JP7127466B2 - Addition material - Google Patents

Addition material Download PDF

Info

Publication number
JP7127466B2
JP7127466B2 JP2018189388A JP2018189388A JP7127466B2 JP 7127466 B2 JP7127466 B2 JP 7127466B2 JP 2018189388 A JP2018189388 A JP 2018189388A JP 2018189388 A JP2018189388 A JP 2018189388A JP 7127466 B2 JP7127466 B2 JP 7127466B2
Authority
JP
Japan
Prior art keywords
guar gum
mud
soil
test
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018189388A
Other languages
Japanese (ja)
Other versions
JP2020055984A (en
Inventor
志照 木村
俊彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2018189388A priority Critical patent/JP7127466B2/en
Publication of JP2020055984A publication Critical patent/JP2020055984A/en
Application granted granted Critical
Publication of JP7127466B2 publication Critical patent/JP7127466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、加泥材に関する。 The present invention relates to a mud addition material.

泥土圧シールド工法は、掘削土砂と加泥材を混練することで、混合土(掘削土砂と加泥材の混合土;以下同様)の塑性流動性を高め、切羽を安定に保持しながら掘削する工法である。従来、加泥材として、天然高分子であるグアガム、及びホウ砂が用いられている(例えば、特許文献1参照)。ホウ砂がグアガムを架橋しゲル化することで、混合土の塑性流動性が高まり、切羽の安定性が保持される。 In the mud pressure shield method, the excavated earth and sand are kneaded with the mud additive to increase the plastic fluidity of the mixed soil (mixed soil of the excavated earth and sand and the mud additive; the same shall apply hereinafter), and excavation is performed while maintaining the face in a stable manner. Construction method. Conventionally, guar gum and borax, which are natural polymers, have been used as mud addition materials (see Patent Document 1, for example). Borax cross-links and gels guar gum, increasing the plastic flow of the mixed soil and maintaining the stability of the face.

特開平11-303571号公報JP-A-11-303571

環境省 土壌環境基準 別表URL:https://www.env.go.jp/kijun/dt1.htmlMinistry of the Environment Soil Environmental Standards Appendix URL: https://www.env.go.jp/kijun/dt1.html

しかしながら、ホウ砂の構成元素であるホウ素は、土壌環境における溶出基準値が定められている(例えば、非特許文献1参照)。従って、ホウ砂を含む加泥材を積極的に使用することは困難である。 However, for boron, which is a constituent element of borax, the elution standard value in the soil environment is defined (see, for example, Non-Patent Document 1). Therefore, it is difficult to positively use a mud additive containing borax.

本発明は、混合土の塑性流動性を高めることが可能な新規の加泥材を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a novel mud additive capable of increasing the plastic fluidity of mixed soil.

上記課題を解決するために、本発明に係る加泥材は、グアガムと有機チタン化合物を含有する。 In order to solve the above-mentioned problems, a mud addition material according to the present invention contains guar gum and an organic titanium compound.

前記有機チタン化合物は、チタントリエタノールアミネート、チタンラクテート、チタンラクテートアンモニウム塩のうちのいずれか1つであってもよい。 The organotitanium compound may be any one of titanium triethanolamine, titanium lactate, and titanium lactate ammonium salt.

本発明によれば、混合土の塑性流動性を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, the plastic fluidity of mixed soil can be improved.

加泥材の設計方法を示すフロー図である。It is a flowchart which shows the design method of a mud addition material. 実施例及び比較例における有機チタン化合物の量と加泥材の粘度との関係を示すグラフである。1 is a graph showing the relationship between the amount of an organic titanium compound and the viscosity of a mud additive in Examples and Comparative Examples.

==実施形態==
本実施形態は、グアガムと有機チタン化合物を含有する加泥材に関する。
==Embodiment==
This embodiment relates to a mud additive containing guar gum and an organic titanium compound.

[加泥材]
加泥材は、混合土の塑性流動性を高めるために掘削土砂に混合する添加材である。本発明において加泥材は、グアガムと有機チタン化合物を含有する。
[Adding mud]
A mud additive is an additive that is mixed with excavated soil in order to increase the plastic fluidity of the mixed soil. In the present invention, the mud additive contains guar gum and an organic titanium compound.

[グアガム]
グアガムは天然高分子である。グアガムは、有機チタン化合物により架橋される。
[Guar gum]
Guar gum is a natural polymer. Guar gum is crosslinked with an organotitanium compound.

[有機チタン化合物]
有機チタン化合物は、ゲル化剤として機能する。具体的に、有機チタン化合物中のTiが、グアガムのOH基同士を架橋する(化学式1参照)。このような架橋反応により、グアガムは三次元の網目構造を形成し、網目構造の内部に溶媒を膨潤したゲルとなる。グアガムがゲル化することで、混合土の塑性流動性が高まる。
[Organotitanium compound]
Organotitanium compounds function as gelling agents. Specifically, Ti in the organotitanium compound cross-links the OH groups of guar gum (see Chemical Formula 1). By such a cross-linking reaction, guar gum forms a three-dimensional network structure, and becomes a gel in which the solvent is swollen inside the network structure. Gelation of guar gum enhances the plastic flowability of the mixed soil.

Figure 0007127466000001
Figure 0007127466000001

有機チタン化合物は、チタントリエタノールアミネート、チタンラクテート、チタンラクテートアンモニウム塩のうちのいずれか1つであることが好ましい。 The organotitanium compound is preferably any one of titanium triethanolamine, titanium lactate, and titanium lactate ammonium salt.

[加泥材の設計方法]
加泥材を設計する方法を、図1のフロー図を用いて説明する。
[Method of designing mud addition material]
A method of designing a mud addition material will be described with reference to the flowchart of FIG.

手順1:注入率の決定(図1の(1))
本明細書において「注入率」とは、掘削土砂に対するグアガム溶液の注入割合(体積%)を指す。注入率は、掘削土砂の組成やその粒度、混合土の用途に応じて最適な塑性流動性を有するよう当業者が適宜設定することができるが、10~80体積%であることが好ましく、15~40体積%であることがより好ましい。
Procedure 1: Determination of injection rate ((1) in Fig. 1)
As used herein, the term "injection rate" refers to the injection ratio (% by volume) of the guar gum solution to the excavated soil. The injection rate can be appropriately set by those skilled in the art according to the composition of the excavated soil, its particle size, and the application of the mixed soil so as to have the optimum plastic fluidity, but is preferably 10 to 80% by volume. More preferably ~40% by volume.

手順2:グアガム溶液の濃度決定(図1の(2))
手順1で決定した注入率を基に、グアガム溶液の濃度を決定する。本実施形態に係る加泥材においてグアガム溶液の濃度は、掘削土砂の組成やその粒度、混合土の用途に応じて最適な塑性流動性を有するよう当業者が適宜設定することができる。
Procedure 2: Determining the concentration of guar gum solution ((2) in Fig. 1)
Based on the injection rate determined in step 1, determine the concentration of the guar gum solution. The concentration of the guar gum solution in the mud addition material according to this embodiment can be appropriately set by those skilled in the art so as to have optimum plastic fluidity according to the composition and grain size of the excavated soil and the application of the mixed soil.

架橋反応において、グアガム溶液の濃度が低いと、グアガム同士の遭遇率が下がるため、架橋反応効率が下がる。一方、架橋反応においてグアガム溶液の濃度が高いと、グアガム同士の遭遇率が上がるため、架橋反応効率が上がる。一方、グアガム溶液の濃度が高くなり過ぎると、強固なゲルが形成され混合土の塑性流動性が低くなるため、加泥材として好ましくない。 In the cross-linking reaction, if the concentration of the guar gum solution is low, the rate of encounter between guar gums decreases, resulting in a decrease in cross-linking reaction efficiency. On the other hand, when the concentration of the guar gum solution is high in the cross-linking reaction, the encounter rate between guar gums increases, so the efficiency of the cross-linking reaction increases. On the other hand, if the concentration of the guar gum solution is too high, a strong gel is formed and the plastic flowability of the mixed soil is lowered, which is not preferable as a mud addition material.

そこで、本実施形態に係る加泥材におけるグアガム溶液の濃度としては、1~50kg/m3であることが好ましく、1~20kg/m3であることがより好ましく、5~10kg/m3であることがより好ましく、8~10kg/m3であることがさらに好ましい。 Therefore, the concentration of the guar gum solution in the mud addition material according to the present embodiment is preferably 1 to 50 kg/m 3 , more preferably 1 to 20 kg/m 3 , and more preferably 5 to 10 kg/m 3 . more preferably 8 to 10 kg/m 3 .

手順3:有機チタン化合物の量の決定(図1の(3))
グアガムの量に対する有機チタン化合物の量を決定する。本実施形態に係る加泥材において有機チタン化合物の量は、架橋反応が起こり、混合土が最適な塑性流動性を有する量であれば、当業者が適宜設定することができる。
Step 3: Determining the amount of the organotitanium compound ((3) in FIG. 1)
Determine the amount of organotitanium compound relative to the amount of guar gum. A person skilled in the art can appropriately set the amount of the organotitanium compound in the mud addition material according to the present embodiment as long as the amount causes a cross-linking reaction and gives the mixed soil optimum plastic fluidity.

架橋反応において有機チタン化合物の量が少ないと、グアガム同士を架橋するTiの量が少なくなるため、架橋反応効率が下がる。一方、架橋反応において有機チタン化合物の量が多いと、グアガム同士を架橋するTiの量が多くなるため、架橋反応効率が上がる。一方、グアガムの量に対する有機チタン化合物の量が多くなり過ぎると、強固なゲルが形成され混合土の塑性流動性が低くなるため、加泥材として好ましくない。 If the amount of the organic titanium compound in the cross-linking reaction is small, the amount of Ti that cross-links the guar gums is small, resulting in a decrease in the efficiency of the cross-linking reaction. On the other hand, if the amount of the organic titanium compound in the cross-linking reaction is large, the amount of Ti that cross-links the guar gums increases, so the efficiency of the cross-linking reaction increases. On the other hand, if the amount of the organotitanium compound is too large relative to the amount of guar gum, a strong gel is formed and the plastic flowability of the mixed soil is lowered, which is not preferable as a mud addition material.

そこで、本実施形態に係る加泥材における有機チタン化合物の添加量としては、グアガムの量に対して、50重量%以下であることが好ましく、30重量%以下であることがより好ましく、20重量%以下であることがさらに好ましい。 Therefore, the amount of the organotitanium compound added to the mud addition material according to the present embodiment is preferably 50% by weight or less, more preferably 30% by weight or less, more preferably 20% by weight, relative to the amount of guar gum. % or less.

なお、有機チタン化合物の量の決定に際しては、混合土のブリージング率を検討することが好ましい。ブリージング率は、「プレパックドコンクリートの注入モルタルのブリーディング率および膨張率試験方法(ポリエチレン袋方法)」(JSCE-F 522-2007)の手順をアレンジした方法に基づいて行うことができる。混合土のブリージング率が3%以下の場合、本実施形態に係る加泥材の配合として採用できる。 In determining the amount of the organotitanium compound, it is preferable to consider the breathing rate of the mixed soil. The bleeding rate can be determined based on a method adapted from the procedure of "Testing Method for Bleeding Rate and Expansion Rate of Pouring Mortar for Prepacked Concrete (Polyethylene Bag Method)" (JSCE-F 522-2007). If the mixed soil has a breathing rate of 3% or less, it can be used as a mud addition material according to the present embodiment.

==実施例==
(1)高分子物質の選定
高分子物質の種類に応じた、有機チタン化合物の量と加泥材の粘度との関係を、以下の試験により検証した。表1に、実施例及び比較例で用いた材料とその組成を示した。
== Example ==
(1) Selection of polymer substance The relationship between the amount of the organotitanium compound and the viscosity of the mud additive was verified by the following test according to the type of polymer substance. Table 1 shows materials and compositions used in Examples and Comparative Examples.

Figure 0007127466000002
Figure 0007127466000002

(加泥材の作製)
実施例の加泥材は、以下の手順で作製した。まず、水500mlを攪拌機(製品名:スリーワンモータ;製造元:東京硝子器械(株))で攪伴しながら、所定量のグアガム(三晶(株))を継粉にならないよう添加した。1時間程度攪伴し、グアガムが完全に溶解した後、グアガムの量に対して、所定重量%の有機チタン化合物(製品名:TC-400;製造元:マツモトファインケミカル社)を添加し、有機チタン化合物が完全に溶解するまで撹拌を行い、加泥材を作製した。
(Preparation of mud addition material)
The mud addition material of the example was produced by the following procedure. First, while stirring 500 ml of water with a stirrer (product name: Three One Motor; manufacturer: Tokyo Glass Instruments Co., Ltd.), a predetermined amount of guar gum (Sansho Co., Ltd.) was added so as not to form lumps. After stirring for about 1 hour to completely dissolve the guar gum, a predetermined weight percent of an organic titanium compound (product name: TC-400; manufacturer: Matsumoto Fine Chemical Co., Ltd.) is added to the amount of guar gum, and the organic titanium compound is added. Stirring was performed until the was completely dissolved to prepare a mud addition material.

比較例の加泥材は、グアガムの代わりにキサンタンガム(三栄源エフ・エフ・アイ(株))を加えた材(比較例1-1~1-2)と、有機チタン化合物を加えず、グアガムのみを加えた材(比較例1-3~1-4)を作製した。 The mud addition materials of the comparative examples were materials with xanthan gum (San-Ei Gen FFI Co., Ltd.) added instead of guar gum (Comparative Examples 1-1 and 1-2), and guar gum without adding an organic titanium compound. Materials (Comparative Examples 1-3 to 1-4) were prepared by adding only.

(粘度の測定)
作製した加泥材の粘度を測定した。粘度の測定は、B型粘度計(製造元:東機産業社)を用いて回転数30rpmで混和しながら行った。
(Measurement of viscosity)
The viscosity of the produced mud addition material was measured. The viscosity was measured using a Brookfield viscometer (manufacturer: Toki Sangyo Co., Ltd.) while mixing at a rotation speed of 30 rpm.

(試験結果)
図2は、有機チタン化合物の量と加泥材の粘度との関係を示したグラフである。
(Test results)
FIG. 2 is a graph showing the relationship between the amount of the organotitanium compound and the viscosity of the mud additive.

図2に示したように、高分子物質としてグアガムを添加した加泥材(実施例参照)は、有機チタン化合物の添加量が増加するにつれて粘度が高くなった。一方、高分子物質としてキサンタンガムを添加した比較例1-1~1-2は、粘度がほぼ0であった。 As shown in FIG. 2, the viscosity of the mud additive (see Examples) to which guar gum was added as the polymer substance increased as the amount of the organotitanium compound added increased. On the other hand, in Comparative Examples 1-1 and 1-2 in which xanthan gum was added as a polymer substance, the viscosity was almost zero.

この実験結果は、OH基が少ないキサンタンガムはTiによる架橋反応が起きずゲルとならないのに対し、OH基に富むグアガムはTiによる架橋反応を呈しゲルとなることに由来すると考えられる。なお、グアガムを10kg/m3と有機チタン化合物をそれぞれ6、8、又は10重量%添加した加泥材(実施例1-3~1-5参照)は、強固なゲルが作製され、粘度計のローターが滑るため粘度を測定することができなかった。 This experimental result is considered to be derived from the fact that xanthan gum, which has few OH groups, does not undergo a cross-linking reaction with Ti and does not form a gel, whereas guar gum, which has an abundant OH group, undergoes a cross-linking reaction with Ti and forms a gel. It should be noted that the mud additive (see Examples 1-3 to 1-5) to which 10 kg/m 3 of guar gum and 6, 8, or 10% by weight of an organic titanium compound were added, produced a strong gel, and the viscometer The viscosity could not be measured due to slippage of the rotor.

(2)加泥材の機能性試験
次に、グアガムと、有機チタン化合物を含有する加泥材を用いてテーブルフロー試験、ブリージング試験を行い、加泥材の機能を調べた。
(2) Functional Test of Mud Additive Next, a table flow test and a breathing test were performed using guar gum and a mud add material containing an organic titanium compound to examine the functions of the mud add material.

(試料土の作製)
トチクレー(関東化成(株))、炭酸カルシウム(東北重炭工業(株))、7号,5号,3号珪砂((株)丸東)、7号,5号砕石((株)東海砂利)を表2に記載した割合で混合し、3種類の模擬土H,M,Lを作製した。模擬土H,M,Lの各組成は、表3に記載した通りである。次に、塩化物イオン濃度が7,000mg/Lとなるように2.189倍希釈した人工海水((株)日本海水)を模擬土に対して15重量%添加し、ソイルミキサー(ニッケン(株))で1分間混練した。実施例の(1)と同様に調製したグアガム溶液を模擬土に対して25体積%添加し、ソイルミキサーで1分間混練した。その後、有機チタン化合物(製品名:TC-400;製造元:マツモトファインケミカル社)を、グアガムの量に対して所定重量%添加して、ソイルミキサーで1分間混練して試料土H,M,Lを作製した。作製した試料土をブリージング袋(公益社団法人 土木学会)につめて、24時間吊るして養生した。
(Preparation of sample soil)
Tochikure (Kanto Kasei Co., Ltd.), calcium carbonate (Tohoku Jutan Kogyo Co., Ltd.), No. 7, No. 5, No. 3 silica sand (Maruto Co., Ltd.), No. 7, No. 5 crushed stone (Tokai Gravel Co., Ltd.) ) were mixed at the ratios shown in Table 2 to prepare three types of simulated soils H, M, and L. The compositions of the simulated soils H, M, and L are as shown in Table 3. Next, artificial seawater (Nihonkaisui Co., Ltd.) diluted 2.189 times so that the chloride ion concentration is 7,000 mg / L is added to the simulated soil at 15% by weight, and a soil mixer (Nikken Co., Ltd.) )) for 1 minute. 25% by volume of the guar gum solution prepared in the same manner as in Example (1) was added to the simulated soil, and kneaded for 1 minute with a soil mixer. After that, an organotitanium compound (product name: TC-400; manufacturer: Matsumoto Fine Chemical Co., Ltd.) was added at a predetermined weight percent to the amount of guar gum, and kneaded for 1 minute with a soil mixer to obtain sample soils H, M, and L. made. The prepared sample soil was packed in a breathing bag (published by the Japan Society of Civil Engineers) and hung for 24 hours for curing.

Figure 0007127466000003
Figure 0007127466000003

Figure 0007127466000004
Figure 0007127466000004

(テーブルフロー試験の試験手順)
養生後の試料土を用いて、テーブルフロー試験を行った。テーブルフロー試験は、「セメントの物理試験方法」(JISR5201)の「12フロー試験」(http://kikakurui.com/r5/R5201-2015-01.html)に準じて行った。具体的には、養生後の試料土をフローテーブルの中央に置いたフローコーンに2層に分けて詰めた。突き棒により各層の全面を各々15回突き、必要に応じて試料土を補い表面を均した。その後直ちにフローコーンを垂直方向に取り去り、15秒間に15回の落下運動を与え、試料土が広がった後の最大径と、最大径に直角な方向に延びる経を測定し、2値の平均値を算出した。試験は2回行い、その平均値をフロー値直後として表4にまとめた。
(Test procedure for table flow test)
A table flow test was performed using the sample soil after curing. The table flow test was performed according to "12 flow test" (http://kikakurui.com/r5/R5201-2015-01.html) of "physical test method of cement" (JISR5201). Specifically, the sample soil after curing was packed in two layers in a flow cone placed in the center of the flow table. The entire surface of each layer was poked 15 times with a ramming rod, and the surface was leveled by supplementing sample soil as necessary. Immediately after that, remove the flow cone in the vertical direction, give it 15 falling motions in 15 seconds, measure the maximum diameter after the sample soil spreads and the length extending in the direction perpendicular to the maximum diameter, and average the two values. was calculated. The test was conducted twice, and the average value was summarized in Table 4 as immediately after the flow value.

テーブルフロー試験後、容器に試料土を回収し容器上部をラップで養生して1日保管した。翌日、養生した試料土をソイルミキサーで1分間混練し、上述と同様の手順により試料土のテーブルフロー試験を行った。試験は2回行い、その平均値をフロー値1日後として表4にまとめた。 After the table flow test, the sample soil was collected in a container, covered with plastic wrap and stored for one day. On the next day, the cured sample soil was kneaded with a soil mixer for 1 minute, and the sample soil was subjected to a table flow test in the same manner as described above. The test was conducted twice, and the average value was summarized in Table 4 as the flow value after 1 day.

(ブリージング試験の試験手順)
テーブルフロー試験後の試料土を用いてブリージング試験を行った。ブリージング試験は、「プレパックドコンクリートの注入モルタルのブリーディング率および膨張率試験方法(ポリエチレン袋方法)」(JSCE-F 522-2007)をアレンジした方法で行った。具体的には、ブリージング袋の中に試料土を約20cmの高さまで充填した。試料土内に空気が混入した場合は、ブリージング袋の外側をたたき空気を追い出した。充填が完了した直後の時刻を記録し、ブリージング袋に充填した試料土を、振動しない水平な台に吊り下げ24時間静置した。容量1,000mlのメスシリンダーに水400mlを入れて、空気が混入しないように試料土を充填したブリージング袋を静かにメスシリンダーに挿入した。メスシリンダーの水面と試料土を充填したブリージング袋の上面が一致するまでブリージング袋を下げて、このときの液面の目盛りを読み、この値から最初に入れた水の量である400mlの値を引くことによって、24時間後の試料土の体積(VS)(ml)を算出した。その後、メスシリンダー内のブリージングによる液の液面と、試料土を充填したブリージング袋の上面が一致するまでブリージング袋を沈めて、このときの液面の目盛りを読み、24時間後の試料土とブリージングによる液の体積(V)(ml)を計測した。式1を用いてブリージング量を算出し、式2を用いてブリージング率を算出した。
(Test procedure for breathing test)
A breathing test was performed using the sample soil after the table flow test. The bleeding test was carried out by a method adapted from "Test method for bleeding rate and expansion rate of injection mortar for prepacked concrete (polyethylene bag method)" (JSCE-F 522-2007). Specifically, a breathing bag was filled with sample soil to a height of about 20 cm. When air was mixed in the sample soil, the outside of the breathing bag was beaten to expel the air. The time immediately after the filling was completed was recorded, and the sample soil filled in the breathing bag was suspended on a horizontal stand that did not vibrate and left to stand for 24 hours. 400 ml of water was placed in a graduated cylinder with a capacity of 1,000 ml, and a breathing bag filled with sample soil was gently inserted into the graduated cylinder so as not to mix air. Lower the breathing bag until the water surface of the graduated cylinder and the upper surface of the breathing bag filled with sample soil are aligned. By subtraction, the volume (V S ) (ml) of sample soil after 24 hours was calculated. After that, submerge the breathing bag until the surface of the breathing bag filled with the sample soil coincides with the liquid level of the breathing liquid in the graduated cylinder. The volume (V) (ml) of the liquid by breathing was measured. The breathing amount was calculated using Equation 1, and the breathing rate was calculated using Equation 2.

Figure 0007127466000005
Figure 0007127466000005

Figure 0007127466000006
Figure 0007127466000006

Figure 0007127466000007
Figure 0007127466000007

(試験結果)
テーブルフロー試験、ブリージング試験の結果を表4に示す。「直後」、「1日後」のフロー値がともに130mm以上であり、かつブリージング率が3%以下である場合、加泥材の機能が良好であるとして「○」と評価した。「直後」若しくは「1日後」のフロー値が130mm未満である、又はブリージング率が3%より大きい場合、加泥材の機能がやや良好であるとして「△」と評価した。
(Test results)
Table 4 shows the results of the table flow test and breathing test. When the flow values "immediately after" and "one day later" were both 130 mm or more and the breathing rate was 3% or less, the function of the mud addition material was evaluated as "good". If the flow value "immediately after" or "one day later" was less than 130 mm, or if the breathing rate was greater than 3%, it was evaluated as "Δ" because the function of the mud addition material was somewhat good.

5kg/m3のグアガムを添加した実施例2-1~2-9の試料土は、「直後」、「1日後」ともにフロー値が130mm以上であったものの、ブリージング率が3%を超えたため、加泥材としての機能はやや良好であった。8又は10kg/m3のグアガム溶液を添加した実施例2-10~2-22の試料土は、「直後」、「1日後」ともにフロー値が130mm以上であり、かつブリージング率が3%以下であったため、加泥材としての機能は良好であった。 The sample soils of Examples 2-1 to 2-9 to which 5 kg/m 3 of guar gum was added had a flow value of 130 mm or more both “immediately” and “after 1 day”, but the breathing rate exceeded 3%. , the function as a mud addition material was somewhat good. The sample soils of Examples 2-10 to 2-22 to which 8 or 10 kg/m 3 of guar gum solution was added had a flow value of 130 mm or more and a breathing rate of 3% or less both "immediately" and "1 day later." Therefore, the function as a mud addition material was good.

Claims (2)

グアガムと有機チタン化合物を含有する、加泥材。 A mud additive containing guar gum and an organotitanium compound. 前記有機チタン化合物が、チタントリエタノールアミネート、チタンラクテート、チタンラクテートアンモニウム塩のうちのいずれか1つである、請求項1に記載の加泥材。 The mud filler according to claim 1, wherein the organic titanium compound is any one of titanium triethanolamine, titanium lactate, and titanium lactate ammonium salt.
JP2018189388A 2018-10-04 2018-10-04 Addition material Active JP7127466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189388A JP7127466B2 (en) 2018-10-04 2018-10-04 Addition material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189388A JP7127466B2 (en) 2018-10-04 2018-10-04 Addition material

Publications (2)

Publication Number Publication Date
JP2020055984A JP2020055984A (en) 2020-04-09
JP7127466B2 true JP7127466B2 (en) 2022-08-30

Family

ID=70106516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189388A Active JP7127466B2 (en) 2018-10-04 2018-10-04 Addition material

Country Status (1)

Country Link
JP (1) JP7127466B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801389A (en) 1987-08-03 1989-01-31 Dowell Schlumberger Incorporated High temperature guar-based fracturing fluid
US20030008778A1 (en) 1998-04-14 2003-01-09 Donaldson Robert Ashley Methods and compositions for delaying the crosslinking of crosslinkable polysaccharide-based lost circulation materials
JP2004124620A (en) 2002-10-07 2004-04-22 Taisei Corp Method for reforming excavated sediment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145370A (en) * 1993-11-24 1995-06-06 Terunaito:Kk Liquid mixture of water-soluble polymer and its production
JP3968446B2 (en) * 1998-04-24 2007-08-29 大成建設株式会社 Mud pressure shield method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801389A (en) 1987-08-03 1989-01-31 Dowell Schlumberger Incorporated High temperature guar-based fracturing fluid
US20030008778A1 (en) 1998-04-14 2003-01-09 Donaldson Robert Ashley Methods and compositions for delaying the crosslinking of crosslinkable polysaccharide-based lost circulation materials
JP2004124620A (en) 2002-10-07 2004-04-22 Taisei Corp Method for reforming excavated sediment

Also Published As

Publication number Publication date
JP2020055984A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
SE444179B (en) COMPOSITION FOR THE FORMATION OF A POROS PERMEABLE CONSOLIDATED SANDMASS OF QUARTZ CORN AND USE THEREOF
JP2518836B2 (en) Sealant for soil sealing
JP7127466B2 (en) Addition material
RU2238958C2 (en) Clay-containing mix or blend capable of forming moistureproof gel
TW200407272A (en) Injection grouting
SU1704636A3 (en) Method for producing building materials
JP5225566B2 (en) Powdered dental alginate impression material
JP5073023B2 (en) Neutralized consolidated plasticized underwater non-separable two-part grout material
JP2010163619A (en) Soil amelioration grouting material and method for insolubilizing soil pollutant using the grouting material
JP2022125770A (en) Mud-added material
JP2841212B2 (en) Water stop material
RU2597907C1 (en) Method of producing grouting composition for waterproofing structure in rocks of water-soluble salts
JP2020117887A (en) Drilling additive material and mud pressure shield construction method
JP3437084B2 (en) Injected material for ground consolidation and ground injection method using this injected material
JPS594471B2 (en) Cement Tomizu glass saw blade
JP6867649B2 (en) Sealing agent supplies and chemical injection method
JP2023025309A (en) Ground improvement agent and ground improvement method
JP5744393B2 (en) Backfilling material
CN106701048A (en) Anti-water breakthrough material for well cementation and preparation method thereof
JPS6236983B2 (en)
RU2004772C1 (en) Method for isolation of formation
JPS62172088A (en) Ground grouting process
JP6981725B2 (en) Deterioration control agent and deterioration control method for drilling fluid
JPH10298393A (en) Additive for stable liquid engineering method excellent in resistance to cement
JP3032785B2 (en) Grout leak preventing filler and grouting method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7127466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150