature coil (802) and the rotor-side permanent magnet (801) to more than double the power generation performance. A reversible wind turbine generator (700) suspended on both wing tip shafts, which facilitates installation (902, 903), is constructed.

更に、両翼軸端吊り下げ式3重軸反転風力発電機(800)に関する実施例として、
先ず空中で支え固定できる高張力ワイヤー(805)と、外部からの制御線及び電力取り出し線(806)を一緒に貫通させ、吊るせる中空構造の1重めの軸の固定中心軸(705)を置き
2重軸目の左側中空回転軸(809)上で、左側風車ハブ(702)から、発電機の左側の三重軸ベアリング(807)と、右側の三重軸ベアリング(808)で回転軸(809)軸を支えて貫通させ、回転子側永久磁石(801)と連結して、上方向に回転(803)させ、
また、2重軸目の右側中空回転軸(810)上で右側風車ハブ(704)と両端反転駆動式3重軸反転発電機(701)を連結させ、反転側電機子コイル(802)と連結して一体で下方向に逆回転(804)させる構造により、回転子側永久磁石(801)が、反転側電機子コイル(802)の周りに被さって内部で回る構造の、両翼軸端吊り下げ式3重軸反転風力発電機(800)が構成され2倍の電気エネルギーが発生し、この電力を取り出せるよう電気的な接続を維持して回転できる、整流回路内蔵型スリップリング付連結器(703)を介し、送電線(806)で取り出すことにより、従来型より発電能力対重量比性能が向上した形態の風力発電装置が構成される。
Furthermore, as an example of a double shaft end suspension type triple axis inverted wind power generator (800),
First, the high tension wire (805) that can be supported and fixed in the air, the control line and the power output line (806) from the outside are passed through together, and the fixed center shaft (705) of the first shaft of the hollow structure that can be hung is inserted. put ,
On the left hollow rotating shaft (809) of the second axis , from the left windmill hub (702), the rotating shaft (809) with the left triple shaft bearing (807) and the right triple shaft bearing (808) of the generator. ) supports and penetrates the shaft, connects with the rotor side permanent magnet (801), rotates upward (803),
In addition, the right windmill hub (704) and the double-end reversing drive type triple shaft reversing generator (701) are connected on the right hollow rotating shaft (810) of the second axis, and are connected to the reversing side armature coil (802). Rotor-side permanent magnet (801) wraps around the reversing-side armature coil (802) and rotates inside the rotating rotor-side armature coil (802). A coupler with a built-in rectifier circuit and a slip ring (703) that can rotate while maintaining an electrical connection to generate twice the electric energy generated by the triple-axis inverted wind power generator (800). ) through a power transmission line (806), a wind turbine generator with improved power generation capacity-to-weight ratio performance compared to the conventional type is configured.

図9の実施形態における両翼軸端吊り下げ式3重軸反転風力発電機(800)の設置形態として、先に空中設置と連結接続も容易化された構造から、従来は設置困難な、山間地の谷間の空中や、山頂間(909,910)、崖の上下間等を利用すれば、タワー、鉄塔工事等の高所建築が不要となり、空中借用の地上権だけで、低コストで空中設置可能で、予め風の抜ける方角を調査しておき、例えば、両翼軸端吊り下げ式風力発電N/S用(902)を、南北方向に向けて、風向N(905)と風向S(906)に対応させ、また90度、直行させて、もう一方の、両翼軸端吊り下げ式風力発電W/E用(903)を東西方向に向けて、風向E(908)と風向W(907)に対応させ、必要に応じて複数台連結し、吊り下げて並べる、対角設置による全方向対応方式(900)により、従来の設置場所制限を解消して、近場での地産風力発電の設置拡大が容易な新技術に対応した実施形態となる。 In the embodiment of FIG. 9, the triple-axis inverted wind power generator (800) suspended at both blade shaft ends can be installed in a mountainous area, which has been difficult to install in the past, because of the structure that facilitates installation in the air and coupling connection. If you use the air in the valley, between the peaks (909, 910), between the top and bottom of the cliff, etc., there is no need for high -place construction such as towers and steel tower construction, and you can install it in the air at low cost with only the surface rights of the air lease. It is possible to investigate the direction of the wind in advance. , and 90 degrees, and direct the other, both blade shaft end suspension type wind power generation W / E (903) in the east-west direction, in the wind direction E (908) and the wind direction W (907) If necessary, multiple units are connected and hung and arranged in an omnidirectional manner (900) by diagonal installation. It becomes an embodiment corresponding to a new technology that is easy to implement.

なお製造時の材料として、中型大型クラスの風車翼ではグラスファイバー等の軽くて撓り易く、耐久性のある素材や、またベランダ等にも対応した小型風車では、柔軟なシリコンゴムや、発泡ウレタン等が軽量且つ加工容易で扱いやすく、また、風向速が激変反転する厳しい運用環境でも風車の風向ヨー動作は90度以内と狭く、翼の迎え角度制御も不要な自律制御による撓りと往なしにより、大きい方向舵も無く強風にも耐えやすい構造となっている。
As for the manufacturing materials, light, flexible and durable materials such as glass fiber are used for medium-sized and large class wind turbine blades, and flexible silicon rubber and urethane foam are used for small wind turbines that can be used on balconies. It is lightweight, easy to process, and easy to handle.In addition, the wind direction and yaw movement of the wind turbine is narrow, within 90 degrees, even in severe operating environments where the wind direction and speed change drastically, and there is no need to control the angle of attack of the blades. As a result, it has a structure that can withstand strong winds without a large rudder.

100 対称流線湾曲形状法面翼
101 対称流線湾曲形状法面翼の断面(翼型)
102 前縁
103 後縁
104 後縁分割フラップ
105 弱風揚力補強先端フラップ
106 インボリュート曲線形状
107 翼厚
108 先端部
109 翼弦長(翼弦線の長さ)
110 湾曲角度
111 後縁角(中心線から表側の迎い角と等しい裏側の迎い角の合計角度)
112 取り付け穴(3ケ)
113 中心線(翼弦線とも等しい)
114 翼表面への風
115 翼裏面への風
116 表面側迎え角
117 裏面側迎え角
200 風向急反転しても回転方向不変な対称流線翼渦巻式風車
201 回転軸中心
202 外周先端
203 回転方向
204 発電機
205 風向き回転軸受け
206 横軸型風車の中心面となる回転掃過円盤面
207 Z軸方向
208 タワー
209 風向き急反転
2―100―a 風車として組み込んだ対称流線湾曲形状法面翼a
2―100―b 風車として組み込んだ対称流線湾曲形状法面翼b
2―100―c 風車として組み込んだ対称流線湾曲形状法面翼c
301 自律的な前方向への螺旋状変化翼
302 翼弦ねじれ撓り傾き迎え角
303 翼の長尺方向ねじれ撓り迎え角
304 風車回転方向
305 発電機後方からの風
3―100―a 自律的な前方向螺旋状変化翼a
3―100―b 自律的な前方向螺旋状変化翼b
3―100―c 自律的な前方向螺旋状変化翼c
401 左側上下想定風
402 右側上下想定風
403 定まった回転方向
404 急な想定上風
405 急な想定下風
501 自律的な後方への螺旋状変化翼
502 翼弦ねじれ撓り傾き迎え角
503 翼の長尺方向ねじれ撓り迎え角
504 風車回転方向
505 前方からの風
5―100―a 自律的な後方螺旋状変化a
5―100―b 自律的な後方螺旋状変化b
5―100―c 自律的な後方螺旋状変化c
601 弱風
602 先端フラップの迎え角の代表表示(翼a、b、cとも有り)
603 回転方向
6-100―a 風車として組んだ対称流線湾曲形状法面翼a
6-100―b 風車として組んだ対称流線湾曲形状法面翼b
6-100―c 風車として組んだ対称流線湾曲形状法面翼c
6-104 後縁分割フラップの代表表示(見えてる側を表示)
6-105-a 先端フラップa
6-105-b 先端フラップb
6-105-c 先端フラップc
700 両翼端軸吊り下げ反転式風力発電装置
701 両端反転駆動式3重軸反転発電機
702 回転子駆動側「対称流線翼渦巻式風車」のハブ
703 整流回路内蔵型スリップリング(回転コネクター)付連結器
704 反対に接続した「対称流線翼渦巻式風車」のハブ
705 送電線と高張力ワイヤー一体ケーブル貫通用中空軸
706 左風車の回転方向
707 右風車の逆回転方向
708 回転子側風車の軸受けベアリング
709 電機子側風車の軸受けベアリング
710 左右どちらからの風を受けても常に左右お互いに逆回転する
800 両翼軸端吊り下げ式3重軸反転風力発電機(700の内部構造図版)
801 回転子側永久磁石
802 反転側電機子コイル
803 左風車の回転方向
804 右風車の逆回転方向
805 高張力ワイヤー
806 電力送電線と制御点検信号線
807 左側三重軸ベアリング
808 右側三重軸ベアリング
809 左側中空回転軸(左傾斜線ハッチング表示)
810 右側中空回転軸(逆回転側:右傾斜線ハッチング表示)
900 風向き激変場所で90度方向を変えて吊り下げた全方向風向き対応型風力発電機
901 送電線と高張力ワイヤー一体型ケーブル
902 両翼軸端吊り下げ式風力発電N/S風用
903 両翼軸端吊り下げ式風力発電W/E風用
904 ビル、山頂、送電鉄塔、タワー等、混在併用可能
905 風向き北
906 風向き南
907 風向き西
908 風向き東
909 山頂A
910 山頂B
911 変電所への引き込み塔
1001 対称流線湾曲形状法面翼保持枠
1002 対称流線湾曲形状法面翼前縁部
1003 対称流線湾曲形状法面翼後縁部
1101 インボリュート曲線
1102 中心点P0(風車回転軸)
1103 半径P1の円とインボリュート曲線上の接点P1
1104 半径P2の円と翼の前縁(102)とインボリュート曲線上の接点P2
1105 半径P2の円と接点P2の鉛直線
1106 点P2円の接線(回転時の大気突入方向)
1107 点P2上の翼の前縁(102)の斜角進入角θ
1108 半径RLの円と翼の外周先端(202)とインボリュート曲線上の接点P3
1109 半径RL円上の点P3の鉛直線
1110 点P3円の接線(回転時の大気突入方向)
1111 点P3上の翼の外周先端(202)の斜角進入角θ
1112 従来型直線翼風車の形状と面積
1113 従来型直線翼風車の進入角θ(90度)
1114 半径P1の円
1115 半径P2の円
1116 半径RLの円(P3の円でもある)
1117 風車回転方向
11-100 図1の対称流線湾曲形状法面翼(100)
11-202 図2の風車全景図の外周先端(202)

100 Symmetrical Streamline Curved Slope Blade 101 Cross Section of Symmetrical Streamline Curved Slope Blade (Airfoil)
102 Leading edge 103 Trailing edge 104 Trailing edge split flap 105 Light wind lift reinforcing tip flap 106 Involute curve shape 107 Blade thickness 108 Tip part 109 Wing chord length (length of the chord line)
110 Bending angle 111 Trailing edge angle (total angle of angle of attack on back side equal to angle of attack on front side from centerline)
112 mounting holes (3)
113 center line (also equal to chord line)
114 Wind to the surface of the blade 115 Wind to the rear surface of the blade 116 Angle of attack on the front surface 117 Angle of attack on the rear surface 200 Symmetrical streamline blade spiral wind turbine 201 whose rotation direction does not change even if the wind direction is suddenly reversed Rotation shaft center 202 Outer circumference tip 203 Rotation direction 204 Generator 205 Wind-direction rotating bearing 206 Rotating sweeping disk surface 207 that serves as the center plane of the horizontal axis type wind turbine Z-axis direction 208 Tower 209 Wind direction sudden reversal 2-100-a Symmetrical streamline curved slope blade a incorporated as a wind turbine
2-100-b Symmetric streamline curved slope blade b incorporated as a wind turbine
2-100-c Symmetric streamline curved slope blade c incorporated as a wind turbine
301 Autonomous forward spiral change blade 302 Chord twist deflection tilt angle of attack 303 Blade longitudinal twist deflection angle of attack 304 Wind turbine rotation direction 305 Wind from behind the generator 3-100-a Autonomous forward spiral change wing a
3-100-b Autonomous forward spiral change wing b
3-100-c Autonomous forward spiral change wing c
401 Estimated left up/down wind 402 Estimated right up/down wind 403 Fixed direction of rotation 404 Estimated sudden upwind 405 Estimated sudden downwind 501 Autonomous backward spiral change blade 502 Chord twist deflection inclination angle of attack 503 Blade Longitudinal torsional deflection angle of attack 504 Wind turbine rotation direction 505 Wind from front 5-100-a Autonomous backward spiral change a
5-100-b Autonomous backward spiral changeb
5-100-c Autonomous backward spiral change c
601 Light wind 602 Representative display of the angle of attack of the tip flap (wings a, b, and c are also available)
603 Rotation direction 6-100-a Symmetric streamline curved slope blade a assembled as a windmill
6-100-b Symmetric streamline curved slope blade b assembled as a windmill
6-100-c Symmetric streamline curved slope blade c assembled as a wind turbine
6-104 Representative display of trailing edge split flap (visible side is displayed)
6-105-a tip flap a
6-105-b tip flap b
6-105-c tip flap c
700 Reversible wind power generator suspended from both wing tip shafts 701 Double-end reversal drive triple shaft reversal generator 702 Rotor drive side "Symmetric streamline blade spiral windmill" hub 703 With rectifier circuit built-in slip ring (rotary connector) Coupling 704 Hub 705 of oppositely connected “symmetrical streamline blade spiral windmill” Hollow shaft for transmission line and high tension wire integral cable penetration
706 Direction of rotation of the left windmill
707 Reverse rotation direction of right windmill 708 Rotor side windmill bearing
709 Armature side wind turbine bearing bearing
710 800 Triple-axis reversing wind power generator with both blade shaft ends suspended (700 internal structure drawing)
801 Rotor side permanent magnet 802 Reverse side armature coil 803 Rotation direction of left windmill 804 Reverse rotation direction of right windmill 805 High tension wire 806 Power transmission line and control inspection signal line 807 Left triple shaft bearing 808 Right triple shaft bearing
809 Left hollow rotating shaft (left slanted line hatching display)
810 Right hollow rotating shaft (reverse rotation side: right sloping line hatching display)
900 Omni-directional wind power generator suspended by changing the direction of 90 degrees at a place where the wind direction changes drastically 901 Power line and high tension wire integrated cable 902 Both blade shaft end suspension type wind power generation N / S wind 903 Both blade shaft ends Suspended wind power generation W/E for wind 904 Buildings, summits, transmission towers, towers, etc. can be used together 905 Wind direction North 906 Wind direction South 907 Wind direction West 908 Wind direction East 909 Summit A
910 Summit B
911 Lead-in tower to substation 1001 Symmetrical streamline curved slope blade holding frame 1002 Symmetrical streamline curved slope blade leading edge 1003 Symmetrical streamlined curved slope blade trailing edge 1101 Involute curve 1102 Center point P0 ( windmill rotating shaft)
1103 Circle of radius P1 and point of contact P1 on involute curve
1104 A circle of radius P2 and the leading edge of the wing (102) and the point of contact P2 on the involute curve
1105 Circle of radius P2 and vertical line of contact point P2 1106 Point P2 tangent line of circle (air rush direction during rotation)
1107 Bevel entry angle θ of wing leading edge (102) on point P2
1108 Point of contact P3 on circle with radius RL and outer periphery tip (202) of blade and involute curve
1109 Vertical line of point P3 on radius RL circle 1110 Tangent line of point P3 circle (air rush direction during rotation)
1111 Oblique approach angle θ of outer peripheral tip (202) of blade on point P3
1112 Shape and area of conventional straight blade wind turbine 1113 Approach angle θ (90 degrees) of conventional straight blade wind turbine
1114 Circle of radius P1 1115 Circle of radius P2 1116 Circle of radius RL (also circle of P3)
1117 Wind turbine rotation direction 11-100 Symmetric streamline curved slope blade (100) in Fig. 1
11-202 Perimeter tip (202) of wind turbine panoramic view in Figure 2

Claims (3)

風力発電の風車を構成する翼において、風の抗力を抑えて揚力を増やし、同時に静音化を図る為、先ず風車回転中心の取り付け穴(112)側の断面形状(101)から述べれば、丸みを持った前縁(102)の、表裏の翼厚(107)幅から等しく徐々に薄く絞っていき、途中の両側面では表裏対象な斜面状の法面を形成しながら、後縁(103)で後縁角(111)を持って閉じられた、表裏対称流線形状の断面形状(101)を形成し、この中心線(113)は表裏対称翼、故に直線となり翼弦線(113)と一致し、更に表裏面から見れば、表面と裏面に等しい斜面状の法面を有し、夫々の面は後縁角(111)の半分ずつの固定した表面側迎え角(116)と、対称な裏面側迎え角(117)を形成することにより、迎え角制御を不要化した特徴(一)と、
次に、この断面形状(101)で 翼の長軸方向に湾曲線状に伸長させるため、前縁側(102)を湾曲線状の外側に、反対の後縁側(103)を内側にして、インボリュート曲線(1101)上に重ねた、湾曲形状翼(11-100)の様に、取り付け穴(112)に近い部分では曲がりが大きい湾曲形状を形成し、翼先端(108)に行くに従って前縁側の曲がりを徐々に少なくしたインボリュート曲線形状(106)で翼を形成することで、より先端部に行くに従って回転半径RL(1116)が大きくなり、P3円の接線(1110)方向の風圧も増すが、逆に斜角(1111)が段々浅くなって大気に進入するため空気抵抗は抑えられて静音化も図れる特徴(二)の、対称流線湾曲形状法面翼(100)が形成され、
更に、この翼に表面風(114)又は、裏面風(115)の何方が当たれば、風に対して直角方向となる、翼弦線でもある中心線(113)方向で且つ、前縁(102)方向に揚力が生まれる原理から、翼の表裏の何方から風を受けても揚力の方向が常に変わらない特徴(三)も有する、対称流線湾曲形状法面翼(100)で構成される、対称流線翼渦巻式風車。

In order to suppress the drag force of the wind, increase the lift force, and at the same time reduce the noise in the blades that make up the wind turbine for wind power generation, first of all, the cross-sectional shape (101) on the side of the mounting hole (112) at the rotation center of the wind turbine is rounded. At the leading edge (102) held, the front and back wing thickness (107) width is gradually narrowed equally, and on both sides in the middle, symmetrical sloping slopes are formed, and the trailing edge (103) It forms a symmetrical streamlined cross-sectional shape (101) closed with a trailing edge angle (111), and this centerline (113) is a symmetrical wing, so it is a straight line and coincides with the chord line (113). and when viewed from the front and back sides, the front and back sides have equal sloped slopes, each side being symmetrical with a fixed front side angle of attack (116) half the trailing edge angle (111). A feature (1) that eliminates the need for angle-of-attack control by forming the rear-side angle-of-attack (117);
Next, in order to extend the blade in a curved line in the long axis direction with this cross-sectional shape (101), the leading edge side (102) is on the outside of the curved line, and the opposite trailing edge side (103) is on the inside. Like the curved wing (11-100) superimposed on the curve (1101), the portion near the mounting hole (112) forms a curved shape with a large bend, and the leading edge side is curved toward the tip of the wing (108). By forming the blade with an involute curved shape (106) that gradually reduces bending, the turning radius RL (1116) increases toward the tip, and the wind pressure in the direction of the tangential line (1110) of the P3 circle also increases. On the contrary, the oblique angle (1111) gradually becomes shallower and enters the atmosphere, so the air resistance is suppressed and the noise can be reduced.
Furthermore, if either the front wind (114) or the back wind (115) hits this blade, it will be in the direction of the center line (113), which is also the chord line, which is perpendicular to the wind, and the leading edge (102) ) from the principle that lift is generated in the direction of the wing, it is composed of a symmetrical streamline curved slope wing (100) that also has the feature (3) that the direction of lift does not change even if the wind is received from either the front or back of the wing. A symmetrical streamline blade spiral wind turbine.

請求項1に記載の「対称流線湾曲形状法面翼(100)」で風車を構成するため、風車回転軸中心(201)側から、各翼の回転外周先端(202)まで、横軸型風車の中心面にある回転掃過円盤面(206)と平行に、対称流線湾曲形状法面翼(100)の中心線(113)に沿って、各翼の前縁側(2-102)が回転方向(203)の前方側に、後縁(2-103)側が反対の回転方向後方側となるように、必要枚数翼を等間隔で等角度に複数翼並べ取り付けることにより、各翼の回転時の前縁(2-102)での空気抵抗が抑えられ、風切り音やバードストライクが抑えられる特徴(四)を有す、対称流線翼渦巻式風車(200)が構築でき、
各翼(2-100-a、2-100-b、2-100-c)の、Z軸方向(207)の表面又は裏面のどちらかに風が当たれば、各翼の表面側迎え角(116)と対称な裏面側迎え角(117)への風圧により、各翼(2-100-a、b、c)の前縁(2-102)方向に揚力が生まれ加算されることで、風向きが急に反転しても常に定まった回転方向(203)に回る機能から、風向き反転対応制御も不要とした特徴(五)と、
更に、各翼(2-100-a、b、c)の柔軟構造が生み出す、動的な翼形状変化として、風車の各回転翼外周先端側(202)が、その時の風向きの風下となるZ軸方向(207)の前後に風力の強さに応じ、風車後方からの風圧(305)による、自律的な立体的構造変化機能で、前方向螺旋形状(3―100―a、3―100―b、3―100―c)のように撓れば、各翼が大きな、翼弦ねじれ撓り傾き迎え角(302)と、同時に、各翼(3―100―a、b、c)の長尺方向に沿った長い曲線の法面も撓って風下に螺旋状に傾き、各翼で長尺方向ねじれ撓り迎え角(303)とで生じる揚力が、風車翼中央から先端部故に大きなトルクとして得られて、常に定まった回転方向(304)に加算されて回り、
反対に、この風向きとは逆に、風車前方からの風圧(505)による自律的な立体的構造変化機能で、前方向螺旋形状(5―100―a、5―100―b、5―100―c)のように撓れば、各翼が大きな翼弦ねじれ撓り傾き迎え角(502)と、同時に、各翼(5―100―a、b、c)の長尺方向に沿った長い曲線の法面も撓って風下に螺旋状に傾き、各翼で長尺方向ねじれ撓り迎え角(503)とで生じる揚力が、風車翼中央から先端部故に大きなトルクとして得られ、常に定まった回転方向(504)に加算されて回る、風向き急反転対応の自律的いなし制御機能の特徴(六)に加え、
弱風(601)時の動作として、複数の対称流線湾曲形状法面翼(6-100―a、6-100―b、6-100―c)の各翼の後縁部(103)と先端部(108)のそれぞれに、翼の中心線上に、その翼の後縁(103)より薄い柔軟構造の後縁分割フラップ(6-104)と、弱風揚力補強先端フラップ(6-105―a、6-105―b、6-105―c)を取り付けることにより、対称流線湾曲形状法面翼(100)が撓らない風速2m毎秒程度の弱風(601)でも、自律的に各フラップ(105、104)だけが、その時の弱風(601)の風下方向に撓ることで、各翼の先端フラップ(6-105)が、その弱風に対する、先端フラップ迎え角(代表符号番号602)を形成することにより、前縁(102)方向に揚力が生まれ、翼先端部故にトルクのある定まった方向の回転力(603)が得られる、弱風揚力補強機能の特徴(七)の、計7種の特徴的機能を有する、対称流線翼渦巻式風車。
In order to configure a wind turbine with the "symmetrical streamlined curved slope blade (100)" according to claim 1, the horizontal axis type The leading edge side (2-102) of each blade extends along the centerline (113) of the symmetrical streamlined curved slope blades (100) parallel to the rotating sweep disk surface (206) in the center plane of the wind turbine. Rotation of each blade by arranging the required number of blades at equal intervals and at equal angles so that the front side of the rotation direction (203) and the trailing edge (2-103) side are on the rear side of the opposite rotation direction. A symmetrical streamline wing spiral wind turbine (200) having the feature (4) of suppressing air resistance at the leading edge of time (2-102) and suppressing wind noise and bird strikes can be constructed,
If the wind hits either the surface or the back surface of each blade (2-100-a, 2-100-b, 2-100-c) in the Z-axis direction (207), the angle of attack on the surface side of each blade ( 116) and symmetrical wind pressure to the rear side angle of attack (117) creates lift in the direction of the leading edge (2-102) of each wing (2-100-a, b, c). The feature (5) that does not require control for reversing the wind direction from the function that always rotates in the fixed rotation direction (203) even if the is suddenly reversed,
Furthermore, as a dynamic blade shape change produced by the flexible structure of each blade (2-100-a, b, c), the outer peripheral tip side (202) of each rotor blade of the wind turbine becomes the leeward of the wind direction at that time Z The forward spiral shape (3-100-a, 3-100- b, 3-100-c), each wing has a large chord twist deflection tilt angle of attack (302) and at the same time the length of each wing (3-100-a, b, c) The slope of the long curve along the longitudinal direction also bends and tilts downward in a spiral, and the lift generated by the longitudinal direction torsional deflection angle of attack (303) on each blade is a large torque from the center of the wind turbine blade to the tip. and is always added in the fixed direction of rotation (304),
On the contrary, opposite to this wind direction, the forward spiral shape (5-100-a, 5-100-b, 5-100- c), each wing has a large chord twist deflection tilt angle of attack (502) , and at the same time, a long curve along the longitudinal direction of each wing (5-100-a, b, c) The slope of the wind turbine also bends and tilts downwind in a spiral shape, and the lift generated by each blade with the torsional deflection angle of attack (503) in the longitudinal direction is obtained as a large torque from the center of the wind turbine blade to the tip, and is always fixed. In addition to the feature (6) of the autonomous control function for sudden reversal of wind direction, which is added to the rotation direction (504) ,
As an operation at the time of light wind (601), the trailing edge (103) of each blade of multiple symmetrical streamline curved slope blades (6-100-a, 6-100-b, 6-100-c) and On each of the tips (108), on the centerline of the wing, is a flexible structure trailing edge split flap (6-104) thinner than its trailing edge (103) and a light wind lift reinforcement tip flap (6-105). a, 6-105-b, 6-105-c), even in a weak wind (601) with a wind speed of about 2 m/s, the symmetrical streamline curved slope blade (100) does not bend, and each Only the flaps (105, 104) bend in the leeward direction of the weak wind (601) at that time, so that the tip flap (6-105) of each wing changes the tip flap angle of attack (representative code number 602) creates lift in the direction of the leading edge (102), and because of the tip of the wing, a rotational force ( 603 ) in a fixed direction with torque is obtained. , a symmetrical streamline blade spiral wind turbine with a total of seven characteristic functions.
請求項1に記載の「対称流線湾曲形状法面翼(100)」の複数部品による、請求項2に記載の「対称流線翼渦巻式風車」の多様な特徴を、更に組み合わせて新たな特徴を引き出す発明として、
広い受風機能を有するこの風車(200)を左右に2台、反対向きに並べ、左右どちらからの風を受けても常にお互いに反転する風車構造(710)を構成して且つ、この左右の夫々の風車の間に、発電機の筐体側も逆回転できる、新開発の3重軸反転発電機(701)を連結させることで、内部の電機子コイル(802)と、回転子側永久磁石(801)との間で相対的に2倍速の磁束変化を与えて発電性能を倍以上にして、同時に、風量が多い高所の空中設置(902、903)も容易化する、両翼端軸吊り下げ反転式風力発電装置(700)の構造を更に詳しく述べれば、
先ず、空中で全てを支え固定できる高張力ワイヤー(805)と、外部からの制御線及び電力取り出し線(806)を一緒に貫通させ、空中に吊るせる中空構造の1重めの中心軸の固定用中空軸(705)を置き、
2重軸目の左側中空回転軸(809)上で、左側風車ハブ(702)から、発電機の左側三重軸ベアリング(807)と、右側三重軸ベアリング(808)で回転軸(809)軸を支えて貫通させ、3重軸反転発電機(701)内部の、回転子側永久磁石(801)と連結して、上方向に回転(803)させ、
更に、2重軸目の右側中空回転軸(810)上で右側風車ハブ(704)と両端反転駆動式3重軸反転発電機(701)の筐体を連結させ、内臓の反転側電機子コイル(802)と連結して一体で逆回転(804)させる構造により、回転子側永久磁石(801)に、反転側電機子コイル(802)が被さってお互いに反転して回る構造の、両翼軸端吊り下げ式3重軸反転風力発電機(800)が構成され2倍の電気エネルギーが得られ、
そして、この電力を取り出せるよう電気的な接続を維持して回転できる、整流回路内蔵型スリップリング付連結器(703)を介し、送電線(806)で取り出すことにより、従来型より発電能力対重量比性能が優れ且つ、空中設置と連結接続も容易化された特徴(八)を有する、前記請求項2に記載の、対称流線翼渦巻式風車。

Various features of the "symmetrical streamline curved slope blade (100)" according to claim 1, and the various features of the "symmetrical streamline curved slope blade (100)" according to claim 2 are further combined to create a new As an invention that draws out the characteristics,
Two wind turbines (200) having a wide wind receiving function are arranged in opposite directions on the left and right to form a wind turbine structure (710) that always reverses each other regardless of whether the wind is received from either the left or right. By connecting the newly developed triple-axis reversing generator (701), which can also reversely rotate the housing side of the generator , between each windmill, the internal armature coil (802) and the rotor side permanent magnet are connected. (801) provides a relatively double speed change in magnetic flux to more than double the power generation performance, and at the same time facilitates aerial installation (902, 903) in high places with high airflow. In more detail, the structure of the downward reversing wind turbine generator (700) is as follows:
First, the high tension wire (805) that can support and fix everything in the air, and the control line and the power extraction line (806) from the outside are passed through together to fix the central shaft of the hollow structure that can be suspended in the air. Place the hollow shaft (705) for
On the left hollow rotating shaft (809) of the second axis , from the left wind turbine hub (702), the rotating shaft (809) is rotated by the left triple shaft bearing (807) of the generator and the right triple shaft bearing (808). It is supported and penetrated, connected to the rotor side permanent magnet (801) inside the triple shaft reversing generator (701), and rotated upward (803),
Furthermore, the right windmill hub (704) and the case of the double-end reversing drive type triple shaft reversing generator (701) are connected on the right hollow rotating shaft (810 ) of the second axis, and the built-in reversing side armature coil is connected. By connecting with (802) and integrally rotating in reverse (804), the rotor side permanent magnet (801) is covered with the reversing side armature coil (802), and both wing shafts are structured to rotate in reverse to each other. An end-suspended triple-axis inverted wind power generator (800) is constructed to obtain twice the electrical energy,
Then, by extracting this power through a power transmission line (806) through a coupler (703) with a slip ring with a built-in rectifier circuit that can rotate while maintaining electrical connection so that this power can be extracted, the power generation capacity versus weight is greater than that of the conventional type. The symmetrical streamline vane spiral wind turbine according to claim 2, which has the characteristic (8) of having excellent specific performance and facilitating aerial installation and connection .

JP2022022770A 2021-05-10 2022-02-17 Symmetric streamline blade spiral wind turbine Active JP7131871B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079452 2021-05-10
JP2021079452 2021-05-10

Publications (2)

Publication Number Publication Date
JP7131871B1 true JP7131871B1 (en) 2022-09-06
JP2022173988A JP2022173988A (en) 2022-11-22

Family

ID=83188057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022022770A Active JP7131871B1 (en) 2021-05-10 2022-02-17 Symmetric streamline blade spiral wind turbine

Country Status (1)

Country Link
JP (1) JP7131871B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217713A (en) * 2022-09-21 2022-10-21 山东金科星机电股份有限公司 Deformable fan blade structure of wind driven generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531227A (en) * 2006-03-28 2009-09-03 ザクリトエ アクチオネルノエ オブシュチェストヴォ “アヴィアストロイテル”ナヤ コルポラツィヤ “ルジッチ” Screw propeller and involute of screw propeller blades
CN102121452A (en) * 2011-03-02 2011-07-13 江南大学 Flexible universal fan blade wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531227A (en) * 2006-03-28 2009-09-03 ザクリトエ アクチオネルノエ オブシュチェストヴォ “アヴィアストロイテル”ナヤ コルポラツィヤ “ルジッチ” Screw propeller and involute of screw propeller blades
CN102121452A (en) * 2011-03-02 2011-07-13 江南大学 Flexible universal fan blade wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115217713A (en) * 2022-09-21 2022-10-21 山东金科星机电股份有限公司 Deformable fan blade structure of wind driven generator
CN115217713B (en) * 2022-09-21 2022-11-29 山东金科星机电股份有限公司 Deformable fan blade structure of wind driven generator

Also Published As

Publication number Publication date
JP2022173988A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
US7494315B2 (en) Helical taper induced vortical flow turbine
US7362004B2 (en) Wind turbine device
JP3368537B1 (en) Straight wing type windmill
US4260325A (en) Panemone wind turbine
US7132760B2 (en) Wind turbine device
US7802967B2 (en) Vertical axis self-breaking wind turbine
US9404474B2 (en) System and method for efficient wind power generation
US8253266B2 (en) Skyscraper with integrated wind turbines
US20100322770A1 (en) Turbine blade constructions particular useful in vertical-axis wind turbines
KR20090107050A (en) Windmill for wind power generation, and wind power generator
US20080159873A1 (en) Cross fluid-flow axis turbine
US20190024633A1 (en) Windmill generator associated with a construction
US10495063B2 (en) Wind turbine
US4177009A (en) Rotor assembly
JP7131871B1 (en) Symmetric streamline blade spiral wind turbine
US20180266390A1 (en) Wind power generating rotor with diffuser or diverter system for a wind turbine
JP2014501357A (en) Wind turbine with vertical axis
KR20120061264A (en) Vertical axis wind turbine having cascaded mutiblade
US9145868B2 (en) Vertical axis turbine and constructions employing same
US20020079705A1 (en) Windpower generating apparatus
CN110770435B (en) Sail device
JP6544702B1 (en) Wing angle autonomous amplitude control type wind turbine
JP6103411B1 (en) Blade flat plate, generator using the same and assembly kit thereof, blower and assembly kit thereof
CA2532597A1 (en) Vertical axis fluid actuated turbine
KR100979177B1 (en) Wind-turbine apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7131871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150