JP7116498B2 - Layered structure compound containing indium and arsenic, nanosheet and electric device using the same - Google Patents

Layered structure compound containing indium and arsenic, nanosheet and electric device using the same Download PDF

Info

Publication number
JP7116498B2
JP7116498B2 JP2020201196A JP2020201196A JP7116498B2 JP 7116498 B2 JP7116498 B2 JP 7116498B2 JP 2020201196 A JP2020201196 A JP 2020201196A JP 2020201196 A JP2020201196 A JP 2020201196A JP 7116498 B2 JP7116498 B2 JP 7116498B2
Authority
JP
Japan
Prior art keywords
layered structure
structure compound
nanosheet
peak
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020201196A
Other languages
Japanese (ja)
Other versions
JP2022048061A (en
Inventor
シム,ウ-ヨン
キム,テ-ヨン
Original Assignee
インダストリー-アカデミック コオペレイション ファウンデーション,ヨンセイ ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インダストリー-アカデミック コオペレイション ファウンデーション,ヨンセイ ユニバーシティ filed Critical インダストリー-アカデミック コオペレイション ファウンデーション,ヨンセイ ユニバーシティ
Publication of JP2022048061A publication Critical patent/JP2022048061A/en
Application granted granted Critical
Publication of JP7116498B2 publication Critical patent/JP7116498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • C01G28/002Compounds containing, besides arsenic, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/06Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02499Monolayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/884Switching materials based on at least one element of group IIIA, IVA or VA, e.g. elemental or compound semiconductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、インジウムとヒ素を含む層状構造化合物とナノシートおよびこれを用いた電気素子に関し、より詳細には、アルカリ金属またはアルカリ土類金属を含み、多様な電気的特性を有するインジウムとヒ素を含む層状構造化合物とナノシートおよびこれを用いた電気素子に関する。 TECHNICAL FIELD The present invention relates to a layered structure compound and a nanosheet containing indium and arsenic and an electric device using the same, and more particularly, it contains indium and arsenic containing an alkali metal or an alkaline earth metal and having various electrical properties. The present invention relates to a layered structure compound, a nanosheet, and an electric device using the same.

層間(interlayer)にファンデルワールス結合を通して連結される層状構造化合物は、多様な特性を示すことができ、これを物理的または化学的方法で分離することによって、厚さが数ナノメートルから数百ナノメートル水準の二次元(2D)ナノシートを製造できて、これに対する研究が活発である。 A layered structure compound that is connected between layers through van der Waals bonds can exhibit various properties, and can be separated by physical or chemical methods to achieve thicknesses ranging from several nanometers to hundreds of layers. Nanometer-level two-dimensional (2D) nanosheets can be produced, and research on this has been active.

特に、ナノシートのような低次元の素材は、従来のバルク素材が有しない画期的な新機能が期待され、従来素材を代替する次世代未来素材として可能性が非常に大きい。 In particular, low-dimensional materials such as nanosheets are expected to have epoch-making new functions that conventional bulk materials do not have, and have great potential as next-generation future materials to replace conventional materials.

しかしながら、二次元的結晶構造を有する層状構造化合物は、今まで黒鉛や遷移金属カルコゲン化合物等の物質に制限されていて、多様な組成の材料への展開にならない問題があった。 However, layered structure compounds having a two-dimensional crystal structure have hitherto been limited to substances such as graphite and transition metal chalcogen compounds, and there has been a problem that they cannot be developed into materials with various compositions.

一方、インジウムヒ素(Indium Arsenide)は、化合物半導体物質であって、高電力高周波電気素子に広範囲に使用されているが、現在まで層状構造を有する三元系インジウムヒ素については知られていない。 On the other hand, indium arsenide, which is a compound semiconductor material, has been widely used in high-power, high-frequency electrical devices, but ternary indium arsenide having a layered structure has not been known so far.

層状構造からなる三元系インジウムヒ素化合物は、異なる結晶構造を有する従来のインジウムヒ素化合物においてさらに適用を多様化させることができると共に、従来適用されなかった新しい領域への適用も期待することができる。 A ternary indium arsenide compound having a layered structure can be applied to a wider variety of applications than conventional indium arsenide compounds having different crystal structures, and can be expected to be applied to new areas that have not been applied in the past. .

本発明は、インジウムとヒ素を含む層状構造化合物とこれを通して作製され得るナノシートおよび前記物質を含む電気素子を提供することを目的とする。 An object of the present invention is to provide a layered structure compound containing indium and arsenic, a nanosheet that can be produced through the compound, and an electric device containing the material.

前記のような目的を達成するために、本発明では、[化学式1]Na1-xInAs(0≦x<1.0、0.8≦y≦1.2、1.2≦z≦1.8)で表現される層状構造化合物を提供することができる。 In order to achieve the above objects, in the present invention, [chemical formula 1] Na 1-x In y As z (0≦x<1.0, 0.8≦y≦1.2, 1.2≦ It is possible to provide a layered structure compound represented by z≦1.8).

また、本発明では、前記[化学式1]Na1-xInAs(0≦x<1.0、0.8≦y≦1.2、1.2≦z≦1.8)で表現される組成物を含み、物理的または化学的剥離方法で作製されるナノシートを提供することができる。 In the present invention, the [Chemical Formula 1] Na 1-x In y As z (0≦x<1.0, 0.8≦y≦1.2, 1.2≦z≦1.8) Nanosheets can be provided that include the composition and are made by physical or chemical exfoliation methods.

また、本発明では、前記のような層状構造化合物またはナノシートを含む電気素子を提供することができる。 In addition, the present invention can provide an electric device including the layered structure compound or nanosheet as described above.

また、前記電気素子は、メモリスタであり得る。 Also, the electrical element may be a memristor.

本発明によって提供することができる層状構造化合物とナノシートは、多様な電気的特性を有することができ、これを通して新しい電気素子の開発が可能になる。 The layered structure compounds and nanosheets that can be provided by the present invention can have various electrical properties, which enables the development of new electrical devices.

本発明によって作製される層状構造化合物とナノシートに対する概念図である。1 is a conceptual diagram of a layered structure compound and nanosheets produced according to the present invention; FIG. 本発明による層状構造化合物に対するXRD回折パターンを示すグラフである。1 is a graph showing an XRD diffraction pattern for a layered structure compound according to the present invention; 本発明による層状構造化合物に対するSEM(Scanning Electron Microscopy)イメージおよびEDS(Energy Dispersive Spectroscopy)分析結果を示す。FIG. 1 shows SEM (Scanning Electron Microscopy) images and EDS (Energy Dispersive Spectroscopy) analysis results for a layered structure compound according to the present invention. 本発明による層状構造化合物に対するTEM(Transmission Electron Microscopy)分析結果を示す。1 shows TEM (Transmission Electron Microscopy) analysis results for a layered structure compound according to the present invention. 本発明によるNaInAsの構造を示す模式図とSTEM(Scanning Transmission Electron Microscopy)分析結果を示す。1 shows a schematic diagram showing the structure of Na 2 In 2 As 3 according to the present invention and STEM (Scanning Transmission Electron Microscopy) analysis results. FIG. 本発明による層状構造化合物に対するXRD分析結果である。FIG. 10 is an XRD analysis result of a layered structure compound according to the present invention; FIG. 本発明による層状構造化合物とナノシートに対するSEMとTEMイメージである。1 is SEM and TEM images of a layered structure compound and nanosheets according to the present invention; 本発明によるナノシートに対するAFM(Atomic Force Microscopy)イメージおよびそれに応じたラインプロファイル(line profile)を示す。1 shows an AFM (Atomic Force Microscopy) image and corresponding line profile for nanosheets according to the present invention. 本発明による層状構造化合物に対するSTEM分析結果である。FIG. 4 is a STEM analysis result for a layered structure compound according to the present invention; FIG. 本発明による層状構造化合物に対するTEM分析結果である。1 is a TEM analysis result for a layered structure compound according to the present invention; 本発明によるナノシートに対するPFM(Piezoresponse Force Microscopy)を通した強誘電特性評価結果である。FIG. 4 shows ferroelectric property evaluation results through PFM (Piezoresponse Force Microscopy) for nanosheets according to the present invention. FIG. 本発明によるナノシートに対する電圧に応じた電流変化グラフである。1 is a graph of current change as a function of voltage for nanosheets according to the present invention;

以下、本発明の実施例について添付の図面を参考としてその構成および作用を説明することとする。下記で本発明を説明するに際して、関連した公知機能または構成に対する具体的な説明が本発明の要旨を不明にすることができると判断される場合には、その詳細な説明を省略する。また、任意の部分が或る構成要素を「含む」というとき、これは、特に反対になる記載がない限り、他の構成要素を除くものではなく、他の構成要素をさらに含むこができることを意味する。 The configuration and operation of embodiments of the present invention will now be described with reference to the accompanying drawings. In the following description of the present invention, if it is determined that a detailed description of related known functions or configurations may obscure the gist of the present invention, the detailed description thereof will be omitted. Also, when we say that any part "includes" a component, this does not exclude other components, but it can further include other components, unless specifically stated to the contrary. means.

本発明による層状構造化合物またはナノシートは、下記化学式1で表現され得る。
[化学式1]
Na1-xInAs(0≦x<1.0、0.8≦y≦1.2、1.2≦z≦1.8)
一般的に、InAsは、ジンクブレンド(Zinc Blende)結晶構造であって、層状構造が現れることができず、したがって、これを剥離してナノシートを作製することも不可能であった。
A layered structure compound or nanosheet according to the present invention may be represented by Chemical Formula 1 below.
[Chemical Formula 1]
Na 1-x In y As z (0≦x<1.0, 0.8≦y≦1.2, 1.2≦z≦1.8)
Generally, InAs has a zinc blend crystal structure and cannot exhibit a layered structure, so it was impossible to exfoliate it to produce a nanosheet.

このような問題を克服するために、本発明の発明者らは、InAsに添加元素を添加することによって、InAs層間に添加元素を位置させて、結果的に、InAs層が続く層状構造化合物を製造することができると考えた。このために、発明者らは、計算を通して新しい組成と結晶構造を有する層状構造の物質を導き出し、その結果、従来報告されたことがない新しい組成である層状構造のNaInAsを合成し、これを通して前記[化学式1]の組成を有する層状構造化合物を製造することができた。 In order to overcome such problems, the inventors of the present invention added an additive element to InyAsz to position the additive element between the InyAsz layers , resulting in Iny It was believed that a layered structure compound followed by an Asz layer could be produced. For this purpose, the inventors derived a layered structure material having a new composition and crystal structure through calculations, and as a result synthesized a layered structure Na 2 In 2 As 3 with a new composition that has never been reported before. Through this, a layered structure compound having the composition of [Chemical Formula 1] was produced.

[化学式1]の組成を有する層状構造の化合物は、InAs層間にNaが位置してInAs層をファンデルワールス結合を通して弱く結合させていて、これらNaが位置する面は、この面に沿って容易に割れる劈開面(cleavage plane)を成す。 In the layered structure compound having the composition of [Chemical Formula 1], Na is located between the In y As z layers to weakly bond the In y As z layers through van der Waals bonds, and the plane where these Na is located is It forms a cleavage plane along which it is easily broken.

一方、Na1-xInAs層状構造化合物またはナノシートにおいてNaの組成は、上述した[化学式1]を基準として、xは、0であり得るが、上述したように、NaInAsは、従来合成された事実が報告されたことがない新しい物質であって、[化学式1]においてxは、0である場合に該当する。Naの除去がなくてもNaを含む面は、弱いファンデルワールス結合を成す劈開面であって、剥離が起こり得る。 On the other hand, in the composition of Na in the Na 1-x In y As z layered structure compound or nanosheet, based on [Chemical Formula 1] described above, x may be 0, but as described above, Na 2 In 2 As 3 is a new substance that has never been reported to be synthesized in the past, and corresponds to the case where x is 0 in [Chemical Formula 1]. Even without removal of Na, the planes containing Na are cleavage planes with weak van der Waals bonds and delamination can occur.

本発明による層状構造化合物は、上述したように、InAs層間にNaが位置してInAs層をファンデルワールス結合を通して弱く結合させていて、このような劈開面に沿ってInAs層に容易に物理的または化学的方法のうちいずれか一方または両方を通して剥離され得るが、このような剥離は、Naが除去されるほどさらに容易に行われる。したがって、このような層状構造化合物から物理的または化学的剥離方法を通して容易にInAsナノシートを作製することができ、ここで、InAsナノシートには、Naが一部残留することもできる。 As described above, in the layered structure compound according to the present invention, Na is positioned between the In y As z layers to weakly bond the In y As z layers through van der Waals bonds, and In Although the y As z layer can be easily stripped through either or both of physical and chemical methods, such stripping becomes easier as Na is removed. Therefore, InyAsz nanosheets can be easily prepared from such a layered structure compound through a physical or chemical peeling method, and Na may partially remain in the InyAsz nanosheets . can.

添加元素であるNaを持続的に除去すると、化合物においてInAs層間の距離が次第に広がって層間の結合力が弱まって、結局、層間の結合がなくなり、層間にクラック(crack)を示すことができる。したがって、本発明で説明する層状構造化合物の層状構造は、繰り返される二次元のInAs層がNaによりファンデルワールス結合で層間に結合がなされた場合だけでなく、InAs層間の結合力が除去されて層間の距離が広がってクラックを示す場合も含む。このようにNaが除去されて、層間の結合が弱くなることによって、ナノシートへの剥離もさらに容易に行われ得る。 When the additive element Na is continuously removed, the distance between the InyAsz layers in the compound gradually widens and the bonding strength between the layers weakens. Eventually, the bonding between the layers disappears and cracks appear between the layers. can be done. Therefore, the layered structure of the layered structure compound described in the present invention can be obtained not only when the repeated two-dimensional In y As z layers are bonded between the layers by van der Waals bonding with Na, but also when the In y As z layers It also includes the case where the bonding force is removed and the distance between the layers increases to show cracks. The removal of Na in this way weakens the bond between the layers, so that the nanosheet can be peeled off more easily.

このような層状構造化合物から剥離されて作製されるナノシートは、InAs単一層であってもよいが、複数の層が重なって作製されることもできるので、数百nmの厚さであってもよい。一般的に、ナノシートは、横方向の幅に対して厚さが一定水準以下である場合にのみ、二次元的な形状による異方性を示すことができるが、このために、ナノシートの幅Lに対する厚さdの比d/Lは、0.1以下であることが好ましい。本発明によって作製されるナノシートの幅は、5μm以上であることも可能なので、ナノシートの厚さは、500nm以下であることが好ましい。ここで、InAsナノシートには、Naが一部残留することもできる。 A nanosheet produced by exfoliation from such a layered structure compound may be a single In y As z layer, but it can also be produced by stacking a plurality of layers. It can be. In general, a nanosheet can exhibit anisotropy due to its two-dimensional shape only when the thickness is less than a certain level with respect to the width in the lateral direction. The ratio d/L of the thickness d to the thickness is preferably 0.1 or less. Since the width of the nanosheets produced by the present invention can be 5 μm or more, the thickness of the nanosheets is preferably 500 nm or less. Here, Na may partially remain in the InyAsz nanosheets .

このように本発明によるナノシートは、層状構造化合物から物理的または化学的方法で剥離されるシートを意味し、InAs層が単一層である場合だけでなく、複数の層からなる場合も含む。 Thus, the nanosheet according to the present invention means a sheet that is physically or chemically exfoliated from a layered structure compound, and not only when the InyAsz layer is a single layer but also when it is composed of multiple layers. include.

このような層状構造化合物とナノシートの例に対する概念図は、図1に示したが、NaInAsのInAs層10の間に添加元素であるNa11が位置してInAs層10間に結合を維持することを示しており、ここで、Na11が除去されてNa1-xInAsになってInAs層10間の結合が弱くなり、これを物理的または化学的に容易に剥離することができて、最終的にInAsナノシート20に作製されることを示す。このように作製されるナノシートには、依然としてNa11が一部含まれ得る。
したがって、剥離が容易であると同時に、Naの過度な除去による層状構造の崩壊または結晶構造の変化がないように、xは、0.1≦x≦0.9であり得る。ここで、層状構造化合物の結晶構造は、空間群がP2/cであり得る。このようなxの範囲を有する層状構造化合物から剥離されるナノシートも、同一に、xは、0.1≦x≦0.9であり得る。
A conceptual diagram of an example of such a layered structure compound and nanosheets is shown in FIG . 10, where Na 11 is removed to Na 1-x In y As z to weaken the bond between the In y As z layers 10, which can be physically or It shows that it can be easily chemically exfoliated and finally fabricated into In y As z nanosheets 20 . The nanosheets thus produced may still contain some Na11.
Therefore, x can be 0.1≦x≦0.9 so that peeling is easy and at the same time there is no collapse of the layered structure or change in the crystal structure due to excessive removal of Na. Here, the crystal structure of the layered structure compound may have a space group of P2 1 /c. A nanosheet exfoliated from a layered structure compound having such a range of x may also have x of 0.1≦x≦0.9.

また、Na1-xInAs層状構造化合物またはナノシートにおいて残留するNaは、上述した[化学式1]を基準として、xは、0.3≦x≦0.8の範囲であり得る。 In addition, in the Na 1-x In y As z layered structure compound or Na remaining in the nanosheet, x may be in the range of 0.3≦x≦0.8 based on [Chemical Formula 1] described above.

添加元素であるNaが一部除去され、一定量は残留する層状構造化合物は、層間で残留する添加元素であるNaが移動可能になって、これを通して多様な電気的特性を示すことができる。したがって、Na1-xInAs化合物において添加元素は、一定分率以上が除去され、一部は残ることが好ましい。このためのxの範囲は、0.3≦x≦0.8の範囲であり得る。 In the layered structure compound in which the additive element Na is partially removed and a certain amount remains, the remaining additive element Na can migrate between layers, and through this, various electrical properties can be exhibited. Therefore, it is preferable that a certain fraction or more of the additional element is removed from the Na 1-x In y As z compound, and a part of the added element remains. The range of x for this may be in the range 0.3≦x≦0.8.

[化学式1]においてyは、0.8≦y≦1.2であり、zは、1.2≦z≦1.8の範囲であり得るが、初めて作られたNaInAsにおいても、欠陥によってyおよびzは、小幅変動がありえ、Naが除去されて除去工程中にInとAsの比率も少しずつ変化することができるので、Na1-xInAsにおいてyとzの値が定められたNaの含量に対して結晶構造を変化させない範囲で変動することができる。 In [Formula 1], y is 0.8≦y≦1.2, and z can be in the range of 1.2≦z≦1.8, but in the first made Na 2 In 2 As 3 Also, y and z can vary slightly depending on the defect, and the ratio of In to As can also change slightly during the removal process as Na is removed, so y and z in Na 1−x In y As z can be varied within a range that does not change the crystal structure for a given Na content.

一方、添加元素の除去は、硝酸や塩酸のような強酸を用いることができるが、このような強酸を通して添加元素が除去されて強酸に含まれる水素イオンが添加元素が除去されたサイトに置換されて結合されて、水素が含まれる層状構造化合物とこれを通したナノシートを提供することができる。 On the other hand, the additive element can be removed by using a strong acid such as nitric acid or hydrochloric acid. The additive element is removed through such a strong acid, and the hydrogen ions contained in the strong acid are replaced with the site where the additive element is removed. It is possible to provide a layered structure compound containing hydrogen and a nanosheet therethrough.

このように水素イオンが含まれる層状構造化合物またはナノシートは、下記[化学式2]で表現され得る。
[化学式2]
Na1-xInAs
(0≦x<1.0、0.8≦y≦1.2、1.2≦z≦1.8、0<n≦x)
ここで、水素イオンは、添加元素であるNaを代替することによって除去されるNaの量以下で追加される。
Such a layered structure compound or nanosheet containing hydrogen ions can be represented by the following [chemical formula 2].
[Chemical Formula 2]
Na1 - xHnInyAsz _
(0≤x<1.0, 0.8≤y≤1.2, 1.2≤z≤1.8, 0<n≤x)
Here, hydrogen ions are added in an amount equal to or less than the amount of Na removed by substituting Na as an additional element.

Naが除去される量であるxの範囲は、0.1≦x≦0.9の範囲であり得、さらに好ましくは、0.3≦x≦0.8の範囲であり得る。上述したように、添加元素が一部除去され、一部は残留すると、初期層状構造化合物であるNaInAsの層状構造をそのまま維持しつつ、添加元素であるNaが一部除去されることによって、層間の結合力が弱まって容易にInAs層に剥離され得、残留する添加元素によって多様な電気的特性を示すことができる。 The range of x, which is the amount of Na removed, may be in the range of 0.1≦x≦0.9, and more preferably in the range of 0.3≦x≦0.8. As described above, when the additive element is partially removed and partially remains, the additive element Na is partially removed while maintaining the layered structure of NaInyAsz , which is the initial layered structure compound. As a result, the bonding force between the layers is weakened, so that the InyAsz layer can be easily separated , and various electrical properties can be exhibited depending on the remaining additive elements.

また、前記nは、xと同じ値であり得るが、除去される添加元素だけ水素イオンが代替して層状構造化合物に含まれ得る。 In addition, n may be the same value as x, but hydrogen ions may be substituted for the additive element to be removed and included in the layered structure compound.

上述した層状構造化合物とナノシートは、分析結果、多様な特性を示すが、このような特性を以下で説明する。 The layered structure compounds and nanosheets described above exhibit various properties as a result of analysis, and such properties will be described below.

上述した層状構造化合物とナノシートは、CuKα線を使用したXRD測定においてP2/cの空間群を有することができる。 The layered structure compounds and nanosheets described above can have a space group of P2 1 /c in XRD measurements using CuKα radiation.

一方、上述した層状構造化合物またはナノシートは、CuKα線を使用したXRD測定において2θ=11.9°± 0.50°、12.8°±0.50°、13.5°±0.50°、15.3°±0.50°、21.6°±0.50°、22.7°±0.50°、23.8°±0.50°、27.8°±0.50°の位置にピークを有し、前記ピークは、最も大きい強度を有するピークに対して1%以上(好ましくは、3%以上、より好ましくは、5%以上)の強度を有するピークである、層状構造化合物またはナノシートであり得る。 On the other hand, the layered structure compound or nanosheet described above has 2θ = 11.9° ± 0.50°, 12.8° ± 0.50°, 13.5° ± 0.50° in XRD measurement using CuKα rays. , 15.3°±0.50°, 21.6°±0.50°, 22.7°±0.50°, 23.8°±0.50°, 27.8°±0.50° and the peak has an intensity of 1% or more (preferably 3% or more, more preferably 5% or more) with respect to the peak having the highest intensity. It can be a compound or a nanosheet.

一方、層状構造化合物またはナノシートから添加元素が除去されることによって、XRD測定ピークにおいて微細な変化がありえるが、このような変化によってCuKα線を使用したXRD測定において層状構造化合物の(002)面に対するピーク強度に対する(102)面のピーク強度であるI(102)/I(002)の値が0.40以下であり得る。これは、層状構造化合物から添加元素が除去されることによって層間の距離が次第に広がって現れる現象であり、ナノシートに対しても同一である。 On the other hand, when the additive element is removed from the layered structure compound or nanosheet, there may be a slight change in the XRD measurement peak. A value of I (102) /I (002) , which is the peak intensity of the (102) plane relative to the peak intensity, may be 0.40 or less. This is a phenomenon in which the distance between layers gradually widens due to the removal of the additive element from the layered structure compound, and the same is true for nanosheets.

このような添加元素であるNaが一部残留する状態である層状構造化合物とこれを通したナノシートは、残留するNaによって多様な電気的特性を示すことができる。 The layered structure compound in which Na, which is an additive element, partially remains and the nanosheet through it can exhibit various electrical properties depending on the remaining Na.

上述したような層状構造化合物またはナノシートは、固有の層状構造と残留する添加元素によって多様な電気的特性を示すことができる。 A layered structure compound or nanosheet as described above can exhibit various electrical properties depending on the inherent layered structure and residual additive elements.

まず、本発明による層状構造化合物またはナノシートは、強誘電類似(ferroelectric-like)特性を示す。 First, the layered structure compounds or nanosheets according to the present invention exhibit ferroelectric-like properties.

強誘電特性は、一般的にペロブスカイト構造のBaTiOのような非対称構造の酸化物に現れる特性であって、中心に位置するBaの位置の変化によって強誘電特性が現れる。 Ferroelectricity is a characteristic that generally appears in oxides with an asymmetric structure such as perovskite BaTiO 3 , and the ferroelectricity appears depending on the position of Ba located in the center.

しかしながら、本発明による層状構造化合物またはナノシートは、このような非対称構造を有しないが、それにもかかわらず、強誘電類似特性を示す。非対称構造でないにもかかわらず、強誘電類似特性を示す理由は、残留する添加元素の位置が外部電界によって移動するのに伴ったものと考えられる。 However, the layered structure compounds or nanosheets according to the invention do not have such an asymmetric structure, but nonetheless exhibit ferroelectric-like properties. The reason why the ferroelectric-like properties are exhibited in spite of the fact that the structure is not asymmetric is thought to be due to the movement of the position of the remaining additive element due to the external electric field.

このような本発明による層状構造化合物またはナノシートの強誘電類似特性を通して多様な電気素子に適用が可能になる。 Such ferroelectric-like properties of the layered structure compound or nanosheet according to the present invention can be applied to various electric devices.

また、本発明による層状構造化合物またはナノシートは、抵抗スイッチング特性を示す。 Also, the layered structure compounds or nanosheets according to the present invention exhibit resistive switching properties.

或る物質が抵抗スイッチング特性を有すると、その物質に印加する電圧によって線形的に電流が増加するのではなく、初期電圧を印加するときには、物質が高抵抗状態を維持して電流の増加が微小であるが、一定の臨界点に到達すると、低抵抗状態に変わって急激に電流が増加する。 When a material has resistance-switching properties, the current does not increase linearly with the voltage applied to the material, but when an initial voltage is applied, the material maintains a high resistance state and the current increase is very small. However, when it reaches a certain critical point, it changes to a low resistance state and the current increases abruptly.

このような抵抗スイッチング特性は、一般的に酸化物に現れる特徴であって、最近には、このような特性を用いてフラッシュメモリのように情報の保存が可能なメモリスタ(memristor)のようなメモリー素子の開発が活発であり、本発明の層状構造化合物とナノシートは、抵抗スイッチング特性を活用してこのようなメモリスタのようなメモリー素子の開発に積極的に活用され得る。 Such a resistance switching characteristic is a characteristic that generally appears in oxides. Devices are being actively developed, and the layered structure compound and nanosheets of the present invention can be actively used in the development of memory devices such as memristors by utilizing their resistance switching properties.

[実施例]
1)層状NaInAs合成
NaとIn、Asをモル比で2:2:3の割合で称量して混合した後、アルミナるつぼに投入した。その後、クォーツチューブに入れ、二重密封して、外部空気を遮断した。この過程は、アルゴン雰囲気のグローブボックスで進めた。その後、ボックス炉で1,000℃に昇温し、12時間維持し、5℃/hの減温速度で500℃まで冷却後、500℃の温度で100時間維持した後、常温に冷却して、NaInAsサンプルを得ることができた。
[Example]
1) Synthesis of layered Na 2 In 2 As 3 Na, In, and As were weighed and mixed in a molar ratio of 2:2:3, and then charged into an alumina crucible. It was then placed in a quartz tube and double-sealed to block outside air. This process proceeded in an argon atmosphere glove box. After that, the temperature was raised to 1,000°C in a box furnace, maintained for 12 hours, cooled to 500°C at a temperature reduction rate of 5°C/h, maintained at 500°C for 100 hours, and then cooled to room temperature. , Na 2 In 2 As 3 samples could be obtained.

2)Naの除去
エタノールで希釈された0.25MのHCl溶液で時間別に反応させて、層状NaInAsからNaを除去した。その結果は、下記の表に示した。表1で、残留Naは、EDS分析を通して得られた結果を示す。
2) Removal of Na Na was removed from the layered Na 2 In 2 As 3 by reacting with 0.25 M HCl solution diluted with ethanol for different time periods. The results are shown in the table below. In Table 1, residual Na indicates the results obtained through EDS analysis.

Figure 0007116498000001
Figure 0007116498000001

3)ナノシート化工程
前記表1のように製造されたサンプルに対してエタノールで超音波を照射した後、テープを用いて剥離されたナノシートを製造した。
3) Process of Forming a Nanosheet A nanosheet was produced by irradiating ultrasonic waves with ethanol to the samples prepared as shown in Table 1, and peeling them off using a tape.

発明者らは、従来報告されたことがない新しいNaInAs化合物に対してVASP(Vienna Ab initio Simulation Package)を用いた計算を通して層状構造を予測し、予測結果は、知られたNaAlAs、NaGaAsと同様に、P2/cの構造を有することができることが分かった。 The inventors predicted a layered structure through calculation using VASP (Vienna Abinitio Simulation Package) for a new Na 2 In 2 As 3 compound that has never been reported before. 2 Al 2 As 3 , Na 2 Ga 2 As 3 , it was found that they could have a structure of P2 1 /c.

図2は、VASPを活用した計算を通して予測されたNaInAsのXRD回折パターン(NaInAs_vasp)と上述した方法で合成されたサンプルA(NaInAs_synthesis)のXRD回折パターンを示す。計算されたデータによるピークと実際に合成された化合物であるサンプルAに対するデータのピークを比較したとき、(002)、(200)、(102)、(111)、(212)、(302)、(311)、(114)の面が検出されることを確認した。前記面の2θ角は、それぞれ11.9°、12.8°、13.5°、15.3°、21.6°、22.7°、23.8°、27.8°であった。 FIG. 2 shows the XRD diffraction pattern of Na 2 In 2 As 3 (Na 2 In 2 As 3 _vasp ) predicted through calculation using VASP and sample A (Na 2 In 2 As 3 _synthesis ) shows the XRD diffraction pattern. When comparing the calculated data peaks with the data peaks for Sample A, which is the actually synthesized compound, (002), (200), (102), (111), (212), (302), It was confirmed that the (311) and (114) planes were detected. The 2θ angles of the faces were 11.9°, 12.8°, 13.5°, 15.3°, 21.6°, 22.7°, 23.8° and 27.8°, respectively. .

図3は、合成されたサンプルAに対するSEM(Scanning Electron Microscopy)イメージおよびEDS(Energy Dispersive Spectroscopy)分析結果を示す。EDS結果を通して合成したサンプルAは、Na、In、Asで構成されていることが分かった。 FIG. 3 shows an SEM (Scanning Electron Microscopy) image and an EDS (Energy Dispersive Spectroscopy) analysis result of the synthesized sample A. FIG. Sample A synthesized through EDS results was found to consist of Na, In, As.

図4は、サンプルAに対するTEM(Transmission Electron Microscopy)分析結果を示す。サンプルAに対してTEMによるSAED(Selected Area Diffraction)分析結果、(001)方向にP2/cの空間群が現れるパターンが測定され、それぞれの(100)、(020)、(120)面間の距離は、計算値と測定値が類似していることが示された。 FIG. 4 shows the TEM (Transmission Electron Microscopy) analysis results for sample A. FIG. As a result of SAED (Selected Area Diffraction) analysis by TEM for sample A, a pattern in which a space group of P2 1 / c appears in the (001) direction was measured, and each (100), (020), (120) plane It was shown that the calculated and measured distances are similar.

図5は、NaInAsの構造を示す模式図とサンプルAに対するSTEM(Scanning Transmission Electron Microscopy)分析結果を示す。STEM分析結果、合成されたサンプルAは、P2/cの空間群を有することを確認した。 FIG. 5 shows a schematic diagram showing the structure of Na 2 In 2 As 3 and STEM (Scanning Transmission Electron Microscopy) analysis results for sample A. As shown in FIG. As a result of STEM analysis, it was confirmed that the synthesized sample A has a space group of P2 1 /c.

このように図2~図5での結果を通して、合成されたサンプルAは、P2/cの空間群を有する新しい組成と結晶構造を有する層状構造物質であるNaInAsであることを確認することができた。 Thus, through the results in FIGS. 2 to 5, the synthesized sample A is Na 2 In 2 As 3 , a layered structure material having a new composition and crystal structure with a space group of P2 1 /c. was able to confirm.

図6は、Na除去によるXRDピークの変化を示す。Naが除去されないサンプルAでは、(002)面の面間間隔は、7.42Åであり、ここで、Naが除去されるほど面間間隔は次第に広がって7.47Åまで増加することが認められた。このような面間間隔の変化によってXRDピークの変化も現れるが、Naの除去によって(002)面のピークに対して(102)面のピークの大きさが次第に減少することが分かった。したがって、I(102)/I(002)の値は、サンプルAでは0.46であり、サンプルBでは、0.13、サンプルDでは、0.09まで減少した。また、Na除去後にも、XRDピークを比較してみたとき、(002)、(102)面のピークが同一に現れることから見て、P2/cの空間群を有する結晶構造が維持されることが分かった。 FIG. 6 shows changes in XRD peaks due to Na removal. In Sample A, where Na was not removed, the interplanar spacing of the (002) planes was 7.42 Å, where it was observed that the interplanar spacing gradually increased to 7.47 Å as more Na was removed. rice field. It was found that the change in the interplanar spacing causes the XRD peak to change, but the removal of Na gradually reduces the magnitude of the peak of the (102) plane relative to that of the (002) plane. Therefore, the value of I (102) /I (002) was 0.46 for sample A, decreased to 0.13 for sample B, and 0.09 for sample D. In addition, even after removing Na, when the XRD peaks are compared, the peaks of the (002) and (102) planes appear the same, indicating that the crystal structure having the P2 1 /c space group is maintained. I found out.

図7は、サンプルAからNaを除去してサンプルCになり、これからテープを用いて剥離されて作製されたナノシートを示す。サンプルAは、層間の劈開面が観察されるが、サンプルCでは、Naが除去されることによって、層間隔が広がってクラックが形成されたことが認められた。 FIG. 7 shows a nanosheet produced by removing Na from sample A to form sample C, which was then peeled off using a tape. In sample A, cleavage planes between layers were observed, but in sample C, it was found that the removal of Na widened the gap between layers and formed cracks.

図8は、このようにサンプルCから剥離されて作製されたナノシートに対するAFM(Atomic Force Microscopy)イメージおよびそれに応じたラインプロファイル(line profile)を示す。10~30nmの厚さを有するナノシートに剥離されたことを確認することができた。 FIG. 8 shows an AFM (Atomic Force Microscopy) image of the nanosheet prepared by exfoliating from Sample C and a corresponding line profile. It was confirmed that the nanosheets were exfoliated with a thickness of 10-30 nm.

図9は、サンプルDに対するSTEM(Scanning Transmission Electron Microscopy)分析結果である。このデータからNaが一部除去されたことが分かり、除去された後にも結晶構造の変化がないことが分かった。
図10は、サンプルEに対するTEM分析結果である。Naが過度に除去されることによって、非晶質構造が現れることが分かった。
FIG. 9 shows STEM (Scanning Transmission Electron Microscopy) analysis results for sample D. FIG. From this data, it was found that Na was partially removed, and it was found that there was no change in the crystal structure after removal.
10 is a TEM analysis result for sample E. FIG. It was found that an amorphous structure appeared due to excessive removal of Na.

サンプルCから剥離されたナノシートに対してPFM(Piezoresponse Force Microscopy)を通して強誘電特性を測定し、それによる結果を図11に示した。実際に強誘電類似特性を有していることを確認することができた。 Ferroelectric properties of the nanosheet exfoliated from Sample C were measured through PFM (Piezoresponse Force Microscopy), and the results are shown in FIG. It was confirmed that it actually has ferroelectric-like characteristics.

また、サンプルCから剥離されたナノシートに対して電圧に応じた電流変化を測定し、その結果を図12に示した。 Also, the change in current according to the voltage was measured for the nanosheet peeled from Sample C, and the results are shown in FIG.

初期電圧では、高抵抗状態1を維持して低い電流の流れを示すが、一定電圧以上になると、低抵抗状態2になって急激に電流が増加することを示し、反対電極方向でも同じ特性が現れることが認められて、抵抗スイッチング特性を示すことが分かった。 At the initial voltage, the high resistance state 1 is maintained and the current flow is low. was observed to appear and was found to exhibit resistive switching characteristics.

このような抵抗スイッチング特性を利用すると、最近ニューロモーフィックメモリー素子として開発が活発に行われているメモリスタ素子に適用することができることが分かった。 It has been found that using such a resistance switching characteristic can be applied to a memristor device, which is being actively developed as a neuromorphic memory device.

Claims (24)

下記化学式1で表される層状構造化合物。
[化学式1]
Na1-xInAs
(0≦x≦0.9、0.8≦y≦1.2、1.2≦z≦1.8)
A layered structure compound represented by the following chemical formula 1.
[Chemical Formula 1]
Na 1-x In y Asz
( 0≤x≤0.9 , 0.8≤y≤1.2, 1.2≤z≤1.8)
前記xは、0である、請求項1に記載の層状構造化合物。 2. The layered structure compound according to claim 1, wherein said x is 0. 前記xは、0.1≦x≦0.9である、請求項1に記載の層状構造化合物。 2. The layered structure compound according to claim 1, wherein x satisfies 0.1≤x≤0.9. 前記xは、0.3≦x≦0.8である、請求項1に記載の層状構造化合物。 2. The layered structure compound according to claim 1, wherein x satisfies 0.3≤x≤0.8. 前記層状構造化合物は、Hをさらに含む、請求項1に記載の層状構造化合物。 2. The layered structure compound according to claim 1, wherein said layered structure compound further comprises H. 前記層状構造化合物は、CuKα線を使用したXRD測定において2θ=11.9°±0.50°、12.8°±0.50°、13.5°±0.50°、15.3°±0.50°、21.6°±0.50°、22.7°±0.50°、23.8°±0.50°、27.8°±0.50°の位置にピークを有し、前記ピークは、最も大きい強度を有するピークに対して1%以上の強度を有するピークである、請求項1から5のいずれか一項に記載の層状構造化合物。 The layered structure compound has 2θ=11.9°±0.50°, 12.8°±0.50°, 13.5°±0.50°, 15.3° in XRD measurement using CuKα rays. Peaks at ±0.50°, 21.6°±0.50°, 22.7°±0.50°, 23.8°±0.50°, 27.8°±0.50° 6. The layered structure compound according to any one of claims 1 to 5, wherein the peak has an intensity of 1% or more with respect to the peak having the highest intensity. 前記層状構造化合物の結晶構造は、P2/cの空間群を示す、請求項1から5のいずれか一項に記載の層状構造化合物。 6. The layered structure compound according to any one of claims 1 to 5, wherein the crystal structure of the layered structure compound exhibits a space group of P21 / c. 前記層状構造化合物は、CuKα線を使用したXRD測定において(002)面に対するピーク強度に対する(102)面のピーク強度であるI(102)/I(002)の値が、0.40以下である、請求項1から5のいずれか一項に記載の層状構造化合物。 In the layered structure compound, the value of I (102) /I (002) , which is the peak intensity of the (102) plane relative to the peak intensity of the (002) plane in XRD measurement using CuKα rays, is 0.40 or less. A layered structure compound according to any one of claims 1 to 5. 前記層状構造化合物は、強誘電類似(ferroelectric-like)特性を示す、請求項1から5のいずれか一項に記載の層状構造化合物。 6. A layered structure compound according to any one of claims 1 to 5, wherein said layered structure compound exhibits ferroelectric-like properties. 前記層状構造化合物は、抵抗スイッチング特性を示す、請求項1から5のいずれか一項に記載の層状構造化合物。 6. The layered structure compound according to any one of claims 1 to 5, wherein the layered structure compound exhibits resistive switching properties. 下記化学式1で表される組成物を含、ナノシート。
[化学式1]
Na1-xInAs
(0≦x≦0.9、0.8≦y≦1.2、1.2≦z≦1.8)
A nanosheet comprising a composition represented by Chemical Formula 1 below.
[Chemical Formula 1]
Na 1-x In y Asz
( 0≤x≤0.9 , 0.8≤y≤1.2, 1.2≤z≤1.8)
前記xは、0である、請求項11に記載のナノシート。 12. The nanosheet according to claim 11, wherein x is 0. 前記xは、0.1≦x≦0.9である、請求項11に記載のナノシート。 12. The nanosheet according to claim 11, wherein x is 0.1≤x≤0.9. 前記xは、0.3≦x≦0.8である、請求項11に記載のナノシート。 12. The nanosheet according to claim 11, wherein x is 0.3≤x≤0.8. 前記組成物は、Hをさらに含む、請求項11に記載のナノシート。 12. The nanosheet according to claim 11, wherein the composition further comprises H. 前記組成物は、CuKα線を使用したXRD測定において2θ=11.9°±0.50°、12.8°±0.50°、13.5°±0.50°、15.3°±0.50°、21.6°±0.50°、22.7°±0.50°、23.8°±0.50°、27.8°±0.50°の位置にピークを有し、前記ピークは、最も大きい強度を有するピークに対して1%以上の強度を有するピークである、請求項11から15のいずれか一項に記載のナノシート。 The composition has 2θ = 11.9° ± 0.50°, 12.8° ± 0.50°, 13.5° ± 0.50°, 15.3° ± in XRD measurement using CuKα radiation. Peaks at 0.50°, 21.6°±0.50°, 22.7°±0.50°, 23.8°±0.50°, and 27.8°±0.50° 16. The nanosheet according to any one of claims 11 to 15, wherein said peak is a peak having an intensity of 1% or more with respect to the peak having the highest intensity. 前記組成物の結晶構造は、P2/cの空間群を示す、請求項11から15のいずれか一項に記載のナノシート。 16. The nanosheet according to any one of claims 11 to 15, wherein the crystal structure of said composition exhibits a space group of P2< 1 >/c. 前記組成物は、CuKα線を使用したXRD測定において(002)面に対するピーク強度に対する(102)面のピーク強度であるI(102)/I(002)の値が、0.40以下である、請求項11から15のいずれか一項に記載のナノシート。 The composition has a value of I (102) /I (002) , which is the peak intensity of the (102) plane relative to the peak intensity of the (002) plane in XRD measurement using CuKα rays, is 0.40 or less. 16. The nanosheet according to any one of claims 11-15. 前記組成物は、強誘電類似特性を示す、請求項11から15のいずれか一項に記載のナノシート。 16. The nanosheet of any one of claims 11-15, wherein the composition exhibits ferroelectric-like properties. 前記組成物は、抵抗スイッチング特性を示す、請求項11から15のいずれか一項に記載のナノシート。 16. The nanosheet of any one of claims 11-15, wherein the composition exhibits resistive switching properties. 前記ナノシートの厚さは、500nm以下である、請求項11から15のいずれか一項に記載のナノシート。 16. The nanosheet according to any one of claims 11 to 15, wherein the nanosheet has a thickness of 500 nm or less. 請求項1から5のいずれか一項に記載の層状構造化合物を含む、電気素子。 An electric device comprising the layered structure compound according to any one of claims 1 to 5. 請求項11から15のいずれか一項に記載のナノシートを含む、電気素子。 An electrical device comprising the nanosheet according to any one of claims 11-15. 前記電気素子は、メモリスタである、請求項22または23に記載の電気素子。 24. The electrical device according to claim 22 or 23, wherein said electrical device is a memristor.
JP2020201196A 2020-09-14 2020-12-03 Layered structure compound containing indium and arsenic, nanosheet and electric device using the same Active JP7116498B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0117533 2020-09-14
KR1020200117533A KR102425889B1 (en) 2020-09-14 2020-09-14 Layered compounds and nanosheets containing indium and arsenic, and electrical devices using the same

Publications (2)

Publication Number Publication Date
JP2022048061A JP2022048061A (en) 2022-03-25
JP7116498B2 true JP7116498B2 (en) 2022-08-10

Family

ID=73792930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201196A Active JP7116498B2 (en) 2020-09-14 2020-12-03 Layered structure compound containing indium and arsenic, nanosheet and electric device using the same

Country Status (4)

Country Link
US (1) US11820669B2 (en)
EP (1) EP3967652A1 (en)
JP (1) JP7116498B2 (en)
KR (1) KR102425889B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190352799A1 (en) 2018-05-18 2019-11-21 Industry-Academic Cooperation Foundation, Yonsei University LAYERED GaAs, METHOD OF PREPARING SAME, AND GaAs NANOSHEET EXFOLIATED FROM SAME

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662074B2 (en) * 2016-12-30 2020-05-26 Nanoco Technologies Ltd. Template-assisted synthesis of 2D nanosheets using nanoparticle templates
KR102271060B1 (en) * 2018-05-18 2021-06-29 연세대학교 산학협력단 Layered AlN, manufacturing method thereof and exfoliated AlN nanosheet therefrom
KR102285270B1 (en) * 2018-05-18 2021-08-03 연세대학교 산학협력단 Layered InAs, manufacturing method thereof and InAs nanosheet exfoliated therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190352799A1 (en) 2018-05-18 2019-11-21 Industry-Academic Cooperation Foundation, Yonsei University LAYERED GaAs, METHOD OF PREPARING SAME, AND GaAs NANOSHEET EXFOLIATED FROM SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G.Cordier et al.,International Journal for Structural, Physical, Chemical, Aspects of Crystalline Materials,195(1/2),1991年,pp.105-106,ISSN:0044-2968

Also Published As

Publication number Publication date
EP3967652A1 (en) 2022-03-16
KR20220035597A (en) 2022-03-22
US11820669B2 (en) 2023-11-21
KR102425889B1 (en) 2022-07-26
US20220081314A1 (en) 2022-03-17
JP2022048061A (en) 2022-03-25

Similar Documents

Publication Publication Date Title
JP7226823B2 (en) Group 3-5 compounds with layered structure and ferroelectric-like properties
JP7116498B2 (en) Layered structure compound containing indium and arsenic, nanosheet and electric device using the same
Park et al. Overcoming size effects in ferroelectric thin films
JP7116499B2 (en) Layered structure compound containing indium and phosphorus, nanosheet and electric device using the same
KR102425893B1 (en) Layered compounds and nanosheets containing potassium, indium and arsenic, and electrical devices using the same
KR102425894B1 (en) Layered compounds and nanosheets containing indium and antimony, and electrical devices using the same
KR102484718B1 (en) Layered compounds and nanosheets containing gallium and arsenic, and electrical devices using the same
KR102425891B1 (en) Layered compounds and nanosheets containing gallium and antimony, and electrical devices using the same
KR102425890B1 (en) Layered compounds and nanosheets containing aluminum and antimony, and electrical devices using the same
KR102425888B1 (en) Layered compounds and nanosheets containing gallium and arsenic, and electrical devices using the same
KR102514683B1 (en) Layered compounds and nanosheets containing indium and phosphorus, and electrical devices using the same
US11840458B2 (en) Layered GaN and GaN nanosheet, and electrical device using the same
KR102479782B1 (en) Layered GaP, GaP nanosheet and Electrical Dvice using the Same
US11634340B2 (en) Layered group III-V compound and nanosheet containing arsenic, and electrical device using the same
US11597651B2 (en) Layered group III-V compound and nanosheet containing phosphorus, and electrical device using the same
KR102453020B1 (en) Layered compounds and nanosheets containing Zinc and Sulfur, and electrical devices using the same
US11643753B2 (en) Layered group III-V compound and nanosheet containing antimony, and electrical device using the same
Shuaibu et al. First principle investigation of robustness surface states on ternary mixed chalcogenide Bi2Te2s

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220722

R150 Certificate of patent or registration of utility model

Ref document number: 7116498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150