JP7130949B2 - Sludge dewatering method and sludge dewatering device - Google Patents

Sludge dewatering method and sludge dewatering device Download PDF

Info

Publication number
JP7130949B2
JP7130949B2 JP2017236144A JP2017236144A JP7130949B2 JP 7130949 B2 JP7130949 B2 JP 7130949B2 JP 2017236144 A JP2017236144 A JP 2017236144A JP 2017236144 A JP2017236144 A JP 2017236144A JP 7130949 B2 JP7130949 B2 JP 7130949B2
Authority
JP
Japan
Prior art keywords
sludge
heating
tank
digested sludge
dewatering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017236144A
Other languages
Japanese (ja)
Other versions
JP2019103952A (en
Inventor
麻由 梅本
将士 武川
哲 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017236144A priority Critical patent/JP7130949B2/en
Publication of JP2019103952A publication Critical patent/JP2019103952A/en
Application granted granted Critical
Publication of JP7130949B2 publication Critical patent/JP7130949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、嫌気性消化槽より排出される消化汚泥(消化液と呼ばれる場合もある)の脱水方法および汚泥脱水装置に関するものである。 TECHNICAL FIELD The present invention relates to a method for dehydrating digested sludge (also called digestive juice) discharged from an anaerobic digestion tank, and a sludge dewatering apparatus.

下水の最初沈殿汚泥や余剰汚泥、あるいは、家畜の糞尿や食品残渣をはじめとする有機性廃棄物の嫌気発酵によるバイオガス発電など、嫌気性消化より発生するメタンの再生可能エネルギーとしての活用が拡大している。嫌気性消化によって発酵を終えた残渣は、消化汚泥として排出される。この消化汚泥は、脱水処理を経て埋め立てや焼却処分されるのが一般的である。 Expanding use of methane generated from anaerobic digestion as renewable energy, such as biogas power generation by anaerobic fermentation of organic waste such as primary sedimentation sludge and surplus sludge of sewage, or livestock manure and food residue. is doing. The residue after finishing fermentation by anaerobic digestion is discharged as digested sludge. This digested sludge is generally landfilled or incinerated after being dewatered.

消化汚泥の脱水方法としては、高分子凝集剤で凝集し、脱水機で脱水する方法が一般的に行われている。しかし、消化汚泥は、難脱水性であるため、含水率が高く、脱水ケーキ発生量が多い。そのため、含水率低減による脱水ケーキの減量化技術が求められている。 As a method for dewatering digested sludge, a method of flocculating with a polymer flocculant and dehydrating with a dehydrator is generally performed. However, since digested sludge is difficult to dewater, it has a high moisture content and produces a large amount of dehydrated cake. Therefore, a technique for reducing the weight of the dehydrated cake by reducing the moisture content is required.

特許文献1には、消化汚泥を遠心脱水した後、130~180℃に加熱加圧し、次いで再度遠心脱水する方法が記載されている。 Patent Document 1 describes a method in which digested sludge is centrifugally dewatered, heated and pressurized to 130 to 180° C., and then centrifugally dewatered again.

特許文献2には、消化汚泥を凝集処理し、この凝集汚泥を濃縮機で濃縮した後、スクリュープレス等の脱水機で脱水する方法であって、脱水機を加熱することにより、脱水される濃縮汚泥を間接加熱しながら脱水する方法が記載されている。 Patent Document 2 discloses a method of subjecting digested sludge to flocculation treatment, concentrating the flocculated sludge with a thickener, and then dehydrating it with a dehydrator such as a screw press. A method of dewatering sludge with indirect heating is described.

特開昭55-116500号公報JP-A-55-116500 特開2016-107265号公報JP 2016-107265 A

特許文献1による方法は、130~180℃という高温加熱処理を加圧下で行うものであり、加熱にかかる費用が膨大であると共に、耐圧反応槽が必要など設備面での費用も増大する。特許文献2の方法では事前に濃縮する設備が必要であるが、嫌気性消化汚泥は沈降分離性が悪く、濃縮するためには高分子凝集剤による凝集処理が不可欠である。また、間接加熱機構が組み込まれたスクリュープレス等の特殊な脱水機が必要である。 The method according to Patent Document 1 performs heat treatment at a high temperature of 130 to 180° C. under pressure, and the cost of heating is enormous, and the cost of equipment such as the need for a pressure-resistant reactor increases. The method of Patent Document 2 requires equipment for pre-concentration, but anaerobic digestion sludge has poor sedimentation separation properties, and flocculation treatment with a polymer flocculant is essential for concentration. Also, a special dehydrator such as a screw press with an indirect heating mechanism is required.

本発明は、脱水のための設備コスト及びランニングコストが安価である汚泥の脱水方法および汚泥脱水装置を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a sludge dewatering method and a sludge dewatering apparatus that are inexpensive in equipment cost and running cost for dehydration.

本発明の汚泥の脱水方法は、消化汚泥を60℃以上に0.5時間以上加熱した後、高分子凝集剤を添加して凝集し、凝集汚泥を脱水する汚泥の脱水方法である。 The sludge dehydration method of the present invention is a sludge dehydration method in which digested sludge is heated to 60° C. or higher for 0.5 hours or longer, then a polymer flocculant is added to aggregate the sludge, and the aggregated sludge is dewatered.

本発明の汚泥の脱水装置は、消化汚泥が導入される滞留時間0.5時間以上の加熱槽と、加熱槽に付設された加熱槽内の消化汚泥を60℃以上に加温する加熱手段と、加熱槽から排出された消化汚泥を高分子凝集剤により凝集して凝集汚泥を得ると共に凝集汚泥を脱水する凝集脱水手段とを備えたものである。 The sludge dewatering apparatus of the present invention comprises a heating tank into which digested sludge is introduced and having a residence time of 0.5 hours or more, and a heating means for heating the digested sludge in the heating tank to 60° C. or more attached to the heating tank. and a flocculating/dehydrating means for flocculating digested sludge discharged from the heating tank with a polymer flocculant to obtain flocculated sludge and dewatering the flocculated sludge.

本発明の汚泥の脱水装置は、消化汚泥が導入される滞留時間0.5時間以上の加熱槽と、加熱槽に付設された加熱槽内の消化汚泥を60℃以上に加温する加熱手段と、加熱槽から排出された消化汚泥を高分子凝集剤により凝集して凝集汚泥を得る凝集槽と、該凝集槽から排出された凝集汚泥を脱水する脱水手段とを備えたものである。 The sludge dewatering apparatus of the present invention comprises a heating tank into which digested sludge is introduced and having a residence time of 0.5 hours or more, and a heating means for heating the digested sludge in the heating tank to 60° C. or more attached to the heating tank. A flocculating tank for obtaining flocculated sludge by flocculating digested sludge discharged from a heating tank with a polymer flocculant, and dewatering means for dehydrating the flocculated sludge discharged from the flocculating tank.

本発明の一態様では、高分子凝集剤は疎水基を有する高分子凝集剤である。 In one aspect of the present invention, the polymer flocculant is a polymer flocculant having a hydrophobic group.

本発明の一態様では、前記疎水基を有する高分子凝集剤はDAM系高分子凝集剤である。 In one aspect of the present invention, the polymer flocculant having a hydrophobic group is a DAM-based polymer flocculant.

本発明の一態様では、加熱温度が60~80℃であり、加熱時間が0.5~5時間である。 In one aspect of the present invention, the heating temperature is 60-80° C. and the heating time is 0.5-5 hours.

嫌気性消化液(汚泥)は、嫌気性細菌の代謝物由来の比較的分子量の大きい(数万以上程度)タンパク質を多量に含んでいる。タンパク質は立体構造を有しており、立体構造の中に水分子を抱え込んでいる。タンパク質は水分子が内在したままカチオン性の高分子凝集剤に取り込まれやすい為、消化液の凝集汚泥は含水率が高くなりやすい。 Anaerobic digestive fluid (sludge) contains a large amount of proteins with relatively large molecular weights (tens of thousands or more) derived from metabolites of anaerobic bacteria. Proteins have a three-dimensional structure, and contain water molecules in the three-dimensional structure. Since protein is likely to be incorporated into a cationic polymer flocculant with water molecules still present, the water content of flocculated sludge from digestive fluid tends to be high.

本発明では、消化汚泥がタンパク質を多く含んでいることに着目し、タンパク質が少なくとも部分的に変性する60℃以上、例えば60~80℃に加熱し、変性したタンパク質を含む消化汚泥に対し、高い脱水効果を発揮する高分子凝集剤を用いて凝集し、脱水する。これにより、含水率の低い脱水汚泥を得ることができる。 In the present invention, focusing on the fact that digested sludge contains a large amount of protein, the protein is at least partially denatured at 60 ° C. or higher, for example, 60 to 80 ° C., and the digested sludge containing denatured protein has a high Aggregates and dehydrates using a polymer flocculant that exerts a dehydrating effect. As a result, dehydrated sludge having a low moisture content can be obtained.

本発明では、消化汚泥の加熱温度が60~80℃程度と低いと共に、加熱時に加圧することが不要であるため、加熱に要する加熱費用及び設備費用を抑えることができる。また、凝集剤として高分子凝集剤のみを用いれば足りるため、薬品コストも安価となる。 In the present invention, the heating temperature of the digested sludge is as low as about 60 to 80° C., and pressurization during heating is unnecessary, so that the heating cost and facility cost required for heating can be suppressed. In addition, since it is sufficient to use only a polymer flocculant as a flocculant, the cost of chemicals can be reduced.

本発明では、消化汚泥を濃縮処理することなく直接凝集処理するので、消化汚泥の濃縮設備が不要であり、設備費用を抑えることができる。また、脱水機も間接加熱機構が不要であり、有機汚泥脱水に一般的に用いられる脱水機、例えば、遠心脱水機、ベルトプレス、スクリュープレスなどを用いることができる。 In the present invention, since the digested sludge is directly flocculated without being subjected to a thickening treatment, equipment for thickening the digested sludge is not required, and equipment costs can be reduced. Also, the dehydrator does not require an indirect heating mechanism, and a dehydrator generally used for organic sludge dehydration, such as a centrifugal dehydrator, belt press, or screw press, can be used.

本発明の一例を示すフロー図である。It is a flow diagram showing an example of the present invention. 実施例及び比較例の結果を示すグラフである。4 is a graph showing the results of Examples and Comparative Examples.

以下、本発明についてさらに詳細に説明する。 The present invention will be described in more detail below.

本発明では、図1(a)のように、消化汚泥を60℃以上、好ましくは60~80℃に加熱した後、高分子凝集剤を添加し、凝集し、凝集汚泥を脱水する。また、図1(b)のように、加熱槽で加熱された消化汚泥を凝集槽に導入し、凝集処理した後、脱水機に導入し、脱水ケーキを取り出す。脱水排水は系外に排出し、別途処理する。 In the present invention, as shown in FIG. 1(a), digested sludge is heated to 60.degree. Also, as shown in FIG. 1(b), the digested sludge heated in the heating tank is introduced into the flocculating tank, flocculated, then introduced into the dehydrator and the dewatered cake is taken out. The dehydrated wastewater is discharged out of the system and treated separately.

消化汚泥としては、食品廃棄物または下水汚泥を原料とした嫌気消化槽から排出される消化液(細胞外高分子物質を主成分としたタンパク質を多量に含む汚泥;0.45μmフィルターで濾過した溶解性のタンパク質のローリー法により分析した濃度として386mg/L以上程度)などが例示される。この消化汚泥の含水率は、通常80~90wt%程度である。 As the digestive sludge, digestive fluid discharged from an anaerobic digestion tank made from food waste or sewage sludge (sludge containing a large amount of protein mainly composed of extracellular macromolecular substances; dissolved by filtering with a 0.45 μm filter 386 mg/L or more as a concentration analyzed by the Lowry method of sexual proteins). The water content of this digested sludge is usually about 80 to 90 wt%.

消化汚泥の加熱温度は、タンパク質変性させるために60℃以上とする。また、加熱コストを抑制するために、加熱温度は好ましくは80℃以下とする。加熱時間は0.5時間以上、例えば0.5~5時間、特に0.5~3時間が好ましい。なお、加熱時間とは消化汚泥が60℃以上に保持されている時間のことであり、初期加熱時の低温の時間帯は含まれない。 The heating temperature of the digested sludge is set at 60° C. or higher for protein denaturation. Moreover, in order to suppress the heating cost, the heating temperature is preferably 80° C. or lower. The heating time is preferably 0.5 hours or more, for example 0.5 to 5 hours, particularly 0.5 to 3 hours. Note that the heating time is the time during which the digested sludge is held at 60° C. or higher, and does not include the low temperature time period during the initial heating.

消化汚泥を加熱するには、温水で加熱しても良く、蒸気など高温ガスにより加熱しても良い。温水で加熱するには例えば加熱槽から槽内液を一部取り出して熱交換器に通液し温水と熱交換することで加熱することができる。 In order to heat the digested sludge, it may be heated with hot water, or it may be heated with a high-temperature gas such as steam. For heating with hot water, for example, a part of the liquid in the tank is taken out from the heating tank and passed through a heat exchanger for heat exchange with hot water.

加熱するための熱源は、例えば、以下が例示されるが、これらに限定されない。
(イ) 消化槽で発生するメタンガスを用いてボイラー加熱する。
(ロ) 重油を用いてボイラー加熱する。
(ハ) プラント系内に排熱がある場合は(例えば発電機から排出される排温水)、その排熱を用いて加熱しても良い。
(ニ) 予熱(例えば60℃までの加熱)にプラント系内の排熱を用いて、その後、設定温度(例えば80℃)に達しない分の加熱分は、例えば消化槽から発生したメタンガスの一部を用いてボイラー加熱をしても良い。
(ホ) 予熱(例えば60℃までの加熱)にプラント系内の排熱を用いて、その後、設定温度(例えば80℃)に達しない分の加熱分は例えば重油を用いてボイラー加熱をしても良い。
(ヘ) またガスで加熱するには例えば加熱槽内にガス吹込み手段を浸漬して高温ガスを吹き込むことで加熱することができる。
Examples of heat sources for heating include, but are not limited to, the following.
(b) The boiler is heated using the methane gas generated in the digestion tank.
(b) Boiler heating using heavy oil.
(c) If there is waste heat in the plant system (for example, waste hot water discharged from a generator), the waste heat may be used for heating.
(d) Exhaust heat in the plant system is used for preheating (heating up to 60°C, for example), and the amount of heating that does not reach the set temperature (e.g., 80°C) is, for example, part of the methane gas generated from the digestion tank. You may heat a boiler using a part.
(e) Use waste heat in the plant system for preheating (heating up to 60°C, for example), and then heat the part that does not reach the set temperature (e.g., 80°C) by heating the boiler using, for example, heavy oil. Also good.
(f) For heating with gas, for example, a gas blowing means can be immersed in a heating bath and high temperature gas can be blown into it.

この加熱条件によって、消化汚泥中に多分に含まれるタンパク質は変性し立体構造が崩れる。立体構造が崩れることで立体構造中に含まれていた水分はタンパク質の立体構造の外に出る。また、立体構造が崩れることで、内側に折りたたまれていた疎水基がタンパク質の表面上に出てくると考えられる。この加熱条件は比較的低温で加熱時間も短いことから、従来技術と比較して加熱処理にかかるコストを削減することが出来る。 Under these heating conditions, proteins contained in the digested sludge are denatured and lose their three-dimensional structures. When the three-dimensional structure collapses, the water contained in the three-dimensional structure comes out of the three-dimensional structure of the protein. In addition, it is thought that the collapse of the three-dimensional structure causes the hydrophobic groups that were folded inside to come out on the surface of the protein. Since this heating condition is relatively low temperature and the heating time is short, the cost required for the heat treatment can be reduced as compared with the conventional technology.

このように加熱された汚泥に対しメタクリル酸アミノアルキルエステル系、アクリル酸アミノアルキルエステル系、ポリビニルアミジン系などの高分子凝集剤で効果を発揮できるが、好ましくは疎水基を有する高分子凝集剤を添加する。これにより、変性したタンパク質同士が結合した塊を含む凝集フロックが形成されるため、含水率の低い脱水ケーキを得ることができる。 Polymer flocculants such as aminoalkyl methacrylates, aminoalkyl acrylates, and polyvinylamidines are effective for the sludge heated in this way, but polymer flocculants having hydrophobic groups are preferred. Added. As a result, aggregated flocs containing aggregates in which denatured proteins are bound together are formed, so that a dehydrated cake with a low moisture content can be obtained.

水溶性高分子凝集剤の中でも疎水基を有する高分子凝集剤は、親水基を有する高分子凝集剤よりも、加熱処理された消化汚泥の含水率低減効果が高い。タンパク質は通常立体構造をとっており、内側に水分子を抱えている。タンパク質が変性すると立体構造が崩れ、ほどけて紐状となるため、立体構造内部に含まれていた水分子が外に放出され、また、内側の疎水基が表面に出てくるため、変性したタンパク質は水分子を抱え込みにくくなると推定される。変性したタンパク質は変性していないタンパク質よりも、疎水基を有する高分子凝集剤に結合しやすい。その結果、脱水ケーキの含水率を著しく低減することが出来ると考えられる。 Among water-soluble polymer flocculants, a polymer flocculant having a hydrophobic group is more effective in reducing the moisture content of heat-treated digested sludge than a polymer flocculant having a hydrophilic group. Proteins usually have a three-dimensional structure with water molecules inside. When a protein denatures, its three-dimensional structure collapses and unravels into a string-like structure, so the water molecules contained in the three-dimensional structure are released to the outside, and the inner hydrophobic groups come to the surface, resulting in a denatured protein. It is presumed that the water molecules are difficult to hold. Denatured proteins are more likely to bind to macromolecular flocculants having hydrophobic groups than undenatured proteins. As a result, it is considered that the moisture content of the dehydrated cake can be significantly reduced.

疎水基を有する高分子凝集剤としては、DAM(アルキルアミノメタクリレート四級塩重合物)系高分子凝集剤が好適である。 As the polymer flocculant having a hydrophobic group, a DAM (alkylaminomethacrylate quaternary salt polymer) polymer flocculant is suitable.

消化汚泥への高分子凝集剤の添加量は、0.5~4.0%/TS特に1.0~3.0%/TS程度が好適である。 The amount of the polymer flocculant added to the digested sludge is preferably about 0.5-4.0%/TS, especially about 1.0-3.0%/TS.

なお、加熱した消化汚泥を冷却せずに高分子凝集剤を添加してもよく、降温させて(例えば常温に戻して)から高分子凝集剤を添加してもよい。 The polymer flocculant may be added without cooling the heated digested sludge, or the polymer flocculant may be added after the temperature is lowered (for example, returned to room temperature).

凝集処理により生じた凝集汚泥は、脱水機によって脱水される。脱水機には間接加熱機構が不要である。脱水機としては、遠心脱水機、スクリュープレス、ベルトプレス、電気浸透脱水機など各種のものを用いることができる。遠心脱水機を用いる場合は図1(a)、その他の脱水機の場合は図1(b)のフローとするのが好ましい。 The flocculated sludge produced by the flocculation treatment is dehydrated by a dehydrator. The dehydrator does not require an indirect heating mechanism. As the dehydrator, a centrifugal dehydrator, a screw press, a belt press, an electroosmotic dehydrator, and the like can be used. When using a centrifugal dehydrator, it is preferable to follow the flow of FIG. 1(a), and when using other dehydrator, it is preferable to follow the flow of FIG.

本発明の汚泥の脱水方法は、加熱温度が60~80℃程度と比較的低温であり、加熱時間が30分~5時間程度と短時間であることから、加熱処理に必要なコストを抑えることができる。 The sludge dehydration method of the present invention has a relatively low heating temperature of about 60 to 80 ° C. and a short heating time of about 30 minutes to 5 hours, so that the cost required for heat treatment can be suppressed. can be done.

また、消化汚泥を、嫌気消化槽から排出されたままの状態、すなわち濃縮をせずに加熱するため、濃縮機を必要としない。そのため、設備費が抑えられ、省スペースである。また、高分子凝集剤のみを使用して凝集させるため、薬品コストも抑えることができる。さらに、脱水機としても汎用型のもので足り、設備コストが安価である。 In addition, since the digested sludge is heated as it is discharged from the anaerobic digestion tank, that is, without being thickened, a thickener is not required. Therefore, equipment costs can be suppressed and space can be saved. In addition, since only the polymer flocculant is used for flocculation, chemical costs can be suppressed. Furthermore, a general-purpose dehydrator is sufficient, and the equipment cost is low.

以下の実施例及び比較例では、消化汚泥として、食品残渣嫌気性消化汚泥(含水率は表1~3に記載)を用いた。 In the following examples and comparative examples, food residue anaerobic digested sludge (water content is shown in Tables 1 to 3) was used as the digested sludge.

また、高分子凝集剤として次のものを用いた。 Moreover, the following was used as a polymer flocculant.

DAM系高分子凝集剤:栗田工業株式会社クリファームPC895
アミジン系高分子凝集剤:栗田工業株式会社クリフィックスCP111
DAA系高分子凝集剤:栗田工業株式会社クリフィックスPC688
DAM-based polymer flocculant: Kurita Water Industries Co., Ltd. Clifarm PC895
Amidine-based polymer flocculant: Kurita Water Industries Ltd. Clifix CP111
DAA-based polymer flocculant: Kurita Water Industries Ltd. Clifix PC688

[実施例1~3、比較例1,2]
消化汚泥を入れた三角フラスコを、ウォーターバスを用いて表1~3に示す温度、時間加熱した。
[Examples 1 to 3, Comparative Examples 1 and 2]
The Erlenmeyer flask containing the digested sludge was heated using a water bath at the temperature shown in Tables 1 to 3 for the time.

表1に示す高分子凝集剤を濃度0.3wt%になるように純水に溶解させた。 A polymer flocculant shown in Table 1 was dissolved in pure water to a concentration of 0.3 wt %.

加熱した消化汚泥を常温に戻した後、その200mLを高速ミキサーに投入し、高分子凝集剤溶解液を60mL(高分子凝集剤として900mg/L)添加し、直ちに4000rpmで5秒間、強撹拌して消化汚泥と高分子凝集剤を反応させた。 After returning the heated digested sludge to room temperature, 200 mL thereof is put into a high-speed mixer, 60 mL of polymer flocculant solution (900 mg / L as a polymer flocculant) is added, and immediately stirred strongly at 4000 rpm for 5 seconds. The digested sludge and the polymer flocculant were allowed to react with each other.

凝集した汚泥を、濾布をセットしたブロナーロートを用いて重力濾過した。濾過後の凝集汚泥を、ケーキ型枠(30mmφ×17.5mmH)にスパーテラを用いて充填し、卓上プレス機を用いて面圧1.0kg/cm、60sの条件で圧搾した。その後、金属製のへらを用いて、濾布から剥離させて脱水ケーキを得た。このケーキを、105℃の恒温機で12h乾燥させ、含水率を求めた。各結果を表1~3に示す。 The flocculated sludge was gravity filtered using a Bronner funnel fitted with a filter cloth. The flocculated sludge after filtration was filled into a cake mold (30 mmφ×17.5 mmH) using a spatula, and pressed using a desktop press under conditions of a surface pressure of 1.0 kg/cm 2 and 60 s. Then, using a metal spatula, it was separated from the filter cloth to obtain a dehydrated cake. This cake was dried in a constant temperature machine at 105° C. for 12 hours to determine the moisture content. Each result is shown in Tables 1-3.

Figure 0007130949000001
Figure 0007130949000001

Figure 0007130949000002
Figure 0007130949000002

Figure 0007130949000003
Figure 0007130949000003

表1~3の通り、加熱時間を0.5時間以上とし、加熱温度を60~80℃とし、高分子凝集剤としてDAM系のものを用いることにより、含水率の低い脱水汚泥が得られる。 As shown in Tables 1 to 3, dewatered sludge having a low moisture content can be obtained by setting the heating time to 0.5 hours or longer, the heating temperature to 60 to 80° C., and using a DAM-based polymer flocculant.

なお、90℃よりも高温では、大型の加熱/冷却設備が必要となる上に、エネルギー効率も悪いため、60~80℃が経済的である。 If the temperature is higher than 90°C, a large heating/cooling facility is required and the energy efficiency is poor, so 60 to 80°C is economical.

50℃の加熱処理では、十分に脱水されず(比較例1-1)、また、60℃の加熱処理でも加熱時間が10分では、80℃の加熱処理時と比較して含水率が低い(比較例2-1,2-3)。これは、変性するタンパク質の割合が小さいためであると考えられる。 In the heat treatment at 50 ° C., it was not sufficiently dehydrated (Comparative Example 1-1), and even in the heat treatment at 60 ° C., the water content was lower when the heating time was 10 minutes compared to the heat treatment at 80 ° C. ( Comparative Examples 2-1, 2-3). This is believed to be due to the small proportion of denatured protein.

表2の通り、60℃又は80℃で加熱時間が30分以上であれば、十分な脱水効果が得られる。なお、表1~3には示さなかったが、5時間を超えても脱水率に大きな向上は見られなかった。 As shown in Table 2, if the heating time is 30 minutes or longer at 60°C or 80°C, a sufficient dehydration effect can be obtained. Although not shown in Tables 1 to 3, no significant improvement in the dehydration rate was observed even after 5 hours.

表3の通り、疎水基を有するDAM系高分子凝集剤は、疎水基を持たない他の高分子凝集剤より脱水効果に優れる。変性タンパク質を優先的に凝集し、効果的に含水率が下がったと考えられる。 As shown in Table 3, DAM-based polymer flocculants having hydrophobic groups are superior in dehydration effect to other polymer flocculants having no hydrophobic groups. It is considered that the denatured protein was preferentially aggregated and the moisture content was effectively lowered.

[実施例4、比較例4]
消化汚泥の加熱時間を0、30、60又は180分とし、加熱後直ちに高分子凝集剤としてDAM系(栗田工業株式会社クリファームPC895)又はDAA系(栗田工業株式会社PC688)を添加した。その他は上記実施例3-1,3-3と同様とした。脱水汚泥の含水率を図2に示す。
[Example 4, Comparative Example 4]
The digested sludge was heated for 0, 30, 60 or 180 minutes, and immediately after heating, a DAM system (Kurita Water Industries Co., Ltd. Clifarm PC895) or a DAA system (Kurita Water Industries Ltd. PC688) was added as a polymer flocculant. Others were the same as in Examples 3-1 and 3-3. Figure 2 shows the water content of the dehydrated sludge.

図2の通り、消化汚泥を加熱した後、常温に戻さず、加熱後すぐに凝集させても、加熱時間が30分以上であれば、含水率が十分に低下する。また、疎水基を有する高分子凝集剤(図中KP201H)の方が大きく脱水ケーキ含水率を低下させることが認められた。 As shown in FIG. 2, even if the digested sludge is not returned to room temperature after being heated and is coagulated immediately after heating, the water content is sufficiently reduced if the heating time is 30 minutes or longer. It was also found that the polymer flocculant having a hydrophobic group (KP201H in the figure) greatly reduced the moisture content of the dehydrated cake.

Claims (7)

嫌気性消化槽より排出された消化汚泥を60~80℃に0.5時間以上保持して加熱した後、加熱した消化汚泥に、DAM系高分子凝集剤を添加して凝集し、凝集汚泥を脱水する汚泥の脱水方法。 After heating the digested sludge discharged from the anaerobic digestion tank at 60 to 80°C for 0.5 hours or more, a DAM-based polymer flocculant is added to the heated digested sludge to flocculate it, and the flocculated sludge is obtained. A method for dewatering sludge to be dewatered. 請求項1において、前記嫌気性消化槽より排出された消化汚泥を嫌気性消化槽より排出されたままの状態で加熱することを特徴とする汚泥の脱水方法。 2. The method of dewatering sludge according to claim 1, wherein the digested sludge discharged from the anaerobic digestion tank is heated as discharged from the anaerobic digestion tank. 請求項1又は2において、加熱時間が0.5~5時間であることを特徴とする汚泥の脱水方法。 3. The method of dewatering sludge according to claim 1 or 2 , wherein the heating time is 0.5 to 5 hours. 嫌気性消化槽より排出された消化汚泥が導入される滞留時間0.5時間以上の加熱槽と、
加熱槽に付設された加熱槽内の消化汚泥を60~80℃に加温する加熱手段と、
加熱槽から排出された加熱した消化汚泥をDAM系高分子凝集剤により凝集して凝集汚泥を得ると共に凝集汚泥を脱水する凝集脱水手段と
を備えた汚泥脱水装置。
a heating tank having a residence time of 0.5 hours or more into which digested sludge discharged from the anaerobic digestion tank is introduced;
heating means for heating the digested sludge in the heating tank attached to the heating tank to 60 to 80 ° C.;
A sludge dewatering device comprising a coagulating and dewatering means for obtaining coagulated sludge by coagulating heated digested sludge discharged from a heating tank with a DAM-based polymer coagulant and dewatering the coagulated sludge.
嫌気性消化槽より排出された消化汚泥が導入される滞留時間0.5時間以上の加熱槽と、
加熱槽に付設された加熱槽内の消化汚泥を60~80℃に加温する加熱手段と、
加熱槽から排出された加熱した消化汚泥をDAM系高分子凝集剤により凝集して凝集汚泥を得る凝集槽と、
該凝集槽から排出された凝集汚泥を脱水する脱水手段と
を備えた汚泥脱水装置。
a heating tank having a residence time of 0.5 hours or more into which digested sludge discharged from the anaerobic digestion tank is introduced;
heating means for heating the digested sludge in the heating tank attached to the heating tank to 60 to 80 ° C.;
a flocculation tank in which the heated digested sludge discharged from the heating tank is flocculated with a DAM-based polymer flocculant to obtain flocculated sludge;
and dewatering means for dewatering the coagulated sludge discharged from the coagulating tank.
請求項又はにおいて、前記嫌気性消化槽より排出された消化汚泥を嫌気性消化槽より排出されたままの状態で加熱槽に導入することを特徴とする汚泥脱水装置。 6. The sludge dewatering apparatus according to claim 4 , wherein the digested sludge discharged from the anaerobic digestion tank is introduced into the heating tank as it is discharged from the anaerobic digestion tank. 請求項のいずれかにおいて、加熱時間が0.5~5時間であるよう制御する手段を有することを特徴とする汚泥脱水装置。 7. The sludge dehydrating apparatus according to any one of claims 4 to 6 , further comprising means for controlling the heating time to be 0.5 to 5 hours.
JP2017236144A 2017-12-08 2017-12-08 Sludge dewatering method and sludge dewatering device Active JP7130949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017236144A JP7130949B2 (en) 2017-12-08 2017-12-08 Sludge dewatering method and sludge dewatering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017236144A JP7130949B2 (en) 2017-12-08 2017-12-08 Sludge dewatering method and sludge dewatering device

Publications (2)

Publication Number Publication Date
JP2019103952A JP2019103952A (en) 2019-06-27
JP7130949B2 true JP7130949B2 (en) 2022-09-06

Family

ID=67060726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236144A Active JP7130949B2 (en) 2017-12-08 2017-12-08 Sludge dewatering method and sludge dewatering device

Country Status (1)

Country Link
JP (1) JP7130949B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246909A (en) 2002-02-26 2003-09-05 Hymo Corp High polymer dispersion and method for producing the same
JP2005021839A (en) 2003-07-04 2005-01-27 Fuji Electric Holdings Co Ltd Treatment method and treatment apparatus for methane fermentation waste
JP2010227876A (en) 2009-03-27 2010-10-14 Osaka Gas Co Ltd Composite treatment method for wastewater and organic residue
JP2012135705A (en) 2010-12-24 2012-07-19 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for anaerobic digestion treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551851A (en) * 1978-06-20 1980-01-09 Kurita Water Ind Ltd Dehydration of organic sludge
JPH038497A (en) * 1989-06-07 1991-01-16 Mitsubishi Heavy Ind Ltd Method for dehydrating sludge
CA2079400A1 (en) * 1991-10-11 1993-04-12 Geza L. Kovacs Process for enhancing the dewaterability of waste sludge from microbiological digestion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003246909A (en) 2002-02-26 2003-09-05 Hymo Corp High polymer dispersion and method for producing the same
JP2005021839A (en) 2003-07-04 2005-01-27 Fuji Electric Holdings Co Ltd Treatment method and treatment apparatus for methane fermentation waste
JP2010227876A (en) 2009-03-27 2010-10-14 Osaka Gas Co Ltd Composite treatment method for wastewater and organic residue
JP2012135705A (en) 2010-12-24 2012-07-19 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for anaerobic digestion treatment

Also Published As

Publication number Publication date
JP2019103952A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP2018020292A (en) Low acrylamide flocculant composition and method for using low acrylamide flocculant composition
CN211847584U (en) Device for carrying out cooperative treatment on kitchen waste and household garbage leachate
CN110759629A (en) Method for enhancing sludge dewatering performance
JP7130949B2 (en) Sludge dewatering method and sludge dewatering device
WO2020158551A1 (en) Organic sludge treatment facility and treatment method
JP6996866B2 (en) Parlor wastewater treatment method and its wastewater treatment equipment
WO2009021552A1 (en) Improved separation/purification method / installation for aqueous liquid dispersions of organic material, and use of such method / installation in an integrated treatment of manure and/or organic disgestates
JP3222278B2 (en) Sludge dewatering method
JP4029021B2 (en) Sludge dewatering agent and sludge dewatering method
WO2020158552A1 (en) Organic sludge treatment facility and treatment method
JP3591077B2 (en) Sludge dewatering method
US20200263117A1 (en) Process for Improving Protein Recovery in Stillage Processing Streams
CN108178479B (en) Deep dehydration method for protein sludge
JPS59154200A (en) Treatment of sludge
JPS5874199A (en) Dehydrating method for waterworks sludge
CN104773892A (en) High-salt industrial sewage treatment technology and apparatus thereof
JPH08206691A (en) Treatment of sludge
JPH0122840B2 (en)
JPS62277200A (en) Treatment for flocculating sludge
CN204509030U (en) High salt industrial Sewage treatment systems
CN109626794A (en) A kind of process of combined type sludge dewatering
JPH05317899A (en) Treatment of sludge
JP2020062589A (en) Sludge dewatering method
JP2004237247A (en) Treatment apparatus for water-containing slurry
JPS58143894A (en) Treatment of organic waste matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220613

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220620

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R150 Certificate of patent or registration of utility model

Ref document number: 7130949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150