JP7117199B2 - Combustion ash disposal method and reuse method - Google Patents

Combustion ash disposal method and reuse method Download PDF

Info

Publication number
JP7117199B2
JP7117199B2 JP2018166833A JP2018166833A JP7117199B2 JP 7117199 B2 JP7117199 B2 JP 7117199B2 JP 2018166833 A JP2018166833 A JP 2018166833A JP 2018166833 A JP2018166833 A JP 2018166833A JP 7117199 B2 JP7117199 B2 JP 7117199B2
Authority
JP
Japan
Prior art keywords
combustion
combustion ash
magnetic
fuel
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018166833A
Other languages
Japanese (ja)
Other versions
JP2020039994A (en
Inventor
綾乃 川又
淳一 秋山
英雅 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2018166833A priority Critical patent/JP7117199B2/en
Publication of JP2020039994A publication Critical patent/JP2020039994A/en
Application granted granted Critical
Publication of JP7117199B2 publication Critical patent/JP7117199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃焼灰の処理方法および再使用方法に関し、詳しくは、石油系及び石炭系燃料等を燃焼させた後、生成された燃焼灰からケイ素化合物を磁選により除去することにより、燃焼灰を再度燃料として使用可能とする方法に関する。 The present invention relates to a method for treating and reusing combustion ash, and more specifically, after burning petroleum-based and coal-based fuels, etc., the combustion ash is removed by magnetic separation to remove silicon compounds from the generated combustion ash. The present invention relates to a method for making it usable as fuel again.

石油コークスや重油などの石油系燃料及び石炭系燃料の燃焼によって発生する燃焼灰は、これらの燃料の燃焼条件にもよるが、通常、未燃焼カーボン;石油系燃料に含まれるケイ素化合物、ニッケル化合物、鉄化合物などの金属化合物を主体とする灰分;および燃焼排ガスを脱硝するために還元剤として注入されるアンモニアガスと当該排ガス中に含まれる硫黄酸化物との反応により生成する、水に可溶性の硫安(硫酸アンモニウム)の3成分の混合物である。このうち未燃焼カーボンを燃料用などに有効活用する場合にはケイ素化合物が障害になる。それはケイ素化合物がボイラーに対して熱伝導率の低下を引き起こすからである。この観点より燃焼灰や廃棄物からケイ素化合物を除去する技術が必要となり、ケイ素化合物除去技術が、下記に示すように従来からいくつか提案されている。 Combustion ash generated by the combustion of petroleum-based fuels such as petroleum coke and heavy oil and coal-based fuels, depending on the combustion conditions of these fuels, is usually unburned carbon; silicon compounds contained in petroleum-based fuels, nickel compounds , ash mainly composed of metal compounds such as iron compounds; It is a ternary mixture of ammonium sulfate (ammonium sulfate). Of these, silicon compounds pose an obstacle to the effective use of unburned carbon as fuel. This is because silicon compounds cause a reduction in thermal conductivity for boilers. From this point of view, a technique for removing silicon compounds from combustion ash and waste is required, and several techniques for removing silicon compounds have been conventionally proposed as shown below.

特許文献1および2には、NaOH溶液で燃焼灰中のケイ素化合物を浸出させてケイ素化合物を分離する方法が開示されている。
特許文献3には、硫黄を含む添加物を添加した廃棄物から、分離選別装置で金属化合物を分離する方法が開示されている。
Patent Documents 1 and 2 disclose a method of leaching silicon compounds in combustion ash with a NaOH solution to separate the silicon compounds.
Patent Literature 3 discloses a method for separating metal compounds from waste to which additives containing sulfur have been added, using a separation and sorting device.

また、特許文献4には、重油燃焼飛灰を磁選して、バナジウム、鉄、ニッケルを分離回収する方法が開示されている。さらに特許文献5には、二酸化ケイ素を含む循環流動床フライアッシュを磁選し、鉄を除去する方法が開示されている。 Further, Patent Document 4 discloses a method of magnetically separating heavy oil combustion fly ash to separate and recover vanadium, iron, and nickel. Furthermore, Patent Document 5 discloses a method of magnetically separating fly ash in a circulating fluidized bed containing silicon dioxide to remove iron.

特表2009-519829号公報Japanese translation of PCT publication No. 2009-519829 特開2017-056409号公報JP 2017-056409 A 特開2015-190645号公報JP 2015-190645 A 特開2003-275616号公報JP-A-2003-275616 特許第5368659号公報Japanese Patent No. 5368659

しかし、上記特許文献1~3に開示されたNaOHや硫黄添加物を用いる方法は、コストが大きいだけでなく、未燃焼カーボンを燃料用に有効活用する際にはナトリウム化合物や硫黄化合物がボイラー腐食の原因となるので、NaOHや硫黄添加物を除去する工程が必要になるという短所がある。 However, the methods using NaOH and sulfur additives disclosed in Patent Documents 1 to 3 are not only costly, but also sodium compounds and sulfur compounds cause boiler corrosion when unburned carbon is effectively used for fuel. , so there is a disadvantage that a process for removing NaOH and sulfur additives is required.

また燃焼灰の磁選は、通常、上記特許文献4、5に開示された方法のように、バナジウム、鉄、ニッケルのいずれかの金属に注目して行うものであり、ケイ素化合物等のその他の元素を含む成分は、磁選能力の差異により磁選により磁着されない非磁性体側に回収されると考えられている。 In addition, magnetic separation of combustion ash is usually performed by focusing on any metal of vanadium, iron, and nickel, as in the methods disclosed in Patent Documents 4 and 5, and other elements such as silicon compounds. It is believed that components containing are collected on the non-magnetic side, which is not magnetized by magnetic separation due to the difference in magnetic separation ability.

本発明はこのような事情に鑑み、石油系及び石炭系燃料等の燃料を燃焼させて生成される燃焼灰から、簡易に、実用的かつ有効にケイ素化合物を除去することにより燃料を有効に再使用できる方法を提供することを目的とする。 In view of such circumstances, the present invention effectively recycles fuel by simply, practically and effectively removing silicon compounds from combustion ash produced by burning fuel such as petroleum and coal fuel. The purpose is to provide a method that can be used.

本発明者らは上記課題を解決すべく、鋭意検討した結果、石油系燃料等の燃焼灰を1.0T以上の磁力にて磁選した場合、燃焼灰よりケイ素化合物を良い効率で除去でき、燃焼灰を燃料として再使用できることを見出した。 In order to solve the above problems, the present inventors have made intensive studies, and as a result, when combustion ash such as petroleum fuel is magnetically separated with a magnetic force of 1.0 T or more, silicon compounds can be removed from combustion ash with good efficiency. We have found that the ash can be reused as fuel.

本発明の要旨は以下の通りである。
[1] 燃焼工程にて燃料を燃焼して発生した燃焼灰に対し、1.0テスラ以上の磁力で磁選を行い、前記燃焼灰からケイ素化合物を除去する磁選工程を有する燃焼灰の処理方法。
[2] 前記磁選工程において、磁選に用いる磁石がネオジム磁石または電磁石である、前記[1]に記載の燃焼灰の処理方法。
[3] 前記燃焼工程において、燃料を燃焼する燃焼温度が1300℃以上2000℃以下である、前記[1]または[2]に記載の燃焼灰の処理方法。
[4] 前記燃焼工程において、ボイラー燃焼炉、電気炉、ロータリーキルン、溶鉱炉または高炉で燃料を燃焼する、前記[1]~[3]のいずれかに記載の燃焼灰の処理方法。[5] 燃焼灰に対し1.0テスラ以上の磁力で磁選を行い、前記燃焼灰からケイ素化合物を除去する磁選工程を経て得られたケイ素化合物除去済みの燃焼灰を燃焼することを特徴とする燃焼灰の再使用方法。
The gist of the present invention is as follows.
[1] A method for treating combustion ash, comprising a magnetic separation step of magnetically separating combustion ash generated by burning fuel in a combustion step with a magnetic force of 1.0 Tesla or more to remove silicon compounds from the combustion ash.
[2] The method for treating combustion ash according to [1] above, wherein in the magnetic separation step, the magnet used for the magnetic separation is a neodymium magnet or an electromagnet.
[3] The method for treating combustion ash according to [1] or [2], wherein in the combustion step, the combustion temperature for burning the fuel is 1300°C or higher and 2000°C or lower.
[4] The method for treating combustion ash according to any one of [1] to [3], wherein in the combustion step, the fuel is burned in a boiler combustion furnace, an electric furnace, a rotary kiln, a blast furnace or a blast furnace. [5] Combustion ash is subjected to magnetic separation with a magnetic force of 1.0 Tesla or more, and the silicon compound-removed combustion ash obtained through the magnetic separation step of removing silicon compounds from the combustion ash is burned. How to reuse combustion ash.

本発明によれば、石油系燃料または石炭系燃料等を燃焼させ、生成された燃焼灰を磁選することで、添加物を用いずとも、燃焼灰から効率よくケイ素化合物を除去することにより、燃料を有効に再使用する方法を提供することができる。またその燃焼灰からケイ素化合物だけでなく、鉄化合物、ニッケル化合物等の灰分も除去されているので、本発明のケイ素化合物の除去方法を施した後の燃焼灰は再び燃料として有効に活用できる。 According to the present invention, by burning petroleum-based fuel or coal-based fuel and magnetically separating the generated combustion ash, silicon compounds can be efficiently removed from the combustion ash without using additives. can provide a way to effectively reuse the In addition, since not only silicon compounds but also ash such as iron compounds and nickel compounds are removed from the combustion ash, the combustion ash after applying the silicon compound removal method of the present invention can be effectively used again as fuel.

磁着物の、ケイ素、鉄、ニッケルについてのSEM-EDX測定結果の図である。FIG. 3 is a diagram of SEM-EDX measurement results for silicon, iron, and nickel of magnetic substances. 非磁着物の、ケイ素、鉄、ニッケルについてのSEM-EDX測定結果の図である。FIG. 4 is a diagram of SEM-EDX measurement results for silicon, iron, and nickel of non-magnetic substances.

以下、本発明の実施するための形態について説明する。
本発明に係る燃焼灰の処理方法は、燃焼灰から1.0テスラ以上の磁力で磁選を行い、ケイ素化合物を除去する磁選工程を含む。また、燃料を燃焼させて燃焼灰を生成する燃焼工程や、前記磁選工程を経た灰を燃焼する前記燃焼灰の再使用工程を含んでいてもよい。前記再使用工程を含む燃焼灰の処理方法は、燃焼灰の再使用方法として把握することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described.
A method for treating combustion ash according to the present invention includes a magnetic separation step of magnetically separating combustion ash with a magnetic force of 1.0 Tesla or more to remove silicon compounds. The method may also include a combustion step of burning fuel to generate combustion ash, and a combustion ash reuse step of burning ash that has undergone the magnetic separation step. The combustion ash disposal method including the reuse step can be grasped as a combustion ash reuse method.

[燃焼工程]
本工程で使用できる燃料としては、石油コークス、重油などの石油系燃料、および石炭などの石炭系燃料等を挙げることができる。前記燃料は、火力発電所などにおいて燃焼され、発電など種々の目的のために使用される。燃料の燃焼に用いられる装置としては、たとえばボイラー燃焼炉、電気炉、ロータリーキルン、溶鉱炉、高炉等が挙げられる。
[Combustion process]
Examples of the fuel that can be used in this step include petroleum-based fuels such as petroleum coke and heavy oil, and coal-based fuels such as coal. The fuel is combusted in a thermal power plant or the like and used for various purposes such as power generation. Apparatuses used for burning fuel include, for example, boiler combustion furnaces, electric furnaces, rotary kilns, blast furnaces, and blast furnaces.

燃焼灰とは、前記燃料を燃焼させた後に残る煤塵である。前記燃焼灰には、燃焼飛灰およびクリンカも含まれる。燃焼飛灰とは、前記燃料を燃焼させた時に発生する排ガスから、電気集塵機やバグフィルターを使用して回収された煤塵である。クリンカとは、前記燃料を燃焼させた後に、ボイラー燃焼炉の底部から排出される燃え残り物である。さらに、燃焼灰を更に焼成し、金属酸化物や硫黄分になった焼成燃焼灰なども本発明で使用される燃焼灰に含まれる。 Combustion ash is the dust that remains after burning the fuel. The combustion ash also includes combustion fly ash and clinker. Combustion fly ash is dust collected from the exhaust gas generated when the fuel is burned using an electrostatic precipitator or a bag filter. Clinker is the residue discharged from the bottom of a boiler combustion furnace after burning said fuel. Furthermore, combustion ash used in the present invention also includes calcined combustion ash that has been further calcined and converted into metal oxides and sulfur content.

本発明は、前記燃焼灰を燃料として使用することを可能にすることにより、燃料の再使用を実現する方法である。
燃焼灰には、前述のとおり、未燃焼カーボン、ケイ素化合物、ニッケル化合物、鉄化合物などの金属化合物、および硫安(硫酸アンモニウム)などが含まれる。ケイ素化合物は、ボイラー等に対する熱伝導率の低下などの弊害をもたらすので、燃焼灰を燃料として再使用する場合には、燃焼灰からケイ素化合物を除去することが必要である。
The present invention is a method for realizing fuel reuse by enabling the combustion ash to be used as fuel.
As described above, the combustion ash includes unburned carbon, silicon compounds, nickel compounds, metal compounds such as iron compounds, ammonium sulfate, and the like. Since silicon compounds cause adverse effects such as lowering the thermal conductivity of boilers and the like, it is necessary to remove the silicon compounds from the combustion ash when reusing the combustion ash as fuel.

燃焼灰に含まれるケイ素化合物としては、二酸化ケイ素、アルミノケイ酸塩およびケイ酸カリウム、ケイ酸ナトリウム等のケイ酸塩等を挙げることができる。
燃焼灰中に含まれるケイ素化合物の量は、使用される燃料の種類や燃焼方法などによって変動はあるものの、通常、ケイ素元素換算で0.1~2.5質量%の範囲である。
Silicon compounds contained in the combustion ash include silicon dioxide, aluminosilicates and silicates such as potassium silicate and sodium silicate.
The amount of silicon compound contained in the combustion ash varies depending on the type of fuel used, the combustion method, etc., but is usually in the range of 0.1 to 2.5% by mass in terms of silicon element.

燃焼灰は、前記燃料を燃焼させることにより生成される。燃焼工程の燃焼温度は、好ましくは500℃以上であり、より好ましくは600℃以上であり、更に好ましくは800℃以上、更により好ましくは1300℃以上である。燃焼温度は、好ましくは2000℃以下である。燃焼温度が500℃以上であれば、理由は明らかではないが燃焼灰中の金属分の凝集が十分に行われ、ケイ素化合物が磁性金属に付着すると推測され、その結果、後の磁選工程で、ケイ素化合物が磁性金属とともに磁着され、ケイ素化合物の磁選効率が上昇すると考えられる。 Combustion ash is produced by burning the fuel. The combustion temperature in the combustion step is preferably 500° C. or higher, more preferably 600° C. or higher, still more preferably 800° C. or higher, still more preferably 1300° C. or higher. The combustion temperature is preferably below 2000°C. If the combustion temperature is 500 ° C. or higher, the metal content in the combustion ash is sufficiently agglomerated, although the reason is not clear, and it is speculated that the silicon compound adheres to the magnetic metal. It is thought that the silicon compound is magnetized together with the magnetic metal, and the magnetic separation efficiency of the silicon compound increases.

前記燃焼温度は、ボイラー燃焼炉にて前記燃料を燃焼する場合には、サーモグラフィカメラ(フリアーシステムズジャパン株式会社.製、FLIR(登録商標) E95)を用いて、ボイラー内の過熱器からの放射光を受け測定したときに得られた温度であり、電気炉にて前記燃料を燃焼する場合には、炉内温度をJIS C1602-2015に規定されたR型熱電対にて測定したときに得られた温度である。
燃焼工程は、酸化雰囲気であれば特に限定されない。
When the fuel is burned in a boiler combustion furnace, the combustion temperature is measured using a thermography camera (FLIR (registered trademark) E95, manufactured by FLIR Systems Japan Co., Ltd.), and the radiation from the superheater in the boiler. It is the temperature obtained when the light is received and measured, and when the fuel is burned in an electric furnace, the temperature inside the furnace is measured with an R-type thermocouple specified in JIS C1602-2015. is the temperature
The combustion process is not particularly limited as long as it is an oxidizing atmosphere.

[磁選工程]
磁選工程においては、前記燃焼灰からケイ素化合物を磁選により除去する。前述のとおり、前記燃焼工程において得られた燃焼灰においては、ケイ素化合物が磁性金属に付着されていて、燃焼灰に磁選を行うことにより、ケイ素化合物が磁性金属とともに磁着され、ケイ素化合物が効率的に除去される。
[Magnetic separation process]
In the magnetic separation step, silicon compounds are removed from the combustion ash by magnetic separation. As described above, in the combustion ash obtained in the combustion step, the silicon compound is attached to the magnetic metal, and by performing magnetic separation on the combustion ash, the silicon compound is magnetically attached together with the magnetic metal, and the silicon compound is efficiently effectively removed.

磁選の方法は、前記燃焼灰からケイ素化合物除去することができれば、特に制限されない。磁選は、乾式による磁選であっても、湿式による磁選であってもよい。磁選は、磁選機を用いて磁着物を選別する方法であってもよく、磁選機を用いず、磁石に燃焼灰を接触させ、磁着物を選別する方法であってもよい。磁選機としては、高勾配磁選機、ドラム型磁選機、吊り下げ磁選機等を挙げることができる。 The magnetic separation method is not particularly limited as long as the silicon compound can be removed from the combustion ash. The magnetic separation may be dry magnetic separation or wet magnetic separation. Magnetic separation may be a method of sorting magnetic substances using a magnetic separator, or a method of bringing combustion ash into contact with a magnet to sort magnetic substances without using a magnetic separator. Examples of the magnetic separator include a high-gradient magnetic separator, a drum-type magnetic separator, and a suspended magnetic separator.

磁選に用いる磁石は、特に制限はないが、ネオジム磁石、電磁石等が好ましい。これらの磁石を用いると、燃焼灰中のケイ素化合物を効率的に磁着することができる。
磁選工程における磁選の磁力としては、1.0テスラ以上であり、好ましくは1.2テスラ以上、より好ましくは1.5テスラ以上である。1.0テスラ以上の場合、燃焼灰中の微粒金属を良好な磁選効率にて分離でき、ケイ素化合物の磁選を効率よく分離することができる。磁力の上限は、好ましくは4.0テスラである。
Magnets used for magnetic separation are not particularly limited, but neodymium magnets, electromagnets, and the like are preferable. By using these magnets, silicon compounds in combustion ash can be efficiently magnetized.
The magnetic force for magnetic separation in the magnetic separation step is 1.0 tesla or more, preferably 1.2 tesla or more, and more preferably 1.5 tesla or more. In the case of 1.0 tesla or more, fine metal particles in the combustion ash can be separated with good magnetic separation efficiency, and silicon compounds can be efficiently separated by magnetic separation. The upper limit of magnetic force is preferably 4.0 Tesla.

[再使用工程]
再使用工程においては、前記磁選工程にて燃焼灰からケイ素化合物を除去した灰を、燃焼炉へ投入し燃料として再使用する。
磁選工程にてケイ素化合物を除去した灰は、25mJ/kg以上の熱量を持ち、炉ボイラーに対して熱伝導率の低下を引き起こす灰中のケイ素化合物濃度も0.6質量%以下と低いことから、燃料として活用することができる。
[Reuse process]
In the reuse step, the ash obtained by removing silicon compounds from the combustion ash in the magnetic separation step is put into a combustion furnace and reused as fuel.
The ash from which silicon compounds have been removed in the magnetic separation process has a calorific value of 25 mJ/kg or more, and the silicon compound concentration in the ash, which causes a decrease in thermal conductivity to the furnace boiler, is as low as 0.6% by mass or less. , can be used as fuel.

磁選工程にてケイ素化合物を除去した灰の燃焼箇所は限定されないが、ボイラー燃焼炉や電気炉、ロータリーキルン、溶鉱炉、高炉などに投入し、燃料として使用することができる。粉体燃料のボイラー燃焼炉の場合には粉体燃料に混合し、液体燃料のボイラー燃焼炉の場合には液体燃料用とは別に設けた粉体投入口より投入することができる。 The ash from which the silicon compound has been removed in the magnetic separation process is not limited in its burning location, but it can be put into a boiler combustion furnace, an electric furnace, a rotary kiln, a blast furnace, a blast furnace, etc., and used as fuel. In the case of a boiler combustion furnace for powder fuel, the powder can be mixed with the powder fuel.

磁選工程を経てケイ素化合物を除去した燃焼灰の、新品の燃料に対する比率は限定されないが、好ましくは50質量%以下、より好ましくは30質量%以下、特に好ましくは10質量%以下である。 The ratio of the combustion ash from which the silicon compound has been removed through the magnetic separation process to the new fuel is not limited, but is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less.

以下、実施例および比較例を示して本発明を詳細に説明するが、以下の具体例に限定されるものではない。
実施例中の「非磁着物」は、燃焼灰が磁場領域に接触したときに磁石に付着しなかった成分、「磁着物」は、燃焼灰が磁場領域に接触したときに磁石に付着した成分である。
The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to the following specific examples.
"Non-magnetic substances" in the examples are the components that did not adhere to the magnet when the combustion ash came into contact with the magnetic field region, and "magnetic substances" are the components that adhered to the magnet when the combustion ash came into contact with the magnetic field region. is.

実施例で評価されるケイ素元素の残存率および除去率の算出は以下の式に従って行った。
ケイ素元素の残存率(%)=[非磁着物中のケイ素元素質量/(非磁着物中のケイ素元素質量+磁着物中のケイ素元素質量)]×100
ケイ素元素の除去率(%)=[磁着物中のケイ素元素質量/(非磁着物中のケイ素元素質量+磁着物中のケイ素元素質量)]×100
ケイ素元素の定量は以下の方法で行った。
The residual ratio and removal ratio of silicon element evaluated in the examples were calculated according to the following equations.
Residual ratio of silicon element (%) = [mass of silicon element in non-magnetic substance/(mass of silicon element in non-magnetic substance + mass of silicon element in magnetic substance)] × 100
Removal rate of silicon element (%) = [mass of silicon element in magnetic deposit / (mass of silicon element in non-magnetic deposit + mass of silicon element in magnetic deposit)] × 100
The amount of silicon element was quantified by the following method.

サンプル0.1gに、リン酸5mL(純正化学株式会社製、特級)、塩酸4mL(純正化学株式会社製、特級)、フッ酸2.5mL(純生化学株式会社製、特級46%~48%)および硝酸2mL(関東化学株式会社製、電子工業用硝酸1.42EL)を加え、マイクロウェーブ分解/反応装置(株式会社アクタック製、MWS3+)に入れ、酸分解を行った。 To 0.1 g of sample, 5 mL of phosphoric acid (manufactured by Junsei Chemical Co., Ltd., special grade), 4 mL of hydrochloric acid (manufactured by Junsei Chemical Co., Ltd., special grade), 2.5 mL of hydrofluoric acid (manufactured by Junsei Kagaku Co., Ltd., special grade 46% to 48%) and 2 mL of nitric acid (manufactured by Kanto Kagaku Co., Ltd., nitric acid for electronic industry 1.42EL) was added, and the mixture was placed in a microwave decomposition/reactor (MWS3+, manufactured by Actac Co., Ltd.) for acid decomposition.

マイクロウェーブ加熱分解は以下の条件(1)~(5)で行った。
(1)5分間で190℃まで上昇させ、5分間190℃に維持した。
(2)2分間で210℃まで上昇させ、5分間210℃に維持した。
(3)2分間で230℃まで上昇させ、25分間230℃に維持した。
(4)1分間で100℃まで下げ操作を終了した。
(5)上記一連の分解操作を2回繰り返した。
Microwave thermal decomposition was performed under the following conditions (1) to (5).
(1) The temperature was increased to 190°C in 5 minutes and maintained at 190°C for 5 minutes.
(2) raised to 210°C in 2 minutes and maintained at 210°C for 5 minutes;
(3) raised to 230°C in 2 minutes and maintained at 230°C for 25 minutes;
(4) The temperature was lowered to 100°C in 1 minute, and the operation was completed.
(5) The above series of decomposition operations were repeated twice.

得られた酸分解液を250mLのメスフラスコに全量移し、250mLまで超純水(メルク株式会社製、Synergy UV)にてメスアップしたものを分析サンプルとした。JIS K0116-2014に則り、ICP-AES(株式会社島津製作所製、ICPS-8100)により分析サンプルを測定し、ケイ素元素を定量した。 The whole amount of the obtained acid decomposition solution was transferred to a 250 mL volumetric flask, and the volume was increased to 250 mL with ultrapure water (manufactured by Merck Ltd., Synergy UV) to obtain an analysis sample. According to JIS K0116-2014, the analysis sample was measured by ICP-AES (manufactured by Shimadzu Corporation, ICPS-8100) to quantify the silicon element.

(実施例1)
石油系燃料である石油コークス20.0gを蒸発皿に載せ電気炉(ヤマト科学株式会社製、FP410)に入れ、酸化雰囲気にて燃焼温度500℃で6.5時間燃焼し、燃焼灰を得た。得られた燃焼灰を室温まで冷却した後、ディスポトレー(アズワン株式会社製、DT-2)に1.4テスラのネオジム磁石(株式会社サンギョウサプライ製、マグネットバー、直径25mm、長さ150mm、12,000G(14,000G)、耐熱温度120℃)を置き、燃焼灰をネオジム磁石にふりかけ、非磁着物を振り落とした。振り落とされた非磁着物をネオジム磁石にふりかけ、振り落とす手順を、新たな磁着物が生じなくなるまで繰り返し、非磁着物と磁着物に分離した。非磁着物と磁着物をそれぞれ電気炉(ヤマト科学株式会社製、FP410)に入れ、110℃にて2時間乾燥した。得られた非磁着物および磁着物の質量を測定し、上記方法によりケイ素元素を定量し、上記式に従い、ケイ素元素の残存率および除去率を求めた。結果を表1に示す。
(Example 1)
20.0 g of petroleum coke, which is a petroleum-based fuel, was placed on an evaporating dish, placed in an electric furnace (FP410, manufactured by Yamato Scientific Co., Ltd.), and burned at a combustion temperature of 500 ° C. for 6.5 hours in an oxidizing atmosphere to obtain combustion ash. . After cooling the obtained combustion ash to room temperature, a 1.4 Tesla neodymium magnet (manufactured by Sangyo Supply Co., Ltd., magnet bar, diameter 25 mm, length 150 mm, 12 ,000 G (14,000 G), heat resistant temperature 120° C.), the combustion ash was sprinkled on the neodymium magnet, and the non-magnetic substance was shaken off. The procedure of sprinkling the shaken-off non-magnetic substance onto the neodymium magnet and shaking it off was repeated until no new magnetic substance was generated, thereby separating the non-magnetic substance and the magnetic substance. The non-magnetic substance and the magnetic substance were placed in an electric furnace (FP410 manufactured by Yamato Scientific Co., Ltd.) and dried at 110° C. for 2 hours. The masses of the obtained non-magnetic and magnetic substances were measured, the silicon element was quantified by the above method, and the residual ratio and removal ratio of the silicon element were determined according to the above formula. Table 1 shows the results.

(実施例2)
石油コークス20.0gを燃焼温度1,000℃で3時間燃焼して燃焼灰を得た点以外は、実施例1と同様に行い、ケイ素元素の残存率および除去率を求めた。結果を表1に示す。
(Example 2)
Except that 20.0 g of petroleum coke was burned at a combustion temperature of 1,000° C. for 3 hours to obtain combustion ash, the same procedure as in Example 1 was performed to determine the residual ratio and removal ratio of silicon element. Table 1 shows the results.

(実施例3)
石油系燃料をボイラーにて燃焼温度1400℃で6秒間燃焼させて、発生した排ガスから電気集塵機で燃焼飛灰を捕集した。前記燃焼温度は、サーモグラフィカメラ(フリアーシステムズジャパン株式会社製、FLIR(登録商標) E95)を用いて、ボイラー内の過熱器からの放射光を受けて測定したときに得られた温度とした。この燃焼飛灰20.0gを100mLのポリプロピレン製ボトル(株式会社サンプラテック製、アイボーイ)に入れ、純水60.0gを加え、25質量%スラリー溶液とした。スラリー溶液を攪拌後、溶液に1.4テスラのネオジム磁石(株式会社サンギョウサプライ製、マグネットバー、直径25mm、長さ150mm、12,000G(14,000G)、耐熱温度120℃)を入れ、約5秒後液面より上に持ち上げた。磁着物が磁着したネオジム磁石をチャック付きポリ袋(株式会社生産日本社製、ユニパックH-8、ポリエチレン製)内に挿入し、ポリ袋でネオジム磁石に磁着した磁着物をポリ袋内にこそぎ落とし、磁着物をスラリーから分離した。上記一連の磁選操作を、新たな磁着物が生じなくなるまで繰り返し、非磁着物と磁着物を分離した。得られた非磁着物および磁着物の質量を測定し、上記方法によりケイ素元素を定量し、上記式に従い、ケイ素元素の残存率および除去率を求めた。結果を表1に示す。
(Example 3)
A petroleum -based fuel was burned at a combustion temperature of 1400 ° C. for 6 seconds in a boiler, and combustion fly ash was collected from the generated exhaust gas with an electric dust collector. The combustion temperature was measured using a thermography camera (FLIR (registered trademark) E95, manufactured by FLIR Systems Japan KK) while receiving radiant light from a superheater in a boiler. 20.0 g of this combustion fly ash was placed in a 100 mL polypropylene bottle (manufactured by Sun Platec Co., Ltd., IBOY), and 60.0 g of pure water was added to obtain a 25% by mass slurry solution. After stirring the slurry solution, a 1.4 Tesla neodymium magnet (manufactured by Sangyo Supply Co., Ltd., magnet bar, diameter 25 mm, length 150 mm, 12,000 G (14,000 G), heat resistance temperature 120 ° C.) was added to the solution, and After 5 seconds, it was lifted above the liquid surface. A neodymium magnet magnetically attached to a magnetic substance is inserted into a plastic bag with a zipper (manufactured by Sansan Nihon Co., Ltd., Unipack H-8, made of polyethylene), and the magnetic substance magnetically attracted to the neodymium magnet is inserted into the plastic bag. Scraping down separated the magnetite from the slurry. The series of magnetic separation operations described above was repeated until no new magnetic substances were generated to separate the non-magnetic substances and the magnetic substances. The masses of the obtained non-magnetic and magnetic substances were measured, the silicon element was quantified by the above method, and the residual ratio and removal ratio of the silicon element were determined according to the above formula. Table 1 shows the results.

(実施例4)
実施例3と同様の操作で得られた燃焼飛灰750.0gを容量0.003m3のポリプロピレンボトル(瑞穂化成工業株式会社製、)に入れ、純水2.25kgを加え、25質量%スラリー溶液とした。このスラリー溶液を攪拌後、1.4テスラの高勾配磁選機(日本エリーズマグネチックス株式会社製、L-4)に投入し、磁選を行った。高勾配磁選機下部より、マトリックスを通過した非磁着物を回収し、マトリックスに付着していた磁着物は、高勾配磁選機の磁場を切った後に、マトリックスを純水で洗浄し、回収した。得られた非磁着物および磁着物の質量を測定し、上記方法によりケイ素元素を定量し、上記式に従い、ケイ素元素の残存率および除去率を求めた。結果を表1に示す。
(Example 4)
750.0 g of combustion fly ash obtained by the same operation as in Example 3 was placed in a polypropylene bottle with a capacity of 0.003 m 3 (manufactured by Mizuho Chemical Industry Co., Ltd.), and 2.25 kg of pure water was added to make a 25% by mass slurry. solution. After stirring the slurry solution, it was placed in a 1.4 Tesla high gradient magnetic separator (L-4, manufactured by Eriez Magnetics Japan Co., Ltd.) for magnetic separation. Non-magnetic substances that passed through the matrix were collected from the lower part of the high gradient magnetic separator, and magnetic substances adhering to the matrix were collected by washing the matrix with pure water after turning off the magnetic field of the high gradient magnetic separator. The masses of the obtained non-magnetic and magnetic substances were measured, the silicon element was quantified by the above method, and the residual ratio and removal ratio of the silicon element were determined according to the above formula. Table 1 shows the results.

(実施例5、比較例1~3)
高勾配磁選機の磁力を表1に記載の通りに変更した点以外は実施例4と同様の操作を行い、ケイ素元素の残存率および除去率を求めた。結果を表1に示す。
(Example 5, Comparative Examples 1 to 3)
The same operation as in Example 4 was performed except that the magnetic force of the high gradient magnetic separator was changed as shown in Table 1, and the residual rate and removal rate of the silicon element were determined. Table 1 shows the results.

Figure 0007117199000001
Figure 0007117199000001

実施例4にて得られた磁着物および非磁着物を、SEM-EDX(日本電子株式会社、JSM-7800F Prime)にてケイ素、鉄、ニッケルの測定を行った。図1に磁着物の結果を、図2に非磁着物の結果を示す。
図1および2より、磁着物ではケイ素が鉄、ニッケルの近傍に存在すること、一方で非磁着物ではケイ素が鉄、ニッケルの近傍には存在しないことが判る。
The magnetic and non-magnetic materials obtained in Example 4 were measured for silicon, iron, and nickel by SEM-EDX (JEOL Ltd., JSM-7800F Prime). FIG. 1 shows the results for magnetic deposits, and FIG. 2 shows the results for non-magnetic deposits.
From FIGS. 1 and 2, it can be seen that silicon exists in the vicinity of iron and nickel in the magnetized material, while silicon does not exist in the vicinity of iron and nickel in the non-magnetic material.

Claims (6)

燃焼工程にて燃料を燃焼して発生した燃焼灰に対し、1.0テスラ以上の磁力で磁選を行い、前記燃焼灰からケイ素化合物を除去する磁選工程を有し、前記燃料が石油系燃料である、燃焼灰の処理方法。 Combustion ash generated by burning fuel in the combustion process is subjected to magnetic separation with a magnetic force of 1.0 Tesla or more, and a magnetic separation step is performed to remove silicon compounds from the combustion ash , and the fuel is petroleum-based fuel. There is a method for treating combustion ash. 前記磁選工程において、磁選に用いる磁石がネオジム磁石または電磁石である、請求項1に記載の燃焼灰の処理方法。 2. The method for treating combustion ash according to claim 1, wherein, in said magnetic separation step, a magnet used for magnetic separation is a neodymium magnet or an electromagnet. 前記燃焼工程において、燃料を燃焼する燃焼温度が1300℃以上2000℃以下である、請求項1または2に記載の燃焼灰の処理方法。 3. The method for treating combustion ash according to claim 1 or 2, wherein in said combustion step, the combustion temperature for burning the fuel is 1300[deg.]C or higher and 2000[deg.]C or lower. 前記燃焼工程において、ボイラー燃焼炉、電気炉、ロータリーキルン、溶鉱炉または高炉で燃料を燃焼する、請求項1~3のいずれかに記載の燃焼灰の処理方法。 4. The method for treating combustion ash according to any one of claims 1 to 3, wherein in said combustion step, the fuel is burned in a boiler combustion furnace, an electric furnace, a rotary kiln, a blast furnace or a blast furnace. 前記燃焼灰に含まれるケイ素化合物が、ケイ素元素換算で0.1~2.5質量%である、請求項1~4のいずれか1項に記載の燃焼灰の処理方法。The method for treating combustion ash according to any one of claims 1 to 4, wherein the silicon compound contained in the combustion ash is 0.1 to 2.5% by mass in terms of silicon element. 石油系燃料を燃焼して発生した燃焼灰に対し1.0テスラ以上の磁力で磁選を行い、前記燃焼灰からケイ素化合物を除去する磁選工程を経て得られたケイ素化合物除去済みの燃焼灰を燃焼することを特徴とする燃焼灰の再使用方法。 Combustion ash generated by burning petroleum fuel is subjected to magnetic separation with a magnetic force of 1.0 Tesla or more, and the silicon compound-removed combustion ash obtained through the magnetic separation step of removing silicon compounds from the combustion ash is burned. A method for reusing combustion ash, characterized by:
JP2018166833A 2018-09-06 2018-09-06 Combustion ash disposal method and reuse method Active JP7117199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018166833A JP7117199B2 (en) 2018-09-06 2018-09-06 Combustion ash disposal method and reuse method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166833A JP7117199B2 (en) 2018-09-06 2018-09-06 Combustion ash disposal method and reuse method

Publications (2)

Publication Number Publication Date
JP2020039994A JP2020039994A (en) 2020-03-19
JP7117199B2 true JP7117199B2 (en) 2022-08-12

Family

ID=69797086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166833A Active JP7117199B2 (en) 2018-09-06 2018-09-06 Combustion ash disposal method and reuse method

Country Status (1)

Country Link
JP (1) JP7117199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113499855A (en) * 2021-05-27 2021-10-15 中国地质科学院郑州矿产综合利用研究所 Method for improving iron removal effect of glass-phase coal-based waste by adopting microwave pretreatment
CN114425549B (en) * 2021-12-16 2023-10-13 中南大学 Method for microwave hydrothermal detoxification and synchronous synthesis of tobermorite by using waste incineration fly ash

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143007A (en) 2002-10-25 2004-05-20 Sakagami Hisayo Method for manufacture zeolite with incinerated ash, and equipment therefor
JP2008094660A (en) 2006-10-12 2008-04-24 Yukio Kawakami Method and apparatus for producing artificial zeolite from coal ash
JP2008196764A (en) 2007-02-13 2008-08-28 Oji Paper Co Ltd Processing method for boiler combustion ash

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774096B2 (en) * 1989-04-11 1995-08-09 工業技術院長 Method for manufacturing mullite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143007A (en) 2002-10-25 2004-05-20 Sakagami Hisayo Method for manufacture zeolite with incinerated ash, and equipment therefor
JP2008094660A (en) 2006-10-12 2008-04-24 Yukio Kawakami Method and apparatus for producing artificial zeolite from coal ash
JP2008196764A (en) 2007-02-13 2008-08-28 Oji Paper Co Ltd Processing method for boiler combustion ash

Also Published As

Publication number Publication date
JP2020039994A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP7117199B2 (en) Combustion ash disposal method and reuse method
BR102012008340A2 (en) process and system for dry recovery of fines and super fines of iron ore and magnetic separation unit
CA2766333C (en) Method and system for separation of contaminants from coal
CN105593387A (en) Method and plant for removing arsenic and/or antimony from flue dusts
TWI683003B (en) Method for manufacturing vanadate
JP7263845B2 (en) How to treat and reuse combustion ash
JP2015015975A (en) Method for making fly ash harmless
JP7268382B2 (en) How to dispose of used lithium-ion batteries
US1512870A (en) Method of recovering fuel from residues
JP4681623B2 (en) Effective utilization of iron and zinc in secondary dust generated from a reduction furnace
JP6733345B2 (en) Coal ash treatment method
US1873642A (en) Process of recovering alumina from coal and its ashes
JP2015218369A (en) Recovery method of valuable metal in waste
JP5259256B2 (en) Vanadium recovery unit
JP2004076090A (en) Apparatus and method for recovering low-melting point valuable sources
Li et al. A pilot study of mercury liberation and capture from coal-fired power plant fly ash
RU2694937C1 (en) Method for obtaining silicon, aluminum and iron oxides under complex non-waste processing from bottom ash materials
US5779764A (en) Method for obtaining devolatilized bituminous coal from the effluent streams of coal fired boilers
CN111883870A (en) Resource treatment method for waste sulfuric acid of storage battery
JP6287477B2 (en) Exhaust gas treatment method and treatment apparatus
JP4199953B2 (en) Processing method and processing device for heavy oil combustion soot and heavy oil cooking boiler device
EP1604147A1 (en) A method of reducing unburned carbon levels in coal ash
JP5289825B2 (en) Vanadium recovery unit
JP2004323255A (en) Method and system for converting soil to cement raw material
JP7431486B2 (en) Method for producing whitened fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7117199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350