JP7127580B2 - Oxygen concentration measuring device and oxygen concentration measuring method - Google Patents

Oxygen concentration measuring device and oxygen concentration measuring method Download PDF

Info

Publication number
JP7127580B2
JP7127580B2 JP2019036617A JP2019036617A JP7127580B2 JP 7127580 B2 JP7127580 B2 JP 7127580B2 JP 2019036617 A JP2019036617 A JP 2019036617A JP 2019036617 A JP2019036617 A JP 2019036617A JP 7127580 B2 JP7127580 B2 JP 7127580B2
Authority
JP
Japan
Prior art keywords
oxygen
thermal conductivity
oxygen concentration
concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036617A
Other languages
Japanese (ja)
Other versions
JP2020139873A (en
Inventor
慎也 中川
肇 叶
秀之 中尾
進 神山
憲一 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2019036617A priority Critical patent/JP7127580B2/en
Priority to PCT/JP2020/007129 priority patent/WO2020175379A1/en
Publication of JP2020139873A publication Critical patent/JP2020139873A/en
Application granted granted Critical
Publication of JP7127580B2 publication Critical patent/JP7127580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、酸素濃度測定装置及び酸素濃度測定方法に関する。 The present invention relates to an oxygen concentration measuring device and an oxygen concentration measuring method.

気体に含まれる成分の濃度をセンサによって検出することが行われている。例えば特許文献1では、測定対象の気体に含まれる水素ガスの濃度を熱流量センサ及び圧力センサを使用することによって求めることが開示されている。また、特許文献2では、超音波を利用した気体の濃度の測定に関する発明が開示されている。 A sensor is used to detect the concentration of a component contained in a gas. For example, Patent Literature 1 discloses obtaining the concentration of hydrogen gas contained in a gas to be measured by using a heat flow sensor and a pressure sensor. Further, Patent Document 2 discloses an invention relating to gas concentration measurement using ultrasonic waves.

特開2017-90317号公報JP 2017-90317 A 特開2006-275608号公報Japanese Patent Application Laid-Open No. 2006-275608

ところで、酸素濃縮器では、大気中に含まれる酸素を濃縮するために所定のフィルタによって大気に含まれる窒素を除去することが行われている。しかしながら、フィルタの性能が経年劣化することにより、フィルタを通過した濃縮ガスに含まれる酸素の割合が相対的に低下することが考えられる。そこで、フィルタの交換の時期を容易に把握するために、特許文献1-2に開示される技術(以下、単に従来技術という)を利用し、フィルタを通過した後の濃縮ガスに含まれる酸素の濃度を測定することが考えられる。 By the way, in the oxygen concentrator, nitrogen contained in the atmosphere is removed by a predetermined filter in order to concentrate oxygen contained in the atmosphere. However, it is conceivable that the percentage of oxygen contained in the enriched gas that has passed through the filter will relatively decrease as the performance of the filter deteriorates over time. Therefore, in order to easily grasp the time to replace the filter, the technology disclosed in Patent Documents 1 and 2 (hereinafter simply referred to as conventional technology) is used to reduce the oxygen contained in the concentrated gas after passing through the filter. It is conceivable to measure the concentration.

ここで、フィルタを通過した濃縮ガスは、酸素、窒素、そしてアルゴンなどの3種類以上の成分が含まれることが考えられる。そこで、多様な酸素濃度の濃縮ガスの物性を従来技術によって測定し、酸素濃度と当該物性の測定値との対応関係を予め記憶しておくことが考えられる。そして、測定対象の濃縮ガスの物性を測定し、測定された物性値に対応する酸素の濃度を、予め記憶しておいた対応関係を参照して求めることが考えられる。 Here, it is conceivable that the concentrated gas that has passed through the filter contains three or more components such as oxygen, nitrogen, and argon. Therefore, it is conceivable to measure the physical properties of concentrated gases with various oxygen concentrations by a conventional technique, and store in advance the correspondence between the oxygen concentrations and the measured values of the physical properties. Then, it is conceivable to measure the physical properties of the concentrated gas to be measured, and obtain the concentration of oxygen corresponding to the measured physical property values by referring to the previously stored correspondence relationship.

しかしながら、このような方法の場合、濃縮ガスの酸素濃度と物性値との対応関係を作成するための負荷は大きいと考えられる。特に、成分比の変化に対する濃縮ガスの物性の変化に規則性が乏しい場合、成分比をより細かく変化させ、対応関係を作成する必要があるため上記の負荷はより大きくなる。すなわち、本発明者は、特許文献1-2に開示されるセンサによって3種類以上の成分を含む濃縮ガスの成分濃度を測定する場合に負荷を要するため、酸素濃縮器において濃縮された酸素の濃度の測定は簡易に行うことができず、よって窒素を除去するフィルタの交換の時期を容易に把握することができないことを見出した。 However, in the case of such a method, it is considered that the load for creating the correspondence relationship between the oxygen concentration of the concentrated gas and the physical property value is large. In particular, if there is little regularity in the change in the physical properties of the concentrated gas with respect to the change in the component ratio, it is necessary to change the component ratio more finely and create the corresponding relationship, which increases the above load. That is, the present inventors have found that the sensor disclosed in Patent Documents 1 and 2 requires a load when measuring the component concentration of a concentrated gas containing three or more components, so the concentration of oxygen concentrated in an oxygen concentrator cannot be easily measured, and therefore it is not possible to easily grasp the timing of replacement of the filter that removes nitrogen.

本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は、酸素濃縮器において、酸素が濃縮された気体に含まれる酸素の濃度を簡易に測定することのできる技術を提供することである。 In one aspect, the present invention has been made in view of such circumstances, and an object of the present invention is to easily measure the concentration of oxygen contained in oxygen-enriched gas in an oxygen concentrator. It is to provide technology.

本発明は、上述した課題を解決するために、以下の構成を採用する。 The present invention adopts the following configurations in order to solve the above-described problems.

すなわち本発明の一側面に係る酸素濃度測定装置は、酸素濃縮器において濃縮後の酸素の濃度を測定する酸素濃度測定装置であって、空気に含まれる窒素を除去し、酸素を濃縮
する酸素濃縮手段によって酸素が濃縮された濃縮ガスを加熱する加熱部と、前記加熱部を跨いで並んで配置され、前記濃縮ガスの温度に基づき出力を行う出力部と、前記出力部における出力より、前記濃縮ガスの熱伝導率を算出する熱伝導率算出部と、前記熱伝導率算出部によって算出される前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出する酸素濃度算出部と、を備え、前記濃縮ガスは、前記酸素濃縮手段の使用が開始された初期状態において、該酸素濃縮手段によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段を透過した空気と、を含み、前記酸素濃度算出部は、前記初期濃縮ガスにおける熱伝導率及び酸素濃度と、前記空気における熱伝導率及び酸素濃度と、に基づいて、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出することを特徴とする、酸素濃度測定装置である。
That is, an oxygen concentration measuring device according to one aspect of the present invention is an oxygen concentration measuring device that measures the concentration of oxygen after concentration in an oxygen concentrator, and is an oxygen concentration measuring device that removes nitrogen contained in the air and concentrates the oxygen. a heating unit that heats the concentrated gas in which oxygen is concentrated by means; an output unit that is arranged across the heating unit and performs an output based on the temperature of the concentrated gas; a thermal conductivity calculator that calculates the thermal conductivity of the gas; and an oxygen concentration calculator that calculates the concentration of oxygen contained in the enriched gas with respect to the thermal conductivity of the enriched gas calculated by the thermal conductivity calculator. wherein the enriched gas includes an initially enriched gas in which oxygen has been enriched by the oxygen enrichment means in an initial state when the use of the oxygen enrichment means is started, and air that has permeated the oxygen enrichment means. , the oxygen concentration calculator calculates the thermal conductivity and oxygen concentration of the enriched gas based on the thermal conductivity and oxygen concentration in the initial enriched gas and the thermal conductivity and oxygen concentration in the air. An oxygen concentration measuring device characterized by calculating the concentration of oxygen.

当該構成によれば、測定対象の濃縮ガスは、酸素濃縮手段の使用が開始された初期状態において該酸素濃縮手段によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段を透過した空気(以下、透過空気という)とからなるガスと考える。ここで、初期濃縮ガスは、酸素濃縮手段によって空気に含まれる窒素が除去され、濃縮された酸素と、濃縮前の空気に含まれるアルゴンとからなる気体である。また、酸素濃縮手段を透過した空気は、酸素濃縮手段によって窒素が除去されなかった空気であり、酸素、窒素、及びアルゴンの3種類の成分が少なくとも含まれる。 According to this configuration, the concentrated gas to be measured is the initial concentrated gas in which oxygen is concentrated by the oxygen concentrating means in the initial state when the use of the oxygen concentrating means is started, and the air that has permeated the oxygen concentrating means (hereinafter referred to as , permeated air). Here, the initially concentrated gas is a gas composed of oxygen concentrated by removing nitrogen contained in the air by the oxygen concentrating means and argon contained in the air before concentration. Also, the air that has passed through the oxygen concentrating means is air from which nitrogen has not been removed by the oxygen concentrating means, and contains at least three components of oxygen, nitrogen, and argon.

ここで、初期濃縮ガスに含まれる濃縮された酸素とアルゴンの成分比は、透過空気の量に依存するものではなく、略一定である。よって、初期濃縮ガスの熱伝導率は略一定である。つまり、初期濃縮ガスの熱伝導率と初期濃縮ガスに含まれる濃縮酸素の濃度との関係は、略一定であり、一度求めておけばよく、透過空気の量が変化した場合に再度求めることをせずに済む。 Here, the component ratio of concentrated oxygen and argon contained in the initially concentrated gas does not depend on the amount of permeated air, and is substantially constant. Therefore, the thermal conductivity of the initially enriched gas is substantially constant. In other words, the relationship between the thermal conductivity of the initial enrichment gas and the concentration of the enriched oxygen contained in the initial enrichment gas is substantially constant, so it only needs to be determined once, and should be determined again when the amount of permeated air changes. can be done without

一方、透過空気に含まれる酸素、窒素、及びアルゴンの各成分比は、酸素濃縮手段によって窒素が除去される前の空気の成分比と略同一である。つまり、透過空気の熱伝導率と透過空気に含まれる酸素の濃度との関係は、酸素濃縮器の設置環境に存在する空気の熱伝導率と空気に含まれる酸素の濃度の関係ということになる。よって、当該関係は濃縮ガスの酸素の濃度を測定する前に予め求めることができ、又略一定の関係である。 On the other hand, the component ratio of oxygen, nitrogen, and argon contained in the permeated air is substantially the same as the component ratio of the air before nitrogen is removed by the oxygen concentrating means. In other words, the relationship between the thermal conductivity of the permeated air and the concentration of oxygen contained in the permeated air is the relationship between the thermal conductivity of the air existing in the installation environment of the oxygen concentrator and the concentration of oxygen contained in the air. . Therefore, the relationship can be determined in advance before measuring the concentration of oxygen in the enriched gas, and is a substantially constant relationship.

よって、当該構成によれば、初期濃縮ガスにおける熱伝導率及び酸素濃度、及び透過空気における熱伝導率及び酸素濃度に基づき、濃縮ガスにおける熱伝導率に対する濃縮ガスの酸素濃度を算出することができる。また、酸素濃度算出部は、濃縮ガスに含まれる多様な濃度の酸素に対する濃縮ガスの熱伝導率の対応関係を予め記憶しておくことをせずに済む。すなわち、当該構成によれば、酸素濃縮器において、濃縮ガスに含まれる酸素の濃度を簡易に測定することができる。 Therefore, according to this configuration, it is possible to calculate the oxygen concentration of the enriched gas with respect to the thermal conductivity of the enriched gas based on the thermal conductivity and oxygen concentration of the initial enriched gas and the thermal conductivity and oxygen concentration of the permeated air. . In addition, the oxygen concentration calculation unit does not need to store in advance the correspondence relationship of the thermal conductivity of the enriched gas with respect to various concentrations of oxygen contained in the enriched gas. That is, according to this configuration, the concentration of oxygen contained in the concentrated gas can be easily measured in the oxygen concentrator.

また、当該構成によれば、前記加熱部による加熱により生じた熱の分布は、濃縮ガスが流れた場合に変化する。よって、濃縮ガスが流れる場合と流れない場合とで出力部からの出力は変化する。また、出力部からの出力の変化の大きさは、濃縮ガスの流量の大きさに関係する。よって、当該構成によれば、出力部からの出力により濃縮ガスの流量も算出することができる。つまり、当該構成によれば、少なくとも3つの成分を含む濃縮ガスの成分比に加えて濃縮ガスの流量を測定できる。すなわち、当該構成は、1つの装置により濃縮ガスの成分比と流量とを測定できるため、コンパクトかつ製造コストの低い装置である。 Moreover, according to this configuration, the distribution of heat generated by heating by the heating unit changes when the concentrated gas flows. Therefore, the output from the output section changes depending on whether the concentrated gas flows or not. Also, the magnitude of the change in output from the output section is related to the magnitude of the flow rate of the concentrated gas. Therefore, according to this configuration, the flow rate of the concentrated gas can also be calculated from the output from the output unit. That is, according to this configuration, the flow rate of the enriched gas can be measured in addition to the component ratio of the enriched gas containing at least three components. That is, this configuration is a compact device with low manufacturing cost because it can measure the component ratio and the flow rate of the concentrated gas with a single device.

上記一側面に係る酸素濃度測定装置において、前記酸素濃度算出部は、前記初期濃縮ガスにおける熱伝導率をλ、酸素濃度をCとし、前記酸素濃縮手段を透過した空気における熱伝導率をλ、酸素濃度をCとし、前記熱伝導率算出部により算出された前記濃
縮ガスの熱伝導率をλとし、前記濃縮ガスの酸素濃度をCとしたときに、数式(1)によりCを算出することを特徴としてもよい。

Figure 0007127580000001
In the oxygen concentration measuring device according to the above aspect, the oxygen concentration calculator calculates the thermal conductivity of the initially concentrated gas as λ a , the oxygen concentration as C a , and the thermal conductivity of the air that has passed through the oxygen concentrator as Let λ b be the oxygen concentration, let C b be the oxygen concentration, let λ x be the thermal conductivity of the enriched gas calculated by the thermal conductivity calculator, and let C x be the oxygen concentration of the enriched gas. may be characterized by calculating Cx by
Figure 0007127580000001

当該構成によれば、熱伝導率算出部によって算出される濃縮ガスの熱伝導率を算出式に代入し、簡易に濃縮ガスに含まれる酸素の濃度を算出することができる。 According to this configuration, the concentration of oxygen contained in the concentrated gas can be easily calculated by substituting the thermal conductivity of the concentrated gas calculated by the thermal conductivity calculation unit into the calculation formula.

上記一側面に係る酸素濃度測定装置において、前記酸素濃度算出部は、前記濃縮ガスにおける、前記初期濃縮ガスと、前記酸素濃縮手段を透過した空気との存在比率を変化させた場合の熱伝導率及び酸素濃度の値によって算出された、前記濃縮ガスにおける熱伝導率と酸素濃度との対応関係を参照して、前記濃縮ガスの酸素濃度を算出することを特徴としてもよい。 In the oxygen concentration measuring device according to the above aspect, the oxygen concentration calculation unit calculates the thermal conductivity when changing the existence ratio of the initially concentrated gas and the air that has passed through the oxygen concentrating means in the concentrated gas. The oxygen concentration of the enriched gas may be calculated with reference to the correspondence relationship between the thermal conductivity and the oxygen concentration in the enriched gas, which is calculated based on the values of the oxygen concentration and the oxygen concentration.

当該構成によれば、酸素濃度算出部は、熱伝導率算出部によって算出された濃縮ガスの熱伝導率に対して、当該対応関係に基づき濃縮ガスに含まれる酸素の濃度を算出することができる。 According to this configuration, the oxygen concentration calculation unit can calculate the concentration of oxygen contained in the concentrated gas based on the corresponding relationship with respect to the thermal conductivity of the concentrated gas calculated by the thermal conductivity calculation unit. .

上記一側面に係る酸素濃度測定装置において、前記対応関係は、前記濃縮ガスに含まれる前記酸素濃縮手段を透過した空気の割合が増加することに従い、前記濃縮ガスの熱伝導率に対して前記濃縮ガスに含まれる酸素の濃度は単調に変化する関係を含んでもよい。 In the oxygen concentration measuring device according to the above aspect, the correspondence relationship is such that as the proportion of air that has passed through the oxygen enrichment means contained in the enriched gas increases, the concentration The concentration of oxygen contained in the gas may include a monotonically changing relationship.

当該構成によれば、酸素濃度算出部は、熱伝導率算出部によって算出された濃縮ガスの熱伝導率に対して、当該対応関係に基づき濃縮ガスに含まれる酸素の濃度を一対一に算出することができる。 According to the configuration, the oxygen concentration calculation unit calculates the concentration of oxygen contained in the concentrated gas on a one-to-one basis based on the corresponding relationship with respect to the thermal conductivity of the concentrated gas calculated by the thermal conductivity calculation unit. be able to.

上記一側面に係る酸素濃度測定装置において、前記空気に含まれる酸素の濃度と、前記空気の熱伝導率と、を測定する測定手段を更に備えてもよい。 The oxygen concentration measuring device according to the above aspect may further include measuring means for measuring the concentration of oxygen contained in the air and the thermal conductivity of the air.

当該構成によれば、酸素濃度測定装置が設置される環境の変化により酸素濃縮器が設置される環境に存在する空気自体の成分が変わり、透過空気の成分の比率が変化した場合であっても、当該変化を測定手段によって測定し、当該変化の測定結果を使用して濃縮ガスの酸素濃度を算出することができる。つまり、当該構成によれば、酸素濃度測定装置が設置される環境の変化に関わらず、酸素濃縮器における濃縮ガスの酸素濃度を精度高く測定することができる。 According to this configuration, even if the composition of the air itself existing in the environment where the oxygen concentrator is installed changes due to a change in the environment where the oxygen concentration measuring device is installed, and the ratio of the components of the permeated air changes. , the change may be measured by a measuring means and the measurement of the change may be used to calculate the oxygen concentration of the enriched gas. That is, according to this configuration, the oxygen concentration of the concentrated gas in the oxygen concentrator can be measured with high accuracy regardless of changes in the environment in which the oxygen concentration measuring device is installed.

また、本発明は、方法の側面から捉えることもできる。すなわち、本発明の一側面に係る酸素濃度測定方法は、酸素濃縮器において濃縮後の酸素の濃度を測定する酸素濃度測定方法であって、空気に含まれる窒素を除去し、酸素を濃縮する酸素濃縮手段によって酸素が濃縮された濃縮ガスの熱伝導率を算出する熱伝導率算出ステップと、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出する酸素濃度算出ステップと、を有し、前記濃縮ガスは、前記酸素濃縮手段の使用が開始された初期状態において、該酸素濃縮手段によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段を透過した空気と、を含み、前記酸素濃度算出ステップにおいては、前記初期濃縮ガスにおける熱伝導率及び酸素濃度と、前記空気における熱伝導率及び酸素濃度と、に基づいて、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出することを特徴とする、酸素濃度測定方法であってもよい。 The present invention can also be viewed from a method aspect. That is, an oxygen concentration measuring method according to one aspect of the present invention is an oxygen concentration measuring method for measuring the concentration of oxygen after concentration in an oxygen concentrator, wherein nitrogen contained in air is removed and oxygen is concentrated. a thermal conductivity calculation step of calculating the thermal conductivity of a concentrated gas in which oxygen is concentrated by the enrichment means; an oxygen concentration calculation step of calculating the concentration of oxygen contained in the concentrated gas with respect to the thermal conductivity of the concentrated gas; and the enriched gas includes an initial enriched gas in which oxygen has been enriched by the oxygen enrichment means in an initial state when the use of the oxygen enrichment means is started, and air that has passed through the oxygen enrichment means. , in the oxygen concentration calculating step, based on the thermal conductivity and oxygen concentration in the initial enriched gas and the thermal conductivity and oxygen concentration in the air, It may be an oxygen concentration measuring method characterized by calculating the concentration of oxygen contained in the gas.

上記一側面に係る酸素濃度測定方法において、前記酸素濃度算出ステップにおいては、前記初期濃縮ガスにおける熱伝導率をλ、酸素濃度をCとし、前記酸素濃縮手段を透過した空気における熱伝導率をλ、酸素濃度をCとし、前記熱伝導率算出ステップにおいて算出された前記濃縮ガスの熱伝導率をλとし、前記濃縮ガスの酸素濃度をCとしたときに、数式(1)によりCを算出することを特徴としてもよい。

Figure 0007127580000002
In the oxygen concentration measuring method according to the above aspect, in the oxygen concentration calculating step, the thermal conductivity of the initially concentrated gas is λ a , the oxygen concentration is C a , and the thermal conductivity of the air that has passed through the oxygen concentrating means is is λ b , the oxygen concentration is C b , the thermal conductivity of the enriched gas calculated in the thermal conductivity calculation step is λ x , and the oxygen concentration of the enriched gas is C x , the formula (1 ) to calculate Cx .
Figure 0007127580000002

上記一側面に係る酸素濃度測定方法において、前記酸素濃度算出ステップにおいては、前記濃縮ガスにおける、前記初期濃縮ガスと、前記酸素濃縮手段を透過した空気との存在比率を変化させた場合の熱伝導率及び酸素濃度の値によって算出された、前記濃縮ガスにおける熱伝導率と酸素濃度との対応関係を参照して、前記濃縮ガスの酸素濃度を算出することを特徴としてもよい。 In the oxygen concentration measuring method according to the above aspect, in the oxygen concentration calculating step, in the enriched gas, heat conduction when changing the existence ratio of the initially enriched gas and the air that has passed through the oxygen enrichment means The oxygen concentration of the enriched gas may be calculated with reference to the correspondence relationship between the thermal conductivity and the oxygen concentration in the enriched gas, which is calculated from the values of the thermal conductivity and the oxygen concentration.

本発明によれば、酸素濃縮器において、酸素が濃縮された気体に含まれる酸素の濃度を簡易に測定することのできる技術を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is an oxygen concentrator. WHEREIN: The technique which can measure simply the density|concentration of the oxygen contained in the gas in which oxygen was concentrated can be provided.

図1は、実施形態に係る酸素濃度測定装置による酸素の濃度の測定の概要の一例を模式的に例示する。FIG. 1 schematically illustrates an example of an overview of oxygen concentration measurement by an oxygen concentration measuring device according to an embodiment. 図2は、ヒータから発せられた熱がサーモパイルへ伝わることを表す等価回路の一例を例示する。FIG. 2 illustrates an example of an equivalent circuit showing that heat generated from the heater is transferred to the thermopile. 図3は、サーモパイルの出力と、混合ガスの熱伝導率との関係を図示した一例である。FIG. 3 is an example illustrating the relationship between the thermopile output and the thermal conductivity of the mixed gas. 図4は、混合ガスの熱伝導率と混合ガスに含まれる酸素濃度との関係の概要の一例を模式的に例示する。FIG. 4 schematically illustrates an example of the outline of the relationship between the thermal conductivity of the mixed gas and the oxygen concentration contained in the mixed gas. 図5は、従来技術による混合ガスに含まれる酸素濃度の測定の概要の一例を模式的に例示する。FIG. 5 schematically illustrates an example of an overview of measurement of oxygen concentration contained in mixed gas according to the prior art. 図6は、酸素濃度測定装置の機能ブロック図の概要の一例を模式的に例示する。FIG. 6 schematically illustrates an example of an outline of a functional block diagram of the oxygen concentration measuring device. 図7は、混合ガスに含まれる酸素と窒素の成分比を変化させ、定数を決定する概要の一例を模式的に例示する。FIG. 7 schematically illustrates an example of an overview of changing the component ratio of oxygen and nitrogen contained in the mixed gas and determining constants. 図8は、最初期の酸素濃縮ガスの酸素濃度及び最初期の酸素濃縮ガスの熱伝導率を測定する概要の一例を模式的に例示する。FIG. 8 schematically illustrates an example schematic for measuring the oxygen concentration of the earliest oxygen-enriched gas and the thermal conductivity of the earliest oxygen-enriched gas. 図9は、酸素濃度測定装置の処理手順を示すフローチャートの一例を模式的に例示する。FIG. 9 schematically illustrates an example of a flow chart showing the processing procedure of the oxygen concentration measuring device. 図10は、酸素濃度測定装置の概要の一例を模式的に例示する。FIG. 10 schematically illustrates an example of an outline of an oxygen concentration measuring device.

以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。 Hereinafter, an embodiment (hereinafter also referred to as "this embodiment") according to one aspect of the present invention will be described based on the drawings. However, this embodiment described below is merely an example of the present invention in every respect. It goes without saying that various modifications and variations can be made without departing from the scope of the invention. That is, in implementing the present invention, a specific configuration according to the embodiment may be appropriately employed.

§1 適用例
図1、図2を用いて、本発明が適用される場面の一例について説明する。図1は、本実施形態に係る酸素濃度測定装置1による酸素の濃度の測定の概要の一例を模式的に例示する。図1に示されるように、酸素濃度測定装置1は、流管部材2の内部を通過する混合ガス内に含まれる酸素の濃度を検出する。ここで、混合ガスは、酸素濃縮器の外部から流入し、窒素を吸着するフィルタ3を通過した気体である。混合ガスには、外部の空気に含まれる酸素、アルゴン、及びフィルタ3において吸着除去されなかった窒素が少なくとも含まれる。
§1 Application Example An example of a scene to which the present invention is applied will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 schematically illustrates an example of an overview of oxygen concentration measurement by an oxygen concentration measuring device 1 according to this embodiment. As shown in FIG. 1, the oxygen concentration measuring device 1 detects the concentration of oxygen contained in the mixed gas passing through the flow tube member 2 . Here, the mixed gas is the gas that has flowed in from the outside of the oxygen concentrator and has passed through the filter 3 that adsorbs nitrogen. The mixed gas contains at least oxygen and argon contained in the outside air, and nitrogen that has not been removed by adsorption in the filter 3 .

また、図1に示されるように、酸素濃度測定装置1は、基板4と、基板4の上に実装される薄膜5とを備える。そして、酸素濃度測定装置1は、薄膜5の中央に配置されるヒータ6を備える。ヒータ6は、その上部を緩やかに通過する混合ガスを加熱する。また、酸素濃度測定装置1は、ヒータ6の両脇にサーモパイル7A、7Bを備える。サーモパイル7A、7Bは、夫々の両端の温度差に応じた出力を行う。 Further, as shown in FIG. 1 , the oxygen concentration measuring device 1 includes a substrate 4 and a thin film 5 mounted on the substrate 4 . The oxygen concentration measuring device 1 has a heater 6 arranged in the center of the thin film 5 . The heater 6 heats the mixed gas gently passing over it. The oxygen concentration measuring device 1 also has thermopiles 7 A and 7 B on both sides of the heater 6 . The thermopiles 7A and 7B output according to the temperature difference between their ends.

図2は、ヒータ6から発せられた熱がサーモパイル7Aへ伝わることを表す熱等価回路の一例を例示する。ヒータ6から発せられた熱は、混合ガスによって運ばれ、サーモパイル7Aの接点8及び接点9へ達する。ここで、接点8から接点9へ混合ガスを介して運ばれる熱には、混合ガスの成分比に依存する熱抵抗が定常的に加わるものと考えられる。換言すれば、混合ガスに含まれる成分比が変化し、混合ガスの熱抵抗が変化した場合、接点8の温度と接点9の温度との温度差も変化する。よって、混合ガスに含まれる成分の比率は、サーモパイル7Aの出力より検出される。 FIG. 2 illustrates an example of a heat equivalent circuit showing that heat generated from the heater 6 is transmitted to the thermopile 7A. The heat emitted from the heater 6 is carried by the mixed gas and reaches the contacts 8 and 9 of the thermopile 7A. Here, it is considered that the heat transferred from the contact 8 to the contact 9 via the mixed gas is constantly added with thermal resistance that depends on the composition ratio of the mixed gas. In other words, when the component ratio contained in the mixed gas changes and the thermal resistance of the mixed gas changes, the temperature difference between the temperature of the contact 8 and the temperature of the contact 9 also changes. Therefore, the ratio of components contained in the mixed gas is detected from the output of the thermopile 7A.

本実施形態では、フィルタ3の経年劣化などにより変化した混合ガスを、フィルタ3が新たに設置され、所望の通り窒素が除去されて酸素が濃縮された最初期の酸素濃縮ガスに、フィルタ3を通過した外気が混合する混合ガスと仮定して評価している。 In this embodiment, the mixed gas that has changed due to deterioration of the filter 3 over time is converted into the oxygen-enriched gas in the earliest stage where the filter 3 is newly installed and the nitrogen is removed as desired to concentrate the oxygen. The evaluation is made assuming that the gas is mixed with the outside air that has passed through it.

ここで、最初期の酸素濃縮ガスの物性は、経年した場合であっても変化しない。よって、最初期の酸素濃縮ガスの熱伝導率は経年に関わらず略一定である。つまり、最初期の酸素濃縮ガスの熱伝導率と最初期の酸素濃縮ガスに含まれる濃縮酸素の濃度は、フィルタ3が設置された直後に一度求めておけばよい。 Here, the physical properties of the oxygen-enriched gas at the earliest stage do not change even with aging. Therefore, the thermal conductivity of the oxygen-enriched gas at the earliest stage is substantially constant regardless of aging. That is, the thermal conductivity of the oxygen-enriched gas at the earliest stage and the concentration of the enriched oxygen contained in the oxygen-enriched gas at the earliest stage may be determined once immediately after the filter 3 is installed.

また、外気の成分比及び外気の物性も、同様にして経年した場合であっても変化しない。よって、外気の熱伝導率と外気に含まれる酸素の濃度は測定対象の混合ガスの酸素の濃度を測定する前に予め測定することができる。 In addition, the component ratio of the outside air and the physical properties of the outside air do not change even after aging in the same manner. Therefore, the thermal conductivity of the outside air and the concentration of oxygen contained in the outside air can be measured in advance before measuring the concentration of oxygen in the mixed gas to be measured.

つまり、本実施形態では、測定対象の混合ガス全体の物性の経年変化は、最初期の酸素濃縮ガスの物性及び外気の物性の変化によるものではなく、混合ガスに混入する外気の量が単調に増加することによるものとなる。よって、混合ガス全体に含まれる酸素の濃度と混合ガス全体の熱伝導率との対応関係は、単調な変化を含む関係となる。よって、酸素濃度測定装置1によれば、測定対象の混合ガスの熱伝導率を算出し、算出された混合ガスの熱伝導率に対して、当該対応関係に基づき、混合ガスに含まれる酸素の濃度を一対一に、かつ簡易に算出することができる。その結果、フィルタ3の交換の時期を容易に把握することができる。 In other words, in the present embodiment, changes in physical properties of the entire mixed gas to be measured over time are not due to changes in the physical properties of the oxygen-enriched gas and the physical properties of the outside air at the earliest stage, but the amount of outside air mixed into the mixed gas monotonically changes. It is due to an increase in Therefore, the correspondence relationship between the concentration of oxygen contained in the entire mixed gas and the thermal conductivity of the entire mixed gas is a relationship including monotonous changes. Therefore, according to the oxygen concentration measuring device 1, the thermal conductivity of the mixed gas to be measured is calculated, and the calculated thermal conductivity of the mixed gas is calculated based on the corresponding relationship of the oxygen contained in the mixed gas. Concentration can be easily calculated on a one-to-one basis. As a result, it is possible to easily grasp when the filter 3 needs to be replaced.

§2 構成例
[ハードウェア構成]
次に、本実施形態に係る酸素濃度測定装置の一例について説明する。図1に示されるように、酸素濃度測定装置1は、例えば呼吸器疾患を患う患者が使用する酸素濃縮器の内部に設けられる流管部材2の内部を緩やかに通過する混合ガス内に含まれる酸素の濃度を検
出する。ここで、混合ガスは、酸素濃縮器の外部から流入し、窒素を吸着するフィルタ3を通過した気体である。混合ガスには、外部の空気に含まれる酸素、フィルタ3において吸着除去されなかった窒素、及びアルゴンが少なくとも含まれる。
§2 Configuration example [Hardware configuration]
Next, an example of the oxygen concentration measuring device according to this embodiment will be described. As shown in FIG. 1, an oximetry device 1 is contained in a mixed gas that is gently passed through a flow tube member 2 provided inside an oxygen concentrator used, for example, by a patient suffering from a respiratory disease. Detects oxygen concentration. Here, the mixed gas is the gas that has flowed in from the outside of the oxygen concentrator and has passed through the filter 3 that adsorbs nitrogen. The mixed gas contains at least oxygen contained in the outside air, nitrogen not removed by adsorption in the filter 3, and argon.

また、図1に示されるように、酸素濃度測定装置1は、基板4と、基板4の上に実装される薄膜5とを備える。そして、酸素濃度測定装置1は、薄膜5に覆われるヒータ6を備える。ヒータ6は、その上部を通過する混合ガスを加熱する。ここで、ヒータ6は、本発明の「加熱部」の一例である。 Further, as shown in FIG. 1 , the oxygen concentration measuring device 1 includes a substrate 4 and a thin film 5 mounted on the substrate 4 . The oxygen concentration measuring device 1 has a heater 6 covered with a thin film 5 . The heater 6 heats the mixed gas passing over it. Here, the heater 6 is an example of the "heating part" of the present invention.

また、酸素濃度測定装置1は、ヒータ6の両脇にサーモパイル7A、7Bを備える。サーモパイル7A、7Bは、夫々の両端の温度差に応じた出力を行う。また、基板4は、ヒータ6が配置され、薄膜側に開口する空洞20を備える。空洞20の存在により、ヒータ6の近傍の空間には、熱の分布が生じる。ここで、サーモパイル7A、7Bは、本発明の「出力部」の一例である。 The oxygen concentration measuring device 1 also has thermopiles 7 A and 7 B on both sides of the heater 6 . The thermopiles 7A and 7B output according to the temperature difference between their ends. The substrate 4 also has a cavity 20 in which the heater 6 is arranged and which opens toward the thin film. Due to the existence of the cavity 20 , heat distribution occurs in the space near the heater 6 . Here, the thermopiles 7A and 7B are an example of the "output section" of the present invention.

ここで、サーモパイル7A、7Bの上部を通過する混合ガスの流れは緩やかなので、サーモパイル7A、7Bからの出力は、混合ガスの流れがほぼ止まっている状態での出力となる。 Here, since the flow of the mixed gas passing above the thermopiles 7A and 7B is slow, the output from the thermopiles 7A and 7B is the output when the flow of the mixed gas is almost stopped.

また、図1に示される例では、混合ガスの流れる向きにサーモパイル7Aとサーモパイル7Bとが並んで設けられているが、サーモパイル7Aとサーモパイル7Bとは、混合ガスの流れる向きと垂直方向に並んで設けられてもよい。
[熱伝導率測定原理]
In the example shown in FIG. 1, the thermopile 7A and the thermopile 7B are arranged side by side in the direction of flow of the mixed gas. may be provided.
[Thermal conductivity measurement principle]

図2に示されるように、ヒータ6から発せられた熱は、薄膜5を介してサーモパイル7Aへ達する。ここで、Rsを薄膜の熱抵抗とすると、薄膜5を介して移動する熱には、定
常的にRsが加わるものと考えられる。また、サーモパイル7Aの薄膜5との片側の接点
8へ達した熱は、サーモパイル7Aを伝って反対側の接点9へ達する。ここで、サーモパイルの熱抵抗をRtとすると、接点8からサーモパイル7Aを伝って接点9へ達する熱に
は、定常的にRtが加わるものと考えられる。
As shown in FIG. 2, the heat emitted from the heater 6 reaches the thermopile 7A through the thin film 5. As shown in FIG. Here, assuming that R s is the thermal resistance of the thin film, it is considered that R s is constantly added to the heat that moves through the thin film 5 . Also, the heat reaching the contact 8 on one side of the thermopile 7A with the thin film 5 reaches the contact 9 on the opposite side through the thermopile 7A. Assuming that the thermal resistance of the thermopile is Rt , Rt is considered to be constantly added to the heat that reaches the contact 9 from the contact 8 through the thermopile 7A.

一方で、ヒータ6から発せられた熱は、薄膜5とは異なり混合ガスによっても運ばれ、サーモパイル7Aの接点8及び接点9へ達する。ここで、混合ガスの熱抵抗をRgとする
と、接点8から接点9へ混合ガスを介して運ばれる熱には、定常的にRgが加わるものと
考えられる。
On the other hand, unlike the thin film 5, the heat emitted from the heater 6 is also carried by the mixed gas and reaches the contacts 8 and 9 of the thermopile 7A. Here, assuming that the thermal resistance of the mixed gas is R g , it is considered that the heat transferred from the contact 8 to the contact 9 through the mixed gas is steadily added with R g .

すなわち、サーモパイル7Aの接点8の温度と接点9の温度との温度差ΔTは、ヒータの発熱量をIとすれば、以下の式(2)によって表される。

Figure 0007127580000003
That is, the temperature difference ΔT between the temperature of the contact 8 and the temperature of the contact 9 of the thermopile 7A is expressed by the following equation (2), where I is the amount of heat generated by the heater.
Figure 0007127580000003

よって、式(2)より、ΔTを測定すれば、熱抵抗Rgが求まる。ここで、熱抵抗Rgは、混合ガスの成分比と対応した値である。また、熱抵抗と熱伝導率は、反比例の関係にある。従って、ΔTを測定すれば、混合ガスの熱伝導率を求めることができる。 Therefore, by measuring ΔT, the thermal resistance R g can be obtained from the equation (2). Here, the thermal resistance R g is a value corresponding to the component ratio of the mixed gas. Also, thermal resistance and thermal conductivity are in an inversely proportional relationship. Therefore, by measuring ΔT, the thermal conductivity of the mixed gas can be obtained.

図3は、サーモパイル7Aの出力(前述のΔTに相当)と、混合ガスの熱伝導率λとの関係を図示した一例である。図3に示されるサーモパイル7Aの出力xと、混合ガスの熱伝導率λとの関係に適合する下記の式(3)の近似式の定数a、b、cを予め決定してお
けば、酸素と窒素の成分比が未知である混合ガスが流管部材2に流れた場合であっても、サーモパイル7Aの出力と式(3)より混合ガスの熱伝導率λが算出可能となる。
λ=ax+bx+c・・・(3)
FIG. 3 is an example illustrating the relationship between the output of the thermopile 7A (corresponding to ΔT described above) and the thermal conductivity λ of the mixed gas. If the constants a, b, and c of the following approximation formula (3) that fit the relationship between the output x of the thermopile 7A shown in FIG. 3 and the thermal conductivity λ of the mixed gas are determined in advance, oxygen Even when a mixed gas having an unknown component ratio of .beta. and nitrogen flows through the flow tube member 2, the thermal conductivity .lambda.
λ=ax 2 +bx+c (3)

[酸素濃度測定原理]
本実施形態では、フィルタ3を透過した混合ガスは、フィルタ3が新たに設置され、所望の通り窒素が除去されて酸素が濃縮された最初期の酸素濃縮ガスと、フィルタ3の経年劣化などにより窒素の吸着効率が低下し、窒素が除去されずにフィルタ3を透過した外気とが混合されたガスと考える。つまり、フィルタ3の設置直後では、フィルタ3の窒素の吸着性能が劣化していないことが想定されるため、混合ガスは最初期の酸素濃縮ガスによって占有される割合が多く、外気の混合比率が小さいガスと考える。一方、フィルタ3が設置されて所定の期間が経過された場合には、フィルタ3の窒素の吸着性能が劣化していることが想定されるため、混合ガス中に占める外気の混合比率は増しているものと考える。ここで、混合ガスは、本発明の「濃縮ガス」の一例である。また、最初期の酸素濃縮ガスは、本発明の「初期濃縮ガス」の一例である。また、外気は、本発明の「酸素濃縮手段を透過した空気」の一例である。また、フィルタ3は、本発明の「酸素濃縮手段」の一例である。
[Oxygen concentration measurement principle]
In this embodiment, the mixed gas that has passed through the filter 3 is the oxygen-enriched gas in which the filter 3 is newly installed and nitrogen is removed as desired, and the oxygen is concentrated. It is considered that the gas is mixed with outside air that has passed through the filter 3 without nitrogen being removed due to a decrease in nitrogen adsorption efficiency. In other words, immediately after the filter 3 is installed, it is assumed that the nitrogen adsorption performance of the filter 3 has not deteriorated. Think of it as a small gas. On the other hand, when the filter 3 is installed and a predetermined period of time has passed, it is assumed that the nitrogen adsorption performance of the filter 3 has deteriorated. think there is. Here, the mixed gas is an example of the "concentrated gas" of the present invention. Also, the initial oxygen-enriched gas is an example of the "initial enrichment gas" of the present invention. Also, outside air is an example of "air that has passed through the oxygen concentrator" in the present invention. Moreover, the filter 3 is an example of the "oxygen concentrator" of the present invention.

最初期の酸素濃縮ガスには、所望の通り濃縮された酸素とアルゴンが含まれる。最初期の酸素濃縮ガスに含まれる酸素の濃度は、例えば96%である。また、外気は、酸素濃縮器が設置される環境に存在する空気であって、酸素と窒素とアルゴンが含まれる。そして、外気の成分比率は、混合ガスの測定の前に事前に求めることができる。 The earliest oxygen-enriched gases include oxygen and argon, desirably enriched. The concentration of oxygen contained in the initial oxygen-enriched gas is, for example, 96%. In addition, outside air is the air existing in the environment where the oxygen concentrator is installed, and includes oxygen, nitrogen, and argon. Then, the component ratio of the outside air can be obtained in advance before measuring the mixed gas.

ここで、最初期の酸素濃縮ガスに含まれる濃縮された酸素の濃度をC、最初期の酸素濃縮ガスの熱伝導率をλ、外気に含まれる酸素の濃度をC、外気の熱伝導率をλとし、最初期の酸素濃縮ガスに外気が(1-x)%の割合で混入した場合の熱伝導率をλ、酸素の濃度をCとすれば、下記の式(4)、式(5)が成り立つ。
λ=xλ+(1-x)λ・・・(4)
=xC+(1-x)C・・・(5)
Here, C a is the concentration of concentrated oxygen contained in the oxygen-enriched gas at the earliest stage, λ a is the thermal conductivity of the oxygen-enriched gas at the earliest stage, C b is the concentration of oxygen contained in the outside air, and the heat of the outside air is Let λ b be the conductivity, λ x be the thermal conductivity when the initial oxygen-enriched gas is mixed with outside air at a rate of (1−x)%, and C x be the concentration of oxygen. 4), Equation (5) holds.
λx= xλa +(1− x ) λb (4)
C x = x C a + (1−x) C b (5)

また、式(4)と式(5)よりCとλとの関係は式(1)の通りとなる。

Figure 0007127580000004
Also, the relationship between C x and λ x is as shown in Equation (1) from Equations (4) and (5).
Figure 0007127580000004

ここで、本実施形態では、フィルタ3を取り付けた直後の混合ガスに含まれる酸素濃度及び混合ガスの熱伝導率が測定され、それらの値が夫々最初期の酸素濃縮ガスのC及びλとされる。Cは、酸素濃度測定装置1とは別途設けられた酸素濃度計によって計測される。また、λは、上述の式(2)、式(3)、図2―図3に示されるように、サーモパイル7Aの出力から算出される。また、Cとλは、フィルタ3の経年劣化にかかわらず、略一定であるから、フィルタ3を取り付けた直後に一度測定されるだけでよい。 Here, in the present embodiment, the oxygen concentration contained in the mixed gas and the thermal conductivity of the mixed gas immediately after the filter 3 is attached are measured, and these values are respectively C a and λ a of the initial oxygen-enriched gas. It is said that Ca is measured by an oxygen concentration meter provided separately from the oxygen concentration measuring device 1 . Also, λ a is calculated from the output of the thermopile 7A as shown in the above equations (2), (3), and FIGS. 2-3. Moreover, since C a and λ a are substantially constant regardless of deterioration of the filter 3 over time, it is only necessary to measure once immediately after the filter 3 is attached.

一方、外気のC及びλは、測定対象の混合ガスの測定前に事前に測定可能であり、また、Cとλとの関係は、略一定の関係である。すなわち、本実施形態に係る酸素濃
度測定装置1は、個体差や機種によりフィルタ3を取り付けた直後の初期濃縮ガスの成分が異なる場合でも、Cとλをフィルタ3を取り付けた直後に一度測定するだけで式(1)を構築することができ、その後測定対象の混合ガスを流管部材2へ流す場合、サーモパイル7Aの出力から式(1)を用いて混合ガスに含まれる酸素の濃度を算出することができる。つまり、混合ガスに含まれる酸素の濃度を測定するために、事前に多様な酸素濃度に対する混合ガスの熱伝導率の対応関係を予め記憶しておくことをせずに済む。
On the other hand, Cb and λb of the outside air can be measured in advance before measuring the mixed gas to be measured, and the relationship between Cb and λb is a substantially constant relationship. That is, the oxygen concentration measuring device 1 according to the present embodiment measures Ca and λ Equation (1) can be constructed only by measuring, and then when the mixed gas to be measured is flowed through the flow tube member 2, the concentration of oxygen contained in the mixed gas is calculated using Equation (1) from the output of the thermopile 7A can be calculated. That is, in order to measure the concentration of oxygen contained in the mixed gas, it is not necessary to store in advance the correspondence relationship of the thermal conductivity of the mixed gas with respect to various oxygen concentrations.

また、図4は、混合ガスの熱伝導率λと混合ガスに含まれる酸素濃度Cとの関係の概要の一例を模式的に例示する。本実施形態では、測定対象の混合ガス全体の物性の経年変化は、最初期の酸素濃縮ガスの物性及び外気の物性の変化によるものではなく、混合ガスに混入する外気の量が増加することによるものとなる。よって、図4に示されるように、混合ガス全体の熱伝導率λは、混合ガスに混入する外気(透過空気)の量が増加するに従い(混合ガス全体に含まれる酸素の濃度Cは高から低)、単調に減少する対応関係となる。ここで、図4に示される対応関係は、本発明の「濃縮ガスに含まれる酸素濃縮手段を透過した空気の割合が増加することに従い、濃縮ガスの熱伝導率に対して濃縮ガスに含まれる酸素の濃度は単調に変化する関係」の一例である。そして、当該対応関係は、最初期の酸素濃縮ガスに含まれる濃縮された酸素の濃度C、最初期の酸素濃縮ガスの熱伝導率λ、外気に含まれる酸素の濃度C、外気の熱伝導率λが求まれば定まる関係である。 Also, FIG. 4 schematically illustrates an example of an overview of the relationship between the thermal conductivity λ x of the mixed gas and the oxygen concentration C x contained in the mixed gas. In this embodiment, the aging change in the physical properties of the entire mixed gas to be measured is not due to changes in the physical properties of the oxygen-enriched gas and the external air at the earliest stage, but due to an increase in the amount of external air mixed in the mixed gas. become a thing. Therefore, as shown in FIG. 4, the thermal conductivity λ x of the entire mixed gas increases as the amount of outside air (permeated air) mixed in the mixed gas increases (the oxygen concentration C x contained in the entire mixed gas is high to low), resulting in a monotonically decreasing correspondence. Here, the correspondence relationship shown in FIG. 4 is such that the thermal conductivity of the enriched gas and the thermal conductivity of the enriched gas increase as the proportion of air permeating through the oxygen enrichment means contained in the enriched gas increases. The concentration of oxygen is an example of "relationship that changes monotonously". Then, the corresponding relationship is the concentrated oxygen concentration C a contained in the oxygen-enriched gas at the earliest stage, the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage, the oxygen concentration C b contained in the outside air, and the oxygen concentration C b of the outside air. This relationship is determined when the thermal conductivity λb is determined.

そして、図4に示されるような混合ガスの熱伝導率λと混合ガスに含まれる酸素濃度Cとの対応関係を、予めテーブル情報として記憶しておき、当該テーブル情報に基づき、測定対象の混合ガスの熱伝導率から測定対象の酸素濃度を算出することができるまた、ここでは、混合ガスに混入する外気の量が増加するに従い、混合ガスの物性が単調に減少する関係を例示しているが、混合ガスに混入する外気の量が増加するに従い、混合ガスの物性が単調に増加する関係の場合でも、同様にして測定される混合ガスの物性に対応する混合ガスに含まれる成分の濃度を一対一に求めることができる。 Then, the correspondence between the thermal conductivity λ x of the mixed gas and the oxygen concentration C x contained in the mixed gas as shown in FIG. 4 is stored in advance as table information, and based on the table information, the measurement target The oxygen concentration of the object to be measured can be calculated from the thermal conductivity of the mixed gas. Here, as the amount of outside air mixed in the mixed gas increases, the physical properties of the mixed gas monotonically decrease However, even if the physical properties of the mixed gas monotonically increase as the amount of outside air mixed into the mixed gas increases, the components contained in the mixed gas corresponding to the physical properties of the mixed gas measured in the same manner can be determined one-to-one.

図5は、従来技術による混合ガスに含まれる酸素濃度の測定の概要の一例を模式的に例示する。図5に示されるように、混合ガスの成分が3種以上で割合が不明であっても、個々の製品で空気の混入割合を変化させ、その時の混合ガスの物性(音速や熱伝導率など)と酸素濃度を測定すれば酸素濃度と物性との紐付ができる。つまり、図5に示されるような対応関係を予め求めておき、測定対象の混合ガスの熱伝導率を超音波センサや熱式フローセンサなどにより測定し、予め求めた対応関係を用いることで酸素濃度は算出可能となる。しかしながら、本発明では、式(1)や図4に示されるように、混合ガスの熱伝導率λと混合ガスに含まれる酸素濃度Cとの関係が理論的に導出されているのに対し、従来技術では、図5に示されるように実測により対応関係を得ているに過ぎない。よって、従来技術では、混合ガスに含まれる酸素濃度を求めるために負荷を要する。 FIG. 5 schematically illustrates an example of an overview of measurement of oxygen concentration contained in mixed gas according to the prior art. As shown in FIG. 5, even if the mixed gas contains three or more components and the ratio is unknown, the mixed gas ratio at that time can be changed by changing the air mixing ratio for each product, and the physical properties of the mixed gas (sonic velocity, thermal conductivity, etc.) ) and the oxygen concentration can be linked to the oxygen concentration and physical properties. That is, the correspondence relationship as shown in FIG. Concentration can be calculated. However, in the present invention, the relationship between the thermal conductivity λ x of the mixed gas and the oxygen concentration C x contained in the mixed gas is theoretically derived as shown in Equation (1) and FIG. On the other hand, in the prior art, as shown in FIG. 5, the correspondence relationship is merely obtained by actual measurement. Therefore, in the prior art, a load is required to obtain the oxygen concentration contained in the mixed gas.

[機能構成]
次に、酸素濃度測定装置1の機能構成の説明を行う。図6は、酸素濃度測定装置1の機能ブロック図の概要の一例を模式的に例示する。
[Function configuration]
Next, the functional configuration of the oxygen concentration measuring device 1 will be described. FIG. 6 schematically illustrates an example of an outline of a functional block diagram of the oxygen concentration measuring device 1. As shown in FIG.

酸素濃度測定装置1は、制御部10を備える。制御部10は、例えばCPU(Central Process Unit)、及びROM(Read Only Memory)やRAM(Random Access Memory)といった記憶装置から形成される。制御部10は、混合ガスに含まれる酸素と窒素の成分比を変化させた場合のサーモパイル7Aの出力xと、混合ガスの熱伝導率λとの関係に適合する式(3)の定数a、b、cを、測定対象の混合ガスの酸素濃度の測定の前に予め決定する。図7は、混合ガスに
含まれる酸素と窒素の成分比を変化させ、定数a、b、cを決定する概要の一例を模式的
に例示する。図7に示されるように、窒素気体と酸素気体とが夫々別々の流管内へ流入する。そして、夫々の流管にMFC(Mass Flow Controller)が設けられ、窒素と酸素の流量が調整される。流量が調整された窒素気体及び酸素気体は、その後合流し、混合ガスとなって1つの流管部材2Aへ流れる。そして、流管部材2Aには、酸素濃度測定装置1が設けられており、混合ガスが流れた場合のサーモパイル7Aの出力が得られる。また、混合ガスの熱伝導率は既知のセンサによって測定される。このようにして得られたサーモパイル7Aの出力と熱伝導率λとの測定データに式(3)が適合するように定数a、b、cを調節する。
The oxygen concentration measuring device 1 includes a control section 10 . The control unit 10 is formed of, for example, a CPU (Central Process Unit) and a storage device such as a ROM (Read Only Memory) or a RAM (Random Access Memory). The control unit 10 sets the constant a of Equation (3) that fits the relationship between the output x of the thermopile 7A when the component ratio of oxygen and nitrogen contained in the mixed gas is changed and the thermal conductivity λ of the mixed gas, b and c are determined in advance prior to measuring the oxygen concentration of the mixed gas to be measured. FIG. 7 schematically illustrates an example of an overview of determining constants a, b, and c by changing the component ratio of oxygen and nitrogen contained in the mixed gas. As shown in FIG. 7, nitrogen gas and oxygen gas each flow into separate flow tubes. Each flow tube is provided with an MFC (Mass Flow Controller) to adjust the flow rates of nitrogen and oxygen. The nitrogen gas and oxygen gas whose flow rates have been adjusted are then combined to form a mixed gas and flow to one flow tube member 2A. The oxygen concentration measuring device 1 is provided in the flow tube member 2A, and the output of the thermopile 7A when the mixed gas flows is obtained. Also, the thermal conductivity of the mixed gas is measured by a known sensor. The constants a, b, and c are adjusted so that the equation (3) fits the measurement data of the output and thermal conductivity λ of the thermopile 7A thus obtained.

また、制御部10は、測定対象の混合ガスの酸素濃度の測定時に、サーモパイル7Aの出力と、予め求めておいた定数a、b、cを含む式(3)とから混合ガスの熱伝導率を算
出する。また、制御部10は、算出した測定対象の混合ガスの熱伝導率と、式(1)とから測定対象の混合ガスの酸素濃度を算出する。ここで、制御部10は、本発明の「熱伝導率算出部」及び「酸素濃度算出部」の一例である。また、制御部10は、ヒータ6に所定の電圧を印加し、発熱させる。
In addition, when measuring the oxygen concentration of the mixed gas to be measured, the control unit 10 determines the thermal conductivity of the mixed gas from the output of the thermopile 7A and the equation (3) including the previously obtained constants a, b, and c. Calculate Further, the control unit 10 calculates the oxygen concentration of the mixed gas to be measured from the calculated thermal conductivity of the mixed gas to be measured and Equation (1). Here, the control unit 10 is an example of the "thermal conductivity calculation unit" and the "oxygen concentration calculation unit" of the present invention. Further, the control unit 10 applies a predetermined voltage to the heater 6 to generate heat.

また、酸素濃度測定装置1は、計測部11を備える。計測部11は、センサ部12を備える。センサ部12は、流管部材2に設けられるサーモパイル7A、7Bの出力を取得する。 The oxygen concentration measuring device 1 also includes a measuring unit 11 . The measurement unit 11 has a sensor unit 12 . The sensor unit 12 acquires outputs from the thermopiles 7A and 7B provided in the flow tube member 2. FIG.

また、酸素濃度測定装置1は、第一記憶部13を備える。第一記憶部13は、上述の式(3)の定数a、b、cの値を記憶する。 The oxygen concentration measuring device 1 also includes a first storage unit 13 . The first storage unit 13 stores the values of the constants a, b, and c of the above equation (3).

また、酸素濃度測定装置1は、第二記憶部14を備える。第二記憶部14は、最初期の酸素濃縮ガスの酸素濃度C及び最初期の酸素濃縮ガスの熱伝導率λを記憶する。図8は、最初期の酸素濃縮ガスの酸素濃度C及び最初期の酸素濃縮ガスの熱伝導率λを測定する概要の一例を模式的に例示する。図8に示されるように、酸素濃縮器にフィルタ3を取り付けた直後にフィルタ3及び酸素濃度測定装置1を通過した混合ガスを既知の熱伝導率測定センサによって測定し、測定された熱伝導率を最初期の酸素濃縮ガスの熱伝導率λとする。また、当該混合ガスに含まれる酸素の濃度を既知の酸素濃度計によって測定し、測定された酸素濃度を最初期の酸素濃縮ガスの酸素濃度Cとする。ここで、最初期の酸素濃縮ガスの熱伝導率λは、熱伝導率測定センサによる測定ではなく、サーモパイル7Aの出力と、式(3)とを使用して算出されてもよい。 The oxygen concentration measuring device 1 also includes a second storage unit 14 . The second storage unit 14 stores the oxygen concentration C a of the oxygen-enriched gas at the earliest stage and the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage. FIG. 8 schematically illustrates an example of a schematic for measuring the oxygen concentration C a of the earliest oxygen-enriched gas and the thermal conductivity λ a of the earliest oxygen-enriched gas. As shown in FIG. 8, the mixed gas that passed through the filter 3 and the oxygen concentration measuring device 1 immediately after the filter 3 was attached to the oxygen concentrator was measured by a known thermal conductivity measurement sensor, and the measured thermal conductivity Let be the thermal conductivity λ a of the initial oxygen-enriched gas. Also, the concentration of oxygen contained in the mixed gas is measured by a known oxygen concentration meter, and the measured oxygen concentration is taken as the oxygen concentration Ca of the oxygen-enriched gas at the earliest stage. Here, the initial thermal conductivity λ a of the oxygen-enriched gas may be calculated using the output of the thermopile 7A and equation (3) instead of the measurement by the thermal conductivity measurement sensor.

また、第二記憶部14は、外気の酸素濃度C及び外気の熱伝導率λを記憶する。外気の酸素濃度C及び外気の熱伝導率λは、酸素濃縮器が設置される環境の空気の酸素濃度及び熱伝導率であるから、混合ガスの測定前に事前に測定される。 The second storage unit 14 also stores the oxygen concentration Cb of the outside air and the thermal conductivity λb of the outside air. The oxygen concentration Cb of the outside air and the thermal conductivity λb of the outside air are the oxygen concentration and the thermal conductivity of the air in the environment where the oxygen concentrator is installed, so they are measured in advance before measuring the mixed gas.

また、酸素濃度測定装置1は、入力部15を備える。入力部15は、サーモパイル7Aの出力から混合ガスに含まれる酸素の濃度を算出するために必要な既知の情報が入力される。例えば、酸素濃縮器が設置される環境の空気の熱伝導率(外気の熱伝導率λ)、及び当該空気に含まれる酸素の濃度(外気の酸素濃度C)などの情報である。 The oxygen concentration measuring device 1 also includes an input unit 15 . The input unit 15 receives known information necessary for calculating the concentration of oxygen contained in the mixed gas from the output of the thermopile 7A. For example, information such as the thermal conductivity of the air in the environment where the oxygen concentrator is installed (thermal conductivity λ b of outside air) and the concentration of oxygen contained in the air (oxygen concentration C b of outside air).

また、酸素濃度測定装置1は、出力部16を備える。酸素濃度測定装置1が表示部(例えばディスプレイ)を備える場合、出力部16は、算出された混合ガスに含まれる酸素の濃度を表示部に表示する。 The oxygen concentration measuring device 1 also includes an output unit 16 . If the oxygen concentration measuring device 1 is provided with a display (for example, a display), the output unit 16 displays the calculated concentration of oxygen contained in the mixed gas on the display.

§3 動作例
次に、酸素濃度測定装置1の動作例を説明する。図9は、酸素濃度測定装置1の処理手順を示すフローチャートの一例を模式的に例示する。なお、以下で説明する処理手順は一
例に過ぎず、各処理は可能な限り変更されてよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換、及び追加が可能である。
§3 Operation Example Next, an operation example of the oxygen concentration measuring device 1 will be described. FIG. 9 schematically illustrates an example of a flowchart showing the processing procedure of the oxygen concentration measuring device 1. As shown in FIG. Note that the processing procedure described below is merely an example, and each processing may be changed as much as possible. Further, in the processing procedures described below, steps can be omitted, replaced, and added as appropriate according to the embodiment.

(ステップS101)
ステップS101においては、酸素濃縮器の外部から流入した空気がフィルタ3を通過する。空気には、酸素、窒素、及びアルゴンの少なくとも3種類の成分が含まれている。空気がフィルタ3を通過する際に空気の中から窒素が除去される。そして、窒素が除去された空気(測定対象の混合ガス)が流管部材2の内部を流れる。また、流管部材2においては、ヒータ6に制御部10によって所定の電圧が印加され、ヒータ6の近傍に熱の分布が生じている。そして、測定対象の混合ガスは、当該熱の分布が生じている部分を通過する。そして、センサ部12が、測定対象の混合ガスが流れている状態でサーモパイル7A、7Bの出力を取得する。
(Step S101)
In step S<b>101 , the air that has flowed in from the outside of the oxygen concentrator passes through the filter 3 . Air contains at least three components: oxygen, nitrogen, and argon. Nitrogen is removed from the air as it passes through the filter 3 . Air from which nitrogen has been removed (mixed gas to be measured) then flows inside the flow tube member 2 . In the flow tube member 2 , a predetermined voltage is applied to the heater 6 by the controller 10 , and heat is distributed in the vicinity of the heater 6 . Then, the mixed gas to be measured passes through the portion where the heat distribution occurs. Then, the sensor unit 12 acquires the outputs of the thermopiles 7A and 7B while the mixed gas to be measured is flowing.

また、入力部15が、サーモパイル7Aの出力から混合ガスに含まれる酸素の濃度を算出するために必要な既知の情報の入力を受け付ける。受け付けられる情報は、例えば、外気の熱伝導率λ、及び外気の酸素濃度Cなどの情報である。入力された外気の熱伝導率λ及び外気に含まれる酸素濃度Cは、第二記憶部14によって記憶される。また、最初期の酸素濃縮ガスの酸素濃度C及び最初期の酸素濃縮ガスの熱伝導率λは、上述の通りに事前に測定されて入力される。そして、最初期の酸素濃縮ガスの酸素濃度C及び最初期の酸素濃縮ガスの熱伝導率λも同様に第二記憶部14によって記憶される。また、式(3)の定数a、b、cの値も上述の通りに測定対象の混合ガスの測定の前に決定
され、第一記憶部13によって記憶される。
Also, the input unit 15 receives input of known information necessary for calculating the concentration of oxygen contained in the mixed gas from the output of the thermopile 7A. The information that is accepted is, for example, the thermal conductivity λ b of the outside air and the oxygen concentration C b of the outside air. The input thermal conductivity λ b of the outside air and the oxygen concentration C b contained in the outside air are stored in the second storage unit 14 . Also, the oxygen concentration C a of the oxygen-enriched gas at the earliest stage and the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage are previously measured and input as described above. The oxygen concentration C a of the oxygen-enriched gas at the earliest stage and the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage are similarly stored in the second storage unit 14 . The values of the constants a, b, and c in equation (3) are also determined before measurement of the mixed gas to be measured and stored in the first storage unit 13 as described above.

(ステップS102)
ステップS102においては、制御部10が、取得したサーモパイル7Aの出力と、第一記憶部13に記憶される定数a、b、cと、式(3)とから測定対象の混合ガスの熱伝
導率λを算出する。
(Step S102)
In step S102, the control unit 10 uses the obtained output of the thermopile 7A, the constants a, b, and c stored in the first storage unit 13, and the formula (3) to determine the thermal conductivity of the mixed gas to be measured. Calculate λ x .

(ステップS103)
ステップS103においては、制御部10が、算出した測定対象の混合ガスの熱伝導率と、第二記憶部14に記憶される最初期の酸素濃縮ガスの酸素濃度C、最初期の酸素濃縮ガスの熱伝導率λ、外気の酸素濃度C、及び外気の熱伝導率λと、式(1)とから測定対象の混合ガスに含まれる酸素の濃度Cを算出する。
(Step S103)
In step S103, the control unit 10 controls the calculated thermal conductivity of the mixed gas to be measured, the oxygen concentration C a of the oxygen-enriched gas at the earliest stage stored in the second storage unit 14, and the oxygen-enriched gas at the earliest stage. The concentration C x of oxygen contained in the mixed gas to be measured is calculated from the thermal conductivity λ a of the outside air, the oxygen concentration C b of the outside air, the thermal conductivity λ b of the outside air, and the equation (1).

ここで、式(1)を使用せずに、第二記憶部が、図4に示されるような混合ガスの熱伝導率λと混合ガスに含まれる酸素濃度Cとの対応関係を予めテーブル情報として記憶しておき、制御部10は、算出した混合ガスの熱伝導率λと、当該テーブル情報から混合ガスの酸素濃度Cを算出してもよい。 Here, without using the formula (1), the second storage unit stores in advance the correspondence relationship between the thermal conductivity λ x of the mixed gas and the oxygen concentration C x contained in the mixed gas as shown in FIG. It may be stored as table information, and the controller 10 may calculate the calculated thermal conductivity λ x of the mixed gas and the oxygen concentration C x of the mixed gas from the table information.

(ステップS104)
ステップS104においては、出力部16が算出された酸素の濃度を、表示部を介して外部へ表示する。
(Step S104)
In step S104, the oxygen concentration calculated by the output unit 16 is displayed to the outside via the display unit.

[作用・効果]
上記のような酸素濃度測定装置1によれば、測定対象の混合ガスは、フィルタ3が新たに設置され、所望の通り窒素が除去されて酸素が濃縮された最初期の酸素濃縮ガスと、外気とからなるガスと考える。ここで、最初期の酸素濃縮ガスの酸素とアルゴンとの成分比は、外気の量に依存するものではなく、略一定である。よって、最初期の酸素濃縮ガスの熱伝導率λは略一定である。つまり、最初期の酸素濃縮ガスの熱伝導率λと最初期の酸素濃縮ガスに含まれる濃縮酸素の濃度Cとの関係は、略一定であり、一度求めておけ
ばよく、外気の量が変化した場合に再度求めることをせずに済む。
[Action/effect]
According to the oxygen concentration measuring device 1 as described above, the mixed gas to be measured is the oxygen-enriched gas in which the filter 3 is newly installed and the nitrogen is removed as desired and the oxygen is concentrated, and the outside air Consider a gas consisting of Here, the component ratio of oxygen and argon in the initial oxygen-enriched gas does not depend on the amount of outside air and is substantially constant. Therefore, the initial thermal conductivity λ a of the oxygen-enriched gas is approximately constant. That is, the relationship between the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage and the concentration Ca of the oxygen-enriched gas contained in the oxygen-enriched gas at the earliest stage is substantially constant, and only needs to be obtained once. is changed without having to ask again.

一方、外気に含まれる酸素、窒素、及びアルゴンの各成分比は、フィルタ3によって窒素が除去される前の空気の成分比と略同一である。つまり、外気の熱伝導率λと外気に含まれる酸素の濃度Cとの関係は、酸素濃縮器の設置環境に存在する空気の熱伝導率と空気に含まれる酸素の濃度の関係ということになる。よって、当該関係は測定対象の混合ガスの酸素の濃度Cを測定する前に予め求めることができ、又略一定の関係である。 On the other hand, the component ratios of oxygen, nitrogen, and argon contained in the outside air are substantially the same as the component ratio of the air before nitrogen is removed by the filter 3 . In other words, the relationship between the thermal conductivity λb of the outside air and the concentration Cb of oxygen contained in the outside air is the relationship between the thermal conductivity of the air existing in the installation environment of the oxygen concentrator and the concentration of oxygen contained in the air. become. Therefore, the relationship can be obtained in advance before measuring the oxygen concentration Cx of the mixed gas to be measured, and is a substantially constant relationship.

よって、上記の酸素濃度測定装置1によれば、最初期の酸素濃縮ガスの熱伝導率λ、最初期の酸素濃縮ガスに含まれる濃縮酸素の濃度C、外気の熱伝導率λ、及び外気に含まれる酸素の濃度Cを測定対象の混合ガスの測定の前に求め、式(1)を構築することができる。そして、式(1)へ測定対象の混合ガスの熱伝導率λが代入され、混合ガスに含まれる酸素の濃度Cが簡易に算出可能となる。 Therefore, according to the oxygen concentration measuring device 1, the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage, the concentration C a of the enriched oxygen contained in the oxygen-enriched gas at the earliest stage, the thermal conductivity λ b of the outside air, and the concentration Cb of oxygen contained in the outside air can be obtained prior to the measurement of the mixed gas to be measured, and formula (1) can be constructed. Then, the thermal conductivity λ x of the mixed gas to be measured is substituted into Equation (1), and the concentration C x of oxygen contained in the mixed gas can be easily calculated.

また、上記の酸素濃度測定装置1によれば、最初期の酸素濃縮ガスの熱伝導率λ、最初期の酸素濃縮ガスに含まれる濃縮酸素の濃度C、外気の熱伝導率λ、及び外気に含まれる酸素の濃度Cを測定対象の混合ガスの測定の前に求め、図4に示される単調に変化する対応関係を含むテーブル情報を記憶しておくこともできる。そして、当該テーブル情報を参照して測定対象の混合ガスの熱伝導率λに対する、混合ガスに含まれる酸素の濃度Cが一対一に算出される。 Further, according to the oxygen concentration measuring device 1, the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage, the concentration C a of the enriched oxygen contained in the oxygen-enriched gas at the earliest stage, the thermal conductivity λ b of the outside air, and the concentration Cb of oxygen contained in the outside air can be obtained before measurement of the mixed gas to be measured, and table information including the monotonically changing correspondence shown in FIG . 4 can be stored. Then, the concentration C x of oxygen contained in the mixed gas is calculated one-to-one with respect to the thermal conductivity λ x of the mixed gas to be measured by referring to the table information.

すなわち、上記の酸素濃度測定装置1は、混合ガスに含まれる多様な濃度の酸素に対する混合ガスの熱伝導率の対応関係を予め記憶しておくことをせずに測定対象の混合ガスの酸素の濃度Cを算出可能である。すなわち、上記のような酸素濃度測定装置1によれば、酸素濃縮器において、フィルタ3を通過し、酸素が濃縮された混合ガスに含まれる当該酸素の濃度を簡易に測定することができる。よって、フィルタ3の交換の時期を容易に把握することができる。 That is, the above-described oxygen concentration measuring apparatus 1 can measure the oxygen concentration of the mixed gas to be measured without storing in advance the correspondence relationship of the thermal conductivity of the mixed gas with respect to various concentrations of oxygen contained in the mixed gas. Concentration C x can be calculated. That is, according to the oxygen concentration measuring device 1 as described above, in the oxygen concentrator, it is possible to easily measure the concentration of oxygen contained in the oxygen-enriched mixed gas that has passed through the filter 3 . Therefore, it is possible to easily grasp when the filter 3 needs to be replaced.

また、上記のような酸素濃度測定装置1によれば、ヒータ6による加熱により生じた熱の分布は、混合ガスが流れた場合に変化する。よって、混合ガスが流れる場合と流れない場合とでサーモパイル7A、7Bからの出力は変化する。また、サーモパイル7A、7Bからの出力の変化の大きさは、混合ガスの流量の大きさに関係する。よって、上記の酸素濃度測定装置1によれば、サーモパイル7A、7Bからの出力により混合ガスの流量も算出することができる。つまり、上記のような酸素濃度測定装置1によれば、酸素、窒素、及びアルゴンの少なくとも3つの成分を含む混合ガスの成分比に加えて混合ガスの流量を測定できる。すなわち、上記の酸素濃度測定装置1は、1つの装置により混合ガスの成分比と流量とを測定できるため、コンパクトかつ製造コストの低い装置である。 Further, according to the oxygen concentration measuring device 1 as described above, the distribution of heat generated by the heating by the heater 6 changes when the mixed gas flows. Therefore, the outputs from the thermopiles 7A and 7B change depending on whether the mixed gas flows or not. Also, the magnitude of the change in output from the thermopiles 7A and 7B is related to the flow rate of the mixed gas. Therefore, according to the oxygen concentration measuring device 1 described above, the flow rate of the mixed gas can also be calculated from the outputs from the thermopiles 7A and 7B. That is, according to the oxygen concentration measuring device 1 as described above, the flow rate of the mixed gas can be measured in addition to the component ratio of the mixed gas containing at least three components of oxygen, nitrogen, and argon. That is, the oxygen concentration measuring device 1 described above can measure the component ratio and the flow rate of the mixed gas with a single device, and thus is a compact device with low manufacturing cost.

§4 変形例
以上、本発明の実施の形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
§4 Modifications Although the embodiments of the present invention have been described in detail, the above description is merely an example of the present invention in every respect. It goes without saying that various modifications and variations can be made without departing from the scope of the invention. For example, the following changes are possible. In addition, below, the same code|symbol is used about the component similar to the said embodiment, and description is abbreviate|omitted suitably about the point similar to the said embodiment. The following modified examples can be combined as appropriate.

<4.1>
上記の実施形態では、外気は酸素濃縮器が設置された環境における空気であるため、外気の酸素濃度C、及び外気の熱伝導率λは、混合ガスに含まれる酸素濃度の測定前に測定可能であり、当該情報は、酸素濃度を測定する前に入力部15を介して入力されていた。しかし、酸素濃縮器の設置環境が変化し、設置環境の空気の成分比率が変化する場合
がある。または、酸素濃縮器の設置環境の空気の物性が不明であり、外気の酸素濃度C、及び外気の熱伝導率λが不明である場合が考えられる。
<4.1>
In the above embodiment, the outside air is the air in the environment where the oxygen concentrator is installed, so the oxygen concentration C b of the outside air and the thermal conductivity λ b of the outside air are obtained before measuring the oxygen concentration contained in the mixed gas. was measurable and the information was entered via the input unit 15 prior to measuring the oxygen concentration. However, the installation environment of the oxygen concentrator may change, and the component ratio of the air in the installation environment may change. Alternatively, the physical properties of the air in the installation environment of the oxygen concentrator may be unknown, and the oxygen concentration C b of the outside air and the thermal conductivity λ b of the outside air may be unknown.

図10は、上記のような場合に、外気の熱伝導率及び外気の酸素濃度を測定する概要の一例を模式的に例示する。図10に示されるように、外気の熱伝導率を測定する熱伝導率測定センサ30、及び外気の酸素濃度を測定する酸素濃度計31を酸素濃度測定装置1Aとは別に設ける。そして、外気となる酸素濃縮器の設置環境に存在する空気を酸素濃度測定装置1Aのフィルタ3を通過させずに熱伝導率測定センサ30へ流入させる。そして、外気の熱伝導率λは、熱伝導率測定センサ30によって測定される。また、熱伝導率測定センサ30から流出した外気の酸素濃度Cは、酸素濃度計31によって測定される。このように測定対象の混合ガスを測定する前に、外気に含まれる酸素濃度C及び外気の熱伝導率λは、酸素濃度測定装置1Aとは別手段によって一時的に測定されてもよい。そして、測定された酸素濃度C及び外気の熱伝導率λは、上記と同様に測定対象の混合ガスに含まれる酸素濃度を算出する場合に使用される。 FIG. 10 schematically illustrates an example of an outline for measuring the thermal conductivity of the outside air and the oxygen concentration of the outside air in the above case. As shown in FIG. 10, a thermal conductivity measuring sensor 30 for measuring the thermal conductivity of the outside air and an oxygen concentration meter 31 for measuring the oxygen concentration of the outside air are provided separately from the oxygen concentration measuring device 1A. Then, the air existing in the installation environment of the oxygen concentrator, which is outside air, is allowed to flow into the thermal conductivity measurement sensor 30 without passing through the filter 3 of the oxygen concentration measurement device 1A. Then, the thermal conductivity λ b of outside air is measured by the thermal conductivity measuring sensor 30 . Also, the oxygen concentration Cb of the outside air flowing out from the thermal conductivity measurement sensor 30 is measured by the oxygen concentration meter 31 . Before measuring the mixed gas to be measured in this way, the oxygen concentration Cb contained in the outside air and the thermal conductivity λb of the outside air may be temporarily measured by means other than the oxygen concentration measuring device 1A. . Then, the measured oxygen concentration C b and the thermal conductivity λ b of the outside air are used when calculating the oxygen concentration contained in the mixed gas to be measured in the same manner as described above.

[作用・効果]
上記のような酸素濃度測定装置1Aは、酸素濃縮器の設置環境の変化により設置環境に存在する空気自体の成分が変わり、外気の成分の比率が変化した場合、又は酸素濃縮器の設置環境の空気の物性が不明である場合であっても、別の測定手段によって測定された外気の酸素濃度C、及び外気の熱伝導率λを取得することができる。そして、取得したC、及びλに基づき式(1)を更新することができる。また、更新された式(1)に基づき、混合ガスに含まれる酸素濃度を算出することができる。また、図4に示される対応関係を更新することもできる。つまり、上記の酸素濃度測定装置1Aは、酸素濃縮器の設置環境の変化に関わらず、測定対象の混合ガスの酸素の濃度を精度高く測定することができる。
[Action/effect]
The oxygen concentration measuring device 1A as described above is used when the composition of the air itself existing in the installation environment changes due to a change in the installation environment of the oxygen concentrator, the ratio of the components of the outside air changes, or when the installation environment of the oxygen concentrator changes. Even if the physical properties of the air are unknown, the oxygen concentration C b of the outside air and the thermal conductivity λ b of the outside air measured by another measuring means can be obtained. Equation (1) can then be updated based on the obtained C b and λ b . Also, the oxygen concentration contained in the mixed gas can be calculated based on the updated formula (1). Also, the correspondence shown in FIG. 4 can be updated. That is, the oxygen concentration measuring device 1A can accurately measure the concentration of oxygen in the mixed gas to be measured regardless of changes in the installation environment of the oxygen concentrator.

<4.2>
上記の酸素濃度測定装置1は、酸素と窒素とアルゴンの3つの成分を少なくとも含む空気における酸素濃度を測定したが、測定対象は空気に含まれる酸素濃度に限定されない。本実施形態に係る酸素濃度測定装置1は、例えば、3種類の成分A、B及びCを少なくとも含む混合ガスにおいて、成分A、B及びCの何れか1つの成分の濃度を測定してもよい。また、混合ガスに含まれる成分Aと成分Bとの比率が略同一である場合、成分Aと成分Bとを一つの成分とみなし、混合ガスを2成分として成分ABあるいは成分Cの濃度を検出してもよい。この場合、酸素濃度測定装置1Bは、成分ABと成分Cとの成分比を変化させた混合ガスを流管部材2の内部へ流入させる。そして、当該成分比に応じたサーモパイル7Aの出力を測定し、成分比とサーモパイル7Aの出力との対応関係を記憶しておく。そして、酸素濃度測定装置1Bは、測定対象の混合ガスを流管部材に流した場合に、サーモパイル7Aから出力される出力値と、当該対応関係とから、成分ABあるいは成分Cの濃度を算出してもよい。
<4.2>
Although the oxygen concentration measuring device 1 described above measures the oxygen concentration in air containing at least three components of oxygen, nitrogen, and argon, the measurement target is not limited to the oxygen concentration contained in air. For example, the oxygen concentration measuring device 1 according to the present embodiment may measure the concentration of any one of the components A, B and C in a mixed gas containing at least three components A, B and C. . Further, when the ratio of the component A and the component B contained in the mixed gas is substantially the same, the component A and the component B are regarded as one component, and the mixed gas is regarded as two components, and the concentration of the component AB or the component C is detected. You may In this case, the oxygen concentration measuring device 1B causes the mixed gas in which the component ratio of the component AB and the component C is changed to flow into the inside of the flow tube member 2 . Then, the output of the thermopile 7A corresponding to the component ratio is measured, and the correspondence relationship between the component ratio and the output of the thermopile 7A is stored. Then, the oxygen concentration measuring device 1B calculates the concentration of the component AB or the component C from the output value output from the thermopile 7A and the corresponding relationship when the mixed gas to be measured is flowed through the flow tube member. may

[作用・効果]
上記のような酸素濃度測定装置1Bによれば、混合ガスに含まれる成分A及び成分Bの比率が略同一である場合に、より簡易に成分ABあるいは成分Cの濃度を算出することができる。
[Action/effect]
According to the oxygen concentration measuring device 1B as described above, when the ratio of the component A and the component B contained in the mixed gas is substantially the same, the concentration of the component AB or the component C can be calculated more easily.

<4.3>
上記の酸素濃度測定装置1が測定する混合ガスに含まれる酸素、窒素、及びアルゴンの熱伝導率は夫々異なる。しかし、混合ガスに含まれる少なくとも3つの成分A、B、Cのうち、成分AとBの熱伝導率が略同一であり、成分AとCの熱伝導率が異なる場合、混合ガスは、異なる熱伝導率の2つの成分からなるガスと仮定することができる。そこで、酸
素濃度測定装置1Cは、成分A、B、及びCとの成分比を変化させた混合ガスを流管部材2の内部へ流入させる。そして、当該成分比に応じたサーモパイル7Aの出力を測定し、成分比とサーモパイル7Aの出力との対応関係を記憶しておく。このような酸素濃度測定装置1Cは、測定対象の混合ガスを流管部材に流した場合に、サーモパイル7Aから出力される出力値と、当該対応関係とから、成分Cの濃度を算出することができる。
<4.3>
The thermal conductivities of oxygen, nitrogen, and argon contained in the mixed gas measured by the oxygen concentration measuring device 1 are different. However, of the at least three components A, B, and C contained in the mixed gas, if the components A and B have substantially the same thermal conductivity and the components A and C have different thermal conductivities, the mixed gas is different. It can be assumed that the gas consists of two components of thermal conductivity. Therefore, the oxygen concentration measuring device 1</b>C causes the mixed gas in which the component ratio of the components A, B, and C is changed to flow into the inside of the flow tube member 2 . Then, the output of the thermopile 7A corresponding to the component ratio is measured, and the correspondence relationship between the component ratio and the output of the thermopile 7A is stored. Such an oxygen concentration measuring device 1C can calculate the concentration of the component C from the output value output from the thermopile 7A and the corresponding relationship when the mixed gas to be measured is flowed through the flow tube member. can.

[作用・効果]
上記のような酸素濃度測定装置1Cによれば、混合ガスに含まれる少なくとも3つの成分A、B、Cのうち、成分AとBの熱伝導率が略同一であり、成分AとCの熱伝導率が異なる場合に、より簡易に成分Cの濃度を測定することができる。
[Action/effect]
According to the oxygen concentration measuring device 1C as described above, of the at least three components A, B, and C contained in the mixed gas, the components A and B have substantially the same thermal conductivity, and the heat If the conductivities are different, the concentration of component C can be measured more easily.

<4.4>
上記の酸素濃度測定装置1によって測定される混合ガスが少なくとも3つの成分A、B、Cを含む場合であって、成分Cの含有率にCの熱伝導率を乗じた値が、混合ガス全体の熱伝導率に対して極端に小さい場合、成分Cを無視し、混合ガスが成分Aと成分Bとの2つの成分からなるガスと仮定してもよい。つまり、成分Cの変化による影響が小さい場合に、混合ガスを成分Aと成分Bからなるガスと仮定してもよい。このような場合、酸素濃度測定装置1Dは、成分Aと成分Bとの成分比を変化させた混合ガスを流管部材2の内部へ流入させる。そして、当該成分比に応じたサーモパイル7Aの出力を測定し、成分比とサーモパイル7Aの出力との対応関係を記憶しておく。そして、酸素濃度測定装置1Dは、測定対象の混合ガスを流管部材2に流した場合に、サーモパイル7Aから出力される出力値と、当該対応関係とから、成分A又は成分Bの濃度を算出してもよい。
<4.4>
When the mixed gas measured by the above oxygen concentration measuring device 1 contains at least three components A, B, and C, the value obtained by multiplying the content of component C by the thermal conductivity of C is the total mixed gas If the thermal conductivity is extremely small with respect to , component C may be ignored and the mixed gas may be assumed to consist of two components, component A and component B. In other words, if the influence of change in component C is small, the mixed gas may be assumed to consist of component A and component B. In such a case, the oxygen concentration measuring device 1</b>D causes a mixed gas in which the component ratio of the component A and the component B is changed to flow into the flow tube member 2 . Then, the output of the thermopile 7A corresponding to the component ratio is measured, and the correspondence relationship between the component ratio and the output of the thermopile 7A is stored. Then, the oxygen concentration measuring device 1D calculates the concentration of the component A or the component B from the output value output from the thermopile 7A when the mixed gas to be measured is flowed through the flow tube member 2 and the corresponding relationship. You may

[作用・効果]
上記のような酸素濃度測定装置1Dによれば、成分Cの変化による影響が小さい場合に、3種類の成分A、B、Cを含む混合ガスの成分A又は成分Bの濃度をより簡易に測定することができる。
[Action/effect]
According to the oxygen concentration measuring device 1D as described above, the concentration of component A or component B of a mixed gas containing three types of components A, B, and C can be measured more easily when the influence of changes in component C is small. can do.

<4.5>
また、上記の酸素濃度測定装置1では、第一記憶部13が、制御部10によって算出されたサーモパイル7Aの出力と混合ガスの熱伝導率を表す式(3)の定数a、b、cの値
を記憶している。そして、第二記憶部14が、測定された最初期の酸素濃縮ガスの酸素濃度C及び最初期の酸素濃縮ガスの熱伝導率λを記憶している。また、第二記憶部14は、外気の酸素濃度C及び外気の熱伝導率λも記憶している。しかし、酸素濃度測定装置1Eは、サーモパイル7Aから出力される電気信号を直接混合ガスの成分比に変換する数値を記憶してもよい。
<4.5>
Further, in the oxygen concentration measuring device 1 described above, the first storage unit 13 stores the output of the thermopile 7A calculated by the control unit 10 and the constants a, b, and c of the equation (3) representing the thermal conductivity of the mixed gas. remembers the value. The second storage unit 14 stores the measured oxygen concentration C a of the oxygen-enriched gas at the earliest stage and the thermal conductivity λ a of the oxygen-enriched gas at the earliest stage. The second storage unit 14 also stores the oxygen concentration Cb of the outside air and the thermal conductivity λb of the outside air. However, the oxygen concentration measuring device 1E may store a numerical value for directly converting the electrical signal output from the thermopile 7A into the component ratio of the mixed gas.

[作用・効果]
このような酸素濃度測定装置1Eによっても、サーモパイル7Aから出力を使用して測定対象の混合ガスに含まれる酸素濃度は算出される。また、ROMやRAMなどの記憶装置に記憶される情報量は削減される。よって、記憶装置の容量を減らすことができる。
[Action/effect]
With such an oxygen concentration measuring device 1E as well, the oxygen concentration contained in the mixed gas to be measured is calculated using the output from the thermopile 7A. Also, the amount of information stored in storage devices such as ROM and RAM is reduced. Therefore, the capacity of the storage device can be reduced.

以上で開示した実施形態はそれぞれ組み合わせる事ができる。 Each of the embodiments disclosed above can be combined.

なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<付記1>
酸素濃縮器において濃縮後の酸素の濃度を測定する酸素濃度測定装置(1、1A)であって、
空気に含まれる窒素を除去し、酸素を濃縮する酸素濃縮手段(3)によって酸素が濃縮
された濃縮ガスを加熱する加熱部(6)と、
前記加熱部(6)を跨いで並んで配置され、前記濃縮ガスの温度に基づき出力を行う出力部(7A、7B)と、
前記出力部(7A、7B)における出力より、前記濃縮ガスの熱伝導率を算出する熱伝導率算出部(10)と、
前記熱伝導率算出部(10)によって算出される前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出する酸素濃度算出部(10)と、を備え、
前記濃縮ガスは、前記酸素濃縮手段(3)の使用が開始された初期状態において、該酸素濃縮手段(3)によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段(3)を透過した空気と、を含み、
前記酸素濃度算出部(10)は、前記初期濃縮ガスにおける熱伝導率及び酸素濃度と、前記空気における熱伝導率及び酸素濃度と、に基づいて、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出することを特徴とする、
酸素濃度測定装置(1、1A)。
<付記2>
前記酸素濃度算出部(10)は、前記初期濃縮ガスにおける熱伝導率をλ、酸素濃度をCとし、前記酸素濃縮手段(3)を透過した空気における熱伝導率をλ、酸素濃度をCとし、前記熱伝導率算出部(10)により算出された前記濃縮ガスの熱伝導率をλとし、前記濃縮ガスの酸素濃度をCとしたときに、数式(1)によりCを算出することを特徴とする、
付記1に記載の酸素濃度測定装置(1、1A)。

Figure 0007127580000005
<付記3>
前記酸素濃度算出部(10)は、前記濃縮ガスにおける、前記初期濃縮ガスと、前記酸素濃縮手段(3)を透過した空気との存在比率を変化させた場合の熱伝導率及び酸素濃度の値によって算出された、前記濃縮ガスにおける熱伝導率と酸素濃度との対応関係(図4)を参照して、前記濃縮ガスの酸素濃度を算出することを特徴とする、
付記1に記載の酸素濃度測定装置(1、1A)。
<付記4>
前記対応関係(図4)は、前記濃縮ガスに含まれる前記酸素濃縮手段(3)を透過した空気の割合が増加することに従い、前記濃縮ガスの熱伝導率に対して前記濃縮ガスに含まれる酸素の濃度は単調に変化する関係を含む、
付記3に記載の酸素濃度測定装置(1、1A)。
<付記5>
前記空気に含まれる酸素の濃度と、前記空気の熱伝導率と、を測定する測定手段(30、31)を更に備える、
付記1から4のうち何れか1項に記載の酸素濃度測定装置(1)。
<付記6>
酸素濃縮器において濃縮後の酸素の濃度を測定する酸素濃度測定方法であって、
空気に含まれる窒素を除去し、酸素を濃縮する酸素濃縮手段(3)によって酸素が濃縮された濃縮ガスの熱伝導率を算出する熱伝導率算出ステップ(S102)と、
前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出する酸素濃度算出ステップ(S103)と、を有し、
前記濃縮ガスは、前記酸素濃縮手段(3)の使用が開始された初期状態において、該酸素濃縮手段(3)によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段(3)を透過した空気と、を含み、
前記酸素濃度算出ステップ(S103)においては、前記初期濃縮ガスにおける熱伝導率及び酸素濃度と、前記空気における熱伝導率及び酸素濃度と、に基づいて、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出することを特徴とする、
酸素濃度測定方法。
<付記7>
前記酸素濃度算出ステップ(S103)においては、前記初期濃縮ガスにおける熱伝導率をλ、酸素濃度をCとし、前記酸素濃縮手段(3)を透過した空気における熱伝導率をλ、酸素濃度をCとし、前記熱伝導率算出ステップ(S102)において算出された前記濃縮ガスの熱伝導率をλとし、前記濃縮ガスの酸素濃度をCとしたときに、数式(1)によりCを算出することを特徴とする、
付記6に記載の酸素濃度測定方法。
Figure 0007127580000006
<付記8>
前記酸素濃度算出ステップ(S103)においては、前記濃縮ガスにおける、前記初期濃縮ガスと、前記酸素濃縮手段(3)を透過した空気との存在比率を変化させた場合の熱伝導率及び酸素濃度の値によって算出された、前記濃縮ガスにおける熱伝導率と酸素濃度との対応関係(図4)を参照して、前記濃縮ガスの酸素濃度を算出することを特徴とする、
付記6に記載の酸素濃度測定方法。 In order to allow comparison between the constituent elements of the present invention and the configurations of the embodiments, the constituent elements of the present invention will be described below with reference numerals in the drawings.
<Appendix 1>
An oxygen concentration measuring device (1, 1A) for measuring the concentration of oxygen after concentration in an oxygen concentrator,
a heating unit (6) for removing nitrogen contained in the air and heating the concentrated gas in which oxygen is concentrated by the oxygen concentrating means (3) for concentrating the oxygen;
Output units (7A, 7B) arranged side by side across the heating unit (6) and performing output based on the temperature of the concentrated gas;
a thermal conductivity calculation unit (10) for calculating the thermal conductivity of the concentrated gas from the outputs of the output units (7A, 7B);
an oxygen concentration calculation unit (10) for calculating the concentration of oxygen contained in the concentrated gas with respect to the thermal conductivity of the concentrated gas calculated by the thermal conductivity calculation unit (10);
The enriched gas passes through the initial enriched gas in which oxygen is enriched by the oxygen enrichment means (3) and the oxygen enrichment means (3) in the initial state when the use of the oxygen enrichment means (3) is started. including air and
The oxygen concentration calculation unit (10) calculates the thermal conductivity and oxygen concentration of the enriched gas for the thermal conductivity of the enriched gas based on the thermal conductivity and oxygen concentration of the initial enriched gas and the thermal conductivity and oxygen concentration of the air. characterized by calculating the concentration of oxygen contained,
Oxygen concentration measuring device (1, 1A).
<Appendix 2>
The oxygen concentration calculator (10) sets the thermal conductivity of the initially concentrated gas to λ a , the oxygen concentration to C a , the thermal conductivity of the air that has passed through the oxygen concentrating means (3) to λ b , and the oxygen concentration to is C b , the thermal conductivity of the concentrated gas calculated by the thermal conductivity calculation unit (10) is λ x , and the oxygen concentration of the concentrated gas is C x , then C characterized by calculating x ,
The oxygen concentration measuring device (1, 1A) according to appendix 1.
Figure 0007127580000005
<Appendix 3>
The oxygen concentration calculator (10) calculates the values of the thermal conductivity and the oxygen concentration when the abundance ratio of the initial enriched gas and the air that has passed through the oxygen enrichment means (3) in the enriched gas is changed. The oxygen concentration of the enriched gas is calculated by referring to the correspondence relationship between the thermal conductivity and the oxygen concentration in the enriched gas (FIG. 4) calculated by
The oxygen concentration measuring device (1, 1A) according to appendix 1.
<Appendix 4>
Said correspondence (FIG. 4) is contained in said enriched gas for the thermal conductivity of said enriched gas as the proportion of air permeated through said oxygen enrichment means (3) contained in said enriched gas increases. The concentration of oxygen contains a monotonically changing relationship,
The oxygen concentration measuring device (1, 1A) according to appendix 3.
<Appendix 5>
Further comprising measuring means (30, 31) for measuring the concentration of oxygen contained in the air and the thermal conductivity of the air,
The oxygen concentration measuring device (1) according to any one of Appendices 1 to 4.
<Appendix 6>
An oxygen concentration measuring method for measuring the concentration of oxygen after concentration in an oxygen concentrator,
a thermal conductivity calculation step (S102) of calculating the thermal conductivity of the concentrated gas in which oxygen is concentrated by the oxygen concentrating means (3) for removing nitrogen contained in the air and concentrating the oxygen;
an oxygen concentration calculation step (S103) for calculating the concentration of oxygen contained in the enriched gas with respect to the thermal conductivity of the enriched gas;
The enriched gas passes through the initial enriched gas in which oxygen is enriched by the oxygen enrichment means (3) and the oxygen enrichment means (3) in the initial state when the use of the oxygen enrichment means (3) is started. including air and
In the oxygen concentration calculation step (S103), based on the thermal conductivity and oxygen concentration in the initial enriched gas and the thermal conductivity and oxygen concentration in the air, the thermal conductivity of the enriched gas with respect to the thermal conductivity of the enriched gas characterized by calculating the concentration of oxygen contained in
Oxygen concentration measurement method.
<Appendix 7>
In the oxygen concentration calculating step (S103), λ a is the thermal conductivity of the initially concentrated gas, Ca is the oxygen concentration, λ b is the thermal conductivity of the air that has passed through the oxygen concentrating means (3 ) , oxygen Let C b be the concentration, let λ x be the thermal conductivity of the enriched gas calculated in the thermal conductivity calculation step (S102), and let C x be the oxygen concentration of the enriched gas. C x is calculated,
The oxygen concentration measuring method according to appendix 6.
Figure 0007127580000006
<Appendix 8>
In the oxygen concentration calculation step (S103), the thermal conductivity and the oxygen concentration when changing the abundance ratio of the initial enriched gas and the air that has passed through the oxygen enrichment means (3) in the enriched gas. The oxygen concentration of the enriched gas is calculated by referring to the correspondence relationship between the thermal conductivity and the oxygen concentration in the enriched gas (FIG. 4) calculated by the value,
The oxygen concentration measuring method according to appendix 6.

1、1A、1B、1C、1D、1E :酸素濃度測定装置
2、2A :流管部材
3 :フィルタ
4 :基板
5 :薄膜
6 :ヒータ
7A、7B :サーモパイル
8 :接点
9 :接点
10 :制御部
11 :計測部
12 :センサ部
13 :第一記憶部
14 :第二記憶部
15 :入力部
16 :出力部
20 :空洞
30 :熱伝導率測定センサ
31 :酸素濃度計
1, 1A, 1B, 1C, 1D, 1E: Oxygen concentration measuring device 2, 2A: Flow tube member 3: Filter 4: Substrate 5: Thin film 6: Heaters 7A, 7B: Thermopile 8: Contact 9: Contact 10: Control unit 11: Measurement unit 12: Sensor unit 13: First storage unit 14: Second storage unit 15: Input unit 16: Output unit 20: Cavity 30: Thermal conductivity measurement sensor 31: Oxygen concentration meter

Claims (8)

酸素濃縮器において濃縮後の酸素の濃度を測定する酸素濃度測定装置であって、
空気に含まれる窒素を除去し、酸素を濃縮する酸素濃縮手段によって酸素が濃縮された濃縮ガスを加熱する加熱部と、
前記加熱部を跨いで並んで配置され、前記濃縮ガスの温度に基づき出力を行う出力部と、
前記出力部における出力より、前記濃縮ガスの熱伝導率を算出する熱伝導率算出部と、
前記熱伝導率算出部によって算出される前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出する酸素濃度算出部と、を備え、
前記濃縮ガスは、前記酸素濃縮手段の使用が開始された初期状態において、該酸素濃縮手段によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段を透過した空気と、を含み、
前記酸素濃度算出部は、前記初期濃縮ガスにおける熱伝導率及び酸素濃度と、前記空気における熱伝導率及び酸素濃度と、に基づいて、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出することを特徴とする、
酸素濃度測定装置。
An oxygen concentration measuring device for measuring the concentration of oxygen after concentration in an oxygen concentrator,
a heating unit that removes nitrogen contained in the air and heats the concentrated gas in which oxygen is concentrated by the oxygen concentrating means that concentrates the oxygen;
an output unit that is arranged side by side across the heating unit and performs output based on the temperature of the concentrated gas;
a thermal conductivity calculation unit that calculates the thermal conductivity of the concentrated gas from the output of the output unit;
an oxygen concentration calculation unit that calculates the concentration of oxygen contained in the concentrated gas with respect to the thermal conductivity of the concentrated gas calculated by the thermal conductivity calculation unit;
The enriched gas includes an initial enriched gas in which oxygen is enriched by the oxygen enrichment means in an initial state when the use of the oxygen enrichment means is started, and air that has passed through the oxygen enrichment means,
The oxygen concentration calculation unit calculates the oxygen contained in the enriched gas with respect to the thermal conductivity of the enriched gas based on the thermal conductivity and oxygen concentration of the initial enriched gas and the thermal conductivity and oxygen concentration of the air. characterized by calculating the concentration of
Oxygen concentration measuring device.
前記酸素濃度算出部は、前記初期濃縮ガスにおける熱伝導率をλ、酸素濃度をCとし、前記酸素濃縮手段を透過した空気における熱伝導率をλ、酸素濃度をCとし、前記熱伝導率算出部により算出された前記濃縮ガスの熱伝導率をλとし、前記濃縮ガスの酸素濃度をCとしたときに、数式(1)によりCを算出することを特徴とする、
請求項1に記載の酸素濃度測定装置。
Figure 0007127580000007
The oxygen concentration calculation unit sets λ a as the thermal conductivity and C a as the oxygen concentration in the initially concentrated gas, λ b as the thermal conductivity, and C b as the oxygen concentration in the air that has passed through the oxygen concentrating means. When the thermal conductivity of the enriched gas calculated by the thermal conductivity calculator is λx , and the oxygen concentration of the enriched gas is Cx , Cx is calculated by Equation (1). ,
The oxygen concentration measuring device according to claim 1.
Figure 0007127580000007
前記酸素濃度算出部は、前記濃縮ガスにおける、前記初期濃縮ガスと、前記酸素濃縮手段を透過した空気との存在比率を変化させた場合の熱伝導率及び酸素濃度の値によって算出された、前記濃縮ガスにおける熱伝導率と酸素濃度との対応関係を参照して、前記濃縮ガスの酸素濃度を算出することを特徴とする、
請求項1に記載の酸素濃度測定装置。
The oxygen concentration calculation unit calculates the values of the thermal conductivity and the oxygen concentration when changing the abundance ratio of the initial enriched gas and the air that has passed through the oxygen enrichment means in the enriched gas, By referring to the correspondence relationship between the thermal conductivity and the oxygen concentration in the enriched gas, the oxygen concentration of the enriched gas is calculated,
The oxygen concentration measuring device according to claim 1.
前記対応関係は、前記濃縮ガスに含まれる前記酸素濃縮手段を透過した空気の割合が増加することに従い、前記濃縮ガスの熱伝導率に対して前記濃縮ガスに含まれる酸素の濃度は単調に変化する関係を含む、
請求項3に記載の酸素濃度測定装置。
According to the corresponding relationship, the concentration of oxygen contained in the enriched gas changes monotonously with respect to the thermal conductivity of the enriched gas as the proportion of air that has permeated through the oxygen enrichment means contained in the enriched gas increases. including relationships that
The oxygen concentration measuring device according to claim 3.
前記空気に含まれる酸素の濃度と、前記空気の熱伝導率と、を測定する測定手段を更に備える、
請求項1から4のうち何れか1項に記載の酸素濃度測定装置。
Further comprising measuring means for measuring the concentration of oxygen contained in the air and the thermal conductivity of the air,
The oxygen concentration measuring device according to any one of claims 1 to 4.
酸素濃縮器において濃縮後の酸素の濃度を測定する酸素濃度測定方法であって、
空気に含まれる窒素を除去し、酸素を濃縮する酸素濃縮手段によって酸素が濃縮された濃縮ガスの熱伝導率を算出する熱伝導率算出ステップと、
前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出する酸素濃度算出ステップと、を有し、
前記濃縮ガスは、前記酸素濃縮手段の使用が開始された初期状態において、該酸素濃縮
手段によって酸素が濃縮された初期濃縮ガスと、該酸素濃縮手段を透過した空気と、を含み、
前記酸素濃度算出ステップにおいては、前記初期濃縮ガスにおける熱伝導率及び酸素濃度と、前記空気における熱伝導率及び酸素濃度と、に基づいて、前記濃縮ガスの熱伝導率に対する前記濃縮ガスに含まれる酸素の濃度を算出することを特徴とする、
酸素濃度測定方法。
An oxygen concentration measuring method for measuring the concentration of oxygen after concentration in an oxygen concentrator,
a thermal conductivity calculation step of calculating the thermal conductivity of a concentrated gas in which oxygen is concentrated by an oxygen concentrating means for removing nitrogen contained in air and concentrating oxygen;
an oxygen concentration calculation step of calculating the concentration of oxygen contained in the enriched gas with respect to the thermal conductivity of the enriched gas;
The enriched gas includes an initial enriched gas in which oxygen is enriched by the oxygen enrichment means in an initial state when the use of the oxygen enrichment means is started, and air that has passed through the oxygen enrichment means,
In the oxygen concentration calculating step, based on the thermal conductivity and oxygen concentration in the initial enriched gas and the thermal conductivity and oxygen concentration in the air, characterized by calculating the concentration of oxygen,
Oxygen concentration measurement method.
前記酸素濃度算出ステップにおいては、前記初期濃縮ガスにおける熱伝導率をλ、酸素濃度をCとし、前記酸素濃縮手段を透過した空気における熱伝導率をλ、酸素濃度をCとし、前記熱伝導率算出ステップにおいて算出された前記濃縮ガスの熱伝導率をλとし、前記濃縮ガスの酸素濃度をCとしたときに、数式(1)によりCを算出することを特徴とする、
請求項6に記載の酸素濃度測定方法。
Figure 0007127580000008
In the oxygen concentration calculating step, λ a is the thermal conductivity of the initially concentrated gas, Ca is the oxygen concentration, λ b is the thermal conductivity of the air that has passed through the oxygen concentrating means, and C b is the oxygen concentration; When the thermal conductivity of the concentrated gas calculated in the thermal conductivity calculation step is λx and the oxygen concentration of the concentrated gas is Cx , Cx is calculated by Equation (1). do,
The oxygen concentration measuring method according to claim 6.
Figure 0007127580000008
前記酸素濃度算出ステップにおいては、前記濃縮ガスにおける、前記初期濃縮ガスと、前記酸素濃縮手段を透過した空気との存在比率を変化させた場合の熱伝導率及び酸素濃度の値によって算出された、前記濃縮ガスにおける熱伝導率と酸素濃度との対応関係を参照して、前記濃縮ガスの酸素濃度を算出することを特徴とする、
請求項6に記載の酸素濃度測定方法。
In the oxygen concentration calculating step, the values of the thermal conductivity and the oxygen concentration when changing the existence ratio of the initial enriched gas and the air that has passed through the oxygen concentrating means in the enriched gas are calculated. By referring to the correspondence relationship between the thermal conductivity and the oxygen concentration in the enriched gas, the oxygen concentration of the enriched gas is calculated,
The oxygen concentration measuring method according to claim 6.
JP2019036617A 2019-02-28 2019-02-28 Oxygen concentration measuring device and oxygen concentration measuring method Active JP7127580B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019036617A JP7127580B2 (en) 2019-02-28 2019-02-28 Oxygen concentration measuring device and oxygen concentration measuring method
PCT/JP2020/007129 WO2020175379A1 (en) 2019-02-28 2020-02-21 Oxygen concentration measurement device and oxygen concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036617A JP7127580B2 (en) 2019-02-28 2019-02-28 Oxygen concentration measuring device and oxygen concentration measuring method

Publications (2)

Publication Number Publication Date
JP2020139873A JP2020139873A (en) 2020-09-03
JP7127580B2 true JP7127580B2 (en) 2022-08-30

Family

ID=72238473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036617A Active JP7127580B2 (en) 2019-02-28 2019-02-28 Oxygen concentration measuring device and oxygen concentration measuring method

Country Status (2)

Country Link
JP (1) JP7127580B2 (en)
WO (1) WO2020175379A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020121062A1 (en) * 2019-08-22 2021-02-25 Omron Corporation MIX RATIO CALCULATION DEVICE
CN113757933B (en) * 2021-08-30 2023-05-09 青岛海信日立空调系统有限公司 Air conditioning system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344326A (en) 2002-05-28 2003-12-03 Jfe Steel Kk Method of measuring hydrogen gas concentration in exhaust gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016573B2 (en) * 1977-03-10 1985-04-26 三菱重工業株式会社 Gas mixture ratio measurement method
JPS61161434A (en) * 1985-01-11 1986-07-22 Teijin Ltd Gas concentrator
JP3114137B2 (en) * 1994-03-11 2000-12-04 株式会社山武 Thermal conductivity gas concentration analyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344326A (en) 2002-05-28 2003-12-03 Jfe Steel Kk Method of measuring hydrogen gas concentration in exhaust gas

Also Published As

Publication number Publication date
JP2020139873A (en) 2020-09-03
WO2020175379A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP6264152B2 (en) Mass flow meter and mass flow controller using the mass flow meter
JP5534193B2 (en) Temperature diffusivity measurement system and flow rate measurement system
JP7127580B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
WO2011125339A1 (en) Mass flow controller with enhanced operating range
JP2015194421A5 (en)
JP4692026B2 (en) Gas sensor
KR102266217B1 (en) Thermal flow meter, temperature measurement device, and thermal flow meter program
JPH02171647A (en) Measurement method and sensor for measuring relative density of gas or steam
US7823444B2 (en) Device and process for measuring the velocity of flow of a fluid using pulse signal generated based on feedback
WO2003029759A1 (en) Flow rate measuring instrument
US20110209526A1 (en) Method and thermal, flow measuring device for determining and/or monitoring at least one variable dependent on at least the chemical composition of a measured medium
JP2004138425A (en) Temperature measuring instrument for pressure type flow controller
JP2010237005A (en) Gas physical property value measuring system, gas physical property value measuring method, heat value calculating formula forming system, heat value calculating formula forming method, heat value calculating system, and heat value calculating method
JP5690003B2 (en) Specific heat capacity measurement system and flow rate measurement system
JPH11183231A (en) Integrating flow meter and gas meter using it
JP5437654B2 (en) Temperature measuring device
Manshadi et al. A new approach about heat transfer of hot-wire anemometer
US6112576A (en) Gas analyzer with background gas compensation
Berning et al. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell–Part 1: Theory
RU2309447C2 (en) Method of control of gas flow rate
JP2011117971A (en) Temperature-sensitive strain-sensitive composite sensor
JPH05107093A (en) Thermal flowmeter
JP2011145091A (en) Gas detector
JP2014160082A (en) Calorie component concentration measuring system and flow measurement system
JPWO2014068693A1 (en) Anemometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7127580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150