JP7119550B2 - 2モードネットワークにおける検索結果の視覚的探索のためのシステム及び方法、プログラム、及びコンピュータ装置 - Google Patents

2モードネットワークにおける検索結果の視覚的探索のためのシステム及び方法、プログラム、及びコンピュータ装置 Download PDF

Info

Publication number
JP7119550B2
JP7119550B2 JP2018091881A JP2018091881A JP7119550B2 JP 7119550 B2 JP7119550 B2 JP 7119550B2 JP 2018091881 A JP2018091881 A JP 2018091881A JP 2018091881 A JP2018091881 A JP 2018091881A JP 7119550 B2 JP7119550 B2 JP 7119550B2
Authority
JP
Japan
Prior art keywords
entity
type
sub
entities
visualization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018091881A
Other languages
English (en)
Other versions
JP2019067360A (ja
Inventor
ジャオ ジアン
チェン フランシーン
チィーウ パトリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Publication of JP2019067360A publication Critical patent/JP2019067360A/ja
Application granted granted Critical
Publication of JP7119550B2 publication Critical patent/JP7119550B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0623Item investigation
    • G06Q30/0625Directed, with specific intent or strategy

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • User Interface Of Digital Computer (AREA)

Description

本開示は、データ視覚化システムに関し、より具体的には、ネットワークを分析するためのデータ視覚化システムのシステム及び方法に関する。
多くの分野において、ネットワークは、エンティティ(ノード)及び関係(ノード間のリンク)の抽象的な表現として使用することができる。多くのネットワークは、1モード又は単一モード(例えば、ユーザ、著者、位置、文書などの1つの種類のエンティティを含む)として定義することができるが、2モードネットワーク(バイパートグラフ(bipartite graphs)としても知られている)は、実世界アプリケーション(例えば、会社内の従業員及びチームのネットワーク、テキストコーパスにおける著者及び文書のネットワーク、顧客のネットワーク、並びにオンラインコマースプラットフォーム(online commerce platform)の購入)において存在することができる。そのような従来の2モードネットワークにおいて、リンクは、重み付けされても重み付けされなくてもよい異なる種類のノード間にのみ存在することができる。例えば、従来の従業員チームネットワークにおいて、リンクは、チームに対する従業員のメンバーシップを表すことができるが、2人の異なる従業員又は2つの異なるチームの間に直接的なリンクは存在しない。
従来技術において、2モードネットワークの分析は、それらが表すシステムに貴重な洞察を提供することができるが、通常、1モードネットワークの分析よりも複雑である。従来技術において、ローカル及びグローバルレベルの双方においてネットワーク特性を理解するために、サブネットワークパターン(例えば、特定の構造を提示する又は特定の条件を満たすノード及びリンクのグループ)が検出されることがある。サブネットワークパターンについては、以下により詳細に記載される。
従来の計算方法は、2モードネットワーク(例えば、バイクラスタリング(biclustering))におけるパターンを発見するために開発されている。これらの従来の方法は、ネットワーク構造に対していくつかの基本的な洞察を提供することができるが、ネットワークのサイズが大きくなるのにともない、分析はより複雑になる。例えば、多くのパターンは、ネットワークにおけるキープレイヤを示す重複ノードを有することがあり、結果の効果的な表現なしで見つけにくいことがある。さらに、従来のパターン発見アルゴリズムは、手作業による検査を必要とする欠点を有することがある。例えば、従来のアルゴリズムを使用すると、複数のノードがともに表示されたときに明らかにすることができるいくつかのパターンによって共有される複数のノードによって示される高レベルのパターンを検出できないことがある。
しかしながら、従来の視覚化システムは、通常は1モードである一般的なネットワークを探索するために設計されている。単一モードネットワーク用に設計された従来の視覚化技術は、サブネットワークパターンの容易な識別を可能にしないことがある。さらに、サブネットワークパターン(バイククラスタリングなど)を示すことがある従来の視覚化技術は、スケーラブルではなく、重み付けされた2モードネットワークに対応できるほど一般的ではない。2モードネットワークを表示するために拡張できるものもなかにはあるが、それらは、サブネットワークパターン分析タスクには適していない。本発明は、対話型視覚化技術に基づく2モードネットワークにおけるパターンを研究するという特定の課題に取り組む。多くの従来の視覚化システムは、データの概要のみを提供し、全てのパターンのより効果的な視覚化を欠いている。
FIAUX, et al. "Bixplorer: Visual Analytics with Biclusters" Pages 90-94. IEEE 2013(August 2013)(5 pages). GHONIEM, et al. "On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis". Information Visualization (2005)4, 114-135(May 19, 2005)(22 pages). HEINRICH, et al. "BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Date". Advances in Visual Computing, pp.641-652. Springer, 2011(12 pages). STASKO, et al. "Jigsaw: supporting investigative analysis through interactive visualization". Visual Analytics Science and Technology, 2007. VAST 2007. IEEE Symposium. SUN, et al. "BiSet: Semantic Edge Bundling with Biclusters for Sensemaking", IEEE Transactions on Visualization and Computer Graphics, August 12, 2015, 22(1), pgs. 310-319(March 26, 2008)(15 pages). UNO, et al. "An Efficient Algorithm for Enumerating Closed Patterns in Transaction Databases". In: Suzuki E., Arikawa S. (eds) Discovery Science. DS 2004. Lecture Notes in Computer Science, vol 3245. Springer, Berlin, Heidelberg (16 pages).
本開示の技術は、検索結果を視覚化する検索結果を視覚化する方法、プログラム、及びコンピュータ装置を提供することを目的とする。
本開示の第1の態様は、検索結果を視覚化する方法を含むことができる。本方法は、コンテンツ特徴を受信することと、ネットワーク内で、条件を満たし且つ第1の種類又は第2の種類のエンティティと関連付けられた関係を表すサブネットワークパターンを検出することであって、エンティティがコンテンツ特徴と関連付けられることと、検出されたサブネットワークパターンに基づいて視覚化を生成することとを含む。視覚化は、第1の種類のエンティティを表す第1の領域と、第2の種類のエンティティを表す第2の領域と、第1の領域を第2の領域に接続し且つ提示された関係に関する情報を提供する連結領域とを含む。
本開示の第2の態様は、第1の態様において、前記ネットワークが複数の関係を備え、各関係が、前記第1の種類の複数のエンティティから選択されたエンティティ及び前記第2の種類の複数のエンティティから選択されたエンティティと関連付けられ、前記サブネットワークパターンを検出することが、複数のサブネットワークパターンを検出することを備え、前記複数のサブネットワークパターンのそれぞれが、前記条件を満たし、且つ、前記受信したコンテンツ特徴と関連付けられる、前記第1の種類の複数のエンティティから選択されたエンティティ又は前記第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表し、前記視覚化が複数の行を備え、各行が前記条件を満たす前記複数の検出されたサブネットワークパターンのうちの1つと関連付けられる。
本開示の第3の態様は、第1の態様において、前記第1の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのクリエータを表し、前記第2の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのアイテムを表す。
本開示の第4の態様は、第3の態様において、前記視覚化の前記連結領域に設けられた前記情報が、複数のサブネットワークパターンのそれぞれによって提示された前記関係と関連付けられた前記第2の種類の1又は複数のエンティティを表すコンテンツ要約を備える。
本開示の第5の態様は、第4の態様において、前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別されたエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える。
本開示の第6の態様は、第4の態様において、前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別されたエンティティと関連付けられない関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える。
本開示の第7の態様は、第2の態様において、前記第1の種類のエンティティが小売店の顧客を表し、前記第2の種類のエンティティが前記小売店によって販売される物品を表す。
本開示の第8の態様は、第7の態様において、前記第1の種類のエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別された第1の種類のエンティティと関連付けられた関係と関連付けられた第2の種類の第1のエンティティを検出することと、前記検出された第2の種類の第1のエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することとを備える。
本開示の第9の態様は、第7の態様において、前記第1の種類のエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別された第1の種類のエンティティと関連付けられた関係と関連付けられた第2の種類の第1のエンティティを検出することと、前記検出された第2の種類の第1のエンティティと関連付けられた関係と関連付けられた前記第1の種類の第2のエンティティを検出することと、前記検出された第1の種類の第2のエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することとを備える、請求項7に記載の方法。
本開示の第10の態様は、第9の態様において、前記サブネットワークパターンと関連付けられた少なくとも1つの行を再配置することが、前記識別されたエンティティと関連付けられない関係及び前記検出された第1の種類の第2のエンティティと関連付けられた関係の双方を表すサブネットワークパターンと関連付けられた少なくとも1つの行を識別することを備える。
本開示の第11の態様は、検索結果を視覚化する方法をコンピュータに実行させるためのプログラムを含むことができる。本方法は、コンテンツ特徴を受信することと、ネットワーク内で、条件を満たし且つ第1の種類又は第2の種類のエンティティと関連付けられた関係を表すサブネットワークパターンを検出することであって、エンティティがコンテンツ特徴と関連付けられることと、検出されたサブネットワークパターンに基づいて視覚化を生成することとを含む。視覚化は、第1の種類のエンティティを表す第1の領域と、第2の種類のエンティティを表す第2の領域と、第1の領域を第2の領域に接続し且つ提示された関係に関する情報を提供する連結領域とを含む。
本開示の第12態様は、第11の態様において、前記ネットワークが複数の関係を備え、各関係が、前記第1の種類の複数のエンティティから選択されたエンティティ及び前記第2の種類の複数のエンティティから選択されたエンティティと関連付けられ、前記サブネットワークパターンを検出することが、複数のサブネットワークパターンを検出することを備え、前記複数のサブネットワークパターンのそれぞれが、前記条件を満たし、且つ、前記受信したコンテンツ特徴と関連付けられる、前記第1の種類の複数のエンティティから選択されたエンティティ又は前記第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表し、前記視覚化が複数の行を備え、各行が前記条件を満たす前記複数の検出されたサブネットワークパターンのうちの1つと関連付けられる。
本開示の第13態様は、第12の態様において、前記第1の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのクリエータを表し、前記第2の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのアイテムを表す。
本開示の第14態様は、第13の態様において、前記視覚化の前記連結領域に設けられた前記情報が、複数のサブネットワークパターンのそれぞれによって提示された前記関係と関連付けられた前記第2の種類の1又は複数のエンティティを表すコンテンツ要約を備える。
本開示の第15態様は、第14の態様において、前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別されたエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える。
本開示の第16態様は、第14の態様において、前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別されたエンティティと関連付けられない関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える。
本開示の第17態様は、第12の態様において、前記第1の種類のエンティティが小売店の顧客を表し、前記第2の種類のエンティティが前記小売店によって販売される物品を表す。
本開示の第18態様は、第17の態様において、前記第1の種類のエンティティを識別する入力信号を受信することと、前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、前記視覚化を更新することが、前記識別された第1の種類のエンティティと関連付けられた関係と関連付けられた第2の種類の第1のエンティティを検出することと、前記検出された第2の種類の第1のエンティティと関連付けられた関係と関連付けられた前記第1の種類の第2のエンティティを検出することと、前記検出された第1の種類の第2のエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することとを備える。
本開示の第19態様は、第18の態様において、前記サブネットワークパターンと関連付けられた少なくとも1つの行を再配置することが、前記識別されたエンティティと関連付けられない関係及び前記検出された第1の種類の第2のエンティティと関連付けられた関係の双方を表すサブネットワークパターンと関連付けられた少なくとも1つの行を識別することをさらに備える。
本開示の第20の態様はまた、検索結果を視覚化するように構成されたコンピュータ装置を含むことができる。コンピュータ装置は、複数の関係を含む関係データを格納するメモリであって、各関係が第1の種類の複数のエンティティから選択されたエンティティ及び第2の種類の複数のエンティティから選択されたエンティティと関連付けられたメモリと、プロセッサと、生成された視覚化を表示するように構成されたディスプレイ装置とを含むことができる。プロセッサは、コンテンツ特徴を受信することと、複数のサブネットワークパターンを検出することであって、複数のサブネットワークパターンのそれぞれが、条件を満たし、且つ、受信したコンテンツ特徴と関連付けられた、第1の種類の複数のエンティティから選択されたエンティティ又は第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表すことと、検出されたサブネットワークパターンに基づいて視覚化を生成することとを含むプロセスを実行することができる。生成された視覚化は、第1の種類のエンティティを表す第1の領域と、第2の種類のエンティティを表す第2の領域と、第1の領域を第2の領域に接続し且つ提示された関係に関する情報を提供する連結領域とを含むことができる。視覚化はまた、複数の行を含むことができ、各行は、条件を満たす複数の検出されたサブネットワークパターンのうちの1つと関連付けられる。
本開示の第21の態様はまた、検索結果を視覚化するように構成されたコンピュータ装置を含むことができる。コンピュータ装置は、複数の関係を含む関係データを格納する手段であって、各関係が第1の種類の複数のエンティティから選択されたエンティティ及び第2の種類の複数のエンティティから選択されたエンティティと関連付けられた手段と、コンテンツ特徴を受信する手段と、複数のサブネットワークパターンを検出する手段であって、前記複数のサブネットワークパターンの各々は条件を満たし、且つ、受信したコンテンツ特徴と関連付けられた、第1の種類の複数のエンティティから選択されたエンティティ又は第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表す手段と、検出されたサブネットワークパターンに基づく視覚化を生成する手段と、生成された視覚化を表示する手段とを含むことができる。生成された視覚化は、第1の種類のエンティティを表す第1の領域と、第2の種類のエンティティを表す第2の領域と、第1の領域を第2の領域に接続し且つ提示された関係に関する情報を提供する連結領域とを含むことができる。
視覚化はまた、複数の行を含むことができ、各行は、条件を満たす複数の検出されたサブネットワークパターンのうちの1つと関連付けられる。
図1は、2モードネットワークの例を示している。 図2は、本特許出願の例示的な実装にかかる視覚化プロセスのフローチャートを示している。 図3は、本特許出願の例示的な実装にかかる視覚化として使用可能なユーザインターフェース(UI)を示している。 図4は、図3のUIの拡大部を示している。 図5は、本特許出願の例示的な実装において使用可能なノードアイコンの一般的な構成を示している。 図6は、図3のUIの他の部分の拡大図を示している。 図7は、ユーザの選択に基づいて再編成された図3のUIを示している。 図8は、本特許出願の例示的な実装にかかるUIの対話及び更新のプロセスのフローチャートを示している。 図9は、本特許出願の例示的な実装にかかる検索結果視覚化プロセスのフローチャートを示している。 図10は、本特許出願の他の例示的な実装にかかる視覚化として使用可能なUIを示している。 図11は、本特許出願の他の例示的な実装にかかる視覚化として使用可能なUIを示している。 図12Aは、本特許出願の他の例示的な実装にかかる視覚化として使用可能なUIの例示的な実装を示している。 図12Bは、本特許出願の他の例示的な実装にかかる視覚化として使用可能なUIの例示的な実装を示している。 図13は、本特許出願のいくつかの例示的な実装における使用に適した例示的なコンピュータ装置を有する例示的なコンピューティング環境を示している。
以下の詳細な説明は、本特許出願の図面及び例示的な実装のさらなる詳細を提供する。図面間の重複する要素の参照符号及び説明は、明確化のために省略されている。詳細な説明全体にわたって使用される用語は、例として提供されており、限定を意図するものではない。例えば、「自動」という用語の使用は、本特許出願の実装を実施する当業者の所望の実装に応じて、実装の特定の態様に対するユーザ又はオペレータ制御を含む完全自動又は半自動の実装を含むことができる。
2モードネットワークは、2種類のエンティティ(ノード)及び異なる種類のエンティティ間の関係(リンク)から構成される特別な種類のネットワークである。2モードネットワークは、1つのエンティティと他のエンティティとの間の関連付けを要約することができ、それらは、例えば、組織内の従業員とチームとの間の接続など、多くのアプリケーションシナリオに存在する。特定のサブネットワークパターンは、アナリストにとって興味深いものである。1つの種類のサブネットワークパターンは小集団であってもよい。
小集団は、2モードネットワークにおける最大で完全な部分グラフである。完全とは、1つの種類のあらゆるノードがこの部分グラフにおける他の種類の全てのノードに接続していることを意味し、最大とは、この部分グラフに対して余分なノード及びリンクを追加することが最大定義を破ることを意味する。
図1は、第1の種類のエンティティ105(A-F)及び第2の種類のエンティティ110(1-6)によって形成される例示的な2モードネットワーク100を示している。図1において、第1の種類のエンティティ105(A、B)及び第2の種類のエンティティ110(1、2)から形成されたサブネットワークパターン115は、双方とも完全且つ最大であることから小集団を示している。サブネットワークパターン115は、第1の種類のエンティティ105(A、B)の全てが第2の種類のエンティティ110(1、2)の全てに接続されていることから完全である。サブネットワークパターン115は、ネットワーク100内の他の第1の種類のエンティティ105(C-F)がサブネットワークパターン115の第2の種類のエンティティ110(1、2)の全てに接続されておらず、且つネットワーク100内の他の第2の種類のエンティティ110(3-6)がサブネットワークパターン115の第1の種類のエンティティ110(A、B)の全てに接続されていないことから最大である。
図1において、第1の種類のエンティティ105(B、E)及び第2の種類のエンティティ110(4、5)から形成されたサブネットワークパターン120もまた、双方とも完全且つ最大であることから小集団を示している。サブネットワークパターン120は、第1の種類のエンティティ105(B、E)の全てが第2の種類のエンティティ110(4、5)の全てに接続されていることから完全である。サブネットワークパターン120は、ネットワーク100内の他の第1の種類のエンティティ105(A、C、D、F)がサブネットワークパターン120の第2の種類のエンティティ110(4、5)の全てに接続されておらず、且つネットワーク100内の他の第2の種類のエンティティ110(1-3、6)がサブネットワークパターン120の第1の種類のエンティティ110(B、E)の全てに接続されていないことから最大である。
図1に示される小集団は、ソーシャルネットワーク分析において重要である可能性がある異なるアプリケーションにおいて本物の意味論的意味を有し得る。例えば、従業員チームネットワークにおける小集団は、資源割り当てのために実装し得る、全てのチームが共通して特定の従業員を有することを示すことがあり、同様に、著者-出版ネットワークにおいて、小集団は、これらの著者が全て緊密な協力関係を示す特定の出版グループに属していることを表すことがある。
例示的な実装は、2モードネットワークからサブネットワークパターンを識別してその結果を視覚化することで、データにおけるパターンのインタラクティブな探索を可能とする。これらの例示的な実装により、ユーザはノード重複など、ネットワークにおいて検出された全てのパターン間の複雑な関係を発見でき、これらのパターンにおけるノード及びリンクと関連付けられたメタデータ情報の検査も可能となる。例示的な実装はまた、2つの異なる種類を分離することによって2モードネットワーク内の2つの異なる種類のノードを強調することができる視覚化システムを含むことができる。
図2は、本特許出願の例示的な実装にかかる視覚化プロセス200のフローチャートを示している。図に示すプロセス200は、サブネットワークパターンの検出及び視覚化を提供するためにデバイス又は装置(図13のコンピューティング装置1305など)のプロセッサ(プロセッサ1310など)によって実行されることができる。プロセス200に示されるように、関係情報は、205において複数のデータエンティティから抽出される。データエンティティは、2又はそれ以上の異なる種類のものとすることができる。異なる種類のデータエンティティは、特に限定されるものではなく、ユーザエンティティ、作成者又は著者エンティティ、読者エンティティ、コンテンツアイテム又は文書エンティティ、購入エンティティ、コミュニケーションエンティティ、又は当業者にとって明らかであろう任意の他のエンティティを含むことができる。エンティティは、データベースから受信又は選択されることができる。データベースの種類は、特に限定されるものではなく、電子メールデータ、旅行データ、電話呼び出しデータ、インスタントメッセージデータ、イベントデータ、コンテンツデータ、購入データ、又は当業者にとって明らかであろう任意の他の種類のデータを含むデータレコードの任意のタイプを含むことができる。
エンティティ間の関係情報は、複数のエンティティのそれぞれからコンテンツ特徴を抽出することによって抽出されることができる。コンテンツ特徴の抽出は、特に限定されるものではなく、視覚的コンテンツを識別するためにコンテンツアイテムと関連付けられた画像又は映像に対してオブジェクト認識技術(例えば、オブジェクト認識、顔認識、文字認識など)を適用することを含むことができる。さらに、コンテンツアイテムと関連付けられた音声コンテンツを検出するために音声認識技術(例えば、音声イベント検出、音声特性分類、言語認識など)が使用されてもよい。さらに、コンテンツアイテムのテキストコンテンツの主題又はトピックを検出するために主題認識アルゴリズムが使用されてもよい。抽出されたコンテンツ特徴はまた、捕捉若しくは著作者の位置(例えば、全地球測位システム(GPS)データなど)又は当業者にとって明らかであろう任意の他のコンテンツ特徴など、コンテンツアイテムに関する他の種類の特徴を含むことができる。
関係データは、1つの種類のエンティティと関連付けられたコンテンツ特徴を、他の異なる種類のエンティティの対応するコンテンツ特徴と照合することによってエンティティから抽出されることができる。例えば、コンテンツアイテム又は文書エンティティと関連付けられたコンテンツ特徴が特定の1人又は複数の人物による著作者を示し、且つ作成者又は著者エンティティと関連付けられたコンテンツ特徴が同じ人物又は複数の人物による識別情報を示す場合、関係は、関係データに格納されることができる。ユーザエンティティ-コミュニケーションエンティティ、ユーザエンティティ-購入エンティティ、読者エンティティ-コミュニケーションエンティティ、読者エンティティ-コンテンツ又は文書エンティティなどを含む異なる種類のエンティティ間の関係の他の例は、当業者にとって明らかであり得る。
関係データが複数のエンティティから抽出されると、1つの種類のエンティティを第2の種類のエンティティに接続することにより、210において2モードネットワークが構築されることができる。いくつかの例示的な実装において、1つの種類(例えば、第1の種類)のエンティティは、第2の種類のエンティティのみに直接接続されることができ、異なる種類や第1の種類の他のエンティティには直接接続されない。
同様に、第2の種類のエンティティは、第1の種類のエンティティのみに直接接続されることができ、第2の種類の他のエンティティには直接接続されない。
いくつかの例示的な実装において、1つの種類の個々のエンティティ間の関係は、各エンティティと関連付けられた所定のデータに基づいて第2の種類の個々のエンティティに接続されてもよい。例えば、作成されたコンテンツ又は文書エンティティと作成者又は著者エンティティの関係である。他の例示的な実装において、1つの種類の複数のエンティティは、関係を形成するために一体に結合されてもよい。例えば、特定時間フレーム内のチャットアプリケーションにおける投稿は、会話としてグループ化されてもよく、会話内の投稿を公開したユーザは、会話全体に接続されてもよい。
現実世界システムを表すことができる2モードネットワークを構築した後、215において、様々な技術を使用してサブネットワークパターンが検出されることができる。例えば、サブネットワークパターンを発見するために、バイクラスタリングなどの小集団又はより高速な(例えば、線形)アプローチなどのブルートフォース法が使用されることができる。例示的な実装は、いかなる特定のサブネットワークパターン発見プロセスに限定されるものではなく、当業者にとって明らかであろう関心のあるサブネットワークパターンを識別するための任意の技術を使用することができる。
サブネットワークパターンが識別された後、220において視覚化が生成されることができる。生成された視覚化は、パーソナルコンピュータ、サーバ、メインフレーム、又は当業者にとって明らかであろう他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。視覚化の例示的な実装は、図3から図7及び図10から図12に関して以下により詳細に記載される。いくつかの例示的な実装において、プロセス200は、視覚化が生成されると終了することができる。
他の例示的な実装において、対話命令がユーザから受信されたかどうかの判定は、225において所望により行われてもよい。ユーザ命令は、キーボード、ポインティングデバイス(例えば、マウス、トラックボール、タッチパッド)、対話型ディスプレイ(例えば、タッチスクリーンディスプレイ)、又は当業者にとって明らかであろう任意の他のユーザ入力装置などのユーザ入力装置から受信されることができる。いくつかの例示的な実装において、ユーザ命令は、220において生成された視覚化に統合されたツールバー又は他の制御要素などのユーザインターフェース(UI)を介して受信されることができる。他の例示的な実装において、ユーザ命令は、220において生成された視覚化とは独立した別個のUIを介して受信されることができる。
ユーザ対話命令が受信された場合(225においてはい)、視覚化は、230において、受信された対話命令に基づいて所望により再生成されてもよい。視覚化の再生成は、視覚化の並べ替え部、視覚化の再配置部、視覚化からの除去部、視覚化への追加部、又は当業者にとって明らかであろう視覚化に対する任意の他の変更を含むことができる。視覚化を再生成するプロセスの例示的な実装は、図2、図8及び図9に関して以下により詳細に記載される。
逆に、ユーザ対話が受信されない場合(225においていいえ)、プロセス200は終了することができる。
図3は、本特許出願の例示的な実装にかかる視覚化として使用可能なユーザインターフェース(UI)300を示している。UI300は、上述したプロセス200を使用して生成されることができ、パーソナルコンピュータ、サーバ、メインフレーム、若しくは当業者にとって明らかであろう任意の他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。UI300は、コミュニケーションシステム(例えば、インスタントメッセージングプラットフォーム、電子メールプラットフォーム、電子掲示板、ショートメッセージサービス(SMS)プラットフォーム又は他のコミュニケーションプラットフォーム)のユーザと接続するネットワークの視覚化を表すことができ、コミュニケーションシステム内でメッセージの送受信又は投稿をする。他の種類の視覚化は、図10から図12に関して以下により詳細に記載される。
いくつかの例示的な実装において、UI300は、4つの部分を含むことができる。参考のために、4つの部分のそれぞれは、図3の破線ボックスによって強調表示されている。示されるように、UI300は、サブネットワークパターン検出(図2のプロセス200の215)の結果を示すために使用されることができるメインビュー305を含むことができる。UI300はまた、メインビュー305に表示されるエンティティと関連付けられたコンテンツ特徴を表示するための情報パネル310を含むことができる(例えば、情報パネル310は、エンティティと関連付けられたメタデータを示すことができる)。さらに、UI300は、ネットワーク全体のトポロジを示すための概要領域315と、UI300を操作する(例えば、図2のプロセス200の225において受信されることができる対話命令を送信する)ために使用されることができるツールバー320とを含むことができる。
メインビュー305は、複数の行325を含むことができ、各行325は、検出されたサブネットワークパターンのうちの1つを表している。説明を簡単にするために、図3には2つの行325のみがラベル付けされている。しかしながら、図3のUI300のメインビュー305に示されている各行は、参照符号が与えられていない場合であっても、検出されたサブネットワークパターンのうちの1つを表すことができる。メインビュー305の各行325内には、3つの領域330、335、340を設けることができる。左側領域330は、ノードアイコン380によって表される第1の種類のエンティティと関連付けられることができる。右側領域335は、ノードアイコン385によって表される第2の種類のエンティティと関連付けられることができる。各ノードアイコン380、385によって表されるエンティティの種類に応じて、ノードアイコン380、385は、画像又はテキスト要約として示されることができる。例えば、メッセージ又はコミュニケーション分析の実装が図3に示されている。示されるように、左側領域330における第1の種類のエンティティはユーザであり、ノードアイコン380は、ユーザのプロファイルの画像としてレンダリングされる。さらに、右側領域335における第2の種類のエンティティは、ユーザが参加した会話やチャット(例えば、ユーザが互いに応答するコミュニケーションの集合)であり、ノードアイコン385は、基本的な会話のコンテンツのキーワードによってレンダリングされることができる。ノードアイコン380、385は、図5の一般的なノードアイコン500に関して以下により詳細に記載される。
左側領域330は、中央又は連結領域340によって、各行325と関連付けられたサブネットワークパターンに関する情報を提供する右側領域335と接続される。例えば、右側領域335における複数の第1の種類のエンティティと左側領域385における複数の第2の種類のエンティティの関係が、連結領域340に表示されることができる。さらに、いくつかの実装において、より多くの第1の種類のエンティティ380又は第2の種類のエンティティ385をサブネットワークパターンと関連付け、行325の左側領域330及び右側領域335に表示することができる。そのような実装において、連結領域340は、左側領域330、右側領域335に一度に表示することができる数を超えた第1の種類のエンティティ380又は第2の種類のエンティティ385を表示するために、行325の左側領域330及び右側領域335をスクロールして表示したり、表示対象とするエンティティを切り替えたりするための制御を提供することができる。各行の表示は、図3の領域IVの拡大図を示す図4に関して以下により詳細に記載される。
さらに、図3において、情報パネル310は、メインビュー305に示された行325と関連付けられたサブネットワークパターンに関連付けられているコンテンツに関する情報を提供するコンテンツ情報領域345を含む。情報パネル310は、選択されたエンティティ(例えば、ノードアイコン385aと関連付けられた第2の種類のエンティティ)に関連した情報を表示させることができる。コンテンツ情報領域345は、ノードアイコン385a(例えば、第2の種類のエンティティ)と関連付けられた会話に関連付けられていると検出されたコンテンツを表す語のクラスタによって示されることができる。いくつかの実装において、コンテンツ情報領域345における各々の語のサイズは、会話内のコンテンツ(例えば、第2の種類のエンティティ)の出現頻度を表すことができる。
情報パネル310はまた、ノードアイコン385a(例えば、第2の種類のエンティティ)と関連付けられた選択された会話と関連付けられたコミュニケーションを表示するサンプル表示部350を含むことができる。図に示されるように、ノードアイコン385a(例えば、第2の種類のエンティティ)と関連付けられた選択された会話は、3人のユーザ間における5つのメッセージを含むことができる。
さらに、図3において、概要領域315は、ネットワーク全体のトポロジを示すグローバルノードマップ390を提供する。いくつかの例示的な実装において、グローバルノードマップ390により、ネットワーク全体のナビゲーションが可能になる。例えば、グローバルノードマップ390は、ユーザによって操作(例えば、回転、サイズ変更、又は移動)されることができ、グローバルノードマップ390の操作により、メインビュー305における表示を変更させることができる。例えば、グローバルノードマップ390を回転させることは、メインビュー305に示される関係を変更することができ、又は示される行数を変更することができる。他の操作は、当業者にとって明らかであり得る。
UI300のメインビュー305はまた、情報パネル310及び概要領域315を使用してデータを探索するためのいくつかの基本的な対話を提供することができる。例えば、メインビュー305におけるリンク又はエンティティ380、385上にマウスカーソルをホバリングすることによって、概要領域315におけるノードやリンクと同様に、情報パネル310に、サブネットワークや各エンティティに対応するメタデータを表示することができる。例えば、図に示されるように、エンティティ385aにマウスカーソルをホバリングすると、情報パネル310内には、コンテンツ情報領域345に、ホバリングされたエンティティに関連する会話のキーワードによるタグクラウドを表示し、サンプル表示部350には関連する会話の内容を表示するようにしてもよい。
UI300はまた、例えば、サイズに基づいてパターンをフィルタリングしたり、(選択に基づいて)ノードや(重みに基づいて)リンクをフィルタリングしたり、パターンをグループ化して並べ替えたりするなど、ツールバー320を介して一連の他のインタラクションを可能とすることもできる。
ツールバー320は、メインビュー305における行325によって表されるサブネットワークパターンのデータをユーザが操作するためのいくつかのインターフェース制御を提供することができる。例えば、検出されたサブネットワークパターンについての第1及び第2の種類のエンティティの最小数(例えば、第1の種類の少なくとも3個のエンティティ及び第2の種類の少なくとも3個のエンティティ)を指定するために数値フィールド355が使用されてもよい。さらに、テキストウィンドウ360は、メインビュー305における表示のために、サブネットワークパターンの検出及び分析に使用するエンティティ又は関係をフィルタリングするキーワード又は用語を指定するために使用されてもよい。例えば、ユーザは、関心のあるキーワードを入力してもよく、関心のあるキーワードは、メインビュー305に表示するために会話又はユーザを識別するために使用されてもよい。
サブネットワークパターン検出に使用されることになるキーワードと検出されたエンティティとの間の関連の最小確率を指定するために制御バー365が使用されることができる。例えば、制御バー365によって設定される閾値を超える局所的確率を有するコミュニケーションを含む会話のみが表示されてもよい。制御バー370は、メインビュー305を生成するために使用されることになる最小グループ化パラメータを指定するために使用されることができ、制御特徴375は、メインビュー305の行325と関連付けられたサブネットワークパターンがどのように表示されるべきかを指定するために使用されることができる。例えば、行325は、コンテンツ若しくは局所的確率の加重平均又は当業者にとって明らかであろう他のパラメータに基づいて並べられてもよい。ツールバー320とのユーザ対話に基づいて、UI300は、図9に示されるプロセス900などを使用して、表示を更新したり変更したりすることができる。
図4は、図3のUI300のメインビュー305の拡大部IVを示している。図示されるように、上記図3に示されたUI300のメインビュー305の行325は、その特徴を説明するために拡大されている。行325は、接続されたエンティティのネットワークにおいて検出されたサブネットワークパターンを表すことができる。例えば、図3及び図4には、メッセージの分析又はコミュニケーションの分析における実装が示されている。図4に示される行325は、図3のUI300のメインビュー305において示される他の行325を表すことができ、図3に示される他の行325は、図3において特に指定されない場合であっても、同様の特徴を有することができる。
上述したように、行325は、複数のノードアイコン380、385を含み、行325は、(図4における破線ボックスによって強調表示される)3つの領域330、335、340に分割されることができる。左側領域330は、ノードアイコン380によって表される第1の種類のエンティティと関連付けられることができる。図3及び図4の例示的な実装において、左側領域330における第1の種類のエンティティは、メッセージ又はコミュニケーションシステムのユーザとすることができ、ノードアイコン380は、各ユーザのプロファイル(例えば、ユーザのアバター又はプロファイル画像)からレンダリングされた画像420を含むことができる。
さらに、右側領域335は、ノードアイコン385によって表される第2の種類のエンティティと関連付けられることができる。図3及び図4の例示的な実装において、右側領域335における第2の種類のエンティティは、ユーザ(第1の種類のエンティティ)が参加した会話やチャット(例えば、互いに応答するコミュニケーションの集合)とすることができる。第2の種類のエンティティと関連付けられたノードアイコン385は、基本的な会話等のコンテンツから抽出されたキーワードのリスト425によってレンダリングされることができる。ノードアイコン380、385の例示的な実装のさらなる特徴は、図5に関して以下により詳細に記載される。
図示されるように、行325の左側領域330は、中央又は連結領域340によって右側領域335に接続されることができる。中央又は連結領域340は、各行325と関連付けられたサブネットワークパターンに関する情報を提供することができる。例えば、識別されたサブネットワークパターンのサイズを識別するために、サブネットワークパターンサイズ指標405を設けることができる。(破線楕円によって強調表示される)サブネットワークパターンサイズ指標405は、右側領域335における第1の種類のエンティティの数及び左側領域335における複数の第2の種類のエンティティを示すことができる。図4に示される例示的な実装において、値「3×4」のサブネットワークパターンサイズ指標405は、図示された行325と関連付けられたサブネットワークパターンが、左側領域330における3個の第1の種類のエンティティと、右側領域335における4個の第2の種類のエンティティとを含むことを示すことができる。
さらに、いくつかの実装において、行325に表示されるサブネットワークパターンと関連付けられている第1の種類のエンティティおよび第2の種類のエンティティとして、より多くの第1の種類のエンティティ380又は第2の種類のエンティティ385を、行325の左側領域330及び右側領域335に表示することができる。そのような実装において、連結領域340は、左側領域330及び右側領域335にそれぞれ関連付けられた(破線楕円によって強調表示される)ユーザインターフェース(UI)制御410、415を提供することができる。各UI制御410、415は、表示できない第1の種類380又は第2の種類385のさらなるエンティティを表示するために、左側及び右側領域330、335をそれぞれスクロールさせたり切り替えたりして表示することを可能とする。各UI制御410、415はまた、ページ指標430、435も有することができる。ページ指標430は、左側領域330に表示されているエンティティ380の現在のページを示すことができる。さらに、いくつかの例示的な実装において、ページ指標430はまた、利用可能なエンティティ380の総ページ数を示すこともできる。図4に示される例示的な実装において、値「1/1」のページ指標430は、合計で1つの利用可能なページの現在のページ番号「1」が左側領域330に表示されていることを示すことができる。
同様に、ページ指標435は、右側領域335に表示されているエンティティ385の現在のページを示すことができる。さらに、いくつかの例示的な実装において、ページ指標435はまた、利用可能なエンティティ385の総ページ数を示すこともできる。図4に示される例示的な実装において、値「1/1」のページ指標435は、合計で1つの利用可能なページの現在のページ番号「1」が右側領域335に表示されていることを示すことができる。
図5は、本特許出願の例示的な実装において使用可能なノードアイコン500の一般的な構成を示している。いくつかの実装において、図に示すノードアイコン500は、エンティティのネットワークにおける第1又は第2の種類のエンティティを表すために、UI300のメインビュー305におけるノードアイコン380、385として使用されてもよい。ノードアイコン500は、ノードアイコン500が関連付けられているエンティティを記載又は示す情報を表示するためのメイン領域505を含む。例えば、上述したように、ノードアイコン380は、ユーザのプロファイル(例えば、ユーザアバター又はプロファイル画像)からレンダリングされた(図4における)画像420を含むことができる。
レンダリングされた画像420は、メイン領域505に表示されることができる。上述した他の例として、ノードアイコン385は、基本的な会話のコンテンツから抽出された(図4における)キーワードのリスト425を含むことができる。同様に、キーワードのリスト425をメイン領域505に表示してもよい。メイン領域505に表示することができるノードアイコン500が関連付けられたエンティティを記載又は示すことができる他の情報は、当業者にとって明らかであり得る。
ノードアイコン500は、ノードアイコンと関連付けられたエンティティが識別された全てのサブネットワークパターンの一部であるサブネットワークパターンの数を示す水平バー510を含むことができる。それゆえに、水平バー510が長いほど、ノードアイコンと関連付けられたエンティティがより多くのパターンに属する。いくつかの例示的な実装において、水平バー510が多くの異なるパターンにおいて現れるのにともない、アナリストがネットワークにおけるキーエンティティを識別するのを助ける可能性がある。
ノードアイコン500はまた、1又は複数の垂直に配置された水平線517a-517gを有する領域515を含むことができる。水平線517a-517gのそれぞれは、ノードアイコン500と関連付けられたエンティティをネットワークにおける他のエンティティに接続するリンク(例えば、関係)を表すことができる。いくつかの例示的な実装において、リンク(例えば、関係)は、水平線517a-517gの垂直(例えば、y位置)に対応することができる重み又は重み係数を有することができる。いくつかの例示的な実装において、この構成は、アナリストが各エンティティと関連付けられたリンク(例えば、関係)重みの分布を見るのを可能とする。
さらに、図7に関して以下に記載されるように、UI300の例示的な実装は、アナリストが別個の列を形成するためにエンティティを選択又は「ピン留め」するのを可能とする。そのような実装において、ノードアイコン500はまた、全ての「選択された」パターン(例えば、「ピン留めされた」エンティティを含むパターン)のうち、ノードアイコンと関連付けられたエンティティが属するパターンの割合を表す第2の水平バー520を含むことができる。第2の水平バー520の長さは、どの程度多くの選択されたパターンがノードアイコン500と関連付けられた特定のエンティティを含むかを示すことができる。いくつかの例示的な実装において、この構成は、アナリストがピン留めされたエンティティに関して次に関連性が高いエンティティを識別するのを助けることができる。
いくつかの例示的な実装において、エンティティを「ピン留め」又は選択することはまた、エンティティと関連付けられていない(例えば、否定的に関連付けられた)サブネットワークパターンを再配置したり、強調表示したりすることもできる。例えば、エンティティ385の選択は、エンティティを含むよりもむしろ、エンティティを含まない行325が排除するためのピン留めを可能とするように、移動又は強調表示させる。UI300の例示的な実装を使用する「ピン留め」動作の他の態様は、図7に関して以下により詳細に記載される。
図6は、図3のUI300の概要領域315の拡大図を示している。図示されるように、概要領域315は、グローバルノードマップ390を提供する。グローバルノードマップは、(黒色ドットによって表される)第1の種類の複数のノード605、(白色ドットによって表される)第2の種類の複数のノード610、及び第1の種類のノード605を第2の種類のノード610に接続するリンク615によって形成される。第1の種類のノード605のそれぞれは、上記図3及び図4におけるノードアイコン380によって表される第1の種類のエンティティに対応することができる。さらに、第2の種類のノード610のそれぞれは、上記図3及び図4におけるノードアイコン385によって表される第2の種類のエンティティに対応することができる。さらに、リンク615のそれぞれは、第1の種類のエンティティと第2の種類のエンティティとの間の関係を表すことができる。
図6において、第1の種類のノード605のいくつか(例えば、黒色ドット)がラベル付けされている。
しかしながら、ラベル付けされていないノード(例えば、黒色ドット)は、ラベル付けされたノード605と略同様であってもよく、それらと同じ特徴を有してもよい。さらに、第1の種類のノード610(例えば、白色ドット)のいくつかがラベル付けされている。しかしながら、ラベル付けされていないノード(例えば、白色ドット)は、ラベル付けされたノード610と略同様であってもよく、それらと同じ特徴を有してもよい。さらに、図6においてリンク615のうちのいくつかのみをラベル付けできるが、ラベル付けされていないリンクは、ラベル付けされたリンク615と略同様であってもよく、それらと同じ特徴を有してもよい。
グローバルノードマップ390のノード605、610及びリンク615を操作することにより、図3のメインビュー305が変更されてもよい。例えば、ノード605aのうちの1つを選択することにより、そのノード605aを含むサブネットワークパターン620が強調表示されたり、それだけを表示してもよい。他の操作及び効果は、当業者にとって明らかであり得る。
図7は、エンティティのユーザ選択に基づいて再編成された図3のUI300のメインビュー305を示している。UI300は、上述したプロセス200を使用して生成されることができ、パーソナルコンピュータ、サーバ、メインフレーム、若しくは当業者にとって明らかであろう任意の他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。UI300は、コミュニケーションシステム(例えば、インスタントメッセージングプラットフォーム、電子メールプラットフォーム、電子掲示板、ショートメッセージサービス(SMS)プラットフォーム又は他のコミュニケーションプラットフォーム)のユーザと接続するネットワークの視覚化を表すことができ、コミュニケーションシステム内でメッセージの送受信又は投稿をする。他の種類の視覚化は、図10から図12に関して以下により詳細に記載される。
同様に、メインビュー305は、複数の行325を含むことができ、各行325は、検出されたサブネットワークパターンのうちの1つを表している。説明を簡単にするために、図7には2つの行325のみがラベル付けされている。しかしながら、図7のUI300のメインビュー305に示されている各行は、参照符号が与えられていない場合であっても、検出されたサブネットワークパターンのうちの1つを表すことができる。メインビュー305の各行325内には、3つの領域330、335、340を設けることができる。左側領域330は、ノードアイコン380によって表される第1の種類のエンティティと関連付けられることができる。右側領域335は、ノードアイコン385によって表される第2の種類のエンティティと関連付けられることができる。
図7において、メッセージ又はコミュニケーション分析の実装が示されている。示されるように、左側領域330における第1の種類のエンティティはユーザであり、右側領域335における第2の種類のエンティティは、ユーザが参加した会話やチャット(例えば、互いに応答するコミュニケーションの集合)である。
ユーザ入力に基づいて、第1の種類のエンティティのうちの1つ(380a、「JENN」)がより深い探索のために選択又は「ピン留め」される。エンティティ380aがピン留めされた後、メインビューは、エンティティ380aについての別個の列を形成するように再構成される。これにより、このエンティティ380aがどのサブネットワークパターンに属するかを容易に確認することができ、より明確に識別できる視覚化が可能となる。エンティティ380aがピン留めされると、他のピン止めされていないエンティティ380は、各行におけるピン留めされたエンティティ380aに対するそれらの関連性に基づいて並べ替えられることができる。これは、アナリストがそれらにより容易にアクセスすることができるように、より関連性の高いエンティティを(破線矩形710によって表される)中央領域にもたらすことができる。エンティティ380aをピン留めした後、エンティティ380、380aの第2の水平バー520は、各ノードアイコンの下方に動的に示されることができ、全ての「選択された」パターンのうち、そのエンティティ380、380aが属するパターンの割合を表す。同様に、選択されたパターンは、ピン留めされたエンティティ380aを含むパターンを意味する。そのため、第2の水平バー520の長さは、選択されたパターンが特定のエンティティ380をどの程度多く含むかを示している。これは、アナリストがピン留めされたエンティティ380aに関して次に関連性が高いエンティティ380を識別するのを助けることができる。例えば、図7において、UI300においてピン留めすることは、ピン留めされていないエンティティ380のうち最も長い第2の水平バー520を有することから、(同じパターンで現れる)ピン留めされたエンティティ380aと最も頻繁にチャットするユーザが(破線円715によって強調表示される)ツリーのプロファイル画像を有するエンティティ380であるという認識を可能とする。
いくつかの例示的な実装において、エンティティを「ピン留め」又は選択することはまた、エンティティと関連付けられていない(例えば、否定的に関連付けられた)サブネットワークパターンを再配置したり強調表示したりすることもできる。例えば、エンティティ385の選択は、エンティティを含むよりもむしろ、エンティティを含まない行325が排除するために使用されることになるピン留めを可能とするように移動又は強調表示させる。
図8は、本特許出願の例示的な実装にかかるUI300の対話及び更新のプロセスのフローチャート800を示している。図に示すプロセス800は、サブネットワークパターンの検出及び視覚化を提供するためにデバイス又は装置(図13のコンピューティング装置1305など)のプロセッサ(プロセッサ1310など)によって実行されることができる。プロセス800において、ユーザはまず、805において、データの範囲を選択することによって探索の範囲を定義する。いくつかの例示的な実装において、分析のためのデータの範囲は、ユーザインターフェースを使用して又はデータの集合をシステムにアップロードして選択されることができる。例えば、概要領域315は、分析のためのデータを定義するために使用されてもよい。当業者にとって明らかであり得るように、他のUI又は他のデータ操作機構が使用されてもよい。あるいは、以下により詳細に記載されるように、分析のために選択されたデータは、検索エンジンから受信された検索結果であってもよい。
分析のためのデータの範囲が定義された後、810において視覚化を生成するために、(最小パターンサイズ、確率閾値などの)サブネットワークパターン発見パラメータが、選択されたデータ及び所望によりデフォルトの視覚化パラメータに基づいて構成される。いくつかの例示的な実装において、サブネットワーク発見パラメータは、パターン発見アルゴリズム及びどの種類のパターンが提示されるべきかを管理する、(数値フィールド355を使用して)サイズ及び(制御バー365を使用して)リンク重み閾値を設定することにより、UI300のツールバー320などのUIを使用してユーザ定義することができる。他の例示的な実装において、初期サブネットワーク発見パラメータは、管理者定義であってもよく、又は機械学習若しくは他の自動プロセスを使用して自動的に生成されてもよい。
最初のサブネットワークパターン発見パラメータが構成されると、ユーザは、815において、グループ化、ソート及びフィルタリング機能を使用して視覚化パラメータを精緻化することができる。815におけるユーザ入力に基づいて、サブネットワーク発見パラメータが再構成されることができ、810において、更新された視覚化が生成されることができる。いくつかの例示的な実装において、815における視覚化パラメータの精緻化はまた、805における分析のために、より多くの、より少ない、又は異なるデータの選択をトリガすることもできる。
視覚化パラメータを精緻化することに加えて、ユーザはまた、820において、「ピン留め」、ホバリング又は他のデータ探索機能を使用して、結果の動的探索を行うこともできる。
820におけるユーザ入力に基づいて、サブネットワーク発見パラメータが再構成されることができ、810において、更新された視覚化が生成されることができる。いくつかの例示的な実装において、820における結果の動的探索の精緻化は、805における分析のために、より多くの、より少ない、又は異なるデータの選択をトリガすることもできる。
815における視覚化パラメータの精緻化及び820における動的探索は、順次に、又は同時に実行されてもよい。これら2つの工程の差異は、820における動的探索がパターンの再配置(例えば、UI300における行325の再配置の再配置)をトリガしないのに対して、815における視覚化の精緻化がパターンの再配置をトリガすることができるということである。換言すれば、820における動的探索は、エンティティに対する操作とすることができ、815における視覚化パラメータの関係レベル対精緻化は、パターンレベルにおける操作とすることができる。
ユーザ入力が815又は820において受信されない場合、プロセス800は終了することができる。
図9は、本特許出願の例示的な実装にかかる検索結果視覚化プロセス900のフローチャートを示している。図に示すプロセス900は、検索結果検出及び視覚化を提供するためにデバイス又は装置(図13のコンピューティング装置1305など)のプロセッサ(プロセッサ1310など)によって実行されることができる。プロセス900のいくつかの態様は、上述したプロセス200の態様と同様とすることができる。それゆえに、同様の説明が提供されることができる。示されるように、プロセス900において、関係情報は、905において複数のデータエンティティから抽出される。データエンティティは、2又はそれ以上の異なる種類のものとすることができる。異なる種類のデータエンティティは、特に限定されるものではなく、ユーザエンティティ、作成者又は著者エンティティ、読者エンティティ、コンテンツアイテム又は文書エンティティ、購入エンティティ、コミュニケーションエンティティ、又は当業者にとって明らかであろう任意の他のエンティティを含むことができる。エンティティは、データベースから受信又は選択されることができる。データベースの種類は、特に限定されるものではなく、電子メールデータ、旅行データ、電話呼び出しデータ、インスタントメッセージデータ、イベントデータ、コンテンツデータ、購入データ、又は当業者にとって明らかであろう任意の他の種類のデータを含むことができる任意の種類のデータレコードを含むことができる。
エンティティ間の関係情報は、複数のエンティティのそれぞれからコンテンツ特徴を抽出することによって抽出されることができる。コンテンツ特徴の抽出は、特に限定されるものではなく、視覚的コンテンツを識別するためにコンテンツアイテムと関連付けられた画像又は映像に対してオブジェクト認識技術(例えば、オブジェクト認識、顔認識、文字認識など)を適用することを含むことができる。さらに、コンテンツアイテムと関連付けられた音声コンテンツを検出するために音声認識技術(例えば、音声イベント検出、音声特性分類、言語認識など)が使用されてもよい。さらに、コンテンツアイテムのテキストコンテンツの主題又はトピックを検出するために主題認識アルゴリズムが使用されてもよい。抽出されたコンテンツ特徴はまた、捕捉若しくは著作者の位置(例えば、GPSデータなど)又は当業者にとって明らかであろう任意の他のコンテンツ特徴など、コンテンツアイテムに関する他の種類の特徴を含むことができる。
関係データは、1つの種類のエンティティと関連付けられたコンテンツ特徴を、他の異なる種類のエンティティの対応するコンテンツ特徴と照合することによってエンティティから抽出されることができる。例えば、コンテンツアイテム又は文書エンティティと関連付けられたコンテンツ特徴が特定の1人又は複数の人物による著作者を示し、且つ作成者又は著者エンティティと関連付けられたコンテンツ特徴が同じ人物又は複数の人物による識別情報を示す場合、関係は、関係データに格納されることができる。ユーザエンティティ-コミュニケーションエンティティ、ユーザエンティティ-購入エンティティ、読者エンティティ-コミュニケーションエンティティ、読者エンティティ-コンテンツ又は文書エンティティなどを含む異なる種類のエンティティ間の他の例示的な関係は、当業者にとって明らかであり得る。
関係データが複数のエンティティから抽出されると、1つの種類のエンティティを第2の種類のエンティティに接続することにより、910において2モードネットワークが構築されることができる。いくつかの例示的な実装において、1つの種類(例えば、第1の種類)のエンティティは、第2の種類のエンティティのみに直接接続されることができ、異なる種類や第1の種類の他のエンティティには直接接続されない。
同様に、第2の種類のエンティティは、第1の種類のエンティティのみに直接接続されることができ、第2の種類の他のエンティティには直接接続されない。
いくつかの例示的な実装において、1つの種類の個々のエンティティ間の関係は、各エンティティと関連付けられた所定のデータに基づいて第2の種類の個々のエンティティに接続されてもよい。例えば、作成されたコンテンツ又は文書エンティティと作成者又は著者エンティティの関係である。他の例示的な実装において、1つの種類の複数のエンティティは、関係を形成するために一体に結合されてもよい。例えば、特定時間フレーム内のチャットアプリケーションにおける投稿は、会話としてグループ化されてもよく、会話内の投稿を公開したユーザは、会話全体に接続されてもよい。
現実世界システムを表すことができる2モードネットワークを構築した後、915において、検索要求の一部として使用されることになる検索コンテンツ特徴が受信されることができる。いくつかの例示的な実装において、検索コンテンツ特徴は、ユーザエントリからUIの検索フィールドへと受信されてもよい。例えば、ユーザは、1又は複数のキーワードを検索エンジンのテキスト入力フィールドに入力することができる。
他の例示的な実装において、検索コンテンツ特徴は、コンテンツアイテム(例えば、電子メール、テキストメッセージ、チャットメッセージ、論文などのテキスト文書;写真、ビデオクリップ、オーディオレコーディングなどのメディア文書;又は当業者にとって明らかであろう任意の他のコンテンツアイテム)から検索されたコンテンツ特徴を抽出することによって受信されることができる。検索されたコンテンツ特徴は、視覚的コンテンツを識別するためにコンテンツアイテムと関連付けられた画像又は映像に対してオブジェクト認識技術(例えば、オブジェクト認識、顔認識、文字認識など)を適用することによってコンテンツアイテムから抽出されることができる。さらに、コンテンツアイテムと関連付けられた音声コンテンツを検出するために音声認識技術(例えば、音声イベント検出、音声特性分類、言語認識など)が使用されてもよい。さらに、コンテンツアイテムのテキストコンテンツの主題又はトピックを検出するために主題認識アルゴリズムが使用されてもよい。抽出された検索コンテンツ特徴はまた、捕捉若しくは著作者の位置(例えば、GPSデータなど)又は当業者にとって明らかであろう任意の他のコンテンツ特徴など、コンテンツアイテムに関する他の種類の特徴を含むことができる。
検索されたコンテンツ特徴が受信された後、920において、検索されたコンテンツ特徴に類似するコンテンツ特徴と関連付けられた2モードネットワークにおけるデータエンティティが識別されることができる。いくつかの例示的な実装において、920において識別されたデータエンティティは、検索されたコンテンツ特徴と同一又は略同一のコンテンツ特徴と関連付けられてもよい。例えば、検索されたコンテンツ特徴が「John Smith」などの氏名である場合、920において、「John Smith」、「John XXX」、又は「XXX Smith」(XXXは、ワイルドカード文字を表す)などのコンテンツ特徴と関連付けられたエンティティが識別されることができる。
いくつかの例示的な実装において、920において識別されたデータエンティティはまた、受信された検索コンテンツ特徴に関連するコンテンツ特徴と関連付けられてもよい。例えば、検索されたコンテンツ特徴が(ディジタルカメラなどの)属である場合、920において、(特定のディジタルカメラブランド又はモデルなどの)種を表すコンテンツ特徴と関連付けられたエンティティが識別されることができる。同様に、検索されたコンテンツ特徴が(ディジタルカメラブランド又はモデルなどの)種である場合、920において、(ディジタルカメラなどの)属を表すコンテンツ特徴と関連付けられたエンティティが識別されることができる。検索されたコンテンツ特徴とエンティティを識別するために使用されるコンテンツ特徴との間の他の関係は、当業者にとって明らかであり得る。
データエンティティが識別された後、925において、識別されたデータエンティティを含むサブネットワークパターンは、様々な技術を使用して検出されることができる。例えば、サブネットワークパターンを発見するために、バイクラスタリングなどの小集団又はより高速な(例えば、線形)アプローチなどのブルートフォース法が使用されることができる。例示的な実装は、いかなる特定のサブネットワークパターン発見プロセスに限定されるものではなく、当業者にとって明らかであろう関心のあるサブネットワークパターンを識別するための任意の技術を使用することができる。
サブネットワークパターンが識別された後、930において視覚化が生成されることができる。生成された視覚化は、パーソナルコンピュータ、サーバ、メインフレーム、又は当業者にとって明らかであろう他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。視覚化の例示的な実装は、図10から図12に関して以下により詳細に記載される。いくつかの例示的な実装において、プロセス900は、視覚化が生成されると終了することができる。
他の例示的な実装において、対話命令がユーザから受信されたかどうかの判定は、935において所望により行われてもよい。ユーザ命令は、キーボード、ポインティングデバイス(例えば、マウス、トラックボール、タッチパッド)、対話型ディスプレイ(例えば、タッチスクリーンディスプレイ)、又は当業者にとって明らかであろう任意の他のユーザ入力装置などのユーザ入力装置から受信されることができる。いくつかの例示的な実装において、ユーザ命令は、930において生成された視覚化に統合されたツールバー又は他の制御要素などのユーザインターフェース(UI)を介して受信されることができる。他の例示的な実装において、ユーザ命令は、930において生成された視覚化とは独立した別個のUIを介して受信されることができる。
ユーザ対話命令が受信された場合(935においてはい)、視覚化は、940において、受信された対話命令に基づいて所望により再生成されてもよい。視覚化の再生成は、視覚化の並べ替え部、視覚化の再配置部、視覚化からの除去部、視覚化への追加部、又は当業者にとって明らかであろう視覚化に対する任意の他の変更を含むことができる。視覚化を再生成するプロセスの例示的な実装は、図8に関して上記により詳細に記載される。
逆に、ユーザ対話が受信されない場合(940においていいえ)、プロセス900は終了することができる。
図9に示されるプロセス900において、910において2モードネットワークが構築され、915において検索されることになるコンテンツ特徴が受信され、925においてサブネットワークパターンが検出される。
しかしながら、本特許出願の例示的な実装は、図9に示されるサブプロセスの順序に限定されるものではない。例えば、他の例示的な実装において、最初に、検索されることになるコンテンツ特徴、受信されたコンテンツ特徴に基づいて検索されたアイテムに基づいて構築された2モードネットワーク、そして形成されたネットワークにおいて検出されたサブネットワークパターンが受信されることができる。サブプロセスの他の構成は、当業者にとって明らかであり得る。
図10は、本特許出願の他の例示的な実装にかかる視覚化として使用可能なユーザインターフェース(UI)1000を示している。UI1000は、上述したプロセス900を使用して生成されることができ、パーソナルコンピュータ、サーバ、メインフレーム、若しくは当業者にとって明らかであろう任意の他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。UI1000は、文書コーパスにおける文書の検索結果を探索するための視覚化を提示することができる。例えば、ユーザが入力する検索語に基づいて、UI1000は、関連性によって順序付けされた著者及び文書エンティティセットのリストを提示することができる。
エンティティセットは、著者及び文書(出版物、レポートなど)の2モードネットワークに基づいて構築されることができ、さらにユーザの検索に基づいて抽出されることができる。UI1000は、ユーザがさらなる結果を発見するために結果を探索するのを可能とする。例えば、ユーザは、ユーザが検索をより効果的に精緻化することができるように、範囲を広げることから、関連するキー文書/著者を、それらの接続を閲覧することによって識別するのを可能とする。他の種類の視覚化は、図3から図7に関して上記に並びに図11及び図12に関して以下により詳細に記載される。
いくつかの例示的な実装において、UI1000は、複数の行1025とすることができ、各行1025は、検出されたサブネットワークパターンのうちの1つを表している。説明を簡単にするために、図10には2つの行1025のみがラベル付けされている。しかしながら、図10のUI1000に示されている行のそれぞれは、参照符号が与えられていない場合であっても、検出されたサブネットワークパターンのうちの1つを表すことができる。UI1000の各行1025内には、3つの領域1030、1035、1040を設けることができる。左側領域1030は、ノードアイコン1080によって表される第1の種類のエンティティと関連付けられることができる。右側領域1035は、ノードアイコン1085によって表される第2の種類のエンティティと関連付けられることができる。各ノードアイコン1080、1085によって表されるエンティティの種類に応じて、ノードアイコン1080、1085は、画像又はテキスト要約として示されることができる。例えば、文書コーパス検索結果分析の実装が図10に示されている。示されるように、左側領域1030における第1の種類のエンティティは人物(例えば、著者、コンテンツクリエータなど)であり、ノードアイコン1080は、人物と関連付けられたプロファイル又はキャラクタ(例えば、著者のイニシャル、コンテンツクリエータのイニシャルなど)の画像としてレンダリングされる。さらに、右側領域1035における第2の種類のエンティティは、文書(例えば、論文、記事、写真、又は他のコンテンツアイテム)であり、ノードアイコン1085は、文書のサムネイル又は文書の一部(例えば、最初のページ、選択されたページなど)によってレンダリングされる。ノードアイコン1080、1085はまた、図5の一般的なノードアイコン500に関して上記に詳細に記載されたようなさらなる特徴を含むことができる。
左側領域1030は、中央又は連結領域1040によって右側領域1035に接続される。図10の例示的な実装において、簡略化された連結領域が示されている。
しかしながら、他の例示的な実装において、連結領域1040は、以下により詳細に記載されるように、各行1025と関連付けられたサブネットワークパターンに関する情報を提供することができる。さらに、図10には示されていないが、UI1000の他の例示的な実装はまた、図3に示され且つ上述したUI300の情報パネル310、概要領域315、及びツールバー320と同様の情報パネル、概要、及びツールバーを設けてもよい。
図11は、本特許出願の他の例示的な実装にかかる視覚化として使用可能なユーザインターフェース(UI)1100を示している。UI1100は、上述したプロセス900を使用して生成されることができ、パーソナルコンピュータ、サーバ、メインフレーム、若しくは当業者にとって明らかであろう任意の他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。図10のUI1000と同様に、UI1100は、文書コーパスにおける文書の検索結果を探索するための視覚化を提示することができる。例えば、ユーザが入力する検索語に基づいて、UI1100は、関連性によって順序付けされた著者及び文書エンティティセットのリストを提示することができる。
エンティティセットは、著者及び文書(出版物、レポートなど)の2モードネットワークに基づいて構築されることができ、さらにユーザの検索に基づいて抽出されることができる。UI1100は、ユーザがさらなる結果を発見するために結果を探索するのを可能とする。例えば、ユーザは、ユーザが検索をより効果的に精緻化することができるように、範囲を広げることから、関連するキー文書/著者を、それらの接続を閲覧することによって識別するのを可能とする。他の種類の視覚化は、図3から図7及び図10に関して上記に並びに図12A及び図12Bに関して以下により詳細に記載される。
いくつかの例示的な実装において、UI1100は、複数の行1125を設けることができ、各行1125は、検出されたサブネットワークパターンのうちの1つを表している。説明を簡単にするために、図11には2つの行1125のみがラベル付けされている。しかしながら、図11のUI1100に示されている行のそれぞれは、参照符号が与えられていない場合であっても、検出されたサブネットワークパターンのうちの1つを表すことができる。UI1100の各行1125内には、3つの領域1130、1135、1140を設けることができる。左側領域1130は、ノードアイコン1180によって表される第1の種類のエンティティと関連付けられることができる。右側領域1135は、ノードアイコン1185によって表される第2の種類のエンティティと関連付けられることができる。各ノードアイコン1180、1185によって表されるエンティティの種類に応じて、ノードアイコン1180、1185は、画像又はテキスト要約として示されることができる。例えば、文書コーパス検索結果分析の実装が図11に示されている。示されるように、左側領域1130における第1の種類のエンティティは人物(例えば、著者、コンテンツクリエータなど)であり、ノードアイコン1180は、人物と関連付けられたプロファイル又はキャラクタ(例えば、著者のイニシャル、コンテンツクリエータのイニシャルなど)の画像としてレンダリングされる。さらに、右側領域1135における第2の種類のエンティティは、文書(例えば、論文、記事、写真、又は他のコンテンツアイテム)であり、ノードアイコン1185は、文書のサムネイル又は文書の一部(例えば、最初のページ、選択されたページなど)によってレンダリングされる。ノードアイコン1180、1185はまた、図5の一般的なノードアイコン500に関して上記に詳細に記載されたようなさらなる特徴を含むことができる。
さらに、図11のUI1100において、図7に記載された動作と同様の「ピン留め」動作が、第1の種類のエンティティ及び第2の種類のエンティティの双方に対して行われている。具体的には、ユーザ入力に基づいて、第1の種類のエンティティ(1180a)及び第2の種類のエンティティ(1185b)のうちの1つが、より深い探索のために選択又は「ピン留め」されている。エンティティ1180a及び1185bがピン留めされた後、UI1100は、エンティティ1180a及び1185bについて別個の列を形成するように構成されている。これにより、エンティティ1180a及び1185bがどのサブネットワークパターンに属するかを確認する、より明確な視覚化が可能となる。エンティティ1180aがピン留めされると、他のピン止めされていないエンティティ1180は、各行におけるピン留めされたエンティティ1180aに対するそれらの関連性に基づいて並べ替えられることができる。同様に、エンティティ1185bがピン留めされると、他のピン止めされていないエンティティ1185は、各行におけるピン留めされたエンティティ1185bに対するそれらの関連性に基づいて並べ替えられることができる。これは、アナリストがそれらにより容易にアクセスすることができるように、より関連性の高いエンティティを(破線矩形1110、1115によって表される)中央領域1140にもたらすことができる。エンティティ1180a及びエンティティ1185bをピン留めした後、エンティティ1180、1180a、1185、1185bの第2の水平バー520は、各ノードアイコンの下方に動的に示されることができ、全ての「選択された」パターンのうち、そのエンティティ1180、1180a、1185、1185bが属するパターンの割合を表す。同様に、選択されたパターンは、ピン留めされたエンティティ1180a、1185bのうちの少なくとも1つを含むパターンを意味する。そのため、第2の水平バー520の長さは、選択されたパターンが特定のエンティティ1180、1185をどの程度多く含むかを示している。これは、アナリストがピン留めされたエンティティ1180a、1185に関して次に関連性が高いエンティティ1180、1185を識別するのを助けることができる。
左側領域1130は、中央又は連結領域1140によって右側領域1135に接続される。中央又は連結領域1140は、各行1125と関連付けられたサブネットワークパターンに関する情報を提供することができる。例えば、識別されたサブネットワークパターンのサイズを識別するために、サブネットワークパターンサイズ指標1187を設けることができる。(破線楕円によって強調表示される)サブネットワークパターンサイズ指標1187は、右側領域1130における第1の種類のエンティティの数及び左側領域1135における複数の第2の種類のエンティティを示すことができる。図11に示される例示的な実装において、値「10×10」のサブネットワークパターンサイズ指標1187は、示された行1125と関連付けられたサブネットワークパターンが、左側領域1130における第1の種類の10個のエンティティ及び右側領域1135における第2の種類の10個のエンティティを含むことを示すことができる。
さらに、いくつかの実装において、第1の種類1180a、1180又は第2の種類1185b、1185のより多くのエンティティは、行1125の左側及び右側領域1130、1135に表示されることができるサブネットワークパターンと関連付けられることができる。そのような実装において、連結領域1140は、左側領域1130及び右側領域1135にそれぞれ関連付けられた(破線楕円によって強調表示される)ユーザインターフェース(UI)制御1189、1191を提供することができる。各UI制御1189、1191は、表示できない第1の種類1180a、1180又は第2の種類1185b、1185のさらなるエンティティを表示するために、左側及び右側領域1130、1135をそれぞれスクロール又は切り替えるのを可能とする。各UI制御1189、1191はまた、ページ指標1195、1197も有することができる。
ページ指標1195は、左側領域1130に表示されているエンティティ1180a、1180の現在のページを示すことができる。さらに、いくつかの例示的な実装において、ページ指標1195はまた、利用可能なエンティティ1180a、1180の総ページ数を示すこともできる。図11に示される例示的な実装において、値「1/2」のページ指標1195は、合計で2つの利用可能なページの現在のページ番号「1」が左側領域1130に表示されていることを示すことができる。
同様に、ページ指標1197は、右側領域1135に表示されているエンティティ1185b、1185の現在のページを示すことができる。さらに、いくつかの例示的な実装において、ページ指標1197はまた、利用可能なエンティティ1185b、1185の総ページ数を示すこともできる。図11に示される例示的な実装において、値「1/2」のページ指標1197は、合計で2つの利用可能なページの現在のページ番号「1」が右側領域1135に表示されていることを示すことができる。
さらに、いくつかの例示的な実装において、中央又は連結領域1140はまた、各行1125と関連付けられたサブネットワークパターンに関する情報1193を提供することができる。例えば、図11に示されるように、情報1193は、左側領域1130におけるエンティティ1180a、1180を右側領域1135におけるエンティティ1185b、1185にリンクするコンテンツ特徴と関連付けられたキーワードを含むことができる。さらに、図11には示されていないが、UI1100の他の例示的な実装はまた、図3に示され且つ上述したUI300の情報パネル310、概要領域315、及びツールバー320と同様の情報パネル、概要、及びツールバーを設けてもよい。
図12A及び図12Bは、本特許出願の他の例示的な実装にかかる視覚化として使用可能なUI1200の例示的な実装を示している。図12Aは、選択又はピン留めされた任意のエンティティ1280、1285を有しないUI1200を示している。
UI1200は、上述したプロセス900を使用して生成されることができ、パーソナルコンピュータ、サーバ、メインフレーム、若しくは当業者にとって明らかであろう任意の他のコンピューティング装置などのコンピューティング装置又は装置上に表示されることができる。UI1200は、オンライン商取引プラットフォームにおける購入の検索結果を探索するための視覚化を提示することができる。例えば、ユーザが入力する検索語に基づいて、UI1200は、関連性によって順序付けされた顧客及び購入物品エンティティセットのリストを提示することができる。
エンティティセットは、顧客及び購入物品(映画、書籍、テレビ番組など)の2モードネットワークに基づいて構築されることができ、さらにユーザの検索に基づいて抽出されることができる。UI1200は、ユーザがさらなる結果を発見するために結果を探索するのを可能とする。例えば、ユーザは、ユーザが検索をより効果的に精緻化することができるように、範囲を広げることから、関連するキー購入物品/購入者を、それらの接続を閲覧することによって識別するのを可能とする。他の種類の視覚化は、図3から図7、図10及び図11に関して上述される。
いくつかの例示的な実装において、UI1200は、複数の行1225を設けることができ、各行1225は、検出されたサブネットワークパターンのうちの1つを表している。説明を簡単にするために、図12Aには2つの行1225のみがラベル付けされている。しかしながら、図12AのUI1200に示されている行のそれぞれは、参照符号が与えられていない場合であっても、検出されたサブネットワークパターンのうちの1つを表すことができる。UI1200の各行1225内には、3つの領域1230、1235、1240を設けることができる。左側領域1230は、ノードアイコン1280によって表される第1の種類のエンティティと関連付けられることができる。右側領域1235は、ノードアイコン1285によって表される第2の種類のエンティティと関連付けられることができる。各ノードアイコン1280、1285によって表されるエンティティの種類に応じて、ノードアイコン1280、1285は、画像又はテキスト要約として示されることができる。例えば、オンライン商取引プラットフォーム購入検索結果分析の実装が図12A及び図12Bに示されている。示されるように、左側領域1230における第1の種類のエンティティは人物(例えば、購入者、顧客など)であり、ノードアイコン1280は、人物(例えば、購入者、顧客など)と関連付けられたプロファイル又はキャラクタの画像としてレンダリングされる。さらに、右側領域1235における第2の種類のエンティティは購入品(例えば、書籍、映画、テレビ番組など)であり、ノードアイコン1285は、購入品を表すサムネイル(例えば、表紙、ポスター、代表的なキャラクタなど)によってレンダリングされる。ノードアイコン1280、1285はまた、図5の一般的なノードアイコン500に関して上記に詳細に記載されたようなさらなる特徴を含むことができる。
さらに、図12Bにおいて、UI1200は、第1の種類のエンティティ及び第2の種類のエンティティの双方に対して行われる図7に記載された動作と同様の「ピン留め」動作を示している。具体的には、ユーザ入力に基づいて、第1の種類のエンティティ(1280a)及び第2の種類のエンティティ(1285b)のうちの1つが、より深い探索のために選択又は「ピン留め」されている。エンティティ1280a及び1285bがピン留めされた後、UI1200は、エンティティ1280a及び1285bについて別個の列を形成するように構成されている。これは、エンティティ1280a及び1285bがどのサブネットワークパターンに属するかを確認する、より明確な視覚化が可能となる。エンティティ1280aがピン留めされると、他のピン止めされていないエンティティ1280は、各行におけるピン留めされたエンティティ1280aに対するそれらの関連性に基づいて並べ替えられることができる。同様に、エンティティ1285bがピン留めされると、他のピン止めされていないエンティティ1285は、各行におけるピン留めされたエンティティ1285bに対するそれらの関連性に基づいて並べ替えられることができる。これは、アナリストがそれらにより容易にアクセスすることができるように、より関連性の高いエンティティを(破線矩形1210、1215によって表される)中央領域1240にもたらすことができる。エンティティ1280a及びエンティティ1285bをピン留めした後、エンティティ1280、1280a、1285、1285bの第2の水平バー520は、各ノードアイコンの下方に動的に示されることができ、全ての「選択された」パターンのうち、そのエンティティ1280、1280a、1285、1285bが属するパターンの割合を表す。同様に、選択されたパターンは、ピン留めされたエンティティ1280a、1285bのうちの少なくとも1つを含むパターンを意味する。そのため、第2の水平バー520の長さは、選択されたパターンが特定のエンティティ1280、1285をどの程度多く含むかを示している。これは、アナリストがピン留めされたエンティティ1280a、1285に関して次に関連性が高いエンティティ1280、1285を識別するのを助けることができる。
左側領域1230は、中央又は連結領域1240によって右側領域1235に接続される。中央又は連結領域1240は、各行1225と関連付けられたサブネットワークパターンに関する情報を提供することができる。例えば、識別されたサブネットワークパターンのサイズを識別するために、サブネットワークパターンサイズ指標1287を設けることができる。(破線楕円によって強調表示される)サブネットワークパターンサイズ指標1287は、右側領域1230における第1の種類のエンティティの数及び左側領域1235における複数の第2の種類のエンティティを示すことができる。図12A及び図12Bに示される例示的な実装において、値「3×4」のサブネットワークパターンサイズ指標1287は、示された行1225と関連付けられたサブネットワークパターンが、左側領域1230における第1の種類の3個のエンティティ及び右側領域1235における第2の種類の4個のエンティティを含むことを示すことができる。
さらに、いくつかの実装において、第1の種類1280a、1280又は第2の種類1285b、1285のより多くのエンティティは、行1225の左側及び右側領域1230、1235に表示されることができるサブネットワークパターンと関連付けられることができる。そのような実装において、連結領域1240は、左側領域1230及び右側領域1235にそれぞれ関連付けられた(破線楕円によって強調表示される)ユーザインターフェース(UI)制御1289、1291を提供することができる。各UI制御1289、1291は、表示できない第1の種類1280a、1280又は第2の種類1285b、1285のさらなるエンティティを表示するために、左側及び右側領域1230、1235をそれぞれスクロール又は切り替えるのを可能とする。各UI制御1289、1291はまた、ページ指標1295、1297も有することができる。ページ指標1295は、左側領域1230に表示されているエンティティ1280a、1280の現在のページを示すことができる。さらに、いくつかの例示的な実装において、ページ指標1295はまた、利用可能なエンティティ1280a、1280の総ページ数を示すこともできる。図12A及び図12Bに示される例示的な実装において、値「1/1」のページ指標1295は、合計で1つの利用可能なページの現在のページ番号「1」が左側領域1230に表示されていることを示すことができる。
同様に、ページ指標1297は、右側領域1235に表示されているエンティティ1285b、1285の現在のページを示すことができる。さらに、いくつかの例示的な実装において、ページ指標1297はまた、利用可能なエンティティ1285b、1285の総ページ数を示すこともできる。図12A及び図12Bに示される例示的な実装において、値「1/1」のページ指標1297は、合計で1つの利用可能なページの現在のページ番号「1」が右側領域1235に表示されていることを示すことができる。
さらに、図12A及び図12Bには示されていないが、UI1200の他の例示的な実装はまた、図3に示され且つ上述したUI300の情報パネル310、概要領域315、及びツールバー320と同様の情報パネル、概要、及びツールバーを設けてもよい。
例示的なコンピューティング環境
図13は、いくつかの例示的な実装における使用に適した例示的なコンピュータ装置1305を有する例示的なコンピューティング環境1300を示している。コンピューティング環境1300におけるコンピューティング装置1305は、1又は複数の処理ユニット、コア、又はプロセッサ1310、メモリ1315(例えば、RAM、及び/又はROMなど)、内部記憶装置1320(例えば、磁気、光学、固体記憶装置、及び/又は有機)、及び/又はI/Oインターフェース1325を含むことができ、これらのうちの任意のものは、情報を通信するために通信機構又はバス1330に結合されるか又はコンピューティング装置1305に内蔵されることができる。
コンピューティング装置1305は、入力/ユーザインターフェース1335及び出力装置/インターフェース1340に通信可能に結合されることができる。入力/ユーザインターフェース1335及び出力装置/インターフェース1340のいずれか又は双方は、有線又は無線インターフェースとすることができ、取り外し可能である。入力/ユーザインターフェース1335は、入力(例えば、ボタン、タッチスクリーンインターフェース、キーボード、ポインティング/カーソル制御、マイクロフォン、カメラ、点字、モーションセンサ、及び/又は光学式読み取り装置など)を提供するために使用可能な物理的又は仮想的な任意の装置、コンポーネント、センサ、又はインターフェースを含むことができる。出力装置/インターフェース1340は、ディスプレイ、テレビ、モニタ、プリンタ、スピーカ、点字などを含むことができる。いくつかの例示的な実装において、入力/ユーザインターフェース1335及び出力装置/インターフェース1340は、コンピューティング装置1305に内蔵されることができるか、又は物理的に結合されることができる。他の例示的な実装において、他のコンピューティング装置は、コンピューティング装置1305についての入力/ユーザインターフェース1335及び出力装置/インターフェース1340として機能してもよく、又はその機能を提供してもよい。
コンピューティング装置1305の例は、限定されるものではないが、高度なモバイル装置(例えば、スマートフォン、車両及び他の機械における装置、人間及び動物によって携行される装置など)、モバイル装置(例えば、タブレット、ノートブック、ラップトップ、パーソナルコンピュータ、携帯テレビ、ラジオなど)、並びに移動性のために設計されていない装置(例えば、デスクトップコンピュータ、サーバ装置、他のコンピュータ、情報キオスク、1又は複数のプロセッサが内蔵された及び/又はそれに結合されたテレビ、ラジオなど)を含むことができる。
コンピューティング装置1305は、同じ又は異なる構成の1又は複数のコンピューティング装置を含む任意数のネットワークコンポーネント、装置、及びシステムと通信するために、外部記憶装置1345及びネットワーク1350に(例えば、I/Oインターフェース1325を介して)通信可能に結合されることができる。コンピューティング装置1305又は任意の接続されたコンピューティング装置は、サーバ、クライアント、シンサーバ、汎用マシン、専用マシン、又は他のラベルのサービスを提供するように機能することができるか又はそのように称することができる。
I/Oインターフェース1325は、限定されるものではないが、コンピューティング環境1300における少なくとも全ての接続されたコンポーネント、装置、及びネットワークとの間で情報を通信するために、任意の通信又はI/Oプロトコル又は標準規格(例えば、イーサネット(登録商標)、802.11x、ユニバーサルシステムバス、WiMAX、モデム、セルラーネットワークプロトコルなど)を使用する有線及び/又は無線インターフェースを含むことができる。ネットワーク1350は、任意のネットワーク又はネットワークの組み合わせ(例えば、インターネット、ローカルエリアネットワーク、ワイドエリアネットワーク、電話ネットワーク、セルラーネットワーク、衛星ネットワークなど)とすることができる。
コンピューティング装置1305は、一時的媒体及び非一時的媒体を含むコンピュータ使用可能又はコンピュータ可読媒体を使用して使用及び/又は通信することができる。一時的媒体は、伝送媒体(例えば、金属ケーブル、光ファイバ)、信号、搬送波などを含む。非一時的媒体は、磁気媒体(例えば、ディスク及びテープ)、光媒体(例えば、CD-ROM、ディジタルビデオディスク、ブルーレイディスク)、固体媒体(例えば、RAM、ROM、フラッシュメモリ、固体記憶装置)、及び他の不揮発性記憶装置又はメモリを含む。
コンピューティング装置1305は、いくつかの例示的なコンピューティング環境において、技術、方法、アプリケーション、プロセス、又はコンピュータ実行可能命令を実装するために使用されることができる。コンピュータ実行可能命令は、一時的媒体から取得されることができ、非一時媒体に記憶されて非一時媒体から取得されることができる。実行可能命令は、プログラミング、スクリプティング、及び機械語(例えば、C、C++、C#、Java(登録商標)、ビジュアルベーシック、パイソン、パール、JavaScript(登録商標)など)のうちの1又は複数から発生することができる。
プロセッサ1310は、ネイティブ又は仮想環境において、任意のオペレーティングシステム(OS)(図示しない)の下で実行することができる。論理ユニット1355、アプリケーションプログラミングインターフェース(API)ユニット1360、入力ユニット1365、出力ユニット1370、パターン検出器1375、視覚化生成器1380、エンティティ識別器1385、パラメータ調整エンジン1390、並びに異なるユニットが互いに、OS及び他のアプリケーション(図示しない)と通信するためのユニット間通信機構1395を含む1又は複数のアプリケーションが配備されることができる。例えば、パターン検出器1375、視覚化生成器1380、エンティティ識別器受信器1385、及びパラメータ調整エンジン1390は、図2、図8及び図9に示される1又は複数のプロセスを実装することができる。記載されたユニット及び要素は、設計、機能、構成、又は実装において変更可能であり、上述した記載に限定されるものではない。
いくつかの例示的な実装において、情報又は実行命令がAPIユニット1360によって受信されると、それは、1又は複数の他のユニット(例えば、論理ユニット1355、入力ユニット1365、パターン検出器1375、視覚化生成器1380、エンティティ識別器1385、パラメータ調整エンジン1390)に伝送されることができる。例えば、パターン検出器1375は、入力ユニット1365を介して関係データを受信し、検出されたサブネットワークパターンを視覚化生成器1380に提供することができる。さらに、いくつかの例示的な実装において、エンティティ識別器1385は、入力ユニット1365からコンテンツ特徴を受信し、受信したコンテンツ特徴に基づいてエンティティを識別することができる。識別されたエンティティは、いくつかの実施形態において、受信したコンテンツ特徴に基づいてサブネットワークパターンを検出するためにパターン検出器1375に提供され、それによって使用されることができる。パターン検出器1375が1又は複数のサブネットワークパターンを検出すると、検出されたサブネットワークパターンは、視覚化を生成するために視覚化生成器1385に提供されることができる。さらに、パラメータ調整エンジン1390は、視覚化を更新及び修正するために視覚化生成器1385及びパターン検出器1375を制御することができる。
いくつかの場合において、論理ユニット1355は、上述したいくつかの例示的な実装において、ユニット間の情報フローを制御し、APIユニット1360、入力ユニット1365、出力ユニット1370、パターン検出器1375、視覚化生成器1380、エンティティ識別器1385、及びパラメータ調整エンジン1390によって提供されるサービスを導くように構成されることができる。例えば、1又は複数のプロセス又は実装のフローは、論理ユニット1355によって単独に又はAPIユニット1360と連携して制御されることができる。
いくつかの例示的な実装が示されて記載されたが、これらの例示的な実装は、本願明細書に記載された主題を当業者に伝えるために提供される。本願明細書に記載された主題は、記載された例示的な実装に限定されることなく、様々な形態で実装されてもよいことが理解されるべきである。本願明細書に記載された主題は、具体的に定義若しくは記載された事項を有することなく、又は記載されていない他の若しくは異なる要素若しくは事項を有して実施されることができる。添付した特許請求の範囲及びその均等物において定義された本願明細書に記載された主題から逸脱することなく、これらの例示的な実装において変更を行うことができることが当業者によって理解される。

Claims (20)

  1. コンピュータが検索結果を視覚化する方法において、
    前記コンピュータが、
    コンテンツ特徴を受信することと、
    ネットワーク内で、条件を満たし且つ第1の種類又は第2の種類のエンティティと関連付けられた関係を表すサブネットワークパターンを検出することであって、前記エンティティが前記コンテンツ特徴と関連付けられることと、
    前記検出されたサブネットワークパターンに基づいて視覚化を生成することとを備え、
    前記視覚化が、
    前記第1の種類のエンティティを表す第1の領域と、
    前記第2の種類のエンティティを表す第2の領域と、
    前記第1の領域を前記第2の領域に接続し且つ提示された前記関係に関する情報を提供する連結領域とを備え
    前記視覚化が複数の行を備え、各行が前記条件を満たす前記複数の検出されたサブネットワークパターンのうちの1つと関連付けられる、
    方法。
  2. 前記ネットワークが複数の関係を備え、各関係が、前記第1の種類の複数のエンティティから選択されたエンティティ及び前記第2の種類の複数のエンティティから選択されたエンティティと関連付けられ、
    前記サブネットワークパターンを検出することが、複数のサブネットワークパターンを検出することを備え、前記複数のサブネットワークパターンのそれぞれが、前記条件を満たし、且つ、前記受信したコンテンツ特徴と関連付けられる、前記第1の種類の複数のエンティティから選択されたエンティティ又は前記第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表す、
    請求項1に記載の方法。
  3. 前記第1の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのクリエータを表し、
    前記第2の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのアイテムを表す、請求項2に記載の方法。
  4. 前記視覚化の前記連結領域に設けられた前記情報が、複数のサブネットワークパターンのそれぞれによって提示された前記関係と関連付けられた前記第2の種類の1又は複数のエンティティを表すコンテンツ要約を備える、請求項3に記載の方法。
  5. 前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、前記識別されたエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える、請求項4に記載の方法。
  6. 前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、前記識別されたエンティティと関連付けられない関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える、請求項4に記載の方法。
  7. 前記第1の種類のエンティティが小売店の顧客を表し、
    前記第2の種類のエンティティが前記小売店によって販売される物品を表す、請求項2に記載の方法。
  8. 前記第1の種類のエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、
    前記識別された第1の種類のエンティティと関連付けられた関係と関連付けられた第2の種類の第1のエンティティを検出することと、
    前記検出された第2の種類の第1のエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することとを備える、請求項7に記載の方法。
  9. 前記第1の種類のエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、
    前記識別された第1の種類のエンティティと関連付けられた関係と関連付けられた第2の種類の第1のエンティティを検出することと、
    前記検出された第2の種類の第1のエンティティと関連付けられた関係と関連付けられた前記第1の種類の第2のエンティティを検出することと、
    前記検出された第1の種類の第2のエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することとを備える、請求項7に記載の方法。
  10. 前記サブネットワークパターンと関連付けられた少なくとも1つの行を再配置することが、
    前記識別されたエンティティと関連付けられない関係及び前記検出された第1の種類の第2のエンティティと関連付けられた関係の双方を表すサブネットワークパターンと関連付けられた少なくとも1つの行を識別することを備える、請求項9に記載の方法。
  11. 検索結果を視覚化する方法をコンピュータに実行させるためのプログラムにおいて、前記方法が、
    コンテンツ特徴を受信することと、
    ネットワーク内で、条件を満たし且つ第1の種類又は第2の種類のエンティティと関連付けられた関係を表すサブネットワークパターンを検出することであって、前記エンティティが前記コンテンツ特徴と関連付けられることと、
    前記検出されたサブネットワークパターンに基づいて視覚化を生成することとを備え、前記視覚化が、
    前記第1の種類のエンティティを表す第1の領域と、
    前記第2の種類のエンティティを表す第2の領域と、
    前記第1の領域を前記第2の領域に接続し且つ提示された前記関係に関する情報を提供する連結領域とを備え
    前記視覚化が複数の行を備え、各行が前記条件を満たす前記複数の検出されたサブネットワークパターンのうちの1つと関連付けられる、
    プログラム。
  12. 前記ネットワークが複数の関係を備え、各関係が、前記第1の種類の複数のエンティティから選択されたエンティティ及び前記第2の種類の複数のエンティティから選択されたエンティティと関連付けられ、
    前記サブネットワークパターンを検出することが、複数のサブネットワークパターンを検出することを備え、前記複数のサブネットワークパターンのそれぞれが、前記条件を満たし、且つ、前記受信したコンテンツ特徴と関連付けられる、前記第1の種類の複数のエンティティから選択されたエンティティ又は前記第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表す、
    請求項11に記載のプログラム。
  13. 前記第1の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのクリエータを表し、
    前記第2の種類のエンティティが、コンテンツ管理システムにおけるコンテンツのアイテムを表す、請求項12に記載のプログラム。
  14. 前記視覚化の前記連結領域に設けられた前記情報が、複数のサブネットワークパターンのそれぞれによって提示された前記関係と関連付けられた前記第2の種類の1又は複数のエンティティを表すコンテンツ要約を備える、請求項13に記載のプログラム。
  15. 前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、前記識別されたエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える、請求項14に記載のプログラム。
  16. 前記第1及び第2の種類のいずれかのエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、前記識別されたエンティティと関連付けられない関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することを備える、請求項14に記載のプログラム。
  17. 前記第1の種類のエンティティが小売店の顧客を表し、
    前記第2の種類のエンティティが前記小売店によって販売される物品を表す、請求項12に記載のプログラム。
  18. 前記第1の種類のエンティティを識別する入力信号を受信することと、
    前記識別されたエンティティに基づいて前記視覚化を更新することとをさらに備え、
    前記視覚化を更新することが、
    前記識別された第1の種類のエンティティと関連付けられた関係と関連付けられた第2の種類の第1のエンティティを検出することと、
    前記検出された第2の種類の第1のエンティティと関連付けられた関係と関連付けられた前記第1の種類の第2のエンティティを検出することと、
    前記検出された第1の種類の第2のエンティティと関連付けられた関係を表すサブネットワークパターンと関連付けられた少なくとも1つの行を再配置することとを備える、請求項17に記載のプログラム。
  19. 前記サブネットワークパターンと関連付けられた少なくとも1つの行を再配置することが、
    前記識別されたエンティティと関連付けられない関係及び前記検出された第1の種類の第2のエンティティと関連付けられた関係の双方を表すサブネットワークパターンと関連付けられた少なくとも1つの行を識別することをさらに備える、請求項18に記載のプログラム。
  20. 検索結果を視覚化するように構成されたコンピュータ装置において、
    複数の関係を含む関係データを格納するメモリであって、各関係が第1の種類の複数のエンティティから選択されたエンティティ及び第2の種類の複数のエンティティから選択されたエンティティと関連付けられたメモリと、
    コンテンツ特徴を受信することと、
    複数のサブネットワークパターンを検出することであって、前記複数のサブネットワークパターンのそれぞれが、前記受信したコンテンツ特徴と関連付けられる、条件を満たし且つ前記第1の種類の複数のエンティティから選択されたエンティティ又は前記第2の種類の複数のエンティティから選択されたエンティティのいずれかと関連付けられた関係を表すことと、
    前記検出されたサブネットワークパターンに基づいて視覚化を生成することとを備えるプロセスを実行するプロセッサであって、前記視覚化が、
    前記第1の種類のエンティティを表す第1の領域と、
    前記第2の種類のエンティティを表す第2の領域と、
    前記第1の領域を前記第2の領域に接続し且つ提示された前記関係に関する情報を提供する連結領域とを備え、
    前記視覚化が複数の行を備え、各行が前記条件を満たす前記複数の検出されたサブネットワークパターンのうちの1つと関連付けられるプロセッサと、
    前記生成された視覚化を表示するように構成されたディスプレイ装置とを備える、コンピュータ装置。
JP2018091881A 2017-09-28 2018-05-11 2モードネットワークにおける検索結果の視覚的探索のためのシステム及び方法、プログラム、及びコンピュータ装置 Active JP7119550B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/719,321 US11048713B2 (en) 2017-09-28 2017-09-28 System and method for visual exploration of search results in two-mode networks
US15/719321 2017-09-28

Publications (2)

Publication Number Publication Date
JP2019067360A JP2019067360A (ja) 2019-04-25
JP7119550B2 true JP7119550B2 (ja) 2022-08-17

Family

ID=65809061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018091881A Active JP7119550B2 (ja) 2017-09-28 2018-05-11 2モードネットワークにおける検索結果の視覚的探索のためのシステム及び方法、プログラム、及びコンピュータ装置

Country Status (2)

Country Link
US (1) US11048713B2 (ja)
JP (1) JP7119550B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204796A (ja) * 2019-06-14 2020-12-24 株式会社チームAibod 情報抽出システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002024283A (ja) 2000-06-30 2002-01-25 Fuji Xerox Co Ltd 接続関係表示方法及び装置
US20050120030A1 (en) 2003-10-14 2005-06-02 Medicel Oy Visualization of large information networks
JP2009089030A (ja) 2007-09-28 2009-04-23 Toshiba Corp 電子機器および画像表示制御方法
JP2010218353A (ja) 2009-03-18 2010-09-30 Oki Electric Ind Co Ltd クラスタリング装置およびクラスタリング方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590067B2 (en) * 2003-10-24 2009-09-15 Nortel Networks Limtied Method and apparatus for deriving allowable paths through a network with intransitivity constraints
US9450771B2 (en) * 2013-11-20 2016-09-20 Blab, Inc. Determining information inter-relationships from distributed group discussions
US10423761B2 (en) * 2015-03-27 2019-09-24 Ims Health Incorporated Reconciliation of data across distinct feature sets
US10019629B2 (en) * 2016-05-31 2018-07-10 Microsoft Technology Licensing, Llc Skeleton-based action detection using recurrent neural network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002024283A (ja) 2000-06-30 2002-01-25 Fuji Xerox Co Ltd 接続関係表示方法及び装置
US20050120030A1 (en) 2003-10-14 2005-06-02 Medicel Oy Visualization of large information networks
JP2009089030A (ja) 2007-09-28 2009-04-23 Toshiba Corp 電子機器および画像表示制御方法
JP2010218353A (ja) 2009-03-18 2010-09-30 Oki Electric Ind Co Ltd クラスタリング装置およびクラスタリング方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大久保亮介,外,基盤技術 コミュニティ間の関連の視覚化~フォーカスグラフの提案~,NEC技報,第61巻,第2号,日本電気株式会社,2008年04月25日,pp.57-60

Also Published As

Publication number Publication date
US11048713B2 (en) 2021-06-29
JP2019067360A (ja) 2019-04-25
US20190095503A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US10976914B2 (en) Direct manipulation interface for data analysis
US10558679B2 (en) Systems and methods for presenting a topic-centric visualization of collaboration data
US11348294B2 (en) Systems and methods for updating a third party visualization in response to a query
Heymann et al. Visual analysis of complex networks for business intelligence with gephi
Mansmann et al. Visual analysis of complex firewall configurations
US20170293419A1 (en) Method and system for context based tab management
US10606927B2 (en) Viewing hierarchical document summaries using tag clouds
US20140164893A1 (en) Assisted portal navigation and crowd-based feedback
JP2019028975A (ja) データに対してスクリーニングおよび統計的演算を実行するための方法、装置、電子機器およびコンピュータ読取り可能記憶媒体
Gove et al. SEEM: a scalable visualization for comparing multiple large sets of attributes for malware analysis
CN105612511B (zh) 标识并结构化相关数据
CN113407678A (zh) 知识图谱构建方法、装置和设备
JP7206632B2 (ja) 2モードネットワークにおけるサブネットワークパターンの視覚的探索のためのシステム及び方法、プログラム
Cho Topic modeling
US20120131053A1 (en) Webpage content search method and system
JP7119550B2 (ja) 2モードネットワークにおける検索結果の視覚的探索のためのシステム及び方法、プログラム、及びコンピュータ装置
US9384285B1 (en) Methods for identifying related documents
TW201523421A (zh) 決定用於擷取的文章之圖像
CN106503085B (zh) 基于域的可定制搜索系统、方法及技术
Singh et al. Sentiment analysis of social networking data using categorized dictionary
US20130218893A1 (en) Executing in-database data mining processes
CN106599287B (zh) 搜索结果处理方法及装置
O’HALLORAN et al. Big Data and managing multimodal complexity
KR102676525B1 (ko) 공공 데이터를 이용하여 정책에 관련된 정보의 검색을 제공하는 방법 및 그 장치
Cermak et al. Using relational graphs for exploratory analysis of network traffic data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R150 Certificate of patent or registration of utility model

Ref document number: 7119550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150