JP2004138425A - Temperature measuring instrument for pressure type flow controller - Google Patents

Temperature measuring instrument for pressure type flow controller Download PDF

Info

Publication number
JP2004138425A
JP2004138425A JP2002301421A JP2002301421A JP2004138425A JP 2004138425 A JP2004138425 A JP 2004138425A JP 2002301421 A JP2002301421 A JP 2002301421A JP 2002301421 A JP2002301421 A JP 2002301421A JP 2004138425 A JP2004138425 A JP 2004138425A
Authority
JP
Japan
Prior art keywords
pressure
temperature
orifice
fluid
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002301421A
Other languages
Japanese (ja)
Other versions
JP2004138425A5 (en
JP4669193B2 (en
Inventor
Tadahiro Omi
大見 忠弘
Koji Nishino
西野 功二
Atsushi Matsumoto
松本 篤諮
Ryosuke Doi
土肥 亮介
Shinichi Ikeda
池田 信一
Kazuhiko Sugiyama
杉山 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Fujikin Inc
Original Assignee
Tokyo Electron Ltd
Fujikin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32449767&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2004138425(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokyo Electron Ltd, Fujikin Inc filed Critical Tokyo Electron Ltd
Priority to JP2002301421A priority Critical patent/JP4669193B2/en
Publication of JP2004138425A publication Critical patent/JP2004138425A/en
Publication of JP2004138425A5 publication Critical patent/JP2004138425A5/ja
Application granted granted Critical
Publication of JP4669193B2 publication Critical patent/JP4669193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To actualize a pressure type flow controller for controlling the rate of an orifice passing flow with high accuracy by simultaneously measuring a fluid pressure and a fluid temperature at a same point in the fluid. <P>SOLUTION: This pressure type flow controller controls the rate of flow passing an orifice by computing Qc = K×P<SB>1</SB>with an upstream side pressure assumed as P<SB>1</SB>when the flow velocity of a fluid passing through an orifice 4 is at the velocity of sound. The controller is characterized in that an upstream side pressure sensor comprises a resistance element whose electrical resistance varies under pressure and this resistance element as the pressure sensor is simultaneously used as a temperature sensor. In this resistance element, four resistors 41a to 41d are disposed on a pressure receiving surface to form a bridge circuit using the four resistors as four sides. A constant-current power supply 43 is connected between input terminals 42a and 42b of the bridge circuit. A voltage V<SB>p</SB>between output terminals 44a and 44b is used to detect a fluid pressure P while a voltage V<SB>T</SB>between the input terminals is used to detect fluid temperature T, thus causing the resistance element to function as a pressure-temperature sensor 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は主として半導体製造設備や化学プラント等で使用される圧力式流量制御装置に関し、更に詳細には、流体の圧力を計測する圧力センサを抵抗素子で構成し、同時にこの抵抗素子を流体温度計測用の温度センサとして使用する圧力式流量制御装置の温度測定装置に関する。
【0002】
【従来の技術】
半導体製造設備や化学プラントなどでは、原料となる複数のガスを所定の流量で供給し、原料ガスを反応炉の中で化学反応させて目的ガスを生成する場合が多い。このような場合に、原料ガスの供給流量が正確でないと化学反応に過不足が生じ、目的ガスの中に原料ガスが残留する事態が生じる。特に、この原料ガスが引火性の場合には爆発の危険性が付きまとう。
【0003】
従来、ガス流量を正確に制御するために、配管内にオリフィスを配置し、このオリフィスを通過する理論流量として出来るだけ精度の良い流量式が選択されてきた。特に、ガス流の非圧縮性を考慮して、オリフィスを通過するガス流の流速を音速領域に設定して流量制御する方法が使用されている。
【0004】
この流量制御方法では、オリフィスの上流側圧力Pと下流側圧力Pの圧力比P/Pを約0.5の臨界値より小さくしたとき、オリフィスを通過するガスの流速が音速に達し、この音速領域で理論流量式が高精度にQc=KPによって表現される性質が利用されている。ここで、比例係数Kは流体の種類と流体温度に依存することが分かっている。
【0005】
この理論流量式によりオリフィス通過流量を制御するには、オリフィスの上流側圧力Pと上流側の流体温度Tを正確に測定することが必要となる。上流側圧力Pはダイヤフラムで受圧され、圧力伝達媒体を経由して抵抗素子で測定される。他方、流体温度Tはオリフィスを組み込んだ弁装置にサーミスタを別個に配置することにより測定されている。
【0006】
【発明が解決しようとする課題】
上述したように、上流側圧力はダイヤフラムに直接接触して作用し、圧力伝達媒体を経由して圧力センサである抵抗素子で計測されるから、流体圧を正確に測定することができる。他方、温度センサであるサーミスタは流体に直接接触せず、前述した弁装置内のオリフィス近傍位置に配置されている。流体はオリフィスを継続的に通過するから、オリフィス近傍位置は流体と熱平衡状態に到達して温度が等しくなっていると考えられ、オリフィス近傍位置に配置されたサーミスタは流体温度を正確に再現できると考えられたからである。
【0007】
ところが、弁装置は一般に金属により形成されるから、熱伝導性は極めて高い。流体からオリフィス位置で吸引された熱は、弁装置の外側表面へと急速に熱伝達し、この温度傾斜によりオリフィスから少し離れた位置の温度でも、流体温度と同一ではない。サーミスタは有限の幾何学的寸法を有しているから、サーミスタがオリフィス近傍に配置されたとしても、その測定温度は流体温度から僅かにずれていると考えられる。従って、このサーミスタ温度を流体温度として流量を計算した場合には、Qc=KPによる演算流量に誤差を誘導する第1の原因となる。
【0008】
また、Qc=KPの演算に使用される上流側圧力Pと流体温度Tは、理論的には上流側流体の同一点における圧力と温度である。このことは流量式Qc=KPを導出する過程において、同一点の圧力Pと温度Tが使用されていることからも理解できる。
【0009】
ところが、従来の圧力式流量制御装置では、前述したように、抵抗素子により流体圧力を測定し、別に配置されたサーミスタにより流体温度を測定している。抵抗素子とサーミスタが極小化されたとしても、両者は別体であるから、必然的に圧力と温度の測定点は異なってくる。両者が有限の大きさを有し、しかも取付位置が異なっている実情では、圧力と温度の測定位置が多少とも離間し、前記流量式に第2の誤差を誘導する原因となる。
【0010】
従って、本発明に係る圧力式流量制御装置の温度測定装置は、流体圧力を測定する位置と同一位置の流体温度を直接測定することにより、流量式の理論的要請を満足させて、オリフィスを通過する流体の流量を高精度に制御することを目的とする。この目的を達成するために、本発明は下記の発明群から構成される。
【0011】
【課題を解決するための手段】
第1の発明は、流量制御用のオリフィスと、オリフィスの上流側配管に設けられたコントロールバルブと、オリフィスとコントロールバルブの間に設けて上流側圧力Pを検出する上流側圧力センサと、上流側圧力Pによりオリフィス通過流量を演算しながらコントロールバルブの開閉によりオリフィス通過流量を制御する圧力式流量制御装置において、前記上流側圧力センサは圧力を受けたときに電気抵抗が変化する抵抗素子から構成され、この圧力センサとしての抵抗素子を同時に温度センサとしても用いることを特徴とする圧力式流量制御装置の温度測定装置である。
【0012】
第2の発明は、流量制御用のオリフィスと、オリフィスの上流側配管に設けられたコントロールバルブと、オリフィスとコントロールバルブの間に設けて上流側圧力Pを検出する上流側圧力センサと、オリフィスの下流側配管に設けて下流側圧力Pを検出する下流側圧力センサと、上流側圧力Pと下流側圧力Pによりオリフィス通過流量を演算しながらコントロールバルブの開閉によりオリフィス通過流量を制御する圧力式流量制御装置において、前記上流側圧力センサ又は下流側圧力センサは圧力を受けたときに電気抵抗が変化する抵抗素子から構成され、この圧力センサとしての抵抗素子を同時に温度センサとしても用いることを特徴とする圧力式流量制御装置の温度測定装置である。
【0013】
第3の発明は、前記抵抗素子において、受圧面に4個の抵抗が配置され、この4個の抵抗を4辺とするブリッジ回路が形成され、このブリッジ回路の入力端子間に定電流電源が接続され、出力端子間の電圧変化で流体圧力を検出し、前記入力端子間の電圧変化で流体温度を検出する圧力式流量制御装置の温度測定装置である。
【0014】
第4の発明は、シリコン基板に抵抗が拡散形成された抵抗素子を用いる圧力式流量制御装置の温度測定装置である。
【0015】
【発明の実施の形態】
本発明者等は、流体中の同一位置における流体圧力と流体温度を同時に計測するために鋭意研究した結果、圧力センサと温度センサを別体で配置することを止め、圧力センサを同時に温度センサとして利用できないかという着想を得て本発明を想到するに到ったものである。
【0016】
本発明者等は、従来より流体の流量制御を行なう場合に、圧力センサとして抵抗素子を使用している。この抵抗素子は、圧力を受けたときに抵抗が変化する性質を利用したもので、一般的には4個の抵抗をシリコン基板上に形成し、この4個の抵抗を4辺としたホイートストンブリッジが構成されている。
【0017】
この圧力センサの原理は次の通りである。ホイートストンブリッジの入力端子間に接続された定電流電源により抵抗には定電流が流れる。圧力を受けると抵抗の抵抗値が変化するから、ブリッジの出力端子間の電圧が変化し、この出力端子間の電圧により流体圧力を測定することができる。
【0018】
この圧力センサを同時に温度センサとして利用するために、本発明者等は、ホイートストンブリッジの入力端子に着目した。入力端子間には定電流電源が接続されているものの電圧電源は接続されていないから、入力端子間の電圧は抵抗変化に応じて当然に変化する。
【0019】
本発明者等は、この抵抗素子を恒温槽に配置して、温度を変化させながら入力端子間の電圧を測定した結果、温度変化に対して広範囲に電圧が変化することを発見した。また、温度を一定に保持しながら圧力だけを変化させたとき、入力端子間の電圧はほとんど変化しないか、又は本発明装置が許す誤差範囲内の変化しか示さなかった。
【0020】
以上の結果から、抵抗素子の入力端子間電圧により流体温度を測定することが可能であることが実証された。そこで、以下では、この入力端子間電圧をブリッジ電圧とも称し、流体温度測定に専用的に使用する。また、従来通り、出力端子間電圧は流体圧力の測定用に使用されるので、この抵抗素子は流体の同一点に対し機能する圧力センサ且つ温度センサであり、総合して圧力温度センサと称することもできる。
【0021】
以下に、本発明に係る圧力式流量制御装置の温度測定装置の実施形態を図面に従って詳細に説明する。
図1は本発明に係る臨界膨張条件を利用した圧力式流量制御装置による流量制御の構成図である。この圧力式流量制御装置2は、供給される流体が臨界膨張条件にある場合、即ちオリフィス4から流出する流体の速度が音速である場合を前提としているため、流量はQc=KPで表される。
【0022】
この圧力式流量制御装置2には、オリフィス孔4aを形成したオリフィス4、上流側配管6、下流側配管8、上流側の圧力温度センサ10、制御回路16、バルブ駆動部20及びコントロールバルブ22が配置されている。
【0023】
圧力温度センサ10は抵抗素子から構成され、後述するようにホイートストンブリッジの出力端子間電圧で上流側の流体圧力を検出し、またその入力端子間電圧(ブリッジ電圧とも云う)で流体中の同一点の流体温度を検出するように構成されている。
【0024】
制御回路16は電子回路とマイクロコンピュータと内蔵プログラムを中心に構成されているが、電子回路だけで構成してもよいし、電子回路とパーソナルコンピュータで構成してもよい。この制御回路16は、図示しない増幅回路やA/D変換器などの電子回路系と、実験流量式による流量Qcを演算する流量演算手段17と、流すべき設定流量Qsを指令する流量設定手段18と、演算流量Qcと設定流量Qsの流量差ΔQ(=Qs−Qc)を計算する比較手段19から構成されている。流量差ΔQはQc−Qsにより算出されてもよい。
【0025】
この圧力式流量制御装置2の上流側には、高圧ガスを内蔵するガスタンク24と、この高圧ガスのガス圧力を適度に調整するレギュレータ26と、このガスを供給側配管27からコントロールバルブ22に供給するバルブ28が接続されている。
【0026】
また、圧力式流量制御装置2の下流側には、流量制御されたガスを流通させる制御側配管29と、このガスをチャンバー32に供給するバルブ30と、真空ポンプ34が連結されている。チャンバー32は供給される原料ガスから目的ガスを生成する反応室で、例えばHとOの原料ガスからHOの水分ガスを生成する反応室である。
【0027】
次に、この圧力式流量制御装置2の制御動作を説明する。上流側では供給側配管27に所定圧力のガスが供給され、更にバルブ駆動部20により開閉制御されるコントロールバルブ22により上流側配管6への供給流量が制御される。同時に、下流側では真空ポンプ34により下流側配管8が低圧に設定されている。
【0028】
真空ポンプ34による排気で、下流側配管8内の下流側圧力Pは上流側圧力Pよりもかなり小さく設定され、少なくともP/P<約0.5の臨界膨張条件が常に満足されるように自動的に設定されるから、オリフィス孔4aから流出するガス速度は音速となっている。従って、オリフィス4の通過流量はQc=KPで表現される。
【0029】
上流側圧力Pは圧力温度センサ10により計測される。正確な圧力測定をするため、ガス圧力は耐食性に優れたダイヤフラムで直接受圧され、圧力伝達媒体を経由して圧力温度センサ10のセンサ部分で圧力計測されるように構成されている。しかも、ガス流を撹乱しないように、そのセンサ部分は極めて小さく設計されている。従って、センサ部分はガス温度Tに等しくなっている。
【0030】
図2は抵抗素子からなる圧力温度センサ10の要部断面斜視図である。リードピン36、36を有したヘッダー35の上にガラス台座37が配置され、このガラス台座37の上に脚部38a、38aで両端支持されたシリコン基板38が固定されている。シリコン基板38の下面には隙間状の空間部39が形成され、この空間部39に連続して貫通孔41が穿孔されている。
【0031】
シリコン基板38の上面には4個の抵抗41a、41b、41c、41dが熱拡散法で形成されている。この抵抗は、表面に応力が加えられると、この応力に相応して電気抵抗が変化する性質を有している。従って、定電流を流すと、応力に相応して電圧が変化し、この電圧変化により圧力測定が可能になる。
【0032】
ガス圧力(流体圧力)は図示しないダイヤフラムで受圧されて圧力伝達媒体(流体)に圧力Pを生起させ、圧力伝達媒体に生じた圧力Pがシリコン基板38の上面を押圧して、圧力Pが抵抗41a〜41dに作用する。一方、空間部39を真空にすると、シリコン基板38は流体圧力Pだけで変形するから、流体の絶対圧力がシリコン基板38に作用し、絶対圧力センサとして機能する。また、貫通孔41が大気に開放されていると、流体圧力Pと大気圧の差圧がシリコン基板38を変形させるから、流体のゲージ圧力がシリコン基板38に作用し、ゲージ圧力センサとして機能する。
【0033】
図3は図2に示す抵抗素子の等価回路図である。抵抗41a、41b、41c、41dはホイートストンブリッジの4辺を構成し、一方の対角点C・Dには入力端子42a・42bが連結され、この入力端子間に定電流電源43が接続されている。また、他方の対角点A・Bには出力端子44a、44bが連結されている。
【0034】
4個の抵抗41a、41b、41c、41dは圧力Pを受けて抵抗値が変化する。定電流電源43から矢印方向に定電流Iが流され、前記抵抗変化によりAB間の電位差が変化し、出力端子44a・44bの間に流体圧力に相応した電圧Vが生じる。この明細書では、電圧Vを出力端子間電圧と呼び、流体圧力の検出電圧の意味で圧力電圧とも称する。
【0035】
この抵抗素子を流体温度測定にも利用するために、本発明者等は他方の対角点C・Dに着目した。定電流Iにより点CD間にも電位差が発生し、この電位差は入力端子42a・42bの間で検出できるから、入力端子間電圧又はブリッジ電圧とも称される。本発明者等はこのブリッジ電圧Vが流体温度によってかなり変化すると予測した。
【0036】
図4は圧力温度センサ10の圧力特性と温度特性測定用の実験装置図である。抵抗素子からなる圧力温度センサ10を装填した圧力式流量制御装置2が恒温槽CTの内部に配設され、基準圧力発生器PGと真空ポンプDPがバルブV、Vを介して配管系PSに接続されている。
【0037】
まず、バルブVを閉鎖し、バルブVを開放して、真空ポンプDPにより配管系PSを真空状態、即ち内部圧力を0(kPa・abs)に設定する。この状態で恒温槽CTの内部温度を25℃から100℃まで変化させながら、各温度毎に圧力温度センサ10を作動させる。No.1、No.2及びNo.3の3種類の圧力温度センサに対し、絶対圧ゼロの状態で、各温度毎にブリッジ電圧Vが測定された。
【0038】
図5は3種類の圧力温度センサのブリッジ電圧―温度特性図である。この特性図は絶対圧がゼロの真空状態で得られ、横軸は温度T(℃)、縦軸はブリッジ電圧V(V)を示す。
【0039】
3種類の圧力温度センサ10はNo.1、No.2及びNo.3で示され、恒温槽CTの温度は25℃から100℃まで変化された。温度T(℃)に対するブリッジ電圧V(V)の依存性は、No.1は実線、No.2は鎖線及びNo.3は破線で示され、ほぼ直線になっている。
【0040】
No.1、No.2及びNo.3において、25℃でのブリッジ電圧Vは7.295V、7.380V及び7.271Vであり、100℃でのブリッジ電圧Vは8.966V、9.076V及び8.925Vであった。圧力温度センサによる個性の違いは、同一温度で約0.15V程度あるが、個々のセンサで直線性は極めて高い。
【0041】
25℃から100℃までの75℃の温度差で、ブリッジ電圧Vの変化量は2.228V(No.1)、2.205V(No.2)及び2.261V(No.3)である。従って、1℃当たりのブリッジ電圧Vの変化量は、22.28mV(No.1)、22.05mV(No.2)及び22.61mV(No.3)とかなり大きいことが分かる。1℃の変化でブリッジ電圧Vは約20mVも変化するから、ブリッジ電圧Vにより温度Tを測定できることが示される。
【0042】
図6は3種類の圧力温度センサの同一温度におけるブリッジ電圧―圧力特性図である。圧力温度センサ10のブリッジ電圧Vが圧力によってどの程度変化するかが測定された。もし、ブリッジ電圧が圧力にほとんど依存しないならば、ブリッジ電圧Vは温度測定に使用できることが実証される。
【0043】
図6には、温度を25℃に保持した場合と100℃に保持した場合の2通りの実験結果が示されている。両者とも、圧力Pを0〜700(kPa・abs)まで変化させた場合について、ブリッジ電圧Vが測定された。
【0044】
25℃において圧力Pを0から700(kPa・abs)まで変化させると、ブリッジ電圧Vは7.295V→7.285V(No.1)、7.271V→7.261V(No.2)及び7.380V→7.370V(No.3)まで変化した。従って、700(kPa・abs)の圧力変化に対して、3種類の圧力温度センサともにブリッジ電圧Vの変化量は−10mVと極めて微小な変化を示したに過ぎなかった。
【0045】
また、100℃において圧力Pを0から700(kPa・abs)まで変化させると、ブリッジ電圧Vは8.966V→8.956V(No.1)、8.925V→8.915V(No.2)及び9.076V→9.067V(No.3)まで変化した。従って、700(kPa・abs)の圧力変化に対して、3種類の圧力温度センサのブリッジ電圧Vの変化量は−10mV、−10mV及び−9mVとなり、センサの個性の違いが現れるものの、前述と同様に極めて微小な変化を示すに過ぎなかった。
【0046】
以上をまとめると、700(kPa・abs)の圧力変化に対して、25℃では−10mV、100℃では約−10mVのブリッジ電圧Vの変化が見られる。ブリッジ電圧Vは75℃の温度変化に対して約2Vも変化するのであるから、10mVはその0.5%に過ぎない。
【0047】
誤差についてもう少し議論する。ガス流体の実使用圧力を350(kPa・abs)とすると、ブリッジ電圧Vの変動は10mV/2=5mVとなる。No.1の圧力温度センサでは1℃当たり22.28mVも変化するから、前記の5mVは5/22.8より0.224℃の温度誤差を与えるに過ぎない。
【0048】
この0.224℃の温度誤差は、ガス温度補正では所要の計算により0.04%の誤差を与えるに過ぎない。また圧力センサとしてのゼロ点温度ドリフトを1℃当たり0.1%とすると、0.224℃の温度誤差に対して0.1%×0.224=約0.02%の誤差を誘導する。従って、前記0.224℃の温度誤差は0・04%+0.02%=0.06%から0.06%の誤差を誘引するに過ぎない。この圧力式流量制御装置の誤差は例えば1%以下のように設計されるから、0.06%の誤差は全体誤差に埋没する程度に過ぎないものである。
【0049】
従って、抵抗素子を用いた圧力温度センサは、圧力と温度を相関関係無く同時に測定でき、圧力センサであると同時に温度センサとしても機能することができる。従って、前述したように、抵抗素子の出力端子間電圧(圧力電圧)Vで圧力測定を行い、入力端子間電圧、即ちブリッジ電圧V(温度電圧とも云う)で温度測定を行なえるから、抵抗素子は圧力温度センサと呼ぶに相応しい素子であると言う事ができる。
【0050】
図7は本発明の圧力式流量制御装置の制御系の詳細ブロック構成図である。上述した圧力温度センサ10は流体の上流側圧力Pとその同一点の流体温度Tを同時に測定する。この圧力温度センサ10の圧力Pに相当する圧力電圧(出力端子間電圧)Vが固定増幅回路45と可変増幅回路47により増幅され、A/D変換器48を介してCPU51に入力されて圧力Pに変換される。また、可変増幅回路46を通して上流側圧力Pを外部に表示する。
【0051】
圧力温度センサ10は抵抗素子から構成され、圧力がゼロでも圧力電圧Vを出力する場合があり、このVをゼロ点ドリフト電圧という。この場合には、オフセット用D/A変換器49を介して、電圧−Vをオフセット端子45aに出力して、ゼロ点ドリフトを強制的にゼロに設定する。
【0052】
他方、圧力温度センサ10は流体温度Tに相当するブリッジ電圧Vを出力し、このブリッジ電圧Vを固定増幅器56及びA/D変換器58を介してCPU51に出力する。このブリッジ電圧Vは温度変換手段50により流体温度Tに変換される。
【0053】
この流体温度Tは温度ドリフト補正手段60とガス温度補正手段68に入力される。温度ドリフト補正手段60では、ゼロ点補正手段62とスパン補正手段66により流体温度Tに対応した補正がメモリ手段64のデータを活用しながら行なわれる。また、ガス温度補正手段68では、演算流量Qcの比例係数Kの補正が流体温度Tを用いて行なわれる。
【0054】
このようにして、正確な上流側圧力Pと比例定数Kが算出され、これらデータから演算流量QcがQc=KPとして演算される。この演算流量QcはD/A変換器72と固定増幅回路74を介して出力され、図示しない外部表示装置に表示される。
【0055】
流量設定手段18から目的流量として入力された設定流量Qsは、固定増幅回路76とA/D変換器78を介して比較手段19に入力される。一方、ガス温度補正手段68から演算流量Qcが比較手段19に入力され、流量差ΔQがΔQ=Qc−Qsとして計算され、バルブ駆動部20に出力される。
【0056】
バルブ駆動部20は、この流量差ΔQをゼロにするようにコントロールバルブ22の弁開度を開閉調整し、この開閉によって上流側圧力Pが制御される。この結果、ΔQはゼロとなり、演算流量Qcは設定流量Qsに一致するように自動制御される。
【0057】
本発明では、従来から圧力センサとして使用されてきた抵抗素子が温度センサとしても機能するという意外な発見から、一つの抵抗素子を圧力温度センサとして活用する道を開いたものである。従って、ブロック構成図から分るように、1個の圧力温度センサで圧力と温度の測定が可能となり、回路構成の簡単化と低価格化を同時に達成することに成功した。
【0058】
図8は、本発明に係る非臨界膨張条件を利用した圧力式流量制御装置の構成図である。この圧力式流量制御装置2は、供給される流体が非臨界膨張条件にある場合、即ちオリフィス4から流出する流体の流体速度が音速より低い場合を前提としている。
【0059】
流体が非臨界膨張条件にあるとき、オリフィス通過流量の理論流量式の一つは、非圧縮性流体に対して成立するベルヌーイの定理から導出したもので、Q=KP 1/2(P−P1/2で与えられる。但し、オリフィスの通過前後で流体温度は変化しないことを前提とする。図8では、この理論流量式を使用して、ガス流量を制御する。
【0060】
この流量式では、オリフィス通過量Qは上流側圧力Pと下流側圧力Pの両方を使用して演算される。しかし、流体温度Tは上流側又は下流側のいずれを使用してもよいから、上流側に本発明の圧力温度センサ10を配置し、下流側には圧力センサ12だけを配置する。従って、圧力温度センサ10により上流側圧力Pと流体温度Tが測定され、圧力センサ12により下流側圧力Pが常に計測され、演算流量QcをQc=KP 1/2(P−P1/2で算出する。
【0061】
図1との相違点は、下流側圧力Pを圧力センサ12により測定して制御回路16に入力する電子回路系及びソフト系が付加されることである。作用効果は図1とほぼ同様であるから、その詳細を省略する。
【0062】
図9は、本発明に係る非臨界膨張条件を利用した改良型圧力式流量制御装置による流量制御の構成図である。この圧力式流量制御装置2は、供給される流体が非臨界膨張条件にある場合を前提としているが、改良された理論流量式を使用する。
【0063】
実際のガス流体は膨張性と圧縮性を有しているため、非圧縮性を前提としたベルヌーイの定理は近似的にしか成立しない。従って、Qc=KP 1/2(P−P1/2で表される流量式は近似式でしかない。本発明者等は、この近似式を改良して実際の流量を高精度に再現できる流量式を検討した。
【0064】
この改良された流量式として、Qc=KP (P−Pを使用することにした。従来は、指数として二つのパラメータm、nを使用し、実際の流量をこの流量式でフィットすることにより、mとnを導出した。これらのパラメータm、nを使用することにより、実際の流量を高精度に再現する事ができた。
【0065】
この実施形態では、改良された流量式を用いて流量演算手段17を構成しており、この点を除けば図8に示す実施形態と全く同様である。即ち、上流側には本発明に係る圧力温度センサ10が配置され、下流側には圧力センサ12が配置されている。その他の構成と作用効果は図1と同様であるから、その説明は省略する。
【0066】
本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例・設計変更などをその技術的範囲内に包含することは云うまでもない。
【0067】
【発明の効果】
第1の発明によれば、抵抗素子が流体圧力と流体温度を同時に測定できるという本発明者等の新規な発見に基づいて、抵抗素子単体で圧力センサ且つ温度センサとして活用できる。従って、オリフィスを通過する流体の速度が音速状態になる臨界膨張条件下において、この抵抗素子を上流側の圧力温度センサとして使用すれば、従来必要であった温度センサが不要となり、しかも流体の同一点の圧力と温度を同時に測定できるから、回路構成の簡単化と流量制御の高性能化を実現でき、装置全体の低価格化に寄与することができる。
【0068】
第2の発明によれば、オリフィス通過流速が音速よりも低い非臨界膨張条件下において、上流側圧力センサまたは下流側圧力センサの少なくとも一方を抵抗素子で構成するから、この抵抗素子により流体圧力と流体温度の両方が同時に測定でき、従来から必要であった温度センサが不要となり、しかも流体の同一点の圧力と温度を同時に測定できる。従って、回路構成の簡単化と流量制御の高性能化を同時的に満足し、装置全体の低価格化に貢献できる。
【0069】
第3の発明によれば、受圧面に4個の抵抗を配置し、この4個の抵抗を4辺とするブリッジ回路から抵抗素子を構成するから、ブリッジ回路の入力端子間に定電流電源を接続すると、出力端子間電圧で流体圧力を検出し、入力端子間電圧(ブリッジ電圧)で流体温度を検出することが可能となる。従って、従来から圧力センサとして利用されてきた抵抗素子を圧力温度センサとして圧力式流量制御回路に用いて、部品点数の減少と価格低減に貢献することができる。
【0070】
第4の発明によれば、従来から存する拡散型半導体圧力トランスジューサを温度トランスジューサとしても機能させることができ、この新規な拡散型半導体圧力温度トランスジューサを圧力式流量制御装置に組み込んで、部品点数の低減による装置サイズの低減化と同一点の圧力と温度を同時測定する事による圧力式流量制御装置の高性能化に寄与できる。
【図面の簡単な説明】
【図1】本発明に係る臨界条件を利用した圧力式流量制御装置による流量制御の構成図である。
【図2】抵抗素子からなる圧力温度センサ10の要部断面斜視図である。
【図3】図2に示す抵抗素子の等価回路図である。
【図4】圧力温度センサ10の圧力特性と温度特性測定用の実験装置図である。
【図5】3種類の圧力温度センサのブリッジ電圧―温度特性図である。
【図6】3種類の圧力温度センサの同一温度におけるブリッジ電圧―圧力特性図である。
【図7】本発明の圧力式流量制御装置の制御系の詳細ブロック構成図である。
【図8】本発明に係る非臨界膨張条件を利用した圧力式流量制御装置の流量制御の構成図である。
【図9】本発明に係る非臨界膨張条件を利用した改良型圧力式流量制御装置による流量制御の構成図である。
【符号の説明】
2は圧力式流量制御装置、4はオリフィス、4aはオリフィス孔、6は上流側配管、8は下流側配管、10は上流側の圧力温度センサ、12は下流側の圧力センサ、16は制御回路、17は流量演算手段、18は流量設定手段、19は比較手段、20はバルブ駆動部、22はコントロールバルブ、24はガスタンク、26はレギュレータ、27は供給側配管、28はバルブ、29は制御側配管、30はバルブ、32はチャンバー、34は真空ポンプ、35はヘッダー、36はリードピン、37はガラス台座、38はシリコン基板、38aは脚部、39は空間部、41a〜41dは抵抗、42a・42bは入力端子、43は定電流電源、44a・44bは出力端子、45は固定増幅回路、45aはオフセット端子、46は可変増幅回路、47は可変増幅回路、48はA/D変換器、49はオフセット用D/A変換器、50は温度変換手段、51はCPU、56は固定増幅回路、58はA/D変換器、60は温度ドリフト補正手段、62はゼロ点補正手段、64はメモリ手段、66はスパン補正手段、68はガス温度補正手段、72はD/A変換器、74は固定増幅回路、76は固定増幅回路、78はA/D変換器、CTは恒温槽、Pは上流側圧力、Pは下流側圧力、PGは基準圧力発生器、Qcは演算流量、Qsは設定流量、ΔQは流量差、Vはゼロ点出力ドリフト電圧、V・Vはバルブ、Vは圧力電圧、Vはブリッジ電圧(温度電圧)。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure type flow control device mainly used in a semiconductor manufacturing facility, a chemical plant, and the like. The present invention relates to a temperature measuring device of a pressure type flow control device used as a temperature sensor for a pressure sensor.
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor manufacturing facility, a chemical plant, or the like, a plurality of gases serving as raw materials are supplied at a predetermined flow rate, and a source gas is chemically reacted in a reaction furnace to generate a target gas in many cases. In such a case, if the supply flow rate of the source gas is not accurate, the chemical reaction may be excessive or insufficient, and the source gas may remain in the target gas. In particular, if the source gas is flammable, there is a risk of explosion.
[0003]
Conventionally, in order to accurately control the gas flow rate, an orifice is arranged in a pipe, and a flow rate equation with as high a theoretical flow rate as possible through the orifice has been selected. In particular, a method of controlling the flow rate by setting the flow velocity of the gas flow passing through the orifice in a sonic region in consideration of the incompressibility of the gas flow is used.
[0004]
In this flow control method, the pressure P upstream of the orifice1And downstream pressure P2Pressure ratio P2/ P1Is smaller than the critical value of about 0.5, the flow velocity of the gas passing through the orifice reaches the sonic speed.1Is used. Here, it is known that the proportional coefficient K depends on the type of the fluid and the fluid temperature.
[0005]
In order to control the flow rate through the orifice by the theoretical flow rate formula, the pressure P upstream of the orifice1It is necessary to accurately measure the fluid temperature T on the upstream side. Upstream pressure P1Is received by a diaphragm and measured by a resistance element via a pressure transmission medium. On the other hand, the fluid temperature T has been measured by placing the thermistor separately in a valve device incorporating an orifice.
[0006]
[Problems to be solved by the invention]
As described above, the upstream pressure acts in direct contact with the diaphragm and is measured by the resistance element, which is a pressure sensor, via the pressure transmission medium, so that the fluid pressure can be accurately measured. On the other hand, the thermistor, which is a temperature sensor, does not come into direct contact with the fluid, and is disposed at a position near the orifice in the valve device described above. Since the fluid continuously passes through the orifice, it is considered that the temperature near the orifice has reached the thermal equilibrium state with the fluid and the temperature is equal, and the thermistor located near the orifice can accurately reproduce the fluid temperature. Because it was thought.
[0007]
However, since the valve device is generally formed of metal, the thermal conductivity is extremely high. The heat drawn from the fluid at the orifice location transfers heat rapidly to the outer surface of the valve device, and due to this temperature gradient, even at a location some distance from the orifice is not the same as the fluid temperature. Because the thermistor has finite geometric dimensions, the measured temperature may be slightly deviated from the fluid temperature even if the thermistor is located near the orifice. Therefore, when the flow rate is calculated using the thermistor temperature as the fluid temperature, Qc = KP1Is a first cause of inducing an error in the calculated flow rate.
[0008]
Also, Qc = KP1Pressure P used in the calculation of1And the fluid temperature T are theoretically the pressure and temperature at the same point of the upstream fluid. This means that the flow equation Qc = KP1Can be understood from the fact that the pressure P and the temperature T at the same point are used in the process of deriving.
[0009]
However, in the conventional pressure type flow control device, as described above, the fluid pressure is measured by the resistance element, and the fluid temperature is measured by a separately disposed thermistor. Even if the resistance element and the thermistor are miniaturized, since both are separate, measurement points of pressure and temperature are necessarily different. In a situation where the two have a finite size and the mounting positions are different, the pressure and temperature measurement positions are slightly separated from each other, which causes a second error in the flow rate equation.
[0010]
Therefore, the temperature measuring device of the pressure type flow control device according to the present invention satisfies the theoretical requirement of the flow type by directly measuring the fluid temperature at the same position as the position where the fluid pressure is measured, and passes through the orifice. An object of the present invention is to control the flow rate of a fluid to be controlled with high accuracy. In order to achieve this object, the present invention includes the following invention groups.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an orifice for controlling a flow rate, a control valve provided in an upstream pipe of the orifice, and an upstream pressure P provided between the orifice and the control valve.1Pressure sensor for detecting the pressure and the upstream pressure P1In the pressure type flow control device for controlling the orifice passing flow rate by opening and closing the control valve while calculating the orifice passing flow rate, the upstream pressure sensor is constituted by a resistance element whose electric resistance changes when receiving pressure. A temperature measuring device for a pressure type flow control device, wherein a resistance element as a pressure sensor is also used as a temperature sensor at the same time.
[0012]
According to a second aspect of the present invention, there is provided an orifice for controlling a flow rate, a control valve provided on an upstream pipe of the orifice, and an upstream pressure P provided between the orifice and the control valve.1Pressure sensor for detecting pressure, and a downstream pressure P provided in a pipe downstream of the orifice.2Pressure sensor for detecting the pressure and the upstream pressure P1And downstream pressure P2In the pressure type flow control device for controlling the orifice passing flow rate by opening and closing the control valve while calculating the orifice passing flow rate, the upstream pressure sensor or the downstream pressure sensor changes the electric resistance when receiving pressure. Wherein the resistance element as the pressure sensor is also used as a temperature sensor at the same time.
[0013]
According to a third aspect of the present invention, in the resistance element, four resistors are disposed on the pressure receiving surface, a bridge circuit having the four resistors as four sides is formed, and a constant current power supply is provided between input terminals of the bridge circuit. A temperature measuring device of a pressure type flow control device which is connected and detects a fluid pressure by a voltage change between output terminals and detects a fluid temperature by a voltage change between the input terminals.
[0014]
A fourth invention is a temperature measuring device of a pressure type flow controller using a resistance element in which a resistance is diffused and formed on a silicon substrate.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted intensive studies to simultaneously measure the fluid pressure and fluid temperature at the same position in the fluid, and as a result, stopped placing the pressure sensor and the temperature sensor separately, and used the pressure sensor as a temperature sensor at the same time. The present invention was conceived based on the idea that the present invention could not be used.
[0016]
The present inventors have conventionally used a resistance element as a pressure sensor when controlling the flow rate of a fluid. This resistance element utilizes the property that resistance changes when pressure is applied. Generally, four resistances are formed on a silicon substrate, and a Wheatstone bridge having the four resistances as four sides is used. Is configured.
[0017]
The principle of this pressure sensor is as follows. A constant current flows through the resistor by a constant current power supply connected between the input terminals of the Wheatstone bridge. When pressure is applied, the resistance value of the resistor changes, so that the voltage between the output terminals of the bridge changes, and the fluid pressure can be measured based on the voltage between the output terminals.
[0018]
In order to simultaneously use this pressure sensor as a temperature sensor, the present inventors focused on the input terminal of the Wheatstone bridge. Since the constant current power supply is connected between the input terminals but the voltage power supply is not connected, the voltage between the input terminals naturally changes according to the resistance change.
[0019]
The present inventors have placed this resistance element in a thermostat and measured the voltage between the input terminals while changing the temperature. As a result, they have found that the voltage changes over a wide range with respect to the temperature change. When only the pressure was changed while maintaining the temperature constant, the voltage between the input terminals hardly changed, or only the change within the error range allowed by the device of the present invention was shown.
[0020]
From the above results, it has been proved that the fluid temperature can be measured by the voltage between the input terminals of the resistance element. Therefore, hereinafter, the voltage between the input terminals is also referred to as a bridge voltage, and is used exclusively for measuring the fluid temperature. Further, since the voltage between the output terminals is used for measuring the fluid pressure as in the past, this resistance element is a pressure sensor and a temperature sensor that function for the same point of the fluid. You can also.
[0021]
Hereinafter, an embodiment of a temperature measuring device of a pressure type flow control device according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram of a flow rate control by a pressure type flow rate control device using a critical expansion condition according to the present invention. The pressure type flow controller 2 is based on the premise that the supplied fluid is under a critical expansion condition, that is, the speed of the fluid flowing out of the orifice 4 is a sonic speed.1Is represented by
[0022]
The pressure type flow control device 2 includes an orifice 4 having an orifice hole 4a, an upstream pipe 6, a downstream pipe 8, an upstream pressure / temperature sensor 10, a control circuit 16, a valve driver 20, and a control valve 22. Are located.
[0023]
The pressure temperature sensor 10 is constituted by a resistance element, detects the fluid pressure on the upstream side by the voltage between the output terminals of the Wheatstone bridge, and detects the same point in the fluid by the voltage between the input terminals (also referred to as bridge voltage) as described later. It is configured to detect the fluid temperature of the fluid.
[0024]
The control circuit 16 is mainly composed of an electronic circuit, a microcomputer, and a built-in program. However, the control circuit 16 may be composed of only an electronic circuit, or may be composed of an electronic circuit and a personal computer. The control circuit 16 includes an electronic circuit system such as an amplifier circuit and an A / D converter (not shown), a flow rate calculating means 17 for calculating a flow rate Qc based on an experimental flow rate formula, and a flow rate setting means 18 for commanding a set flow rate Qs to be flowed. And comparison means 19 for calculating a flow rate difference ΔQ (= Qs−Qc) between the calculated flow rate Qc and the set flow rate Qs. The flow difference ΔQ may be calculated by Qc−Qs.
[0025]
On the upstream side of the pressure type flow controller 2, a gas tank 24 containing a high-pressure gas, a regulator 26 for appropriately adjusting the gas pressure of the high-pressure gas, and this gas are supplied from a supply pipe 27 to the control valve 22. Is connected.
[0026]
Further, on the downstream side of the pressure type flow control device 2, a control side pipe 29 for flowing a gas whose flow rate is controlled, a valve 30 for supplying this gas to a chamber 32, and a vacuum pump 34 are connected. The chamber 32 is a reaction chamber for generating a target gas from the supplied source gas.2And O2From raw material gas of H2This is a reaction chamber for generating O moisture gas.
[0027]
Next, the control operation of the pressure type flow control device 2 will be described. On the upstream side, a gas at a predetermined pressure is supplied to the supply side pipe 27, and the supply flow rate to the upstream side pipe 6 is controlled by a control valve 22 which is opened and closed by a valve drive unit 20. At the same time, on the downstream side, the downstream pipe 8 is set at a low pressure by the vacuum pump 34.
[0028]
Evacuation by the vacuum pump 34 causes a downstream pressure P in the downstream pipe 82Is the upstream pressure P1Much smaller than at least P2/ P1Since the critical expansion condition of about 0.5 is automatically set so as to always be satisfied, the velocity of the gas flowing out of the orifice hole 4a is the speed of sound. Therefore, the flow rate through the orifice 4 is Qc = KP1Is represented by
[0029]
Upstream pressure P1Is measured by the pressure temperature sensor 10. In order to perform accurate pressure measurement, the gas pressure is directly received by a diaphragm having excellent corrosion resistance, and the pressure is measured at a sensor portion of the pressure temperature sensor 10 via a pressure transmission medium. In addition, the sensor portion is designed to be extremely small so as not to disturb the gas flow. Therefore, the sensor portion is equal to the gas temperature T.
[0030]
FIG. 2 is a cross-sectional perspective view of a main part of the pressure temperature sensor 10 including a resistance element. A glass pedestal 37 is arranged on a header 35 having lead pins 36, 36, and a silicon substrate 38 supported at both ends by legs 38 a, 38 a is fixed on the glass pedestal 37. A gap-shaped space 39 is formed on the lower surface of the silicon substrate 38, and a through-hole 41 is formed continuously with the space 39.
[0031]
On the upper surface of the silicon substrate 38, four resistors 41a, 41b, 41c, 41d are formed by a thermal diffusion method. This resistor has a property that when a stress is applied to the surface, the electrical resistance changes in accordance with the stress. Therefore, when a constant current is applied, the voltage changes in accordance with the stress, and this voltage change enables pressure measurement.
[0032]
The gas pressure (fluid pressure) is received by a diaphragm (not shown) to generate a pressure P in the pressure transmission medium (fluid). The pressure P generated in the pressure transmission medium presses the upper surface of the silicon substrate 38, and the pressure P becomes a resistance. Acts on 41a-41d. On the other hand, when the space 39 is evacuated, the silicon substrate 38 is deformed only by the fluid pressure P, so that the absolute pressure of the fluid acts on the silicon substrate 38 and functions as an absolute pressure sensor. When the through-hole 41 is open to the atmosphere, the pressure difference between the fluid pressure P and the atmospheric pressure deforms the silicon substrate 38, so that the gauge pressure of the fluid acts on the silicon substrate 38 and functions as a gauge pressure sensor. .
[0033]
FIG. 3 is an equivalent circuit diagram of the resistance element shown in FIG. The resistances 41a, 41b, 41c, and 41d form four sides of a Wheatstone bridge. Input terminals 42a and 42b are connected to one diagonal point C and D, and a constant current power supply 43 is connected between the input terminals. I have. Output terminals 44a and 44b are connected to the other diagonal points AB.
[0034]
The resistances of the four resistors 41a, 41b, 41c, 41d change under the pressure P. A constant current I flows from the constant current power supply 43 in the direction of the arrow, and the potential change between AB changes due to the resistance change, and a voltage V corresponding to the fluid pressure is applied between the output terminals 44a and 44b.POccurs. In this specification, the voltage VPIs referred to as a voltage between output terminals, and is also referred to as a pressure voltage in the sense of a fluid pressure detection voltage.
[0035]
In order to use this resistance element also for fluid temperature measurement, the present inventors paid attention to the other diagonal points C and D. The constant current I also causes a potential difference between the points CD. This potential difference can be detected between the input terminals 42a and 42b, and is therefore also referred to as a voltage between input terminals or a bridge voltage. The present inventors have determined that this bridge voltage VTIs expected to vary significantly with fluid temperature.
[0036]
FIG. 4 is a diagram of an experimental device for measuring the pressure characteristics and the temperature characteristics of the pressure-temperature sensor 10. A pressure-type flow controller 2 equipped with a pressure-temperature sensor 10 composed of a resistance element is disposed inside a constant temperature bath CT, and a reference pressure generator PG and a vacuum pump DP are connected to a valve V.1, V2Is connected to the piping system PS.
[0037]
First, valve V1And close valve V2Is released, and the piping system PS is set in a vacuum state by the vacuum pump DP, that is, the internal pressure is set to 0 (kPa · abs). In this state, the pressure temperature sensor 10 is operated for each temperature while changing the internal temperature of the constant temperature bath CT from 25 ° C. to 100 ° C. No. 1, No. 2 and No. For three types of pressure-temperature sensors, the bridge voltage V for each temperature at zero absolute pressureTWas measured.
[0038]
FIG. 5 is a bridge voltage-temperature characteristic diagram of three types of pressure temperature sensors. This characteristic diagram is obtained in a vacuum state where the absolute pressure is zero, the horizontal axis is the temperature T (° C.), and the vertical axis is the bridge voltage V.T(V) is shown.
[0039]
The three types of pressure temperature sensors 10 are No. 1, No. 2 and No. 3, the temperature of the thermostat CT was changed from 25 ° C. to 100 ° C. Bridge voltage V against temperature T (° C)T(V) depends on No. 1 is a solid line; 2 is a chain line and No. 2 3 is indicated by a broken line and is almost straight.
[0040]
No. 1, No. 2 and No. 3, the bridge voltage V at 25 ° C.TAre 7.295 V, 7.380 V and 7.271 V, and the bridge voltage V at 100 ° C.TWere 8.966 V, 9.076 V, and 8.925 V. The difference in individuality between the pressure and temperature sensors is about 0.15 V at the same temperature, but the linearity of each sensor is extremely high.
[0041]
With a temperature difference of 75 ° C from 25 ° C to 100 ° C, the bridge voltage VTAre 2.228 V (No. 1), 2.205 V (No. 2), and 2.261 V (No. 3). Therefore, the bridge voltage V per 1 ° C.TIt can be seen that the change amounts of are as large as 22.28 mV (No. 1), 22.05 mV (No. 2) and 22.61 mV (No. 3). Bridge voltage V at 1 ° C changeTChanges about 20 mV, the bridge voltage VTIndicates that the temperature T can be measured.
[0042]
FIG. 6 is a bridge voltage-pressure characteristic diagram at the same temperature of three types of pressure temperature sensors. Bridge voltage V of pressure temperature sensor 10TWas measured to determine how it changed with pressure. If the bridge voltage is almost independent of pressure, the bridge voltage VTCan be used for temperature measurement.
[0043]
FIG. 6 shows two types of experimental results when the temperature is maintained at 25 ° C. and when the temperature is maintained at 100 ° C. In both cases, when the pressure P is changed from 0 to 700 (kPa · abs), the bridge voltage VTWas measured.
[0044]
When the pressure P is changed from 0 to 700 (kPa · abs) at 25 ° C., the bridge voltage VTChanged from 7.295 V to 7.285 V (No. 1), 7.271 V to 7.261 V (No. 2), and 7.380 V to 7.370 V (No. 3). Therefore, for a pressure change of 700 (kPa · abs), the bridge voltage V is applied to all three types of pressure / temperature sensors.TShowed only a very small change of -10 mV.
[0045]
When the pressure P is changed from 0 to 700 (kPa · abs) at 100 ° C., the bridge voltage VTChanged from 8.966V → 8.956V (No. 1), 8.925V → 8.915V (No. 2) and 9.076V → 9.067V (No. 3). Therefore, for a pressure change of 700 (kPa · abs), the bridge voltage V of the three types of pressure temperature sensors is changed.TAre -10 mV, -10 mV, and -9 mV, and although there is a difference in the individuality of the sensor, only a very small change is shown as described above.
[0046]
In summary, for a pressure change of 700 (kPa · abs), a bridge voltage V of −10 mV at 25 ° C. and about −10 mV at 100 ° C.TChanges can be seen. Bridge voltage VTChanges about 2 V with respect to a temperature change of 75 ° C., so 10 mV is only 0.5% of that.
[0047]
We discuss the error a bit more. Assuming that the actual working pressure of the gas fluid is 350 (kPa · abs), the bridge voltage VTIs 10 mV / 2 = 5 mV. No. Since the pressure / temperature sensor 1 changes as much as 22.28 mV per 1 ° C., the above 5 mV gives only a temperature error of 0.224 ° C. from 5 / 22.8.
[0048]
This temperature error of 0.224 ° C. gives only an error of 0.04% in the required calculation in the gas temperature correction. If the zero point temperature drift as a pressure sensor is 0.1% per 1 ° C., an error of 0.1% × 0.224 = about 0.02% is induced for a temperature error of 0.224 ° C. Therefore, the temperature error of 0.224 ° C. only induces an error of 0.04% + 0.02% = 0.06% to 0.06%. Since the error of this pressure type flow controller is designed to be, for example, 1% or less, the error of 0.06% is only buried in the entire error.
[0049]
Therefore, a pressure-temperature sensor using a resistance element can simultaneously measure pressure and temperature without correlation, and can function as a pressure sensor and a temperature sensor at the same time. Therefore, as described above, the voltage (pressure voltage) V between the output terminals of the resistance elementPAnd measure the voltage between the input terminals, that is, the bridge voltage VTSince the temperature measurement can be performed by using a temperature (also referred to as a temperature voltage), it can be said that the resistance element is an element suitable for being called a pressure temperature sensor.
[0050]
FIG. 7 is a detailed block diagram of the control system of the pressure type flow control device of the present invention. The above-mentioned pressure temperature sensor 10 detects the upstream pressure P of the fluid.1And the fluid temperature T at the same point. The pressure P of this pressure temperature sensor 101Pressure voltage (voltage between output terminals) VPIs amplified by the fixed amplifier circuit 45 and the variable amplifier circuit 47, and is input to the CPU 51 via the A / D converter 48, and the pressure P1Is converted to Further, the upstream pressure P1Is displayed outside.
[0051]
The pressure-temperature sensor 10 is composed of a resistance element.0May be output.0Is called a zero point drift voltage. In this case, the voltage −V is supplied via the offset D / A converter 49.0Is output to the offset terminal 45a to forcibly set the zero point drift to zero.
[0052]
On the other hand, the pressure temperature sensor 10 detects a bridge voltage V corresponding to the fluid temperature T.TAnd outputs the bridge voltage VTIs output to the CPU 51 via the fixed amplifier 56 and the A / D converter 58. This bridge voltage VTIs converted into the fluid temperature T by the temperature conversion means 50.
[0053]
The fluid temperature T is input to the temperature drift correction means 60 and the gas temperature correction means 68. In the temperature drift correction means 60, the correction corresponding to the fluid temperature T is performed by the zero point correction means 62 and the span correction means 66 while utilizing the data in the memory means 64. Further, the gas temperature correction means 68 corrects the proportionality coefficient K of the calculated flow rate Qc using the fluid temperature T.
[0054]
In this way, the correct upstream pressure P1And the proportionality constant K are calculated. From these data, the calculated flow rate Qc is calculated as Qc = KP1Is calculated as The calculated flow rate Qc is output via the D / A converter 72 and the fixed amplifier circuit 74 and displayed on an external display device (not shown).
[0055]
The set flow rate Qs input as the target flow rate from the flow rate setting means 18 is input to the comparison means 19 via the fixed amplifier circuit 76 and the A / D converter 78. On the other hand, the calculated flow rate Qc is input from the gas temperature correction means 68 to the comparison means 19, the flow rate difference ΔQ is calculated as ΔQ = Qc-Qs, and output to the valve drive unit 20.
[0056]
The valve drive unit 20 adjusts the opening degree of the control valve 22 so that the flow rate difference ΔQ becomes zero.1Is controlled. As a result, ΔQ becomes zero, and the calculated flow rate Qc is automatically controlled so as to match the set flow rate Qs.
[0057]
In the present invention, the surprising discovery that a resistance element conventionally used as a pressure sensor also functions as a temperature sensor has opened the way to utilize one resistance element as a pressure / temperature sensor. Therefore, as can be seen from the block diagram, it is possible to measure the pressure and the temperature with a single pressure / temperature sensor, and it has succeeded in simultaneously simplifying the circuit configuration and reducing the cost.
[0058]
FIG. 8 is a configuration diagram of a pressure-type flow control device using a non-critical expansion condition according to the present invention. The pressure type flow controller 2 is based on the premise that the supplied fluid is in a non-critical expansion condition, that is, the fluid velocity of the fluid flowing out of the orifice 4 is lower than the sonic velocity.
[0059]
When the fluid is under non-critical expansion conditions, one of the theoretical flow equations for the flow rate through the orifice is derived from Bernoulli's theorem that holds for an incompressible fluid, and Q = KP2 1/2(P1-P2)1/2Given by However, it is assumed that the fluid temperature does not change before and after passing through the orifice. In FIG. 8, the gas flow rate is controlled using this theoretical flow rate expression.
[0060]
In this flow rate type, the orifice passing amount Q is equal to the upstream pressure P1And downstream pressure P2Is calculated using both. However, since the fluid temperature T may be either the upstream side or the downstream side, the pressure temperature sensor 10 of the present invention is disposed on the upstream side, and only the pressure sensor 12 is disposed on the downstream side. Therefore, the upstream temperature P1And the fluid temperature T are measured, and the downstream pressure P2Is always measured, and the calculated flow rate Qc is calculated as Qc = KP2 1/2(P1-P2)1/2Is calculated.
[0061]
The difference from FIG. 1 is that the downstream pressure P2Is added by an electronic circuit system and a software system for measuring the pressure by the pressure sensor 12 and inputting it to the control circuit 16. Since the operation and effect are almost the same as those in FIG. 1, the details are omitted.
[0062]
FIG. 9 is a configuration diagram of flow control by an improved pressure type flow control device utilizing non-critical expansion conditions according to the present invention. The pressure type flow control device 2 is based on the premise that the supplied fluid is under non-critical expansion conditions, but uses an improved theoretical flow type.
[0063]
Since an actual gas fluid has expandability and compressibility, Bernoulli's theorem on the premise of incompressibility only approximately holds. Therefore, Qc = KP2 1/2(P1-P2)1/2Is only an approximate expression. The present inventors have studied a flow rate equation which can reproduce the actual flow rate with high accuracy by improving this approximation equation.
[0064]
As this improved flow rate formula, Qc = KP2 m(P1-P2)nDecided to use. Conventionally, two parameters m and n are used as indices, and m and n are derived by fitting the actual flow rate with this flow rate equation. By using these parameters m and n, the actual flow rate could be reproduced with high accuracy.
[0065]
In this embodiment, the flow rate calculating means 17 is configured using an improved flow rate equation. Except for this point, the flow rate calculating means 17 is exactly the same as the embodiment shown in FIG. That is, the pressure temperature sensor 10 according to the present invention is disposed on the upstream side, and the pressure sensor 12 is disposed on the downstream side. The other configuration and operation and effect are the same as those in FIG. 1, and the description thereof is omitted.
[0066]
The present invention is not limited to the above-described embodiment, and it goes without saying that various modifications and design changes without departing from the technical idea of the present invention are included in the technical scope.
[0067]
【The invention's effect】
According to the first aspect, based on the inventors' novel discovery that the resistance element can simultaneously measure fluid pressure and fluid temperature, the resistance element can be used alone as a pressure sensor and a temperature sensor. Accordingly, if this resistance element is used as a pressure temperature sensor on the upstream side under a critical expansion condition in which the velocity of the fluid passing through the orifice becomes a sonic state, the temperature sensor conventionally required becomes unnecessary, and furthermore, the same as the fluid. Since one point of pressure and temperature can be measured at the same time, simplification of the circuit configuration and high performance of flow control can be realized, which can contribute to a reduction in the cost of the entire apparatus.
[0068]
According to the second invention, at least one of the upstream pressure sensor and the downstream pressure sensor is constituted by a resistance element under a non-critical expansion condition in which the orifice passage flow velocity is lower than the sound velocity, so that the resistance pressure and the fluid pressure are controlled by the resistance element. Both the fluid temperature and the fluid temperature can be measured at the same time, eliminating the need for a conventional temperature sensor, and simultaneously measuring the pressure and temperature at the same point of the fluid. Therefore, the simplification of the circuit configuration and the high performance of the flow control can be satisfied at the same time, and it is possible to contribute to the cost reduction of the whole apparatus.
[0069]
According to the third aspect of the present invention, since four resistors are arranged on the pressure receiving surface and the resistance element is constituted by the bridge circuit having the four resistors as four sides, a constant current power supply is provided between the input terminals of the bridge circuit. When connected, the fluid pressure can be detected by the voltage between the output terminals, and the fluid temperature can be detected by the voltage between the input terminals (bridge voltage). Therefore, by using a resistance element conventionally used as a pressure sensor as a pressure temperature sensor in a pressure type flow control circuit, it is possible to contribute to a reduction in the number of parts and a reduction in cost.
[0070]
According to the fourth aspect of the invention, the existing diffusion type semiconductor pressure transducer can also function as a temperature transducer. By incorporating this novel diffusion type semiconductor pressure temperature transducer into a pressure type flow rate control device, the number of parts can be reduced. By simultaneously measuring the pressure and temperature at the same point, it is possible to contribute to the enhancement of the performance of the pressure type flow control device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of flow rate control by a pressure type flow rate control device using a critical condition according to the present invention.
FIG. 2 is a cross-sectional perspective view of a main part of a pressure temperature sensor 10 including a resistance element.
FIG. 3 is an equivalent circuit diagram of the resistance element shown in FIG.
FIG. 4 is an experimental apparatus diagram for measuring pressure characteristics and temperature characteristics of the pressure-temperature sensor 10.
FIG. 5 is a diagram showing bridge voltage-temperature characteristics of three types of pressure-temperature sensors.
FIG. 6 is a diagram showing bridge voltage-pressure characteristics of three types of pressure temperature sensors at the same temperature.
FIG. 7 is a detailed block configuration diagram of a control system of the pressure type flow control device of the present invention.
FIG. 8 is a configuration diagram of flow rate control of the pressure type flow rate control device using the non-critical expansion condition according to the present invention.
FIG. 9 is a configuration diagram of flow rate control by the improved pressure type flow rate control device utilizing non-critical expansion conditions according to the present invention.
[Explanation of symbols]
2 is a pressure type flow controller, 4 is an orifice, 4a is an orifice hole, 6 is an upstream pipe, 8 is a downstream pipe, 10 is an upstream pressure temperature sensor, 12 is a downstream pressure sensor, and 16 is a control circuit. , 17 is a flow rate calculating means, 18 is a flow rate setting means, 19 is a comparing means, 20 is a valve driving unit, 22 is a control valve, 24 is a gas tank, 26 is a regulator, 27 is a supply side pipe, 28 is a valve, and 29 is control. Side piping, 30 is a valve, 32 is a chamber, 34 is a vacuum pump, 35 is a header, 36 is a lead pin, 37 is a glass pedestal, 38 is a silicon substrate, 38a is a leg, 39 is a space, 41a to 41d are resistors, 42a and 42b are input terminals, 43 is a constant current power supply, 44a and 44b are output terminals, 45 is a fixed amplifier circuit, 45a is an offset terminal, 46 is a variable amplifier circuit, 47 is Variable amplifier circuit, 48 is an A / D converter, 49 is an offset D / A converter, 50 is a temperature conversion means, 51 is a CPU, 56 is a fixed amplifier circuit, 58 is an A / D converter, and 60 is a temperature drift. Correction means, 62 is a zero point correction means, 64 is a memory means, 66 is a span correction means, 68 is a gas temperature correction means, 72 is a D / A converter, 74 is a fixed amplifier circuit, 76 is a fixed amplifier circuit, and 78 is a fixed amplifier circuit. A / D converter, CT: constant temperature bath, P1Is the upstream pressure, P2Is the downstream pressure, PG is the reference pressure generator, Qc is the calculated flow, Qs is the set flow, ΔQ is the flow difference, V0Is the zero point output drift voltage, V1・ V2Is a valve, VPIs the pressure voltage, VTIs the bridge voltage (temperature voltage).

Claims (4)

流量制御用のオリフィスと、オリフィスの上流側配管に設けられたコントロールバルブと、オリフィスとコントロールバルブの間に設けて上流側圧力Pを検出する上流側圧力センサと、上流側圧力Pによりオリフィス通過流量を演算しながらコントロールバルブの開閉によりオリフィス通過流量を制御する圧力式流量制御装置において、前記上流側圧力センサは圧力を受けたときに電気抵抗が変化する抵抗素子から構成され、この圧力センサとしての抵抗素子を同時に温度センサとしても用いることを特徴とする圧力式流量制御装置の温度測定装置。Orifice and the orifice for flow rate control, a control valve provided on the upstream side piping of the orifice, an upstream pressure sensor for detecting the upstream pressure P 1 is provided between the orifice and the control valve, the upstream pressure P 1 In the pressure type flow rate control device for controlling the flow rate of the orifice by opening and closing the control valve while calculating the flow rate, the upstream pressure sensor is constituted by a resistance element whose electric resistance changes when receiving pressure. A temperature measuring device for a pressure-type flow control device, wherein a resistance element as a member is used as a temperature sensor at the same time. 流量制御用のオリフィスと、オリフィスの上流側配管に設けられたコントロールバルブと、オリフィスとコントロールバルブの間に設けて上流側圧力Pを検出する上流側圧力センサと、オリフィスの下流側配管に設けて下流側圧力Pを検出する下流側圧力センサと、上流側圧力Pと下流側圧力Pによりオリフィス通過流量を演算しながらコントロールバルブの開閉によりオリフィス通過流量を制御する圧力式流量制御装置において、前記上流側圧力センサ又は下流側圧力センサは圧力を受けたときに電気抵抗が変化する抵抗素子から構成され、この圧力センサとしての抵抗素子を同時に温度センサとしても用いることを特徴とする圧力式流量制御装置の温度測定装置。An orifice for flow rate control, a control valve provided on the upstream side piping of the orifice, an upstream pressure sensor for detecting the upstream pressure P 1 is provided between the orifice and the control valve, provided on the downstream side pipe of the orifice the pressure type flow rate control device for controlling the orifice passing flow rate and the downstream pressure sensor, the opening and closing of the control valve while calculating an orifice passing flow by the upstream pressure P 1 and downstream pressure P 2 for detecting a downstream pressure P 2 Te Wherein the upstream pressure sensor or the downstream pressure sensor comprises a resistance element whose electric resistance changes when it receives pressure, and the resistance element as the pressure sensor is also used as a temperature sensor at the same time. Temperature measuring device for a flow control device. 前記抵抗素子において、受圧面に4個の抵抗が配置され、この4個の抵抗を4辺とするブリッジ回路が形成され、このブリッジ回路の入力端子間に定電流電源が接続され、出力端子間の電圧変化で流体圧力を検出し、前記入力端子間の電圧変化で流体温度を検出する請求項1又は2に記載の圧力式流量制御装置の温度測定装置。In the resistive element, four resistors are arranged on the pressure receiving surface, a bridge circuit having the four resistors as four sides is formed, a constant current power supply is connected between input terminals of the bridge circuit, and a The temperature measuring device for a pressure type flow control device according to claim 1, wherein a fluid pressure is detected by a voltage change of the pressure type, and a fluid temperature is detected by a voltage change between the input terminals. シリコン基板に抵抗が拡散形成された抵抗素子を用いる請求項3に記載の圧力式流量制御装置の温度測定装置。4. The temperature measuring device for a pressure type flow control device according to claim 3, wherein a resistance element in which a resistance is diffused and formed on a silicon substrate is used.
JP2002301421A 2002-10-16 2002-10-16 Temperature measuring device for pressure flow control device Expired - Lifetime JP4669193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301421A JP4669193B2 (en) 2002-10-16 2002-10-16 Temperature measuring device for pressure flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301421A JP4669193B2 (en) 2002-10-16 2002-10-16 Temperature measuring device for pressure flow control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009025342A Division JP4852619B2 (en) 2009-02-05 2009-02-05 Pressure flow control device

Publications (3)

Publication Number Publication Date
JP2004138425A true JP2004138425A (en) 2004-05-13
JP2004138425A5 JP2004138425A5 (en) 2008-06-19
JP4669193B2 JP4669193B2 (en) 2011-04-13

Family

ID=32449767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301421A Expired - Lifetime JP4669193B2 (en) 2002-10-16 2002-10-16 Temperature measuring device for pressure flow control device

Country Status (1)

Country Link
JP (1) JP4669193B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017367A (en) * 2005-07-11 2007-01-25 Tokyo Electron Ltd Flow measuring device and flow measuring method
CN102829828A (en) * 2011-06-17 2012-12-19 株式会社堀场Stec Flow rate measuring device and flow rate controller
JP2016057319A (en) * 2016-01-28 2016-04-21 株式会社堀場エステック Flow measurement device and flow control device
KR20170137880A (en) 2015-09-24 2017-12-13 가부시키가이샤 후지킨 Pressure type flow control device and its detection method
KR20180056710A (en) 2015-12-25 2018-05-29 가부시키가이샤 후지킨 Anomaly Detection Method Using Flow Control Device and Flow Control Device
KR20180080293A (en) 2016-03-29 2018-07-11 가부시키가이샤 후지킨 Pressure type flow control device and flow self-diagnosis method
KR20190002609A (en) 2016-09-28 2019-01-08 가부시키가이샤 후지킨 Concentration detection method and pressure type flow rate control device
KR20190085086A (en) 2016-12-26 2019-07-17 가부시키가이샤 후지킨 Piezoelectric device-driven valve and flow control device
KR20200049871A (en) 2017-11-30 2020-05-08 가부시키가이샤 후지킨 Flow control device
KR20200065071A (en) 2018-02-26 2020-06-08 가부시키가이샤 후지킨 Flow control device and flow control method
WO2020218138A1 (en) * 2019-04-25 2020-10-29 株式会社フジキン Flow rate control device
US10876916B2 (en) 2016-12-26 2020-12-29 Hyundai Kefico Corporation Sensor element
KR20210048542A (en) 2018-10-26 2021-05-03 가부시키가이샤 후지킨 Concentration measuring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPS61238529A (en) * 1985-04-16 1986-10-23 ボーグ・ワーナー・オートモーテイブ・インコーポレーテツド Fluid pressure sensor
JPS62168030A (en) * 1986-01-21 1987-07-24 Yamatake Honeywell Co Ltd Temperature compensating circuit for semiconductor pressure sensor
JPH02242121A (en) * 1989-03-15 1990-09-26 Nippondenso Co Ltd Pressure/temperature compound detector
JPH08234845A (en) * 1995-01-03 1996-09-13 Hewlett Packard Co <Hp> Method and equipment for compensation of temperature and pressure of pneumatic manifold
JPH08338546A (en) * 1995-06-12 1996-12-24 Fujikin:Kk Pressure type flow control device
JPH10267779A (en) * 1997-01-08 1998-10-09 Cardiometrics Inc Piezoelectric resistance pressure transducer circuit for controlling variable amount of transducer
JP2000075931A (en) * 1998-08-31 2000-03-14 Stec Kk Control valve with flow passage throttle nozzle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPS61238529A (en) * 1985-04-16 1986-10-23 ボーグ・ワーナー・オートモーテイブ・インコーポレーテツド Fluid pressure sensor
JPS62168030A (en) * 1986-01-21 1987-07-24 Yamatake Honeywell Co Ltd Temperature compensating circuit for semiconductor pressure sensor
JPH02242121A (en) * 1989-03-15 1990-09-26 Nippondenso Co Ltd Pressure/temperature compound detector
JPH08234845A (en) * 1995-01-03 1996-09-13 Hewlett Packard Co <Hp> Method and equipment for compensation of temperature and pressure of pneumatic manifold
JPH08338546A (en) * 1995-06-12 1996-12-24 Fujikin:Kk Pressure type flow control device
JPH10267779A (en) * 1997-01-08 1998-10-09 Cardiometrics Inc Piezoelectric resistance pressure transducer circuit for controlling variable amount of transducer
JP2000075931A (en) * 1998-08-31 2000-03-14 Stec Kk Control valve with flow passage throttle nozzle

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017367A (en) * 2005-07-11 2007-01-25 Tokyo Electron Ltd Flow measuring device and flow measuring method
CN102829828A (en) * 2011-06-17 2012-12-19 株式会社堀场Stec Flow rate measuring device and flow rate controller
JP2013003022A (en) * 2011-06-17 2013-01-07 Horiba Stec Co Ltd Flow measurement device and flow control device
KR101931375B1 (en) * 2011-06-17 2018-12-20 가부시키가이샤 호리바 에스텍 Flow rate measuring device and flow rate controller
KR20170137880A (en) 2015-09-24 2017-12-13 가부시키가이샤 후지킨 Pressure type flow control device and its detection method
US10883866B2 (en) 2015-09-24 2021-01-05 Fujikin Incorporated Pressure-based flow rate control device and malfunction detection method therefor
US11313756B2 (en) 2015-12-25 2022-04-26 Futikin Incorporated Flow rate control device and abnormality detection method using flow rate control device
KR20180056710A (en) 2015-12-25 2018-05-29 가부시키가이샤 후지킨 Anomaly Detection Method Using Flow Control Device and Flow Control Device
JP2016057319A (en) * 2016-01-28 2016-04-21 株式会社堀場エステック Flow measurement device and flow control device
KR20180080293A (en) 2016-03-29 2018-07-11 가부시키가이샤 후지킨 Pressure type flow control device and flow self-diagnosis method
JPWO2017170174A1 (en) * 2016-03-29 2019-02-14 株式会社フジキン Pressure type flow rate control device and flow rate self-diagnosis method
US10928813B2 (en) 2016-03-29 2021-02-23 Fujikin Incorporated Pressure-type flow rate control device and flow rate self-diagnosis method using critical expansion condition
US10962513B2 (en) 2016-09-28 2021-03-30 Fujikin Incorporated Concentration detection method and pressure-type flow rate control device
KR20190002609A (en) 2016-09-28 2019-01-08 가부시키가이샤 후지킨 Concentration detection method and pressure type flow rate control device
US10876916B2 (en) 2016-12-26 2020-12-29 Hyundai Kefico Corporation Sensor element
KR20190085086A (en) 2016-12-26 2019-07-17 가부시키가이샤 후지킨 Piezoelectric device-driven valve and flow control device
US11054052B2 (en) 2016-12-26 2021-07-06 Fujikin Incorporated Piezoelectric-element-driven valve and flow rate control device
KR20200049871A (en) 2017-11-30 2020-05-08 가부시키가이샤 후지킨 Flow control device
US11079774B2 (en) 2017-11-30 2021-08-03 Fujikin Incorporated Flow rate control device
KR20200065071A (en) 2018-02-26 2020-06-08 가부시키가이샤 후지킨 Flow control device and flow control method
US11733721B2 (en) 2018-02-26 2023-08-22 Fujikin Incorporated Flow rate control device and flow rate control method
KR20210048542A (en) 2018-10-26 2021-05-03 가부시키가이샤 후지킨 Concentration measuring device
US11686671B2 (en) 2018-10-26 2023-06-27 Fujikin Incorporated Concentration measurement device
TWI747245B (en) * 2019-04-25 2021-11-21 日商富士金股份有限公司 Flow control device
KR20210139347A (en) 2019-04-25 2021-11-22 가부시키가이샤 후지킨 flow control device
CN113632038A (en) * 2019-04-25 2021-11-09 株式会社富士金 Flow rate control device
WO2020218138A1 (en) * 2019-04-25 2020-10-29 株式会社フジキン Flow rate control device
US11914407B2 (en) 2019-04-25 2024-02-27 Fujikin Incorporated Flow rate control device

Also Published As

Publication number Publication date
JP4669193B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4082901B2 (en) Pressure sensor, pressure control device, and temperature drift correction device for pressure flow control device
US8851105B2 (en) Mass flow meter, mass flow controller, mass flow meter system and mass flow control system containing the mass flow meter and the mass flow controller
KR101253543B1 (en) Method of compensating for attitude sensitivity of thermal sensor coils and thermal mass flow measurement system
TWI444799B (en) Calibration method for flow rate controller and flow rate measuring device, calibration system for flow rate controller, and semiconductor production apparatus
CN100520311C (en) Fluid sensor of anticorrosive metal and fluid supply device using same
US10514289B2 (en) Mass flow rate measurement method, thermal mass flow meter using said method, and thermal mass flow controller using said thermal mass flow meter
JP2004138425A (en) Temperature measuring instrument for pressure type flow controller
WO2004113848A1 (en) Thermal air meter
KR19990067689A (en) Gas Mass Flow Measurement System
CN102640070A (en) Pressure-type flow rate control device
EP1523664A1 (en) System and method for mass flow detection device calibration
JP5389502B2 (en) Gas property value measurement system, gas property value measurement method, calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
KR20140104976A (en) Device and method for determining the mass-flow of a fluid
JP2008286812A (en) Differential flow meter
WO2003029759A1 (en) Flow rate measuring instrument
JP4852654B2 (en) Pressure flow control device
JP4852619B2 (en) Pressure flow control device
JP2010237005A (en) Gas physical property value measuring system, gas physical property value measuring method, heat value calculating formula forming system, heat value calculating formula forming method, heat value calculating system, and heat value calculating method
US11914407B2 (en) Flow rate control device
JP2004109111A (en) Flow sensor, flow measurement meter and flow controller
JP3893115B2 (en) Mass flow controller
CN113518914A (en) Concentration measuring device
US11125595B2 (en) Flow rate measurement device and embedded gas meter
KR101668483B1 (en) Mass flow controller
TW201116960A (en) Mass flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4669193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term