JP7120569B2 - dosimeter holder - Google Patents

dosimeter holder Download PDF

Info

Publication number
JP7120569B2
JP7120569B2 JP2018149742A JP2018149742A JP7120569B2 JP 7120569 B2 JP7120569 B2 JP 7120569B2 JP 2018149742 A JP2018149742 A JP 2018149742A JP 2018149742 A JP2018149742 A JP 2018149742A JP 7120569 B2 JP7120569 B2 JP 7120569B2
Authority
JP
Japan
Prior art keywords
detection element
dosimeter
lens
dosimeters
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018149742A
Other languages
Japanese (ja)
Other versions
JP2020024179A (en
Inventor
敬 盛武
略 孫
啓介 永元
洋彰 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Embrace Medical
Original Assignee
Global Embrace Medical
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Embrace Medical filed Critical Global Embrace Medical
Priority to JP2018149742A priority Critical patent/JP7120569B2/en
Publication of JP2020024179A publication Critical patent/JP2020024179A/en
Application granted granted Critical
Publication of JP7120569B2 publication Critical patent/JP7120569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射線を検出する検出素子を保持する線量計ホルダに関する。 The present invention relates to a dosimeter holder that holds a detection element that detects radiation.

最近、疫学調査の進展に基づいて眼の水晶体に対する等価線量限度の国際的基準が厳格化され、国内外において新たな基準に対応するための体制作りが議論されている。また、医療現場においては、IVR(インターベンショナルラジオロジー)の発展に伴ってIVRに携わる医療スタッフの白内障リスクが認識される等、医療スタッフの水晶体被ばく対策が注目されている。一般に、職業被ばくを適切に管理するためには、作業従事者の作業内容に応じた適切なモニタリング方法で放射線量を測定することが重要であり、水晶体被ばくについては防護眼鏡の内側で線量測定を行うことが好ましいとされている。 Recently, based on the progress of epidemiological studies, international standards for equivalent dose limits to the lens of the eye have been tightened, and the establishment of a system to comply with the new standards is being discussed both domestically and internationally. In the medical field, with the development of IVR (interventional radiology), the risk of cataracts in medical staff engaged in IVR has been recognized, and attention has been paid to the lens exposure countermeasures of medical staff. In general, in order to appropriately manage occupational exposure, it is important to measure radiation dose using an appropriate monitoring method according to the type of work performed by workers. It is preferred to do so.

個人線量モニタリングに使用される線量計としては、フィルムバッジ、熱蛍光線量計(TLD)、光刺激蛍光線量計(OSLD)、及び蛍光ガラス線量計が知られている。この内、TLD線量計については、防護眼鏡又はヘッドセットに装着することで水晶体の近傍で線量を測定する測定手法が開発されている。例えば、LANDAUER社のVision(登録商標)やフランス放射線防護・原子力安全研究所が開発したDOSIRIS(登録商標)が知られている(非特許文献1参照)。 Film badges, thermoluminescent dosimeters (TLD), photostimulated fluorescence dosimeters (OSLD), and fluorescent glass dosimeters are known dosimeters used for personal dose monitoring. Among them, a TLD dosimeter has been developed to measure the dose in the vicinity of the crystalline lens by wearing protective eyeglasses or a headset. For example, Vision (registered trademark) manufactured by Landauer and DOSIRIS (registered trademark) developed by the French Institute for Radiation Protection and Nuclear Safety are known (see Non-Patent Document 1).

千田浩一、「FBNews No.485」、株式会社千代田テクノル発行、p.12-16Koichi Senda, "FBNews No. 485", published by Chiyoda Technol Co., Ltd., p. 12-16

蛍光ガラス線量計は、特定の金属イオンを含むガラスに放射線が照射されると紫外線を励起光として蛍光を発するようになる現象(ラジオフォトルミネッセンス)を利用した線量計である。蛍光ガラス線量計は、蛍光量の読み取りを繰り返し行うことができ、フェーディング(時間経過による蛍光量の低下)が非常に小さく、ガラス素子間の感度のばらつきが小さい等の利点を有する。 A fluorescent glass dosimeter is a dosimeter that utilizes a phenomenon (radiophotoluminescence) in which, when glass containing specific metal ions is irradiated with radiation, it emits fluorescence using ultraviolet light as excitation light. Fluorescent glass dosimeters have the advantages of being able to repeatedly read the amount of fluorescence, having very little fading (decrease in the amount of fluorescence over time), and having little variation in sensitivity between glass elements.

特に、検出素子として棒状のガラス素子を用いることは、水晶体線量を測定する上で大きな利点を有する。これは、線量計を防護眼鏡等の器具に装着する際に、線量計自体にある程度の大きさがないと着脱操作が不便になって実用化の妨げとなり得るところ、棒状の線量計であれば、着脱が容易にできる程度の大きさを持たせつつ、防護眼鏡の外縁付近など着用者の視野を可能な限り塞がない位置及び姿勢での装着が可能となるためである。また、線量を繰り返し読み取ることが可能という蛍光ガラス線量計の性質から、読み損じを避けるために複数の検出素子を同時に装着する必要がないことも、着用者の視野を確保する上で有利である。 In particular, using a rod-shaped glass element as the detection element has a great advantage in measuring the lens dose. This is because when the dosimeter is attached to a device such as protective goggles, if the dosimeter itself does not have a certain size, the attachment and detachment operation becomes inconvenient, which hinders practical use. This is because it is possible to wear it in a position and posture that does not block the wearer's field of vision as much as possible, such as near the outer edge of the protective eyeglasses, while having a size that allows easy attachment and detachment. In addition, due to the nature of fluorescent glass dosimeters that can read the dose repeatedly, it is not necessary to wear multiple detection elements at the same time to avoid reading errors, which is advantageous in terms of ensuring the wearer's field of vision. .

しかしながら、棒状のガラス素子を使用する場合、ガラス素子の長軸方向に対する放射線の入射方向によって測定結果が変動する方向依存性があることが分かっている。また、この種の方向依存性は、蛍光ガラス線量計以外の線量計であっても棒状の検出素子を用いた場合には生じ得るものである。ここで、医療現場では、作業従事者は放射線を発生させる診断機器や治療機器の配置に依存する不均一な放射線場で作業する場合が多く、かつ作業内容に応じて作業従事者の姿勢が限定されていることも多い。従って、検出素子の方向依存性が測定結果に影響を及ぼすことにより、水晶体線量を適切に評価できないことが懸念されていた。 However, it has been found that when a rod-shaped glass element is used, the measurement results vary depending on the incident direction of the radiation with respect to the longitudinal direction of the glass element. Also, this kind of directional dependence can occur in dosimeters other than fluorescent glass dosimeters when rod-shaped detection elements are used. In the medical field, workers often work in non-uniform radiation fields that depend on the placement of diagnostic and therapeutic equipment that generate radiation, and the posture of workers is limited depending on the work content. It is often done. Therefore, there is a concern that the directional dependence of the detection element affects the measurement result, and the dose to the lens cannot be evaluated appropriately.

そこで、本発明は、水晶体線量を高い精度で測定するために使用可能な線量計ホルダを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a dosimeter holder that can be used to measure lens dose with high accuracy.

本発明の一態様は、利用者の頭部に装着する器具(10)に取付可能な線量計ホルダ(1R,1L)であって、
放射線を検出する棒状の第1検出素子(31)を保持する第1保持部(11)と、
放射線を検出する棒状の第2検出素子(31)を、長軸方向が前記第1検出素子(31)の長軸方向とは異なっている姿勢で保持する第2保持部(12)と、を備える、
ことを特徴とする。
One aspect of the present invention is a dosimeter holder (1R, 1L) attachable to an instrument (10) worn on the head of a user,
a first holding part (11) holding a rod-shaped first detection element (31) for detecting radiation;
a second holding part (12) for holding a rod-shaped second detection element (31) for detecting radiation in a posture in which the long axis direction is different from the long axis direction of the first detection element (31); prepare
It is characterized by

本発明に係る線量計ホルダを用いることで、水晶体線量を高い精度で測定することが可能となる。 By using the dosimeter holder according to the present invention, it is possible to measure the lens dose with high accuracy.

実施例1に係る線量計ホルダが装着された防護眼鏡の正面図(a)及び斜視図(b)。The front view (a) and the perspective view (b) of the protective eyewear with which the dosimeter holder which concerns on Example 1 was mounted|worn. 実施例1に係る線量計の分解図。1 is an exploded view of a dosimeter according to Example 1. FIG. 実施例1に係る線量計ホルダの形状を説明するための斜視図(a、b)及び側面図(c~e)。3A and 3B are perspective views (a, b) and side views (c to e) for explaining the shape of the dosimeter holder according to Example 1. FIG. 実施例2に係る線量計の線量計ホルダが装着された防護眼鏡の正面図(a)及び斜視図(b)。The front view (a) and the perspective view (b) of the protective eyewear with which the dosimeter holder of the dosimeter according to Example 2 was mounted. 実施例2に係る線量計ホルダの形状を説明するための斜視図(a、b)。FIG. 11 is a perspective view (a, b) for explaining the shape of the dosimeter holder according to the second embodiment;

以下、図面を参照しながら、本開示に係る線量計ホルダについて説明する。 A dosimeter holder according to the present disclosure will be described below with reference to the drawings.

図1は、実施例1に係る線量計及び線量計ホルダが装着された状態の防護眼鏡を表す正面図(a)及び斜視図(b)である。図2は本実施例の線量計の構造を説明するための分解図であり、図3は本実施例の線量計ホルダの形状を説明するための図である。 FIG. 1 is a front view (a) and a perspective view (b) showing protective glasses in a state where a dosimeter and a dosimeter holder according to the first embodiment are attached. FIG. 2 is an exploded view for explaining the structure of the dosimeter of this embodiment, and FIG. 3 is a diagram for explaining the shape of the dosimeter holder of this embodiment.

図1に示すように、本開示に係る線量計ホルダ1L,1Rは、それぞれ蛍光ガラス線量計S1,S2を保持した状態で、防護眼鏡10の左右のレンズ部2L,2Rに装着される。防護眼鏡10は、鉛を含有するレンズ部2L,2Rと、レンズ部2L,2Rを支持するフレーム3と、鼻当て4と、左右のテンプル5R,5Lと、を備える。各レンズ部2L,2Rは、使用者の正面から視て眼を覆う前面部21と、左右方向における前面部21の外側から後方に向かって湾曲した側面部22とを有し、前方及び側方から水晶体に向かって入射する放射線を効果的に遮蔽する形状である。 As shown in FIG. 1, the dosimeter holders 1L and 1R according to the present disclosure are attached to the left and right lens portions 2L and 2R of the safety glasses 10 while holding the fluorescent glass dosimeters S1 and S2, respectively. The protective eyewear 10 includes lead-containing lens portions 2L and 2R, a frame 3 supporting the lens portions 2L and 2R, a nose pad 4, and left and right temples 5R and 5L. Each of the lens portions 2L and 2R has a front portion 21 covering the user's eyes when viewed from the front, and side portions 22 curved rearward from the outer side of the front portion 21 in the horizontal direction. It is a shape that effectively shields the incident radiation from the lens toward the lens.

線量計ホルダ1L,1Rは、抓み部17を抓むことで開閉可能なクリップ状の保持部材であり、レンズ部2L,2Rの側面部22を挟持する。装着状態において、線量計S1,S2はレンズ部2L,2Rの内側、つまりレンズ部2L,2Rに対して水晶体と同じ側に位置する。 The dosimeter holders 1L and 1R are clip-shaped holding members that can be opened and closed by pinching the pinching portion 17, and pinch the side portions 22 of the lens portions 2L and 2R. In the mounted state, the dosimeters S1 and S2 are positioned inside the lens portions 2L and 2R, that is, on the same side as the lens with respect to the lens portions 2L and 2R.

本実施例における線量計S1,S2は蛍光ガラス線量計であり、図2に示すように、ガラス素子31が円筒状のケース32に収容され、キャップ33によって蓋をされたものが用いられている。棒状の検出素子であるガラス素子31は、銀イオン(Ag)を含有させたリン酸塩ガラス(銀活性リン酸塩ガラス)を円柱状に成形したものである。銀活性リン酸塩ガラスは、放射線の電離作用によって生じた正孔及び電子によりAgが準安定なAg及びAg++に変化することで蛍光中心が形成され、紫外線の照射により蛍光を発する状態となる。これを利用し、ガラス素子31の蛍光量から、ガラス素子31に照射された放射線の積算量を求めることができる。 The dosimeters S1 and S2 in this embodiment are fluorescent glass dosimeters, and as shown in FIG. . The glass element 31, which is a rod-shaped detection element, is formed by molding phosphate glass (silver-activated phosphate glass) containing silver ions (Ag + ) into a cylindrical shape. Silver-activated phosphate glass is a state in which fluorescent centers are formed by transforming Ag + into metastable Ag 0 and Ag ++ by holes and electrons generated by the ionization action of radiation, and fluorescence is emitted by irradiation with ultraviolet rays. becomes. Using this, the integrated amount of radiation irradiated to the glass element 31 can be obtained from the fluorescence amount of the glass element 31 .

なお、個人線量モニタリングに用いられる線量計としては、本実施形態に係る蛍光ガラス線量計の他に、フィルムバッジ、熱蛍光線量計、及び光刺激蛍光線量計が知られている。これらの線量計と比較した場合、蛍光ガラス線量計は検出可能な線量域(つまり低線量側の測定限界と高線量側の測定限界との幅)が広く、低線量率(例えば10-6[Gy/s]以下)の放射線を検出するのに十分な感度があり、線量直線性が高く、かつ累積線量の測定が可能である等、積算線量計として優れた特長を有する。この内、「累積線量の測定」とは、同一のガラス素子から線量を繰り返し読み取りできることを利用し、測定期間内の線量の総量だけでなく、測定期間中の線量の累積的変化を観測することを指す。 In addition to the fluorescent glass dosimeter according to the present embodiment, film badges, thermofluorescent dosimeters, and photo-stimulated fluorescent dosimeters are known as dosimeters used for personal dose monitoring. Compared to these dosimeters, fluorescent glass dosimeters have a wide detectable dose range (that is, the width between the measurement limit on the low dose side and the measurement limit on the high dose side) and a low dose rate (for example, 10 -6 [ Gy/s] or less), high dose linearity, and ability to measure cumulative doses. Of these, "measurement of cumulative dose" refers to not only the total amount of dose within the measurement period, but also the cumulative change in dose during the measurement period, using the fact that the dose can be read repeatedly from the same glass element. point to

図3の各図は、図1における右眼側の線量計ホルダ1Rの形状を説明するための斜視図(a、b)及び側面図(c~e、それぞれ、図3(a)又は(b)の矢印C,D,Eの方向から視た図)である。ただし、左眼側の線量計ホルダ1Lは、線量計ホルダを識別するための標識部19を除いて、以下で説明する線量計ホルダ1Rと同様の形状及び機能を有するため、説明を省略する。 3 are perspective views (a, b) and side views (c to e, respectively, FIG. 3(a) or (b) for explaining the shape of the dosimeter holder 1R on the right eye side in FIG. ) viewed from the directions of arrows C, D, and E). However, the dosimeter holder 1L on the left eye side has the same shape and function as the dosimeter holder 1R, which will be described below, except for the label portion 19 for identifying the dosimeter holder, so the description is omitted.

線量計ホルダ1Rは、第1の線量計S1を保持する第1腕部11と、第2の線量計S2を保持する第2腕部12と、第1腕部11及び第2腕部12を支持するベース部13と、を備え、第1腕部11及び第2腕部12がベース部13から互いに垂直な方向に延びるY字状の外観を有している(図3(d)参照)。第1腕部11は第1検出素子(線量計S1のガラス素子31)を保持する第1保持部に相当し、第2腕部12は第2検出素子(線量計S2のガラス素子31)を保持する第2腕部に相当する。 The dosimeter holder 1R includes a first arm 11 that holds the first dosimeter S1, a second arm 12 that holds the second dosimeter S2, and the first arm 11 and the second arm 12. and a base portion 13 for supporting, and has a Y-shaped appearance in which the first arm portion 11 and the second arm portion 12 extend in directions perpendicular to each other from the base portion 13 (see FIG. 3D). . The first arm portion 11 corresponds to a first holding portion that holds the first detection element (the glass element 31 of the dosimeter S1), and the second arm portion 12 holds the second detection element (the glass element 31 of the dosimeter S2). It corresponds to the holding second arm.

第1腕部11及び第2腕部12は、いずれも、線量計S1,S2のケース32を収容する凹部11a,12aと、ケース32が凹部11a,12aから脱落することを防ぐ係止爪11b,12bとを有する。線量計S1,S2は、係止爪11b,12bを弾性変形させることで凹部11a,12aに取付け及び取外し可能である。なお、係止爪11b,12bの付近にスリット11c,12dを設け、着脱の容易さと線量計S1,S2の保持力とのバランスを考慮して係止爪11b,12bの剛性を調節すると好適である。 Each of the first arm portion 11 and the second arm portion 12 includes recesses 11a and 12a that accommodate the cases 32 of the dosimeters S1 and S2, and locking claws 11b that prevent the cases 32 from coming off the recesses 11a and 12a. , 12b. The dosimeters S1 and S2 can be attached to and removed from the concave portions 11a and 12a by elastically deforming the locking claws 11b and 12b. It is preferable to provide slits 11c and 12d near the locking claws 11b and 12b and adjust the rigidity of the locking claws 11b and 12b in consideration of the balance between the ease of attachment and detachment and the holding force of the dosimeters S1 and S2. be.

線量計ホルダ1Rを防護眼鏡10に取付けるための取付部に相当するベース部13は、第1腕部11及び第2腕部12に連続する板状の底板部15と、連結部16を介して底板部14に連結され底板部15に対向する押さえ部14と、底板部15及び押さえ部14の両方に設けられた抓み部17とによって構成される。押さえ部14は、連結部16を支点に揺動することで底板部15に接近及び離間するように相対移動可能であり、底板部15との間の挟持部(図3(c)、(e)に矢印で示したスペース)に防護眼鏡10のレンズ部2Rを挟持する。底板部15はレンズ部の内側の表面に当接する第1当接部に相当し、押さえ部14はレンズ部の外側の表面に当接して第1当接部と共にレンズ部を挟持する第2当接部に相当する。 A base portion 13 corresponding to an attachment portion for attaching the dosimeter holder 1R to the protective eyeglasses 10 includes a plate-like bottom plate portion 15 that is continuous with the first arm portion 11 and the second arm portion 12, and a connecting portion 16. It is composed of a pressing portion 14 that is connected to the bottom plate portion 14 and faces the bottom plate portion 15 , and a pinching portion 17 that is provided on both the bottom plate portion 15 and the pressing portion 14 . The pressing portion 14 can be moved relatively to and away from the bottom plate portion 15 by swinging about the connecting portion 16, and is sandwiched between the bottom plate portion 15 (FIGS. 3C and 3E). ), the lens portion 2R of the protective glasses 10 is held in the space indicated by an arrow in ). The bottom plate portion 15 corresponds to a first contact portion that contacts the inner surface of the lens portion, and the pressing portion 14 contacts the outer surface of the lens portion and serves as a second contact portion that sandwiches the lens portion together with the first contact portion. Corresponds to the contact part.

抓み部17は、連結部16に対して底板部15及び押さえ部14による挟持位置の反対側に設けられ、装着状態においてレンズ部2Rの周縁部の外側に突出するように配置されている(図1(b)参照)。線量計ホルダ1Rを防護眼鏡10に装着するときは、抓み部17を把持して挟持部N1を開いた状態でレンズ部2Rの所定位置まで差し込み、抓み部17から手を離せばよい。また、線量計ホルダ1Rを防護眼鏡10から取り外すときは、抓み部17を把持して挟持部N1を開いた状態で線量計ホルダ1Rをレンズ部2Rの周縁部の外側まで引き抜く。抓み部17には、ひもを通すことが可能な孔17aが設けられている(図3(b)、(e)参照)。孔17aは、底板部15の図3(e)における右側の面に向かって貫通している。この孔17aを用いて、例えば防護眼鏡10からの脱落を防止するためのバンドを装着することが可能である。 The pinching portion 17 is provided on the opposite side of the clamping position between the bottom plate portion 15 and the pressing portion 14 with respect to the connecting portion 16, and is arranged so as to protrude outside the peripheral portion of the lens portion 2R in the attached state ( See FIG. 1(b)). When the dosimeter holder 1R is attached to the protective eyewear 10, the pinching portion 17 is grasped, the pinching portion N1 is opened, and the dosimeter holder 1R is inserted into the lens portion 2R to a predetermined position, and the pinching portion 17 is released. Also, when removing the dosimeter holder 1R from the protective glasses 10, the dosimeter holder 1R is pulled out to the outside of the peripheral portion of the lens portion 2R in a state in which the grip portion 17 is gripped to open the sandwiching portion N1. The pinching portion 17 is provided with a hole 17a through which a string can be passed (see FIGS. 3(b) and 3(e)). The hole 17a penetrates the bottom plate portion 15 toward the right side in FIG. 3(e). Using this hole 17a, for example, it is possible to attach a band for preventing the safety glasses 10 from coming off.

線量計ホルダ1Rは、透明又は半透明の合成樹脂によって構成され、肉抜き等の手法で可能な限り軽量であることが好ましい。図示した形状の線量計ホルダ1Rは、約8gであった。 The dosimeter holder 1R is preferably made of a transparent or translucent synthetic resin and is as lightweight as possible by means of hollowing out. The dosimeter holder 1R of the illustrated shape weighed about 8 g.

(線量の測定)
線量計S1,S2及び線量計ホルダ1R,1Lを用いた水晶体線量の測定方法について説明する。蛍光ガラス線量計を使用する場合、使用期間の前にガラス素子31を予め加熱し、前回の使用期間中における放射線照射によって形成された蛍光中心を除去する処理(アニール)が行われる。また、使用を開始する前に、アニール処理によって初期化されたガラス素子31の蛍光量(初期値)が測定される。具体的には、多数のガラス素子をセット可能なマガジンにガラス素子31をセットし、マガジンを線量読取装置にセットする。線量読取装置は、マガジン上のガラス素子に順次、紫外レーザ光を照射し、ガラス素子が発する蛍光を測定する。
(Dose measurement)
A method of measuring the lens dose using the dosimeters S1 and S2 and the dosimeter holders 1R and 1L will be described. When a fluorescent glass dosimeter is used, the glass element 31 is preheated before a period of use, and a treatment (annealing) is performed to remove the fluorescent centers formed by irradiation during the previous period of use. In addition, before starting use, the amount of fluorescence (initial value) of the glass element 31 initialized by annealing is measured. Specifically, the glass element 31 is set in a magazine in which many glass elements can be set, and the magazine is set in the dose reader. The dose reader sequentially irradiates the glass elements on the magazine with ultraviolet laser light and measures the fluorescence emitted by the glass elements.

その後、ガラス素子31はケース32に収められ、線量計S1,S2として線量計ホルダ1L,1Rに取付けられ、さらに線量計ホルダ1L,1Rは防護眼鏡10に装着される。測定対象者は、線量計ホルダ1L,1Rにより線量計S1,S2が装着された状態の防護眼鏡10を使用して、個々の作業に従事する。線量計S1,S2は定期的に回収され、ガラス素子31が取り出され、再度、蛍光量の測定が行われる。そして、使用により増加した蛍光量の大きさに基づいて、使用期間を通じた線量の積算値が算出される。 After that, the glass element 31 is housed in the case 32 and attached to the dosimeter holders 1L and 1R as the dosimeters S1 and S2. A person to be measured uses the safety glasses 10 to which the dosimeters S1 and S2 are attached by the dosimeter holders 1L and 1R, and engages in individual tasks. The dosimeters S1 and S2 are periodically collected, the glass element 31 is taken out, and the amount of fluorescence is measured again. Then, based on the amount of fluorescence that has increased due to use, the integrated value of the dose over the period of use is calculated.

ここで、本実施例では、1つの線量計ホルダにつき、長軸方向が異なる姿勢で装着された2つの線量計S1,S2からそれぞれ線量の積算値が取得される。同一の線量計ホルダに装着されていた線量計S1,S2の測定値は必ずしも一致せず、著しく不均一な放射線場の下での作業であったり、作業者の姿勢が長時間に亘って制限されていたりする場合には、線量計S1,S2の方向依存性が顕在化して測定値の差が大きくなる。 Here, in the present embodiment, integrated values of doses are acquired from two dosimeters S1 and S2 mounted in postures with different major axis directions for one dosimeter holder. The measured values of the dosimeters S1 and S2 attached to the same dosimeter holder do not always match. , the directional dependence of the dosimeters S1 and S2 becomes obvious and the difference between the measured values increases.

表1は、34症例を対象にした臨床試験の結果を表している。各々2つの線量計S1,S2が取り付けられた線量計ホルダ1L,1Rが装着された防護眼鏡10を医療スタッフに使用してもらい、同一の線量計ホルダに装着されていた線量計S1,S2の測定値の比率(線量比率)を求め、線量比率についての統計値を算出した。「右」の列は右眼側のレンズ部2Rに装着された線量計S1,S2についての結果を表し、「左」の列は左眼側のレンズ部2Lに装着された線量計S1,S2についての結果を表す。 Table 1 shows the results of a clinical trial with 34 cases. The medical staff uses the protective glasses 10 equipped with the dosimeter holders 1L and 1R to which the two dosimeters S1 and S2 are respectively attached, and the dosimeters S1 and S2 attached to the same dosimeter holder are used. A ratio of measured values (dose ratio) was obtained, and a statistical value for the dose ratio was calculated. The "right" column shows the results for the dosimeters S1 and S2 attached to the right eye side lens unit 2R, and the "left" column indicates the dosimeters S1 and S2 attached to the left eye side lens unit 2L. represents the results for

Figure 0007120569000001
Figure 0007120569000001

線量計S1,S2の測定値が等しければ、この線量計S1,S2のペアに関する線量比率は「1」となる。従って、線量計S1,S2の各ペアにおける測定値の差が小さい程、線量比率の平均値及び中央値は1に近い値となり、線量比率のばらつき(変動係数)は小さくなる。表1に示す結果によれば、平均値及び中央値は1に近い値である一方で、右側の線量計S1,S2についての変動係数は0.42と比較的大きな値を示しており、線量計S1,S2の方向によって線量の測定値が大きく変動する場合があることが分かる。 If the readings of the dosimeters S1, S2 are equal, the dose ratio for this pair of dosimeters S1, S2 will be "1". Therefore, the smaller the difference between the measured values in each pair of the dosimeters S1 and S2, the closer the average and median values of the dose ratios become to 1, and the smaller the variation (variation coefficient) of the dose ratios. According to the results shown in Table 1, while the average and median values are close to 1, the coefficient of variation for the dosimeters S1 and S2 on the right side shows a relatively large value of 0.42. It can be seen that there are cases where the measured dose values fluctuate greatly depending on the directions of the totals S1 and S2.

本実施例の線量計ホルダ1L,1Rを用いる場合、線量計S1,S2の両方の測定値に基づいて水晶体の被ばく量を評価する。例えば、左右の水晶体それぞれについて、線量計S1,S2の測定値の内で大きな値を示した方を水晶体線量当量として採用することが考えられる。この方法によれば、検出素子の方向依存性による被ばく量の過小評価を防ぐことが可能となる。 When the dosimeter holders 1L and 1R of the present embodiment are used, the exposure dose of the lens is evaluated based on the measured values of both the dosimeters S1 and S2. For example, for each of the left and right lenses, it is conceivable to adopt the larger one of the measured values of the dosimeters S1 and S2 as the lens dose equivalent. According to this method, it is possible to prevent underestimation of exposure due to the directional dependence of the detection element.

以上説明した通り、本実施形態の線量計ホルダ1L,1Rは、棒状の2つの検出素子を、長軸方向が互いに異なった姿勢となるように保持する第1腕部11及び第2腕部12(第1保持部及び第2保持部)を有する。これにより、方向依存性を有する検出素子を用いる場合であっても、より確からしい水晶体線量を取得することが可能となり、水晶体被ばく量のより精確な評価に貢献する。 As described above, the dosimeter holders 1L and 1R of the present embodiment have the first arm portion 11 and the second arm portion 12 that hold the two rod-shaped detection elements so that their longitudinal directions are different from each other. (first holding portion and second holding portion). This makes it possible to acquire a more probable lens dose even when a detection element having direction dependence is used, contributing to more accurate evaluation of the lens exposure dose.

ここで、医療現場においては、不均一な放射線場の下での作業であったり、作業者の姿勢が長時間に亘って制限されたりする場合がある。例えば、IVRの術者は、患者に接近する必要があるために防護眼鏡に頼った水晶体被ばく対策になりがちであるが、モニタ上の透視画像を確認しながら長時間に亘って施術を行う間に、患者からの散乱線が一定程度、水晶体に入射することは避けられない。また、X線診断における介助者は、1回の作業が短時間であったとしても、X線診断装置に対して決まった位置・姿勢での作業を繰り返すことになるため、入射方向によって線量が大きく異なる場合があり得る。本実施例の線量計ホルダ1L,1Rを用いることで、このようなケースでも水晶体線量を正しく評価することが可能となる。 Here, in the medical field, there are cases where the work is performed under a non-uniform radiation field, or the posture of the worker is restricted for a long period of time. For example, since IVR operators need to be close to the patient, they tend to rely on protective eyeglasses as a countermeasure against lens exposure. In addition, it is inevitable that a certain amount of scattered radiation from the patient enters the lens. In addition, even if one work is short, the caregiver in X-ray diagnosis will repeat the work in a fixed position and posture with respect to the X-ray diagnostic equipment, so the radiation dose varies depending on the incident direction. It can be very different. By using the dosimeter holders 1L and 1R of the present embodiment, it is possible to correctly evaluate the lens dose even in such a case.

特に、防護眼鏡に装着した際の視界の妨げになりにくいという棒状の検出素子の利点を生かしつつ、方向依存性の影響を回避することで、水晶体線量の実用的な測定方法を提供することができる。ここで、個々の検出素子のサイズが小さい線量計としては球状の検出素子(OSLD素子)を用いるものが知られているが、操作性を確保するために1cm四方のプラスチックの板に挟んだ状態でバッジ等の器具に装着される構成となっており、単純に防護眼鏡に装着しようとするとプラスチック板によって着用者の視界が大きく損なわれてしまう。本実施形態のように棒状の線量計を用いることで、このような不都合を回避することが可能となる。なお、以上の説明では棒状の蛍光ガラス素子を用いる実施形態について説明したが、本実施例の線量計ホルダ1R,1Lは、蛍光ガラス素子以外の棒状の検出素子(例えば棒状のTDL素子)に対しても使用可能である。 In particular, it is possible to provide a practical method for measuring lens dose by avoiding the influence of direction dependence while taking advantage of the rod-shaped detection element, which is less likely to interfere with the field of view when worn on protective eyeglasses. can. Here, as a dosimeter in which individual detection elements are small in size, there is known a dosimeter that uses a spherical detection element (OSLD element). It is configured to be attached to a tool such as a badge, and if it is simply attached to protective glasses, the plastic plate will greatly impair the wearer's field of vision. By using a rod-shaped dosimeter as in this embodiment, it is possible to avoid such inconvenience. In the above description, an embodiment using a rod-shaped fluorescent glass element has been described. can also be used.

また、線量計ホルダ1L,1Rは、取付部としてのベース部13により、防護眼鏡10に着脱可能に装着される。このため、水晶体被ばくの防護手段として広く用いられている防護眼鏡10に線量計ホルダ1L,1Rを装着するという簡便な方法により、水晶体の付近における線量の測定が可能となる。特に、本実施例では底板部15(第1当接部)及び押さえ部14(第2当接部)によって防護眼鏡10のレンズ部2L,2Rを挟持するクリップ状の構成とすると共に、レンズ部2L,2Rの周縁部の外側に位置する抓み部17によって挟持部を開閉する構成とした。これにより、線量計ホルダ1L,1Rを着脱するための構成がレンズ部2L,2Rの外側に位置するため、線量計ホルダ1L,1Rを装着したことによる利用者の視界の制限を可能な限り少なくすることができる。 Also, the dosimeter holders 1L and 1R are detachably attached to the protective glasses 10 by a base portion 13 as an attachment portion. Therefore, by a simple method of mounting the dosimeter holders 1L and 1R on protective eyeglasses 10 widely used as means for protecting the lens from radiation, it is possible to measure the dose in the vicinity of the lens. In particular, in the present embodiment, the bottom plate portion 15 (first contact portion) and the pressing portion 14 (second contact portion) have a clip-like configuration that clamps the lens portions 2L and 2R of the protective glasses 10, and the lens portion The sandwiching portion is opened and closed by gripping portions 17 located outside the peripheral edge portions of 2L and 2R. As a result, the configuration for attaching and detaching the dosimeter holders 1L and 1R is located outside the lens portions 2L and 2R, so that the user's field of view is restricted as little as possible by wearing the dosimeter holders 1L and 1R. can do.

なお、ここでは線量計S1,S2がレンズ部2L,2Rに対して内側に位置する構成を説明したが、線量計S1,S2がレンズ部2L,2Rに対して外側に位置するように変更してもよい。この場合、線量計S1,S2の測定値に防護眼鏡10の透過率に相当する係数を乗算した値を用いて水晶体線量を評価することで、上記の実施例と同様に、検出素子の方向依存性による被ばく量の過小評価を防ぐができる。つまり、線量計S1,S2を、レンズ部に対する外側又は内側の内、同じ側に配置した構成の線量計ホルダは、検出素子の方向依存性によらずに水晶体線量をより適切に評価することを可能とする。線量計S1,S2を外側配置とするか内側配置とするかは、線量測定の目的に応じて定められる。 Although the configuration in which the dosimeters S1 and S2 are positioned inside the lens portions 2L and 2R has been described here, the dosimeters S1 and S2 are changed so as to be positioned outside the lens portions 2L and 2R. may In this case, by evaluating the lens dose using a value obtained by multiplying the measured values of the dosimeters S1 and S2 by a coefficient corresponding to the transmittance of the protective eyewear 10, the directional dependence of the detection element can be obtained as in the above embodiment. This can prevent underestimation of exposure dose due to sex. In other words, a dosimeter holder having a configuration in which the dosimeters S1 and S2 are arranged on the same side, either outside or inside the lens section, is expected to more appropriately evaluate the dose to the lens regardless of the directional dependence of the detection element. make it possible. Whether the dosimeters S1 and S2 are arranged outside or inside is determined according to the purpose of dose measurement.

次に、実施例2に係る線量計ホルダについて、図4及び図5を用いて説明する。図4は本実施例に係る線量計ホルダが装着された状態の防護眼鏡10を表す正面図(a)及び斜視図(b)である。本実施例に係る線量計ホルダ6L,6Rは、実施例1と同様に2個の線量計S1,S2を異なる姿勢で保持するものであるが、一方の線量計S1が防護眼鏡10のレンズ部2L,2Rの外側に位置し、他方の線量計S2がレンズ部2L,2Rの内側に位置するように設計される点で実施例1と異なっている。以下、実施例1と同様の構造及び作用を有する要素については、実施例1と共通の参照符号を付して説明を省略する。 Next, a dosimeter holder according to Example 2 will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a front view (a) and a perspective view (b) showing the protective glasses 10 with the dosimeter holder according to the present embodiment attached. The dosimeter holders 6L and 6R according to the present embodiment hold the two dosimeters S1 and S2 in different postures as in the first embodiment. It differs from the first embodiment in that it is positioned outside of 2L and 2R, and the other dosimeter S2 is designed to be positioned inside lens portions 2L and 2R. Hereinafter, elements having the same structure and action as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and descriptions thereof are omitted.

図5(a)は右眼側の線量計ホルダ6Rを示す斜視図であり、図5(b)は左眼側の線量計ホルダ6Lを示す斜視図である。実施例1と同様に、線量計ホルダ6L,6Rは、第1の線量計S1を保持する第1腕部11Aと、第2の線量計S2を保持する第2腕部12Aとを有し、これらがベース部13から分岐して延びたY字状の外観を有している。線量計ホルダ6L,6Rは、抓み部17を抓む操作により底板部15及び押さえ部14を開かせることで、防護眼鏡10のレンズ部2L,2Rに対して着脱可能である。 FIG. 5(a) is a perspective view showing the dosimeter holder 6R on the right eye side, and FIG. 5(b) is a perspective view showing the dosimeter holder 6L on the left eye side. As in the first embodiment, the dosimeter holders 6L and 6R have a first arm 11A that holds the first dosimeter S1 and a second arm 12A that holds the second dosimeter S2, These have a Y-shaped appearance branching from the base portion 13 and extending. The dosimeter holders 6L and 6R can be attached to and detached from the lens sections 2L and 2R of the safety glasses 10 by opening the bottom plate section 15 and the pressing section 14 by pinching the pinching section 17 .

ここで、本実施例の第1腕部11Aは押さえ部14に連続して形成され、第2腕部12Aは底板部15に連続して形成されている。そのため、線量計ホルダ6L,6Rを防護眼鏡10に取り付けた状態において、各ホルダの第1線量計S1はレンズ部2L,2Rの外側に位置し、第2線量計S2はレンズ部2L,2Rの内側に位置する。第1腕部11A及び第2腕部12Aは、各線量計S1,S2の検出素子の長軸方向が交差する姿勢となるように、特に、各長軸方向に垂直な方向(レンズ部2L,2Rの表面に垂直な方向)から見て長軸方向が互いに垂直に交差するように延びている。 Here, the first arm portion 11A of this embodiment is formed continuously with the pressing portion 14, and the second arm portion 12A is formed continuously with the bottom plate portion 15. As shown in FIG. Therefore, when the dosimeter holders 6L and 6R are attached to the protective glasses 10, the first dosimeter S1 of each holder is located outside the lens portions 2L and 2R, and the second dosimeter S2 is located outside the lens portions 2L and 2R. located inside. The first arm portion 11A and the second arm portion 12A are arranged so that the long axis directions of the detection elements of the dosimeters S1 and S2 intersect each other, particularly in directions perpendicular to the respective long axis directions (lens portion 2L, 2R), the longitudinal directions thereof extend so as to perpendicularly intersect each other.

その他、レンズ部2L,2Rに対する線量計ホルダ6L,6Rの取付位置、及び第1腕部11A及び第2腕部12Aによる線量計S1,S2の保持構成の詳細等は実施例1と同様である。ただし、本実施例において、第1線量計S1は常にレンズ部2L,2Rの外側にある状態で使用され、第2線量計S2は常にレンズ部2L,2Rの内側にある状態で使用されるべきものである。そのため、各線量計ホルダを識別するための標識部19に加えて、図5(a)、(b)に示すようにレンズ部2L,2Rに対する外側又は内側の指定を表示する表示部18a,18bを設けている。表示部18a,18bは、線量計ホルダ6L,6Rの少なくとも1箇所にあればよく、また、文字による表示に限らず、例えば図形やカラーコードを用いてもよい。さらに、抓み部17の片側の面(つまり、内側の面又は外側の面)に凹凸加工を施し、手に取った際に触覚的にどちらが外側であるかを識別できるようにしてもよい。凹凸形状は任意であるが、波板状のパターン、ドット状の格子パターン等が考えられる。また、凹凸加工を施すことで滑り止め作用(脱落防止作用)を期待することができる。 In addition, the mounting positions of the dosimeter holders 6L and 6R with respect to the lens portions 2L and 2R, the details of the holding structure of the dosimeters S1 and S2 by the first arm portion 11A and the second arm portion 12A, etc. are the same as those of the first embodiment. . However, in this embodiment, the first dosimeter S1 is always used outside the lens units 2L and 2R, and the second dosimeter S2 is always inside the lens units 2L and 2R. It is. Therefore, in addition to the indicator portion 19 for identifying each dosimeter holder, display portions 18a and 18b for displaying designation of the outside or inside of the lens portions 2L and 2R as shown in FIGS. is provided. The display sections 18a and 18b may be provided in at least one position of the dosimeter holders 6L and 6R, and may be displayed not only by characters but also by graphics or color codes, for example. Further, one side surface (that is, the inner surface or the outer surface) of the gripping portion 17 may be unevenly processed so that it can be tactilely identified which side is the outer side when picked up. Although the uneven shape is arbitrary, a corrugated plate-like pattern, a dot-like grid pattern, and the like are conceivable. In addition, anti-slip effect (anti-falling effect) can be expected by applying unevenness processing.

本実施例に係る線量計ホルダ6L,6Rの利点について説明する。線量計ホルダ6L,6Rは、実施例1の線量計ホルダ1L,1Rと同じく、線量計S1,S2がセットされた状態で防護眼鏡10に装着される。線量計S1,S2は定期的に回収され、ガラス素子の蛍光量の測定により線量の積算値が算出される。このとき、使用状態における各線量計S1,S2のガラス素子の長軸方向が異なっていることから、線量計S1,S2の両方の測定値に基づいて水晶体の被ばく量を評価することで、実施例1と同様に検出素子の方向依存性による被ばく量の過小評価を防ぐことが可能となる。例えば、外側の線量計S1の測定値に防護眼鏡10の透過率に相当する係数を乗算した値と、内側の線量計S2の測定値とを比較し、大きい方の値に基づいて水晶体線量を評価することが考えられる。 Advantages of the dosimeter holders 6L and 6R according to this embodiment will be described. The dosimeter holders 6L and 6R are attached to the safety glasses 10 with the dosimeters S1 and S2 set thereon, like the dosimeter holders 1L and 1R of the first embodiment. The dosimeters S1 and S2 are periodically collected, and the integrated value of the dose is calculated by measuring the fluorescence amount of the glass element. At this time, since the long axis directions of the glass elements of the dosimeters S1 and S2 are different in the use state, the exposure dose of the lens is evaluated based on the measured values of both the dosimeters S1 and S2. As in Example 1, it is possible to prevent underestimation of exposure due to the directional dependence of the detection element. For example, the value obtained by multiplying the measured value of the outer dosimeter S1 by a coefficient corresponding to the transmittance of the protective glasses 10 is compared with the measured value of the inner dosimeter S2, and the lens dose is calculated based on the larger value. It is conceivable to evaluate

ところで、蛍光ガラス線量計のガラス素子の改良、あるいはケースを含めた線量計の改良も進められており、棒状の検出素子を用いながらも方向依存性が低減された線量計が将来的に利用可能となることが予想される。本実施例の線量計ホルダ6L,6Rは、そのような線量計を複数組み合わせて、防護眼鏡10の外側における遮蔽前の線量と防護眼鏡10の内側における遮蔽後の線量とを同時にモニタリングする用途にも好適に使用することができる。 By the way, efforts are being made to improve the glass element of the fluorescent glass dosimeter, or to improve the dosimeter including the case. is expected to be The dosimeter holders 6L and 6R of the present embodiment combine a plurality of such dosimeters to simultaneously monitor the dose before shielding on the outside of the protective glasses 10 and the dose after shielding on the inside of the protective glasses 10. can also be preferably used.

つまり、線量計を個別に評価した場合の方向依存性が低減されたとしても、単純に防護眼鏡10の外側及び内側に2つの線量計を配置すると、次のような課題が生じ得る。
(1)外側の線量計が内側の線量計に対する遮蔽物となることにより、内側の線量計に見かけ上の方向依存性が生じ得ること。
(2)2つの線量計により測定対象者の視界が制限される可能性があること。
In other words, even if the directional dependence when evaluating the dosimeters individually is reduced, simply arranging two dosimeters outside and inside the protective glasses 10 may cause the following problems.
(1) Apparent directional dependence of the inner dosimeter can occur due to the outer dosimeter shielding the inner dosimeter.
(2) Two dosimeters may limit the field of view of the person being measured.

本実施例によれば、第1線量計S1及び第2線量計S2が、長軸方向が互いに異なる姿勢で配置されると共に、レンズ部2L,2Rの表面に垂直な方向から見て重ならないように配置される(図4(b)参照)。従って、上記(1)に対して、外側の第1線量計S1による内側の第2線量計S2の遮蔽を最小限に抑えて、第2線量計S2の測定結果に方向依存性が現れる可能性を低減することができる。 According to the present embodiment, the first dosimeter S1 and the second dosimeter S2 are arranged in postures different from each other in the long axis direction, and are arranged so as not to overlap each other when viewed from the direction perpendicular to the surfaces of the lens parts 2L and 2R. (see FIG. 4(b)). Therefore, with respect to (1) above, the shielding of the inner second dosimeter S2 by the outer first dosimeter S1 is minimized, and the measurement result of the second dosimeter S2 may exhibit directional dependence. can be reduced.

また、本実施例によれば、線量計ホルダ6L,6Rを防護眼鏡10に装着した状態において、実施例1と同様に2つの線量計S1,S2がレンズ部2L,2Rの周縁部に位置した状態となる。例えば図4(a)、(b)に示す防護眼鏡10の場合、第1線量計S1はレンズ部2L,2Rの側面部22の後端付近において、後端に沿って略上下方向に延びた姿勢で装着され、第2線量計S2はレンズ部2L,2Rの側面部22の上端付近において、上端に沿って略前後方向に延びた姿勢で装着される。従って、上記(2)に対して、2つの線量計S1,S2は、いずれもレンズ部2L,2Rの中で測定対象者の中心視野から遠く離れた領域を利用して装着されており、測定対象者の視界が制限されることを可能な限り防ぐことができる。 Further, according to the present embodiment, when the dosimeter holders 6L and 6R are attached to the protective eyeglasses 10, the two dosimeters S1 and S2 are located at the peripheral edges of the lens portions 2L and 2R as in the first embodiment. state. For example, in the case of the protective glasses 10 shown in FIGS. 4A and 4B, the first dosimeter S1 extends substantially vertically along the rear ends near the rear ends of the side portions 22 of the lens portions 2L and 2R. The second dosimeter S2 is mounted in a posture extending substantially in the front-rear direction along the upper end near the upper end of the side surface portion 22 of the lens portions 2L and 2R. Therefore, with respect to (2) above, the two dosimeters S1 and S2 are both mounted using a region far away from the central visual field of the person being measured in the lens units 2L and 2R. It is possible to prevent the target's field of vision from being restricted as much as possible.

なお、防護眼鏡の外側における遮蔽前の線量と防護眼鏡の内側における遮蔽後の線量とを同時にモニタリングすることで、防護眼鏡による線量の低減効果を確認することが可能となる。これにより、作業内容が異なる複数の作業者(例えば、散乱X線に直接曝されるIVRの施術者と、施術を一時的に補助する医療スタッフ)がいる環境において、防護眼鏡の着用義務を課す範囲を適切に設定するための基礎データを入手できる。また、実際に作業が行われていた期間の防護眼鏡の遮蔽効果を検証することで、防護眼鏡の設計の最適化や、複数種類の防護眼鏡から適切なものを選ぶ際に有用な情報が得られる。 By simultaneously monitoring the dose before shielding on the outside of the protective glasses and the dose after shielding on the inside of the protective glasses, it is possible to confirm the dose reduction effect of the protective glasses. As a result, in an environment where there are multiple workers with different work contents (for example, an IVR practitioner who is directly exposed to scattered X-rays and a medical staff who temporarily assists the procedure), it will be compulsory to wear protective glasses. Basic data are available to set the range appropriately. In addition, by verifying the shielding effect of protective goggles during the actual work period, useful information can be obtained for optimizing the design of protective goggles and for selecting the appropriate one from multiple types of goggles. be done.

(他の実施形態)
上述の実施形態では、線量計ホルダ1L,1R,6L,6Rが防護眼鏡10に着脱可能に装着されるものとして説明した。しかしながら、防護眼鏡に代えて、視力矯正用の眼鏡、フェイスマスクのアイピース、又はヘッドセット等、利用者が頭部に装着する任意の器具に線量計ホルダを装着してもよい。また、線量計の使用目的は医療施設における線量管理に限らず、個人線量モニタリング一般に使用可能である。
(Other embodiments)
In the above-described embodiments, the dosimeter holders 1L, 1R, 6L, and 6R are detachably attached to the protective glasses 10. As shown in FIG. However, instead of the protective glasses, the dosimeter holder may be attached to any device that the user wears on the head, such as eyeglasses for correcting vision, eyepieces of a face mask, or a headset. In addition, the purpose of using the dosimeter is not limited to dose management in medical facilities, but can be used for personal dose monitoring in general.

また、装着方法はクリップ状の取付部に限らず、例えば接着剤又は面ファスナ等によって線量計ホルダを器具に貼り付けてもよい。さらに、器具とは独立に用意された線量計ホルダを器具に装着する(後付けで配置する)構成に限らず、器具の一部分として第1保持部及び第2保持部を有する線量計ホルダを設けてもよい。 Moreover, the mounting method is not limited to the clip-shaped mounting portion, and the dosimeter holder may be attached to the instrument by, for example, an adhesive or a hook-and-loop fastener. Furthermore, the configuration is not limited to the configuration in which a dosimeter holder prepared independently from the instrument is attached to the instrument (arranged after installation), and a dosimeter holder having a first holding part and a second holding part is provided as a part of the instrument. good too.

また、図示した構成例において、2つの線量計S1,S2は互いの長軸方向が略垂直に交差する姿勢で保持されるが、線量計S1,S2の姿勢は適宜変更可能である。ただし、検出素子の方向依存性の影響を低減する観点からは、互いの長軸方向がなす角が一定以上の大きさであることが好ましく、例えば60度に設定することが考えられる。また、2つの線量計S1,S2の長軸方向が作る平面に対して交差する方向(例えば、線量計S1,S2の長軸方向をX軸方向、Y軸方向としたときのZ軸方向)に向いた姿勢で3つ目の線量計を保持する構成としてもよい。 Also, in the illustrated configuration example, the two dosimeters S1 and S2 are held in a posture in which their long axis directions substantially perpendicularly cross each other, but the postures of the dosimeters S1 and S2 can be changed as appropriate. However, from the viewpoint of reducing the influence of the directional dependence of the detection elements, it is preferable that the angle formed by the long axis directions is a certain size or more, and it is conceivable to set it to 60 degrees, for example. Also, the direction intersecting the plane formed by the long axis directions of the two dosimeters S1 and S2 (for example, the Z axis direction when the long axis directions of the dosimeters S1 and S2 are the X axis direction and the Y axis direction) A third dosimeter may be held in a posture facing toward.

また、線量計ホルダ1L,1Rが防護眼鏡10の左右のレンズ部2L,2Rにそれぞれ装着される構成に代えて、例えば鼻当て4の両側に線量計S1,S2が位置するように線量計ホルダを1つだけ装着する使用方法も可能である。 Further, instead of the configuration in which the dosimeter holders 1L and 1R are attached to the left and right lens portions 2L and 2R of the protective eyeglasses 10, respectively, the dosimeter holders are arranged such that the dosimeters S1 and S2 are positioned on both sides of the nose pad 4, for example. A method of use in which only one is attached is also possible.

本発明は、水晶体の個人線量モニタリングに使用可能である。 The present invention can be used for personal dose monitoring of the lens.

1R,1L…線量計ホルダ
2R,2L…レンズ部
3…フレーム
10…器具、防護眼鏡
11…第1保持部(第1腕部)
12…第2保持部(第2腕部)
13…取付部(ベース部)
14…第2当接部(押さえ部)
15…第1当接部(底板部)
17…抓み部
31…第1検出素子、第2検出素子(ガラス素子)
32…ケース
1R, 1L... Dosimeter holder 2R, 2L... Lens part 3... Frame 10... Instrument, protective glasses 11... First holding part (first arm part)
12... Second holding portion (second arm portion)
13... Mounting part (base part)
14... Second contact portion (holding portion)
15... First contact portion (bottom plate portion)
17... pinching portion 31... first detection element, second detection element (glass element)
32... case

Claims (7)

利用者の頭部に装着する器具に取付可能な線量計ホルダであって、
放射線を検出する棒状の第1検出素子を保持する第1保持部と、
放射線を検出する棒状の第2検出素子を、長軸方向が前記第1検出素子の長軸方向とは異なっている姿勢で保持する第2保持部と、を備える、
ことを特徴とする線量計ホルダ。
A dosimeter holder attachable to a device worn on a user's head,
a first holder that holds a rod-shaped first detection element that detects radiation;
a second holding part that holds a rod-shaped second detection element that detects radiation in a posture in which the long axis direction is different from the long axis direction of the first detection element;
A dosimeter holder characterized by:
前記器具が、利用者の眼を覆うレンズ部と、前記レンズ部を保持するフレームと、を有する防護眼鏡であり、
前記第1保持部及び前記第2保持部を支持し、前記防護眼鏡に対して着脱可能に装着される取付部をさらに備える、
ことを特徴とする請求項1に記載の線量計ホルダ。
The device is protective eyeglasses having a lens portion that covers the user's eyes and a frame that holds the lens portion,
Further comprising a mounting portion that supports the first holding portion and the second holding portion and is detachably attached to the protective glasses,
The dosimeter holder according to claim 1, characterized in that:
前記第1検出素子及び前記第2検出素子のいずれか一方が前記レンズ部に対して外側に配置され、前記第1検出素子及び前記第2検出素子の他方が前記レンズ部に対して内側に配置され、
前記第1検出素子の長軸方向及び前記第2検出素子の長軸方向に垂直な方向から見て、前記第1検出素子及び前記第2検出素子が重ならない、
ことを特徴とする請求項2に記載の線量計ホルダ。
One of the first detection element and the second detection element is arranged outside the lens section, and the other of the first detection element and the second detection element is arranged inside the lens section. is,
When viewed from a direction perpendicular to the long axis direction of the first detection element and the long axis direction of the second detection element, the first detection element and the second detection element do not overlap,
The dosimeter holder according to claim 2, characterized in that:
前記第1検出素子及び前記第2検出素子は、前記レンズ部に対する外側又は内側の内、同じ側に配置される、
ことを特徴とする請求項2に記載の線量計ホルダ。
The first detection element and the second detection element are arranged on the same side of the outer side or the inner side with respect to the lens portion,
The dosimeter holder according to claim 2, characterized in that:
前記取付部は、前記第1保持部及び前記第2保持部を支持し前記レンズ部の内側の表面に当接する第1当接部と、前記レンズ部の外側の表面に当接し前記第1当接部と共に前記レンズ部を挟持する第2当接部と、前記レンズ部の周縁部の外側に位置し把持されることで前記第1当接部及び前記第2当接部を開閉可能な抓み部と、を有する、
ことを特徴とする請求項2乃至4のいずれか1項に記載の線量計ホルダ。
The mounting portion includes a first contact portion that supports the first holding portion and the second holding portion and contacts the inner surface of the lens portion, and the first contact portion that contacts the outer surface of the lens portion. a second contact portion that sandwiches the lens portion together with the contact portion; and a grip that is positioned outside the peripheral edge portion of the lens portion and gripped so as to open and close the first contact portion and the second contact portion. having a portion and
The dosimeter holder according to any one of claims 2 to 4, characterized in that:
前記第1保持部及び前記第2保持部は、前記第1検出素子及び前記第2検出素子を前記レンズ部の表面に沿った姿勢で保持し、前記第1検出素子の長軸方向と前記第2検出素子の長軸方向とが略垂直に交差する、
ことを特徴とする請求項2乃至5のいずれか1項に記載の線量計ホルダ。
The first holding section and the second holding section hold the first detection element and the second detection element in a posture along the surface of the lens section, and the long axis direction of the first detection element and the second detection element. 2 intersects substantially perpendicularly with the long axis direction of the detection element,
The dosimeter holder according to any one of claims 2 to 5, characterized in that:
前記第1検出素子及び前記第2検出素子が、いずれも、照射された放射線の線量に応じた蛍光を発する棒状の蛍光ガラス素子であり、
前記第1保持部は、前記第1検出素子を収容する円筒状のケースを保持し、
前記第2保持部は、前記第1検出素子を収容する円筒状のケースを保持する、
ことを特徴とする請求項1乃至6のいずれか1項に記載の線量計ホルダ。
Both the first detection element and the second detection element are rod-shaped fluorescent glass elements that emit fluorescence corresponding to the dose of irradiated radiation,
The first holding portion holds a cylindrical case that houses the first detection element,
The second holding part holds a cylindrical case that houses the first detection element,
The dosimeter holder according to any one of claims 1 to 6, characterized in that:
JP2018149742A 2018-08-08 2018-08-08 dosimeter holder Active JP7120569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149742A JP7120569B2 (en) 2018-08-08 2018-08-08 dosimeter holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149742A JP7120569B2 (en) 2018-08-08 2018-08-08 dosimeter holder

Publications (2)

Publication Number Publication Date
JP2020024179A JP2020024179A (en) 2020-02-13
JP7120569B2 true JP7120569B2 (en) 2022-08-17

Family

ID=69618592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149742A Active JP7120569B2 (en) 2018-08-08 2018-08-08 dosimeter holder

Country Status (1)

Country Link
JP (1) JP7120569B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075539A (en) 2001-09-04 2003-03-12 Asahi Techno Glass Corp Dosemeter holder
JP2006230510A (en) 2005-02-22 2006-09-07 Natl Inst Of Radiological Sciences Dosimeter mounting wear, and body surface exposure dose distribution measuring method and apparatus using the same
US20090159807A1 (en) 2007-12-14 2009-06-25 Edward Joseph Waller Orofacial radiation detection device for detection of radionuclide contamination from inhalation
JP2018517897A (en) 2015-04-24 2018-07-05 エスセーカー・セーエーエヌSck.Cen Personal dosimeter with at least two ionizing radiation detectors
JP2018119838A (en) 2017-01-24 2018-08-02 學 増田 Protection mask for visibly recognizing radiation dose amount

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230050A (en) * 1996-02-21 1997-09-05 Toshiba Glass Co Ltd Dosimeter holder
KR101072872B1 (en) * 2009-10-29 2011-10-17 노영진 Cap indicable index of ultraviolet rays

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075539A (en) 2001-09-04 2003-03-12 Asahi Techno Glass Corp Dosemeter holder
JP2006230510A (en) 2005-02-22 2006-09-07 Natl Inst Of Radiological Sciences Dosimeter mounting wear, and body surface exposure dose distribution measuring method and apparatus using the same
US20090159807A1 (en) 2007-12-14 2009-06-25 Edward Joseph Waller Orofacial radiation detection device for detection of radionuclide contamination from inhalation
JP2018517897A (en) 2015-04-24 2018-07-05 エスセーカー・セーエーエヌSck.Cen Personal dosimeter with at least two ionizing radiation detectors
JP2018119838A (en) 2017-01-24 2018-08-02 學 増田 Protection mask for visibly recognizing radiation dose amount

Also Published As

Publication number Publication date
JP2020024179A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
EP1112526B1 (en) Apparatus for measuring facial exposure to radiation, mountable on an eye protective device
Magee et al. Derivation and application of dose reduction factors for protective eyewear worn in interventional radiology and cardiology
McVey et al. An assessment of lead eyewear in interventional radiology
US7541599B2 (en) Dosimeter fitting wear and body surface exposure dose distribution measuring method and apparatus using the same
US4024405A (en) X-ray eye shield
Wrzesień et al. Investigation of radiation protection of medical staff performing medical diagnostic examinations by using PET/CT technique
US20200353115A1 (en) Medical instrument
JP7120569B2 (en) dosimeter holder
Chru_cielewski et al. Hand exposure in nuclear medicine workers
Tendler et al. Characterization of a non-contact imaging scintillator-based dosimetry system for total skin electron therapy
US20190290491A1 (en) Apparatus for protecting eyes from radiation
Imai et al. Occupational eye lens dose in endoscopic retrograde cholangiopancreatography using a dedicated eye lens dosimeter
Tendler et al. Improvements to an optical scintillator imaging-based tissue dosimetry system
WO2020036232A1 (en) Radiation measuring body, and radiation exposure dose measuring device
JP6895896B2 (en) Personal dosimeter with at least two ionizing radiation detectors, personal radiation dose measurement system and personal radiation dose measurement method
Domienik et al. The impact of x-ray tube configuration on the eye lens and extremity doses received by cardiologists in electrophysiology room
Dhanse et al. A study of doses to the hands during dispensing of radiopharmaceuticals
Bahruddin et al. Radiation dose to physicians’ eye lens during interventional radiology
CN109839653B (en) Personal eye crystal dosage measuring device and measuring method
CN220208023U (en) Radiation protection glasses with eye crystal detector
Moseley Ultraviolet and visible radiation transmission properties of some types of protective eyewear
Wilke Radiation protection measurements in clinical practice-Dosimetry with NaCl pellets
Khafaji et al. Measurement of Occupational Eye and Thyroid Radiation Doses in Pediatric Interventional Cardiologists at a Tertiary Hospital
Eri Occupational eye lens doses in nuclear medicine procedures
Fukushima et al. Eye lens dose for medical staff assisting patients during computed tomography: comparison of several types of radioprotective glasses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220727

R150 Certificate of patent or registration of utility model

Ref document number: 7120569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150