JP7125906B2 - Holding power evaluation method and shrinkage evaluation method - Google Patents

Holding power evaluation method and shrinkage evaluation method Download PDF

Info

Publication number
JP7125906B2
JP7125906B2 JP2019045565A JP2019045565A JP7125906B2 JP 7125906 B2 JP7125906 B2 JP 7125906B2 JP 2019045565 A JP2019045565 A JP 2019045565A JP 2019045565 A JP2019045565 A JP 2019045565A JP 7125906 B2 JP7125906 B2 JP 7125906B2
Authority
JP
Japan
Prior art keywords
shrinkage
amount
molten metal
linear expansion
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019045565A
Other languages
Japanese (ja)
Other versions
JP2020146713A (en
Inventor
太郎 長谷川
泰章 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2019045565A priority Critical patent/JP7125906B2/en
Priority to CN202010175096.0A priority patent/CN111693564B/en
Publication of JP2020146713A publication Critical patent/JP2020146713A/en
Application granted granted Critical
Publication of JP7125906B2 publication Critical patent/JP7125906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion

Description

本発明は、金属材からなる溶湯が凝固して得られる鋳造品の、キャビティを形成する金型に対する抱付力を評価する抱付力評価方法、及び、キャビティに充填された溶湯からの収縮量を評価する収縮量評価方法に関する。 The present invention provides a method for evaluating the holding force of a casting obtained by solidifying a molten metal made of a metal material with respect to a mold forming a cavity, and the amount of shrinkage from the molten metal filled in the cavity. It relates to a shrinkage amount evaluation method for evaluating.

鋳造加工は、複数個の金型同士が当接して形成されるキャビティ内に溶湯を充填し、該溶湯を凝固させて鋳造品(成形品)を得る手法として周知であり、広汎に実施されるに至っている。ここで、キャビティ内で得られた鋳造品を取り出すには、先ず、金型同士を離間させる。この際、1個の金型(通常、位置決め固定された固定型)に鋳造品が付着している。このため、鋳造装置には、金型から鋳造品を脱離させるための複数個のエジェクタピンが設けられる。 Casting is a well-known method of filling a cavity formed by contacting a plurality of molds with molten metal and solidifying the molten metal to obtain a casting (molded product), and is widely practiced. has reached Here, in order to take out the casting obtained in the cavity, first, the molds are separated from each other. At this time, the casting adheres to one die (usually a fixed die that is positioned and fixed). For this reason, the casting apparatus is provided with a plurality of ejector pins for ejecting the casting from the mold.

すなわち、エジェクタピンは金型に対して摺動し、その先端が該金型から突出するように露呈する。この露呈に伴って鋳造品がエジェクタピンから押圧を受け、その結果、該鋳造品が金型から離脱する。エジェクタピンは、例えば、その直径が十分に大きく設定されること等で、この押圧に対して十分な剛性を有するように設計される。 That is, the ejector pin slides against the mold and exposes its tip so as to protrude from the mold. As a result of this exposure, the casting is pressed by the ejector pin, and as a result, the casting is released from the mold. The ejector pin is designed to have sufficient rigidity against this pressure, for example, by setting its diameter sufficiently large.

しかしながら、鋳造品の金型に対する抱付力が予測(評価)に反して大きくなり、このため、一部のエジェクタピンに大きな反力が作用することがあり得る。このような場合、鋳造品を金型から離脱させることが困難となる。これとは逆に、抱付力が評価よりも過度に小さいと、直径が過度に大きく設定されたエジェクタピンを動作させるために大きなエネルギを付与する大型の駆動装置が必要となり、不経済である。このような観点から、鋳造品の金型に対する抱付力を予測することが要請されている。 However, the holding force of the cast product against the mold increases contrary to predictions (evaluations), and as a result, a large reaction force may act on some of the ejector pins. In such a case, it becomes difficult to separate the casting from the mold. Conversely, if the holding force is excessively smaller than the evaluation, a large-sized driving device that imparts a large amount of energy is required to operate the ejector pin whose diameter is set excessively large, which is uneconomical. . From such a point of view, it is required to predict the holding force of the casting to the mold.

鋳造品の歪みや応力を解析する手法として、特許文献1に記載された解析方法が知られている。 An analysis method described in Patent Document 1 is known as a technique for analyzing the strain and stress of castings.

特開2015-132564号公報JP 2015-132564 A

本発明者らの鋭意検討によれば、特許文献1記載の解析方法を実施してもなお、抱付力が大きく評価される。 According to the diligent studies of the present inventors, even if the analysis method described in Patent Document 1 is carried out, the holding power is still highly evaluated.

本発明は上記した問題を解決するためになされたもので、抱付力を適正に評価することが可能な抱付力評価方法、及び、鋳造品の溶湯からの収縮量を適正に評価することが可能な収縮量評価方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and provides a method for evaluating a holding force capable of properly evaluating the holding force, and a method for properly evaluating the amount of shrinkage of a cast product from molten metal. An object of the present invention is to provide a method for evaluating the amount of shrinkage.

前記の目的を達成するために、本発明の一実施形態によれば、金属材からなる溶湯を鋳造装置のキャビティ内で凝固させることで得られる鋳造品の、前記キャビティを形成する金型に対する抱付力を評価する抱付力評価方法であって、
測定装置のキャビティに溶湯を充填して前記溶湯が凝固するときの収縮量を測定し、測定された前記収縮量に基づいて前記金属材の線膨張係数を求める線膨張係数取得工程と、
前記線膨張係数に基づいて前記溶湯が前記鋳造品に変化したときの収縮量を求める収縮量取得工程と、
材料モデルを用いて前記収縮量を歪みとして応力を求め、前記応力を抱付力と評価する抱付力評価工程と、
を有する抱付力評価方法が提供される。
In order to achieve the above object, according to one embodiment of the present invention, a cast product obtained by solidifying a molten metal made of a metal material in a cavity of a casting apparatus is held against a mold forming the cavity. A holding force evaluation method for evaluating applied force,
A linear expansion coefficient acquisition step of filling a cavity of a measuring device with molten metal and measuring the amount of shrinkage when the molten metal solidifies, and obtaining the linear expansion coefficient of the metal material based on the measured amount of shrinkage;
A shrinkage amount acquisition step of obtaining a shrinkage amount when the molten metal changes into the cast product based on the linear expansion coefficient;
A holding force evaluation step of obtaining a stress using a material model as the amount of shrinkage as a strain and evaluating the stress as a holding force;
A hugging force evaluation method is provided.

また、上記に準じて鋳造品の収縮量を評価することも可能である。すなわち、本発明の別の一実施形態によれば、金属材からなる溶湯を鋳造装置のキャビティ内で凝固させることで得られる鋳造品の、前記溶湯からの収縮量を評価する収縮量評価方法であって、
測定装置のキャビティに溶湯を充填して前記溶湯が凝固するときの収縮量を測定し、測定された前記収縮量に基づいて前記金属材の線膨張係数を求める線膨張係数取得工程と、
前記線膨張係数に基づいて前記溶湯が前記鋳造品に変化したときの収縮量を求める収縮量取得工程と、
を有する収縮量評価方法が提供される。
It is also possible to evaluate the amount of shrinkage of the casting according to the above. That is, according to another embodiment of the present invention, a shrinkage amount evaluation method for evaluating the amount of shrinkage from the molten metal of a casting obtained by solidifying the molten metal made of a metal material in the cavity of a casting apparatus. There is
A linear expansion coefficient acquisition step of filling a cavity of a measuring device with molten metal and measuring the amount of shrinkage when the molten metal solidifies, and obtaining the linear expansion coefficient of the metal material based on the measured amount of shrinkage;
A shrinkage amount acquisition step of obtaining a shrinkage amount when the molten metal changes into the cast product based on the linear expansion coefficient;
A method for evaluating the amount of shrinkage is provided.

本発明によれば、線膨張係数を実測によって求めるので、溶湯が凝固する前後での収縮量を精度よく評価することができる。この収縮量を、応力-歪み曲線の歪みとして応力を求め、該応力を、金型に対する抱付力として評価する。収縮量が精度よく評価されているので、抱付力も精度よく評価される。 According to the present invention, since the coefficient of linear expansion is obtained by actual measurement, it is possible to accurately evaluate the amount of shrinkage before and after the molten metal solidifies. This shrinkage amount is used as the strain of the stress-strain curve to obtain the stress, and the stress is evaluated as the holding force against the mold. Since the contraction amount is evaluated with high precision, the holding force is also evaluated with high precision.

評価された抱付力に基づき、鋳造装置の設計時、如何なる程度の剛性を有するエジェクタピンを設ければよいかを精度よく判断することができる。従って、鋳造品を金型から容易に離脱させることが可能なエジェクタピンを設けることができる。しかも、該エジェクタピンを駆動させるための駆動装置として適切な大きさのものを選定することが可能となるので、大型の駆動装置を設けることで鋳造装置が大型化することを回避し得るとともに、コストの低廉化を図ることができる。 Based on the evaluated gripping force, when designing the casting apparatus, it is possible to accurately determine what degree of rigidity the ejector pin should be provided. Therefore, it is possible to provide an ejector pin that allows the casting to be easily removed from the mold. Moreover, since it is possible to select a drive device having an appropriate size for driving the ejector pin, it is possible to avoid an increase in size of the casting apparatus by providing a large drive device. Cost reduction can be achieved.

本発明の実施の形態に係る抱付力評価方法の概略フローである。1 is a schematic flow of a hugging force evaluation method according to an embodiment of the present invention; 線膨張係数を求めるための測定装置の概略側面断面図である。It is a schematic side cross-sectional view of a measuring device for obtaining a coefficient of linear expansion. Ohno-Wangモデルの25℃における応力-歪み曲線である。Fig. 3 is a stress-strain curve at 25°C for the Ohno-Wang model; Ohno-Wangモデルの200℃における応力-歪み曲線である。2 is the stress-strain curve at 200° C. of the Ohno-Wang model; Ohno-Wangモデルの250℃における応力-歪み曲線である。2 is the stress-strain curve at 250° C. of the Ohno-Wang model; Ohno-Wangモデルの300℃における応力-歪み曲線である。3 is the stress-strain curve at 300° C. of the Ohno-Wang model; Ohno-Wangモデルの350℃における応力-歪み曲線である。3 is the stress-strain curve at 350° C. of the Ohno-Wang model; Ohno-Wangモデルの400℃における応力-歪み曲線である。4 is the stress-strain curve at 400° C. of the Ohno-Wang model; Ohno-Wangモデルの450℃における応力-歪み曲線である。4 is the stress-strain curve at 450° C. of the Ohno-Wang model;

以下、本発明に係る収縮量評価方法につき、抱付力評価方法との関係で好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, the contraction amount evaluation method according to the present invention will be described in detail with reference to the attached drawings, citing preferred embodiments in relation to the hugging force evaluation method.

図1は、本実施の形態に係る抱付力評価方法の概略フローである。この抱付力評価方法は、線膨張係数取得工程S1と、収縮量取得工程S2と、抱付力評価工程S3とを有する。なお、本実施の形態に係る収縮量評価方法は、抱付力評価方法の一部であり、線膨張係数取得工程S1、収縮量取得工程S2を行うことで実施することができる。 FIG. 1 is a schematic flow of a hugging force evaluation method according to this embodiment. This hugging force evaluation method includes a linear expansion coefficient obtaining step S1, a contraction amount obtaining step S2, and a hugging force evaluation step S3. The shrinkage amount evaluation method according to the present embodiment is a part of the hugging force evaluation method, and can be implemented by performing the linear expansion coefficient obtaining step S1 and the shrinkage amount obtaining step S2.

従来、鋳造装置の設計に際しては、同一種の金属材の線膨張係数は一定であることを前提としている。本発明者らは、この前提が、抱付力の過大評価又は過小評価の一因となっていると推察した。そこで、線膨張係数取得工程S1において、金属材の線膨張係数を実測する。 Conventionally, when designing a casting apparatus, it is assumed that the coefficient of linear expansion of the same kind of metal material is constant. The present inventors speculated that this premise contributes to the overestimation or underestimation of the holding force. Therefore, in the linear expansion coefficient acquisition step S1, the linear expansion coefficient of the metal material is actually measured.

線膨張係数取得工程S1では、金属材からなる溶湯が凝固するときの線膨張係数を求める。図2に、そのための測定装置10を示す。該測定装置10は、基台12と、略直方体形状をなす下型14及び上型16(いずれも金型)とを有し、これら下型14及び上型16によってキャビティ18が形成される。下型14及び上型16の素材や、キャビティ18に臨む部位の表面粗さは、鋳造品を工業的に作製する鋳造装置の金型の素材、キャビティ18に臨む部位の表面粗さに整合させることが好ましい。下型14及び上型16の素材としては、例えば、合金工具鋼が挙げられる。 In the linear expansion coefficient obtaining step S1, the linear expansion coefficient is obtained when the molten metal made of the metal material solidifies. FIG. 2 shows a measuring device 10 for that purpose. The measuring device 10 has a base 12 and a substantially rectangular parallelepiped lower mold 14 and upper mold 16 (both molds), and a cavity 18 is formed by these lower mold 14 and upper mold 16 . The material of the lower mold 14 and the upper mold 16 and the surface roughness of the part facing the cavity 18 are matched to the material of the mold of the casting apparatus for industrially producing the casting and the surface roughness of the part facing the cavity 18. is preferred. Examples of materials for the lower die 14 and the upper die 16 include alloy tool steel.

下型14には、複数箇所に熱電対20が設置される。熱電対20の先端はキャビティ18に臨み、このため、キャビティ18内の溶湯Mの温度を常時測定することが可能である。一方の上型16には、溶湯Mをキャビティ18に注湯するための湯口22及び湯道24が形成される。 Thermocouples 20 are installed at a plurality of locations on the lower die 14 . The tip of the thermocouple 20 faces the cavity 18, so that the temperature of the molten metal M inside the cavity 18 can be measured at all times. One upper mold 16 is formed with a sprue 22 and a runner 24 for pouring the molten metal M into the cavity 18 .

基台12の、下型14及び上型16の長手方向端部に対向する位置には支持板26a、26bがそれぞれ立設されるとともに、各支持板26a、26bに第1台座28a、第2台座28bが設けられる。第1台座28aには第1レーザ送受信器30aが位置決め固定され、第2台座28bにも同様に第2レーザ送受信器30bが位置決め固定される。また、支持板26a、26bには、第1変位棒32a、第2変位棒32bが変位可能に支持される。これら第1変位棒32a、第2変位棒32bは石英ガラスからなり、第1レーザ送受信器30a、第2レーザ送受信器30bに臨む各一端には、第1反射板34a、第2反射板34bが設けられる。第1レーザ送受信器30a及び第1反射板34a、第2レーザ送受信器30b及び第2反射板34bは、それぞれ、樹脂カバー36で覆われる。 Support plates 26a and 26b are erected at positions of the base 12 facing the longitudinal ends of the lower mold 14 and the upper mold 16, respectively. A pedestal 28b is provided. A first laser transmitter/receiver 30a is positioned and fixed to the first pedestal 28a, and a second laser transmitter/receiver 30b is similarly positioned and fixed to the second pedestal 28b. A first displacement rod 32a and a second displacement rod 32b are displaceably supported by the support plates 26a and 26b. The first displacement rod 32a and the second displacement rod 32b are made of quartz glass, and a first reflecting plate 34a and a second reflecting plate 34b are provided at respective ends facing the first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b. be provided. The first laser transmitter/receiver 30a and the first reflector 34a, and the second laser transmitter/receiver 30b and the second reflector 34b are covered with a resin cover 36, respectively.

第1変位棒32a、第2変位棒32bの他端は、キャビティ18内に挿入されている。従って、第1変位棒32a、第2変位棒32bの他端は、キャビティ18に充填された溶湯Mで覆われるとともに、その後に溶湯Mが凝固すると、鋳造品である凝固品の内部に埋入される。 The other ends of the first displacement rod 32 a and the second displacement rod 32 b are inserted into the cavity 18 . Therefore, the other ends of the first displacement rod 32a and the second displacement rod 32b are covered with the molten metal M filled in the cavity 18, and when the molten metal M solidifies thereafter, they are embedded in the solidified product, which is a cast product. be done.

以上の構成において、熱電対20、第1レーザ送受信器30a及び第2レーザ送受信器30bは、演算回路及び制御回路を兼ねるパーソナルコンピュータ(PC)38に電気的に接続されている。 In the above configuration, the thermocouple 20, the first laser transmitter/receiver 30a, and the second laser transmitter/receiver 30b are electrically connected to a personal computer (PC) 38 that serves both as an arithmetic circuit and a control circuit.

線膨張係数取得工程S1は、このように構成された測定装置10を用い、以下のようにして実施される。 The linear expansion coefficient acquisition step S1 is performed as follows using the measuring device 10 configured as described above.

はじめに、第1レーザ送受信器30a及び第2レーザ送受信器30bを起動し、各々からレーザ光Bを送信する。レーザ光Bは第1反射板34a、第2反射板34bで反射され、第1レーザ送受信器30a及び第2レーザ送受信器30bに戻る。第1レーザ送受信器30a及び第2レーザ送受信器30bは、戻ってきたレーザ光Bを受信する。PC38は、送信開始から受光開始までの経過時間に基づき、第1レーザ送受信器30aから第1反射板34aまでの距離、及び第2レーザ送受信器30bから第2反射板34bまでの距離を個別に算出する。 First, the first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b are activated, and laser light B is transmitted from each. The laser light B is reflected by the first reflecting plate 34a and the second reflecting plate 34b, and returns to the first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b. The first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b receive the laser light B that has returned. The PC 38 individually calculates the distance from the first laser transmitter/receiver 30a to the first reflector 34a and the distance from the second laser transmitter/receiver 30b to the second reflector 34b based on the elapsed time from the start of transmission to the start of light reception. calculate.

この状態で、例えば、アルミニウム合金等の金属材からなる溶湯Mを、湯口22から注湯する。溶湯Mは、湯道24を経由してキャビティ18に到達し、蓄積される。換言すれば、溶湯Mのキャビティ18への充填がなされる。この充填により、第1変位棒32a、第2変位棒32bの他端が溶湯Mで覆われる。なお、注湯量は、溶湯Mの液面が湯道24の途中となる程度で差し支えない。また、溶湯Mの温度は、複数個の熱電対20によって常時検出され、情報としてPC38に送信される。 In this state, a molten metal M made of, for example, a metal material such as an aluminum alloy is poured from the sprue 22 . The molten metal M reaches the cavity 18 via the runner 24 and is accumulated. In other words, the molten metal M is filled into the cavity 18 . By this filling, the molten metal M covers the other ends of the first displacement rod 32a and the second displacement rod 32b. The amount of molten metal to be poured may be such that the liquid level of the molten metal M reaches the middle of the runner 24 . Also, the temperature of the molten metal M is constantly detected by a plurality of thermocouples 20 and transmitted to the PC 38 as information.

注湯後、溶湯Mを自然冷却する。この冷却に伴って溶湯Mが凝固するとともに、第1変位棒32a、第2変位棒32bの他端が凝固品の内部に埋入される。 After pouring, the molten metal M is naturally cooled. Along with this cooling, the molten metal M solidifies, and the other ends of the first displacement rod 32a and the second displacement rod 32b are embedded inside the solidified product.

溶湯Mは、凝固して凝固品に変化する最中に体積収縮を起こす。従って、キャビティ18の長手方向端部では、第1変位棒32a、第2変位棒32bが収縮する溶湯Mに引っ張られて第1レーザ送受信器30a、第2レーザ送受信器30bから離間する方向に直線的に変位する。このため、第1レーザ送受信器30a及び第2レーザ送受信器30bにおいて、送信開始から受光開始までの経過時間が注湯前よりも長くなる。 The molten metal M undergoes volumetric contraction while being solidified and changed into a solidified product. Therefore, at the longitudinal ends of the cavity 18, the first displacement rod 32a and the second displacement rod 32b are pulled by the shrinking molten metal M, and are straightened in the direction away from the first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b. physically displaced. Therefore, in the first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b, the elapsed time from the start of transmission to the start of light reception becomes longer than before pouring.

ここで、石英ガラスは、その熱膨張率が小さい。このため、第1変位棒32a及び第2変位棒32bの収縮量は、溶湯Mが凝固する際の収縮量に比して無視し得るほどに小さい。このため、第1変位棒32a、第2変位棒32bの変位量を、溶湯Mの収縮量であると評価することができる。 Here, quartz glass has a small coefficient of thermal expansion. Therefore, the amount of shrinkage of the first displacement rod 32a and the second displacement rod 32b is negligibly small compared to the amount of shrinkage when the molten metal M solidifies. Therefore, the amount of displacement of the first displacement rod 32a and the second displacement rod 32b can be evaluated as the amount of contraction of the molten metal M.

体積収縮が終了すると、第1変位棒32a、第2変位棒32bの変位も終了する。その結果、第1レーザ送受信器30a及び第2レーザ送受信器30bにおいて、送信開始から受光開始までの経過時間が一定となる。PC38は、このときまでの溶湯M(凝固品)の温度変化及び経過時間と、第1変位棒32a及び第2変位棒32bの変位距離とを求める。そして、温度変化量(降温量)と経過時間に基づいて降温速度が算出され、凝固前の距離と凝固前後での変位距離に基づいて線膨張係数が算出される。以上により、熱電対20が設けられた部位毎に降温速度及び線膨張係数が取得される。 When the volume contraction ends, the displacement of the first displacement rod 32a and the second displacement rod 32b also ends. As a result, in the first laser transmitter/receiver 30a and the second laser transmitter/receiver 30b, the elapsed time from the start of transmission to the start of light reception becomes constant. The PC 38 obtains the temperature change and elapsed time of the molten metal M (solidified product) up to this point, and the displacement distances of the first displacement rod 32a and the second displacement rod 32b. Then, the temperature drop rate is calculated based on the temperature change amount (temperature drop amount) and the elapsed time, and the linear expansion coefficient is calculated based on the distance before solidification and the displacement distance before and after solidification. As described above, the temperature drop rate and the coefficient of linear expansion are acquired for each portion where the thermocouple 20 is provided.

必要に応じ、下型14及び上型16として素材やキャビティ18に臨む面の表面粗さが相違するものを用い、上記の線膨張係数取得工程S1を行う。例えば、下型14又は上型16の少なくともいずれか一方を断熱材からなるものに変更すればよい。この場合、鋳造装置で作製される鋳造品の肉厚部位における線膨張係数を評価することができる。なお、下型14及び上型16の双方が合金工具鋼からなる場合、鋳造装置で作製される鋳造品の薄肉部位における線膨張係数が評価される。 If necessary, the lower mold 14 and the upper mold 16 are made of different materials or have different surface roughnesses on the surfaces facing the cavity 18, and the linear expansion coefficient acquisition step S1 is performed. For example, at least one of the lower mold 14 and the upper mold 16 may be changed to a heat insulating material. In this case, it is possible to evaluate the coefficient of linear expansion at the thick portion of the casting produced by the casting apparatus. When both the lower die 14 and the upper die 16 are made of alloy tool steel, the coefficient of linear expansion is evaluated at the thin-walled portion of the casting produced by the casting apparatus.

次に、収縮量取得工程S2を行う。すなわち、PC38は、凝固品の温度分布と、求めた線膨張係数とに基づき、該凝固品における収縮量を算出する。また、型開きを行って凝固品を取り出し、実収縮量を測定する。その結果、算出された収縮量は実収縮量に略合致し、その誤差は1%以下であった。これに対し、公知の線膨張係数を用いて算出された収縮量は実収縮量の約3倍であり、誤差は166%であった。 Next, the contraction amount acquisition step S2 is performed. That is, the PC 38 calculates the amount of shrinkage in the solidified product based on the temperature distribution of the solidified product and the calculated coefficient of linear expansion. Also, the mold is opened, the solidified product is taken out, and the actual shrinkage amount is measured. As a result, the calculated amount of shrinkage substantially matched the actual amount of shrinkage, with an error of 1% or less. On the other hand, the amount of shrinkage calculated using a known coefficient of linear expansion was approximately three times the amount of actual shrinkage, and the error was 166%.

この収縮量取得工程S2までを行うことにより、鋳造装置にて得られる鋳造品の収縮量を温度毎に評価することができる。実測によって求めた線膨張係数に基づいて収縮量を評価するので、収縮量に関する評価結果が精確になるという利点がある。しかも、下型14及び上型16を、素材等が異なるものに変更した場合、鋳造品において厚みが相違する部位の収縮量を評価することが可能となる。 By performing the steps up to this shrinkage amount acquisition step S2, the shrinkage amount of the cast product obtained by the casting apparatus can be evaluated for each temperature. Since the amount of shrinkage is evaluated based on the coefficient of linear expansion obtained by actual measurement, there is an advantage that the evaluation result regarding the amount of shrinkage is accurate. In addition, when the lower mold 14 and the upper mold 16 are changed to different materials, it is possible to evaluate the amount of shrinkage of the parts having different thicknesses in the casting.

次に、抱付力評価工程S3を行う。この際には、材料モデルを用いる。材料モデルとしては、弾性モデル、弾塑性モデル、弾塑性クリープモデル等が公知であるが、Ohno-Wangモデルを用いることが好ましい。この場合、実測値との誤差が小さい評価結果が得られるからである。 Next, the holding force evaluation step S3 is performed. In this case, a material model is used. As a material model, an elastic model, an elasto-plastic model, an elasto-plastic creep model, etc. are known, but it is preferable to use the Ohno-Wang model. This is because in this case, an evaluation result with a small error from the actual measurement value can be obtained.

Ohno-Wangモデルでは、シミュレーションにより、任意の温度における応力-歪み曲線が歪み速度毎に得られる。一例として、25℃、200℃、250℃、300℃、350℃、400℃、450℃において歪み速度が10-2/秒、10-3/秒、10-4/秒であるときの応力-歪み曲線を、引っ張り試験によって得られた実測結果と併せて図3~図9にそれぞれ示す。ただし、図3では、歪み速度が10-3/秒であるときのみを示している。また、破線がOhno-Wangモデルによるシミュレーションにて求められた応力-歪み曲線であり、実線が実測によって求められた応力-歪み曲線である。 In the Ohno-Wang model, simulations provide stress-strain curves at arbitrary temperatures for each strain rate. As an example, the stress when the strain rate is 10 −2 /sec, 10 −3 /sec, 10 −4 /sec at 25 ° C., 200 ° C., 250 ° C., 300 ° C., 350 ° C., 400 ° C., 450 ° C.- The strain curves are shown in FIGS. 3 to 9, respectively, together with the actual measurement results obtained by the tensile test. However, FIG. 3 shows only when the strain rate is 10 −3 /sec. The dashed line is the stress-strain curve obtained by simulation using the Ohno-Wang model, and the solid line is the stress-strain curve obtained by actual measurement.

これら図3~図9から、25℃~450℃(特に200℃~400℃)の広い温度領域において、Ohno-Wangモデルによるシミュレーションにて求められた応力-歪み曲線が、実測にて得られた応力-歪み曲線と精度よく合っていることが分かる。 From these FIGS. 3 to 9, the stress-strain curve obtained by simulation by the Ohno-Wang model was obtained by actual measurement in a wide temperature range of 25° C. to 450° C. (especially 200° C. to 400° C.). It can be seen that the stress-strain curve is in good agreement with the curve.

収縮量取得工程S2で評価された収縮量は、応力-歪み曲線における歪みに相当する。また、降温速度は歪み速度に近似し得る。従って、所定の温度における抱付力は、以下のようにして評価することができる。すなわち、例えば、25℃での抱付力を評価する場合、先ず、25℃における収縮量を歪みとし、図3に示されるグラフのX軸上にプロットする。 The shrinkage evaluated in the shrinkage acquisition step S2 corresponds to the strain in the stress-strain curve. Also, the cooling rate can approximate the strain rate. Therefore, the holding force at a given temperature can be evaluated as follows. That is, for example, when evaluating the hugging force at 25° C., first, the amount of shrinkage at 25° C. is plotted on the X-axis of the graph shown in FIG. 3 as strain.

次に、このプロット点から、降温速度に近い歪み速度における応力-歪み曲線に向かって垂線L1を引く。さらに、この垂線L1と応力-歪み曲線の交点Pから、グラフのY軸に向かって水平線L2を引く。L2のY軸座標値は応力であるが、この応力を、当該温度における溶湯Mの抱付力であると評価することができる。従って、室温まで降温した鋳造品の抱付力を求めるときには、Ohno-Wangモデルの室温における応力-歪み曲線を用いればよい。 A perpendicular L1 is then drawn from this plot point to the stress-strain curve at a strain rate close to the cooling rate. Further, a horizontal line L2 is drawn from the intersection point P of this perpendicular line L1 and the stress-strain curve toward the Y-axis of the graph. The Y-axis coordinate value of L2 is the stress, and this stress can be evaluated as the holding force of the molten metal M at the temperature. Therefore, the stress-strain curve at room temperature of the Ohno-Wang model can be used to obtain the holding force of a casting that has been cooled down to room temperature.

上記したように、Ohno-Wangモデルによって求められた応力-歪み曲線は、実測で得られた応力-歪み曲線に精度よく近似する。従って、抱付力を高精度に評価することができる。また、下型14及び上型16を、素材等が異なるものに変更して線膨張係数を求めた場合、鋳造品において厚みが相違する部位の抱付力を評価することが可能となる。 As described above, the stress-strain curve determined by the Ohno-Wang model accurately approximates the stress-strain curve obtained by actual measurement. Therefore, the holding force can be evaluated with high accuracy. Further, when the lower mold 14 and the upper mold 16 are changed to different materials and the coefficient of linear expansion is obtained, it is possible to evaluate the holding force of the parts having different thicknesses in the casting.

このようにして評価された抱付力に基づき、鋳造装置の設計時、エジェクタピンとして如何なる程度の剛性を有するものとすればよいかを部位毎に判断することができる。従って、鋳造品を金型から容易に離脱させることが可能なエジェクタピンを設けることができる。しかも、該エジェクタピンを駆動させる駆動装置として、適切な大きさのものを選定することが容易となる。このため、大型の駆動装置を設けることで鋳造装置が大型化することを回避し得るとともに、コストの低廉化を図ることができる。 Based on the holding force evaluated in this way, when designing the casting apparatus, it is possible to determine what degree of rigidity the ejector pin should have for each part. Therefore, it is possible to provide an ejector pin that allows the casting to be easily removed from the mold. Moreover, it becomes easy to select a device having an appropriate size as a drive device for driving the ejector pin. Therefore, by providing a large-sized drive device, it is possible to avoid an increase in the size of the casting apparatus and to reduce the cost.

本発明は、上記した実施の形態に特に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not particularly limited to the above-described embodiments, and various modifications are possible without departing from the gist of the present invention.

例えば、Ohno-Wangモデル以外の材料モデルを用いるようにしてもよい。 For example, a material model other than the Ohno-Wang model may be used.

10…測定装置 14…下型
16…上型 18…キャビティ
20…熱電対 30a、30b…レーザ送受信器
32a、32b…変位棒 34a、34b…反射板
38…パーソナルコンピュータ M…溶湯
DESCRIPTION OF SYMBOLS 10... Measuring apparatus 14... Lower mold 16... Upper mold 18... Cavity 20... Thermocouple 30a, 30b... Laser transceiver 32a, 32b... Displacement bar 34a, 34b... Reflector 38... Personal computer M... Molten metal

Claims (5)

金属材からなる溶湯を鋳造装置のキャビティ内で凝固させることで得られる鋳造品の、前記キャビティを形成する金型に対する抱付力を評価する抱付力評価方法であって、
測定装置における金型の表面状態を、前記鋳造装置における金型の表面状態に合わせ、前記測定装置における前記金型で形成されるキャビティに溶湯を充填して前記溶湯が凝固するときの収縮量を測定し、測定された前記収縮量に基づいて前記金属材の線膨張係数を求める線膨張係数取得工程と、
前記線膨張係数に基づいて前記溶湯が前記鋳造品に変化したときの収縮量を求める収縮量取得工程と、
材料モデルを用いて前記収縮量を歪みとして応力を求め、前記応力を抱付力と評価する抱付力評価工程と、
を有する抱付力評価方法。
A holding force evaluation method for evaluating the holding force of a casting obtained by solidifying a molten metal made of a metal material in a cavity of a casting apparatus against a mold forming the cavity,
The surface condition of the mold in the measuring device is adjusted to the surface condition of the mold in the casting device, and the cavity formed by the mold in the measuring device is filled with molten metal to measure the amount of shrinkage when the molten metal solidifies. a linear expansion coefficient acquisition step of measuring and obtaining the linear expansion coefficient of the metal material based on the measured shrinkage amount;
A shrinkage amount acquisition step of obtaining a shrinkage amount when the molten metal changes into the cast product based on the linear expansion coefficient;
A holding force evaluation step of obtaining a stress using a material model as the amount of shrinkage as a strain and evaluating the stress as a holding force;
A holding power evaluation method having
請求項1記載の評価方法において、前記材料モデルとしてOhno-Wangモデルを用いる抱付力評価方法。 2. The evaluation method according to claim 1, wherein an Ohno-Wang model is used as said material model. 請求項1又は2記載の評価方法において、前記測定装置の前記金型の素材又は表面粗さを変更し、それぞれでの前記金属材の線膨張係数を測定する抱付力評価方法。 3. The evaluation method according to claim 1, wherein the material or surface roughness of said mold of said measuring device is changed, and the coefficient of linear expansion of said metal material is measured for each. 金属材からなる溶湯を鋳造装置のキャビティ内で凝固させることで得られる鋳造品の、前記溶湯からの収縮量を評価する収縮量評価方法であって、
測定装置のキャビティに溶湯を充填して前記溶湯が凝固するときの収縮量を測定し、測定された前記収縮量に基づいて前記金属材の線膨張係数を求める線膨張係数取得工程と、
前記線膨張係数に基づいて前記溶湯が前記鋳造品に変化したときの収縮量を求める収縮量取得工程と、
を有する収縮量評価方法。
A shrinkage amount evaluation method for evaluating the amount of shrinkage of a casting obtained by solidifying a molten metal made of a metal material in a cavity of a casting apparatus, from the molten metal,
A linear expansion coefficient acquisition step of filling a cavity of a measuring device with molten metal and measuring the amount of shrinkage when the molten metal solidifies, and obtaining the linear expansion coefficient of the metal material based on the measured amount of shrinkage;
A shrinkage amount acquisition step of obtaining a shrinkage amount when the molten metal changes into the cast product based on the linear expansion coefficient;
Shrinkage amount evaluation method having.
請求項4記載の評価方法において、前記測定装置の金型の素材を変更し、それぞれでの前記金属材の線膨張係数を測定する収縮量評価方法。 5. A shrinkage amount evaluation method according to claim 4, wherein the material of the mold of said measuring device is changed and the coefficient of linear expansion of said metal material is measured for each material.
JP2019045565A 2019-03-13 2019-03-13 Holding power evaluation method and shrinkage evaluation method Active JP7125906B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019045565A JP7125906B2 (en) 2019-03-13 2019-03-13 Holding power evaluation method and shrinkage evaluation method
CN202010175096.0A CN111693564B (en) 2019-03-13 2020-03-13 Method for evaluating tightening force and method for evaluating shrinkage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045565A JP7125906B2 (en) 2019-03-13 2019-03-13 Holding power evaluation method and shrinkage evaluation method

Publications (2)

Publication Number Publication Date
JP2020146713A JP2020146713A (en) 2020-09-17
JP7125906B2 true JP7125906B2 (en) 2022-08-25

Family

ID=72431135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045565A Active JP7125906B2 (en) 2019-03-13 2019-03-13 Holding power evaluation method and shrinkage evaluation method

Country Status (2)

Country Link
JP (1) JP7125906B2 (en)
CN (1) CN111693564B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517862B (en) * 2020-11-20 2022-01-14 中国科学院金属研究所 Secondary hole shrinkage control method for large-size high-temperature alloy master alloy cast ingot
KR102423222B1 (en) * 2020-11-27 2022-07-21 한국생산기술연구원 Analysis apparatus for Molten Material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141679A (en) 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2014213525A (en) 2013-04-25 2014-11-17 マツダ株式会社 Method of designing injection molding mold, mold designing system, mold designing program and computer-readable memory medium storing mold designing program
JP2017100157A (en) 2015-12-01 2017-06-08 大同特殊鋼株式会社 Method for predicting mold release resistance and method for manufacturing cast product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692402B2 (en) * 2006-06-12 2011-06-01 株式会社豊田中央研究所 Casting simulation method, apparatus thereof, program thereof, recording medium recording the program, and casting method
PL2300808T3 (en) * 2008-07-24 2014-09-30 Massachusetts Inst Technology Systems and methods for imaging using absorption
CN102072704B (en) * 2010-11-11 2012-09-05 清华大学 Non-contact laser displacement measurement system used for cement-based materials
CN102581491A (en) * 2012-03-01 2012-07-18 江苏科技大学 Laser welding method for injection molding of Al-Zn-Mg-Cu aluminum alloy
CN102661966B (en) * 2012-05-16 2015-07-01 上海大学 Method and device for measuring linear shrinkage rate and thermal stress of metal solidification process
JP2016087684A (en) * 2014-11-11 2016-05-23 トヨタ自動車株式会社 Shrinkage measuring apparatus
CN108303033B (en) * 2018-01-17 2019-08-27 厦门大学 The monitoring device and monitoring method of the spacing of Slanted ejecting mechanism of injection mould and guide pad

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141679A (en) 1999-11-16 2001-05-25 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2014213525A (en) 2013-04-25 2014-11-17 マツダ株式会社 Method of designing injection molding mold, mold designing system, mold designing program and computer-readable memory medium storing mold designing program
JP2017100157A (en) 2015-12-01 2017-06-08 大同特殊鋼株式会社 Method for predicting mold release resistance and method for manufacturing cast product

Also Published As

Publication number Publication date
CN111693564B (en) 2023-07-21
CN111693564A (en) 2020-09-22
JP2020146713A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP7125906B2 (en) Holding power evaluation method and shrinkage evaluation method
CN104698030A (en) Determination method for interface heat transfer coefficient in casting process
JP4692402B2 (en) Casting simulation method, apparatus thereof, program thereof, recording medium recording the program, and casting method
Dargusch et al. The accurate determination of heat transfer coefficient and its evolution with time during high pressure die casting of Al‐9% Si‐3% Cu and Mg‐9% Al‐1% Zn alloys
JP2010052019A (en) Simulation method for sand mold casting
Farouq et al. Temperature measurements in the depth and at the surface of injected thermoplastic parts
Kobryn et al. Determination of interface heat-transfer coefficients for permanent-mold casting of Ti-6Al-4V
Anglada et al. Prediction and validation of shape distortions in the simulation of high pressure die casting
Miłkowska-Piszczek et al. A comparison of models describing heat transfer in the primary cooling zone of a continuous casting machine
JP4341494B2 (en) Mold calorimetry method, temperature control method, calorimetry device, and temperature control device
JPH0622840B2 (en) Molding process simulation system
US20020170699A1 (en) Mathematically determined solidification for timing the injection of die castings
CN110044507A (en) The accurate temp measuring method of sand casting based on temperature measuring unit positioning
Stricker et al. Determination of heat transfer coefficients at the polymer-mold-interface for injection molding simulation by means of calorimetry
Yongyou et al. Determination of interfacial heat transfer coefficient and its application in high pressure die casting process
JP2001293748A (en) Injection molding process simulation apparatus and shape accuracy estimating method
JP2016065811A (en) Device and method for measuring temperature
JP2000289076A (en) Method for simulating resin molding
JP2009298035A (en) Method for designing mold
Hibbeler Thermo-mechanical behavior during steel continuous casting in funnel molds
JP2003011199A (en) Device for simulating injection molding process and method for predicting shape precision
JP2006026723A (en) Method, apparatus and program for simulating die-casting, and record medium for recording this program
Rasgado et al. An experimental investigation on the effect of vibration on casting surface finish
JP7429010B2 (en) Method for measuring heat transfer coefficient between molten metal and molding material, and device for measuring heat transfer coefficient between molten metal and molding material
Kim et al. Numerical analysis and optimal design to reduce residual stresses and deformations of die casting baseplate after ejection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7125906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150