JP7112852B2 - Regulator and hydraulic damper - Google Patents

Regulator and hydraulic damper Download PDF

Info

Publication number
JP7112852B2
JP7112852B2 JP2018025875A JP2018025875A JP7112852B2 JP 7112852 B2 JP7112852 B2 JP 7112852B2 JP 2018025875 A JP2018025875 A JP 2018025875A JP 2018025875 A JP2018025875 A JP 2018025875A JP 7112852 B2 JP7112852 B2 JP 7112852B2
Authority
JP
Japan
Prior art keywords
valve
valve body
pressure regulating
hole
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018025875A
Other languages
Japanese (ja)
Other versions
JP2019143655A (en
Inventor
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senqcia Corp
Original Assignee
Senqcia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senqcia Corp filed Critical Senqcia Corp
Priority to JP2018025875A priority Critical patent/JP7112852B2/en
Publication of JP2019143655A publication Critical patent/JP2019143655A/en
Application granted granted Critical
Publication of JP7112852B2 publication Critical patent/JP7112852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は調圧弁およびこれを用いた油圧ダンパに関する。 The present invention relates to a pressure regulating valve and a hydraulic damper using the same.

従来、地震や風等による建築物の揺れを低減させるために、ブレース等に油圧ダンパが用いられていた。油圧ダンパは、油の流体抵抗を利用して、建築物の揺れに対する抵抗力(減衰力)を発生させ、建築物の揺れを吸収して耐震性、居住性を向上させる。 Conventionally, hydraulic dampers have been used in braces and the like in order to reduce shaking of buildings due to earthquakes, wind, and the like. Hydraulic dampers use the fluid resistance of oil to generate a resistance (damping force) against the shaking of buildings, absorb the shaking of buildings, and improve earthquake resistance and livability.

このような油圧ダンパとしては、例えば、作動油が充填されたシリンダと、シリンダを2つの油圧室に区分するピストンからなり、シリンダ内のピストンがいずれの方向に移動しても減衰力が発生するように、両油圧室をつなぐ流路に調圧弁を装備したものがある(例えば特許文献1)。 Such a hydraulic damper is composed of, for example, a cylinder filled with hydraulic oil and a piston that divides the cylinder into two hydraulic chambers. As shown in Japanese Unexamined Patent Application Publication No. 2002-100000, there is a pressure regulating valve provided in a flow path connecting both hydraulic chambers.

特開2006-349021号公報Japanese Patent Application Laid-Open No. 2006-349021

通常、油圧ダンパは、ピストンの変位速度と、発生する減衰力との関係である減衰係数が線形であることが望ましい。このため、線形性に優れた調圧弁を使用する必要がある。 Generally, it is desirable that the hydraulic damper has a linear damping coefficient, which is the relationship between the displacement speed of the piston and the generated damping force. Therefore, it is necessary to use a pressure regulating valve with excellent linearity.

一方、油圧ダンパが用いられている免震構造物においては、想定外の地震が発生した際に、変位が想定以上に大きくなり、構造物が損傷するおそれがある。このため、変位速度が所定以上大きくなった際には、減衰力を急激に増加させることが求められる。しかし、従来の油圧ダンパにおいて、2段階の減衰特性を持たせようとすると、複数の調圧弁を組み合わせるなど、構造が複雑化するという問題があった。 On the other hand, in a seismic isolation structure using a hydraulic damper, when an unexpected earthquake occurs, there is a risk that the displacement will become larger than expected and the structure will be damaged. Therefore, when the displacement speed exceeds a predetermined value, it is required to increase the damping force abruptly. However, in the conventional hydraulic damper, there is a problem that the structure becomes complicated, such as combining a plurality of pressure regulating valves, when trying to give the two-stage damping characteristic.

本発明は、前述した問題点に鑑みてなされたもので、簡易な構造で、変位速度が所定以上大きくなった際に、発生する荷重が大きく上昇する性能を有する調圧弁および油圧ダンパを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and provides a pressure regulating valve and a hydraulic damper that have a simple structure and have the performance of greatly increasing the load generated when the displacement speed exceeds a predetermined value. for the purpose.

前述した目的を達するために第1の発明は、弁体と、前記弁体が貫通する孔を有する弁体押さえ部と、前記弁体を前記弁体押さえ部に押し付けるばねと、を具備し、前記弁体には、基部側に設けられる第1弁部と、先端側に設けられる第2弁部とが、互いに離間して設けられ、前記弁体押さえ部は、前記第1弁部と前記第2弁部との間に配置され、前記弁体押さえ部に対して、前記第2弁部側の圧力が所定以上となると、前記ばねに抗して前記弁体が移動して、前記第2弁部側から前記第1弁部側へ前記孔に流体が流れ、前記弁体の移動量の増加に伴い、前記孔と前記第1弁部との間の流体の流れる断面積が増加し、さらに前記ばねに抗して前記弁体が移動すると、移動量の増加に伴い、前記孔と前記第1弁部との間の流体の流れる断面積よりも、前記孔と前記第2弁部との間の流体の流れる断面積が小さくなることを特徴とする調圧弁である。 In order to achieve the above object, a first invention comprises a valve body, a valve body holding portion having a hole through which the valve body passes, and a spring for pressing the valve body against the valve body holding portion, The valve body is provided with a first valve part provided on the base side and a second valve part provided on the tip side, separated from each other. When the pressure on the side of the second valve portion becomes equal to or higher than a predetermined value with respect to the valve pressing portion, the valve body moves against the spring, Fluid flows through the hole from the side of the second valve portion to the side of the first valve portion, and as the amount of movement of the valve body increases, the cross-sectional area through which the fluid flows between the hole and the first valve portion increases. Further, when the valve body moves against the spring, the cross-sectional area between the hole and the second valve portion is larger than the cross-sectional area through which the fluid flows between the hole and the first valve portion as the amount of movement increases. The pressure regulating valve is characterized in that the cross-sectional area through which the fluid flows between is small.

第2弁部には、流体が通過可能な孔が形成されていてもよく、流体が通過可能な溝が形成されていてもよい。The second valve portion may have a hole through which the fluid can pass, or a groove through which the fluid can pass.

第1の発明によれば、弁体に第1弁部と第2弁部を一体で形成し、移動量の増加に伴い、第1弁部における流入断面積が増加し、さらに弁体が移動すると、移動量の増加に伴い、第2弁部における流入断面積が減少する。このため、一つの調圧弁によって、2段階の減衰力を発揮させることができる。 According to the first invention, the first valve portion and the second valve portion are integrally formed in the valve body, and as the amount of movement increases, the inflow cross-sectional area in the first valve portion increases, and the valve body further moves. Then, as the amount of movement increases, the inflow cross-sectional area of the second valve portion decreases. Therefore, two stages of damping force can be exhibited by one pressure regulating valve.

この場合、第1弁部の構造は、従来の調圧弁に用いられているポペット弁タイプの弁形状や、スプール弁タイプの弁形状を適用することができる。 In this case, for the structure of the first valve portion, a poppet valve type valve shape or a spool valve type valve shape used in conventional pressure regulating valves can be applied.

第2の発明は、第1の発明に係る調圧弁と、シリンダと、前記シリンダを各油圧室に区分し、前記シリンダ内に移動可能に設けられたピストンと、を具備し、前記調圧弁は、前記各油圧室をつなぐ流路に設けられることを特徴とする油圧ダンパである。 A second invention comprises a pressure regulating valve according to the first invention, a cylinder, and a piston that divides the cylinder into hydraulic chambers and is movably provided in the cylinder, wherein the pressure regulating valve is and a hydraulic damper provided in a flow path connecting the hydraulic chambers.

第2の発明によれば、変位速度が大きくなり、第1弁部が所定以上開いていくと、第2弁部が閉じていくため、変位速度が所定上となると、減衰力を急激に増加させることが可能な油圧ダンパを得ることができる。 According to the second aspect of the invention, when the displacement speed increases and the first valve portion opens more than the predetermined value, the second valve portion closes. Therefore, when the displacement speed exceeds the predetermined value, the damping force is rapidly increased. It is possible to obtain a hydraulic damper that can

本発明によれば、簡易な構造で、変位速度が所定以上大きくなった際に、発生する荷重が大きく上昇する性能を有する調圧弁および油圧ダンパを提供することができる。 According to the present invention, it is possible to provide a pressure regulating valve and a hydraulic damper that have a simple structure and have the performance of greatly increasing the generated load when the displacement speed exceeds a predetermined value.

油圧ダンパ1の構造を示す図。FIG. 2 is a diagram showing the structure of the hydraulic damper 1; 調圧弁11を示す断面図。Sectional drawing which shows the pressure regulation valve 11. FIG. (a)、(b)は、調圧弁11の動作を示す図。(a), (b) is a figure which shows the operation|movement of the pressure regulating valve 11. FIG. (a)は、調圧弁11aを示す断面図、(b)は(a)のK矢視図。(a) is a cross-sectional view showing a pressure regulating valve 11a, and (b) is a view in the direction of arrow K in (a). (a)は、調圧弁11bを示す断面図、(b)は(a)のL矢視図。(a) is a cross-sectional view showing a pressure regulating valve 11b, and (b) is a view in the direction of arrow L in (a). (a)は、調圧弁11cを示す断面図、(b)は(a)のM-M線断面図。(a) is a cross-sectional view showing the pressure regulating valve 11c, and (b) is a cross-sectional view taken along line MM of (a). (a)は、調圧弁11dを示す断面図、(b)は、調圧弁11eを示す断面図。(a) is a cross-sectional view showing a pressure regulating valve 11d, and (b) is a cross-sectional view showing a pressure regulating valve 11e.

以下、図面を参照しながら、本発明の油圧ダンパについて詳細に説明する。図1は、油圧ダンパ1の構造を示す図である。油圧ダンパ1は、主に、シリンダ3、ピストン5、ピストンロッド7a、7b、調圧弁11等から構成される。なお、油圧ダンパの構造は、図示した例には限られない。また、アキュムレータ等の構造は図示を省略する。 Hereinafter, the hydraulic damper of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing the structure of a hydraulic damper 1. FIG. The hydraulic damper 1 mainly includes a cylinder 3, a piston 5, piston rods 7a and 7b, a pressure regulating valve 11, and the like. Note that the structure of the hydraulic damper is not limited to the illustrated example. Also, the structure of the accumulator and the like is omitted from the drawing.

円筒状のシリンダ3内には、ピストン5が移動可能に設けられる。ピストン5の両側には、円柱状のピストンロッド7a、7bが設けられる。ピストンロッド7bにはジョイント13aが連結される。また、シリンダ3にはジョイント13bが連結される。ジョイント13a、13bは、建築物のブレースや基台に固定される。 A piston 5 is movably provided in the cylindrical cylinder 3 . Both sides of the piston 5 are provided with cylindrical piston rods 7a and 7b. A joint 13a is connected to the piston rod 7b. A joint 13 b is connected to the cylinder 3 . The joints 13a and 13b are fixed to braces or bases of the building.

シリンダ3内は、ピストン5によって油圧室9aと油圧室9bとに区分される。油圧室9aと、油圧室9bには作動油が充填される。ピストン5には、油圧室9aと油圧室9bとをつなぐ一対の流路が設けられる。それぞれの流路には、調圧弁11が互いに逆向きになるように配置される。各油圧室の圧力差に応じて、調圧弁の11の開度が変化する。なお、調圧弁11の構造については、詳細を後述する。 The inside of the cylinder 3 is divided by the piston 5 into a hydraulic chamber 9a and a hydraulic chamber 9b. The hydraulic chambers 9a and 9b are filled with working oil. The piston 5 is provided with a pair of flow paths connecting the hydraulic chambers 9a and 9b. Pressure regulating valves 11 are arranged in the respective flow paths in opposite directions. The opening of the pressure regulating valve 11 changes according to the pressure difference between the hydraulic chambers. The details of the structure of the pressure regulating valve 11 will be described later.

次に、図1を用いて、油圧ダンパ1の動作について詳細に説明する。図1は、建築物に地震・風などの力が働き、ピストン5に外力が働く場合を示す。ピストン5がA方向に移動すると、油圧室9aに充填された作動油が圧縮される。油圧室9aで圧縮された作動油は、一方(図中上方)の調圧弁11に流入する(図中矢印C)。 Next, operation of the hydraulic damper 1 will be described in detail with reference to FIG. FIG. 1 shows a case where a force such as an earthquake or wind acts on a building and an external force acts on the piston 5 . When the piston 5 moves in the A direction, the working oil filled in the hydraulic chamber 9a is compressed. The hydraulic oil compressed in the hydraulic chamber 9a flows into one (upper in the figure) pressure regulating valve 11 (arrow C in the figure).

所定圧力以上の作動油が調圧弁11に流入すると、調圧弁11が開き、作動油は調圧弁11を介して油圧室9bへ流入する(図中矢印D)。このように、ピストン5が、A方向に移動する速度に対し、調圧弁11に設けられるばね等を調整することで、ピストン5にはA方向の力を打ち消す方向に、減衰力が発生する。 When hydraulic fluid having a predetermined pressure or more flows into the pressure regulating valve 11, the pressure regulating valve 11 opens, and the hydraulic fluid flows into the hydraulic chamber 9b via the pressure regulating valve 11 (arrow D in the drawing). In this manner, by adjusting the spring or the like provided in the pressure regulating valve 11 with respect to the speed at which the piston 5 moves in the A direction, a damping force is generated in the piston 5 in a direction that cancels out the force in the A direction.

次に、建築物に働く地震や風などの力の方向が、反転した場合について説明する。ピストン5がB方向に移動すると、油圧室9bに充填された作動油が圧縮される。油圧室9bで圧縮された作動油は、他方(図中下方)の調圧弁11に流入する(図中矢印E)。 Next, a case where the directions of the forces acting on the building, such as an earthquake and wind, are reversed will be described. When the piston 5 moves in the B direction, the working oil filled in the hydraulic chamber 9b is compressed. The hydraulic oil compressed in the hydraulic chamber 9b flows into the other (lower in the figure) pressure regulating valve 11 (arrow E in the figure).

所定圧力以上の作動油が調圧弁11に流入すると、調圧弁11が開き、作動油は調圧弁11を介して油圧室9aへ流入する(図中矢印F)。このように、ピストン5が、B方向に移動する速度に対し、調圧弁11に設けられるばね等を調整することで、ピストン5にはB方向の力を打ち消す方向に、減衰力が発生する。 When hydraulic fluid having a predetermined pressure or more flows into the pressure regulating valve 11, the pressure regulating valve 11 opens, and the hydraulic fluid flows into the hydraulic chamber 9a via the pressure regulating valve 11 (arrow F in the drawing). In this manner, by adjusting the spring or the like provided in the pressure regulating valve 11 with respect to the speed at which the piston 5 moves in the B direction, a damping force is generated in the piston 5 in a direction that cancels out the force in the B direction.

次に、調圧弁11について詳細に説明する。図2は、調圧弁11の構造を示す断面図である。調圧弁11は、スリーブ15、弁体押さえ部18、弁体19、ばね21等から構成される。筒状のスリーブ15の後端側(図中左側)にはばね押さえ23が配置され、前端側(図中右側)には弁体押さえ部18が配置される。 Next, the pressure regulating valve 11 will be described in detail. FIG. 2 is a cross-sectional view showing the structure of the pressure regulating valve 11. As shown in FIG. The pressure regulating valve 11 is composed of a sleeve 15, a valve pressing portion 18, a valve body 19, a spring 21, and the like. A spring retainer 23 is arranged on the rear end side (left side in the drawing) of the cylindrical sleeve 15, and a valve body holding portion 18 is arranged on the front end side (right side in the drawing).

弁体押さえ部18とばね押さえ23には、それぞれ作動油が流れる孔17a、17bが設けられる。また、スリーブ15の内部であって、ばね押さえ23と弁体押さえ部18の間には、ばね21および弁体19が設けられる。 The valve body pressing portion 18 and the spring pressing portion 23 are provided with holes 17a and 17b through which hydraulic oil flows, respectively. A spring 21 and a valve element 19 are provided inside the sleeve 15 and between the spring retainer 23 and the valve element pressing portion 18 .

弁体19は、基部側(スリーブ15の後端側)に設けられる第1弁部25と、先端側に設けられる第2弁部27とを有する。第1弁部25は、ポペット弁タイプの弁形状を有する。第2弁部27は、孔17aよりも外径の大きな円板状である。第1弁部25と第2弁部27とは棒状の連結部29を介して互いに離間して設けられる。連結部29は、弁体押さえ部18の孔17aを貫通する。したがって、弁体押さえ部18は、第1弁部25と第2弁部27との間に配置される。 The valve body 19 has a first valve portion 25 provided on the base side (rear end side of the sleeve 15) and a second valve portion 27 provided on the tip side. The first valve portion 25 has a poppet valve type valve shape. The second valve portion 27 has a disc shape with an outer diameter larger than that of the hole 17a. The first valve portion 25 and the second valve portion 27 are separated from each other via a rod-shaped connecting portion 29 . The connecting portion 29 penetrates through the hole 17 a of the valve body pressing portion 18 . Therefore, the valve body pressing portion 18 is arranged between the first valve portion 25 and the second valve portion 27 .

弁体19は、ばね21によって、前方の弁体押さえ部18の方向に押し付けられる。ばね21によって第1弁部25が弁体押さえ部18に押し付けられた状態では、第1弁部25によって孔17aが塞がれる。すなわち、孔17aから作動油がスリーブ15内へ流入することがない。 The valve body 19 is pressed forward toward the valve body pressing portion 18 by a spring 21 . In a state where the first valve portion 25 is pressed against the valve body pressing portion 18 by the spring 21 , the hole 17 a is closed by the first valve portion 25 . That is, hydraulic oil does not flow into the sleeve 15 through the hole 17a.

次に、調圧弁11の動作について説明する。図3(a)は、通常の状態から、弁体19が、作動油の圧力によってばね21による力に対抗して後方(図中左方向)に移動した状態を示す図である。ばね21に抗して弁体19が後方に移動すると、第1弁部25と弁体押さえ部18との間に隙間が形成される。したがって、作動油が孔17aを通って、スリーブ15内へ流れ込む(図中矢印I方向)。この際、ピストンの変位速度が増加すると、弁体19の移動量が増加し、移動量の増加に伴い、孔17aと第1弁部25との間の流入断面積(流体の流れる断面積)が増加する。 Next, operation of the pressure regulating valve 11 will be described. FIG. 3(a) shows a state in which the valve body 19 has moved rearward (to the left in the drawing) from the normal state against the force of the spring 21 due to the pressure of the hydraulic fluid. When the valve body 19 moves backward against the spring 21 , a gap is formed between the first valve portion 25 and the valve body pressing portion 18 . Therefore, hydraulic oil flows into the sleeve 15 through the hole 17a (in the direction of arrow I in the figure). At this time, when the displacement speed of the piston increases, the amount of movement of the valve body 19 increases. increases.

ここで、連結部29の長さは、弁体押さえ部18の長さに対して十分に長い。このため、第2弁部27と弁体押さえ部18との間には十分に間隔がある。したがって、ばね21に抗して弁体19が移動を開始した初期においては、第1弁部25における流入断面積(図中G部)に対して、第2弁部27における流入断面積(図中H部)は十分に大きい。このため、減衰力は、第1弁部25と弁体押さえ部18(孔17a)との間を流れる作動油の抵抗(図中I)によって決定される。この際、ピストン5の変位速度(作動油の流量)と減衰力は線形となる。 Here, the length of the connecting portion 29 is sufficiently longer than the length of the valve body pressing portion 18 . Therefore, there is a sufficient space between the second valve portion 27 and the valve body pressing portion 18 . Therefore, in the initial stage when the valve body 19 starts to move against the spring 21, the inflow cross-sectional area of the second valve portion 27 ( Middle H part) is sufficiently large. Therefore, the damping force is determined by the resistance (I in the drawing) of hydraulic oil flowing between the first valve portion 25 and the valve body pressing portion 18 (hole 17a). At this time, the displacement speed of the piston 5 (the flow rate of hydraulic oil) and the damping force are linear.

図3(b)に示すように、ピストン5の変位速度さらに増加し、ばね21に抗して弁体19が後方に移動すると、移動量の増加に伴い、孔17aと第2弁部との間の流入断面積が減少する。弁体19が所定以上移動すると、弁体押さえ部18(孔17a)と第1弁部25との間の流入断面積(図中G部)よりも、弁体押さえ部18(孔17a)と第2弁部27との間の流入断面積(図中H部)が小さくなる。このため、減衰力は、第2弁部27と弁体押さえ部18(孔17a)との間を流れる作動油の抵抗(図中J)によって決定される。 As shown in FIG. 3B, when the displacement speed of the piston 5 further increases and the valve body 19 moves backward against the spring 21, the distance between the hole 17a and the second valve portion increases as the amount of movement increases. The inflow cross-sectional area between When the valve body 19 moves more than a predetermined amount, the valve body holding part 18 (hole 17a) and the valve body holding part 18 (hole 17a) are larger than the inflow cross-sectional area (G part in the figure) between the valve body holding part 18 (hole 17a) and the first valve part 25. The inflow cross-sectional area (H portion in the drawing) between the second valve portion 27 and the second valve portion 27 becomes smaller. Therefore, the damping force is determined by the resistance (J in the figure) of hydraulic oil flowing between the second valve portion 27 and the valve body pressing portion 18 (hole 17a).

すなわち、変位速度が所定以下であれば、減衰力が、第1弁部25と弁体押さえ部18(孔17a)との間を流れる作動油の抵抗(図中I)によって決定され、変位速度が所定以上となると、第2弁部27と弁体押さえ部18(孔17a)との間を流れる作動油の抵抗(図中J)によって決定される。この際、第2弁部27と弁体押さえ部18(孔17a)との間の流入断面積は、変位速度が大きくなり、弁体19の移動量が増加するにつれて、小さくなる。このため、変位側がが所定値を超えると、急激に減衰力を大きくすることができる。 That is, if the displacement speed is equal to or less than a predetermined value, the damping force is determined by the resistance (I in the figure) of hydraulic oil flowing between the first valve portion 25 and the valve body pressing portion 18 (hole 17a), and the displacement speed becomes a predetermined value or more, it is determined by the resistance (J in the figure) of hydraulic oil flowing between the second valve portion 27 and the valve body pressing portion 18 (hole 17a). At this time, the inflow cross-sectional area between the second valve portion 27 and the valve body pressing portion 18 (hole 17a) decreases as the displacement speed increases and the amount of movement of the valve body 19 increases. Therefore, when the displacement side exceeds a predetermined value, the damping force can be rapidly increased.

以上のように、本実施形態によれば、弁体押さえ部18(孔17a)と第1弁部25との間の流入断面積が、弁体押さえ部18(孔17a)と第2弁部27との間の流入断面積よりも小さい場合には、弁体19の移動量の増加に伴って、流入断面積が増加するが、弁体押さえ部18(孔17a)と第1弁部25との間の流入断面積よりも、弁体押さえ部18(孔17a)と第2弁部27との間の流入断面積が小さくなると、弁体19の移動量の増加に伴って、流入断路面積が減少する。 As described above, according to the present embodiment, the inflow cross-sectional area between the valve body pressing portion 18 (hole 17a) and the first valve portion 25 is equal to that of the valve body pressing portion 18 (hole 17a) and the second valve portion. 27, the inflow cross-sectional area increases as the amount of movement of the valve body 19 increases. When the inflow cross-sectional area between the valve body pressing portion 18 (hole 17a) and the second valve portion 27 becomes smaller than the inflow cross-sectional area between area is reduced.

すなわち、一つの調圧弁11によって、ピストン5の変位速度(作動油の流量)が所定以下においては、変位速度(作動油の流量)の増加に対して減衰力を線形で増加させ、ピストン5の変位速度(作動油の流量)が所定以上となると、急激に減衰力を増加させることができる。このため、簡易な構造の油圧ダンパによって、想定外の地震が発生した場合でも、変位が想定以上に大きくなることが抑制され、構造物が損傷することを防止することができる。 That is, when the displacement speed (flow rate of hydraulic oil) of the piston 5 is below a predetermined value, the single pressure regulating valve 11 linearly increases the damping force with respect to the increase in the displacement speed (flow rate of hydraulic oil). When the displacement speed (flow rate of hydraulic oil) reaches or exceeds a predetermined value, the damping force can be rapidly increased. Therefore, even if an unexpected earthquake occurs, the hydraulic damper with a simple structure can prevent the displacement from becoming larger than expected, and can prevent the structure from being damaged.

次に、第2の実施形態について説明する。図4(a)は、調圧弁11aの断面図であり、図4(b)は図4(a)のK矢視図である。なお、以下の説明において、調圧弁11と同一の機能を奏する構成については、図2と同一の符号を付し、重複する説明を省略する。 Next, a second embodiment will be described. 4(a) is a cross-sectional view of the pressure regulating valve 11a, and FIG. 4(b) is a view in the direction of arrow K in FIG. 4(a). In the following description, the same reference numerals as in FIG. 2 are assigned to the components having the same functions as those of the pressure regulating valve 11, and overlapping descriptions are omitted.

調圧弁11aは調圧弁11とほぼ同様の構成であるが、弁体19の第2弁部27の構造が異なる。本実施形態では、第2弁部27には複数の孔31が形成される。第2弁部27の外周面は、流路の内面によってガイドされる。作動油は、孔31によって第2弁部27を通過して、孔17aへ流入する。 The pressure regulating valve 11a has substantially the same configuration as the pressure regulating valve 11, but the structure of the second valve portion 27 of the valve body 19 is different. In this embodiment, a plurality of holes 31 are formed in the second valve portion 27 . The outer peripheral surface of the second valve portion 27 is guided by the inner surface of the flow path. Hydraulic oil passes through the second valve portion 27 through the hole 31 and flows into the hole 17a.

図4(b)に示すように、第2弁部27の径方向における孔31の中心位置は、孔17aよりも外側に配置される。図に示す例では、K矢視図において、孔31と孔17aとは重ならないが、孔31の一部が、孔17aと重なっていてもよい。弁体19が移動して、第2弁部27と弁体押さえ部18との距離が短くなると、孔31と弁体押さえ部18との端面との距離が近くなり、流入断面積が減少する。このため、ピストン5の変位速度(作動油の流量)が所定以上となると、急激に減衰力を増加させることができる。 As shown in FIG. 4B, the center position of the hole 31 in the radial direction of the second valve portion 27 is arranged outside the hole 17a. In the illustrated example, the hole 31 and the hole 17a do not overlap in the K arrow view, but a part of the hole 31 may overlap the hole 17a. When the valve body 19 moves and the distance between the second valve part 27 and the valve body pressing part 18 becomes shorter, the distance between the hole 31 and the end surface of the valve body pressing part 18 becomes shorter, and the inflow cross-sectional area decreases. . Therefore, when the displacement speed of the piston 5 (the flow rate of hydraulic oil) reaches or exceeds a predetermined value, the damping force can be rapidly increased.

第2の実施形態の調圧弁11aによれば、調圧弁11と同一の効果を得ることができる。また、第2弁部27を流路の内壁に沿って移動させることで、第2弁部27をガイドすることができる。 According to the pressure regulating valve 11a of the second embodiment, the same effect as the pressure regulating valve 11 can be obtained. Further, the second valve portion 27 can be guided by moving the second valve portion 27 along the inner wall of the flow path.

次に、第3の実施形態について説明する。図5(a)は、調圧弁11bの断面図であり、図5(b)は図5(a)のL矢視図である。調圧弁11bは調圧弁11aとほぼ同様の構成であるが、弁体19の第2弁部27の構造が異なる。本実施形態では、第2弁部27には、複数の溝33が形成される。図に示す例では、L矢視図において、溝33と孔17aとは重ならないが、溝33の一部が、孔17aと重なっていてもよい。第2弁部27の外周面は、流路の内面によってガイドされる。作動油は、溝33によって第2弁部27を通過して、孔17aへ流入する。 Next, a third embodiment will be described. 5(a) is a cross-sectional view of the pressure regulating valve 11b, and FIG. 5(b) is a view in the direction of arrow L in FIG. 5(a). The pressure regulating valve 11b has substantially the same configuration as the pressure regulating valve 11a, but the structure of the second valve portion 27 of the valve body 19 is different. In this embodiment, a plurality of grooves 33 are formed in the second valve portion 27 . In the illustrated example, the groove 33 and the hole 17a do not overlap in the L arrow view, but a part of the groove 33 may overlap the hole 17a. The outer peripheral surface of the second valve portion 27 is guided by the inner surface of the flow path. Hydraulic oil passes through the second valve portion 27 through the groove 33 and flows into the hole 17a.

第3の実施の形態によれば、第2の実施の形態と同様の効果を得ることができる。このように、第2弁部27の形態は、弁体19の移動量が大きくなるにつれて、流入断面積が小さくなれば、いずれの形態であってもよい。 According to the third embodiment, effects similar to those of the second embodiment can be obtained. As described above, the second valve portion 27 may take any form as long as the inflow cross-sectional area becomes smaller as the amount of movement of the valve body 19 increases.

次に、第4の実施形態について説明する。図6(a)は、調圧弁11cの断面図であり、図6(b)は図6(a)のM-M線断面図である。調圧弁11cは調圧弁11とほぼ同様の構成であるが、弁体19の第1弁部25の構造が異なる。本実施形態では、第1弁部25は、スプール弁タイプの弁形状である。 Next, a fourth embodiment will be described. 6(a) is a cross-sectional view of the pressure regulating valve 11c, and FIG. 6(b) is a cross-sectional view taken along line MM of FIG. 6(a). The pressure regulating valve 11c has substantially the same configuration as the pressure regulating valve 11, but the structure of the first valve portion 25 of the valve body 19 is different. In this embodiment, the first valve portion 25 has a valve shape of a spool valve type.

第1弁部25の先端部は、弁体押さえ部18の孔17aに挿入される。また、孔17aに挿入された第1弁部25の先端には連結部29が設けられ、連結部29の先端に第2弁部27が配置される。孔17a内の第1弁部25の先端部には、切欠き状の溝35が設けられる。溝35は、作動油の流路となる。溝35は、先端側から基部側に向かって徐々に深さが深くなる。 The tip of the first valve portion 25 is inserted into the hole 17 a of the valve body pressing portion 18 . A connecting portion 29 is provided at the tip of the first valve portion 25 inserted into the hole 17 a , and the second valve portion 27 is arranged at the tip of the connecting portion 29 . A notch-shaped groove 35 is provided at the tip of the first valve portion 25 in the hole 17a. The groove 35 serves as a flow path for hydraulic oil. The depth of the groove 35 gradually increases from the tip side toward the base side.

弁体19が移動すると、第1弁部25の先端が孔17aに沿って移動する。この際、作動油が溝35と孔17aの隙間を通って、スリーブ15内へ流れ込む。弁体19の移動量が大きくなると、弁体押さえ部18(孔17a)の端部と溝35の隙間が大きくなるため、作動油の流入断面積が大きくなる。一方、弁体19の移動量が所定以上となると、第2弁部27と弁体押さえ部18との間の流入断面積が小さくなる。このため、ピストン5の変位速度(作動油の流量)が所定以上となると、急激に減衰力を増加させることができる。 When the valve body 19 moves, the tip of the first valve portion 25 moves along the hole 17a. At this time, hydraulic oil flows into the sleeve 15 through the gap between the groove 35 and the hole 17a. As the amount of movement of the valve body 19 increases, the gap between the end of the valve body pressing portion 18 (hole 17a) and the groove 35 increases, so that the inflow cross-sectional area of the hydraulic oil increases. On the other hand, when the amount of movement of the valve body 19 exceeds the predetermined amount, the inflow cross-sectional area between the second valve portion 27 and the valve body pressing portion 18 becomes smaller. Therefore, when the displacement speed of the piston 5 (the flow rate of hydraulic oil) reaches or exceeds a predetermined value, the damping force can be rapidly increased.

なお、第2弁部27の形状は、図6(a)に示す例には限られない。例えば、図7(a)に示す調圧弁11dのように、第2弁部27の背面(連結部29側)を、連結部29側に行くにつれて縮径する直線状のテーパ形状としてもよい。また、図7(b)に示す調圧弁11eのように、第2弁部27の背面を、連結部29側に行くにつれて縮径する曲線状のテーパ形状としてもよい。 The shape of the second valve portion 27 is not limited to the example shown in FIG. 6(a). For example, like a pressure regulating valve 11d shown in FIG. 7A, the rear surface of the second valve portion 27 (connecting portion 29 side) may be tapered linearly so that the diameter decreases toward the connecting portion 29 side. Further, like the pressure regulating valve 11e shown in FIG. 7(b), the back surface of the second valve portion 27 may be formed into a curved tapered shape in which the diameter decreases toward the connecting portion 29 side.

第4の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。このように、第1弁部25の形態は、弁体19の移動量が大きくなるにつれて、流入断面積が大きくなれば、いずれの形態であってもよい。 According to the fourth embodiment, effects similar to those of the first embodiment can be obtained. As described above, the first valve portion 25 may take any form as long as the inflow cross-sectional area increases as the amount of movement of the valve body 19 increases.

以上、添付図面を参照しながら、本発明に係る油圧ダンパ等の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the hydraulic damper and the like according to the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope of the technical ideas disclosed in the present application, and these also belong to the technical scope of the present invention. Understood.

例えば、各実施形態における第1弁部25と第2弁部27の形態は、互いに組み合わせることができる。 For example, the forms of the first valve portion 25 and the second valve portion 27 in each embodiment can be combined with each other.

1……油圧ダンパ
3………シリンダ
5………ピストン
7a、7b………ピストンロッド
9a、9b………油圧室
11、11a、11b、11c、11d、11e………調圧弁
13a、13b………ジョイント
15………スリーブ
17a、17b………孔
18………弁体押さえ部
19………弁体
21………ばね
23………ばね押さえ
25………第1弁部
27………第2弁部
29………連結部
31………孔
33、35………溝
1 Hydraulic damper 3 Cylinder 5 Piston 7a, 7b Piston rod 9a, 9b Hydraulic chamber 11, 11a, 11b, 11c, 11d, 11e Pressure regulating valve 13a, 13b …………Joint 15……Sleeve 17a, 17b……Hole 18……Valve body holding portion 19……Valve body 21……Spring 23……Spring holding member 25……First valve portion 27 ……Second valve portion 29 ……Connecting portion 31 ……Hole 33, 35 ……Groove

Claims (4)

弁体と、
前記弁体が貫通する孔を有する弁体押さえ部と、
前記弁体を前記弁体押さえ部に押し付けるばねと、
を具備し、
前記弁体には、基部側に設けられる第1弁部と、先端側に設けられる第2弁部とが、互いに離間して設けられ、前記弁体押さえ部は、前記第1弁部と前記第2弁部との間に配置され、
前記弁体押さえ部に対して、前記第2弁部側の圧力が所定以上となると、前記ばねに抗して前記弁体が移動して前記第2弁部側から前記第1弁部側へ前記孔に流体が流れ、前記弁体の移動量の増加に伴い、前記孔と前記第1弁部との間の流体の流れる断面積が増加し、
さらに前記ばねに抗して前記弁体が移動すると、移動量の増加に伴い、前記孔と前記第1弁部との間の流体の流れる断面積よりも、前記孔と前記第2弁部との間の流体の流れる断面積が小さくなることを特徴とする調圧弁。
a valve body;
a valve body holding portion having a hole through which the valve body passes;
a spring that presses the valve body against the valve body pressing portion;
and
The valve body is provided with a first valve part provided on the base side and a second valve part provided on the tip side, separated from each other. arranged between the second valve part,
When the pressure on the side of the second valve portion exceeds a predetermined level with respect to the valve pressing portion, the valve body moves against the spring to move from the side of the second valve portion to the side of the first valve portion. fluid flows through the hole, and as the amount of movement of the valve element increases, the cross-sectional area through which the fluid flows between the hole and the first valve portion increases;
Further, when the valve body moves against the spring, the cross-sectional area of the fluid flowing between the hole and the first valve portion is larger than that between the hole and the second valve portion as the amount of movement increases. A pressure regulating valve characterized in that a cross-sectional area through which fluid flows between is reduced.
前記第2弁部には、流体が通過可能な複数の孔が形成されていることを特徴とする請求項1記載の調圧弁。2. The pressure regulating valve according to claim 1, wherein the second valve portion is formed with a plurality of holes through which fluid can pass. 前記第2弁部には、流体が通過可能な複数の溝が形成されていることを特徴とする請求項1記載の調圧弁。2. The pressure regulating valve according to claim 1, wherein the second valve portion is formed with a plurality of grooves through which fluid can pass. 請求項1から請求項3のいずれかに記載の調圧弁と、
シリンダと、
前記シリンダを各油圧室に区分し、前記シリンダ内に移動可能に設けられたピストンと、
を具備し、
前記調圧弁は、前記各油圧室をつなぐ流路に設けられることを特徴とする油圧ダンパ。
a pressure regulating valve according to any one of claims 1 to 3;
a cylinder;
a piston that divides the cylinder into hydraulic chambers and is movably provided in the cylinder;
and
A hydraulic damper, wherein the pressure regulating valve is provided in a flow path connecting the hydraulic chambers.
JP2018025875A 2018-02-16 2018-02-16 Regulator and hydraulic damper Active JP7112852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018025875A JP7112852B2 (en) 2018-02-16 2018-02-16 Regulator and hydraulic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018025875A JP7112852B2 (en) 2018-02-16 2018-02-16 Regulator and hydraulic damper

Publications (2)

Publication Number Publication Date
JP2019143655A JP2019143655A (en) 2019-08-29
JP7112852B2 true JP7112852B2 (en) 2022-08-04

Family

ID=67772033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018025875A Active JP7112852B2 (en) 2018-02-16 2018-02-16 Regulator and hydraulic damper

Country Status (1)

Country Link
JP (1) JP7112852B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230124398A (en) 2022-02-18 2023-08-25 현대자동차주식회사 Solenoid valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106623A (en) 2000-09-11 2002-04-10 E I Du Pont De Nemours & Co Damper device
JP2016095609A (en) 2014-11-13 2016-05-26 トヨタ自動車株式会社 Pressure reducing valve and gas supply device
JP2017155893A (en) 2016-03-03 2017-09-07 センクシア株式会社 Pressure regulator and hydraulic damper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106623A (en) 2000-09-11 2002-04-10 E I Du Pont De Nemours & Co Damper device
JP2016095609A (en) 2014-11-13 2016-05-26 トヨタ自動車株式会社 Pressure reducing valve and gas supply device
JP2017155893A (en) 2016-03-03 2017-09-07 センクシア株式会社 Pressure regulator and hydraulic damper

Also Published As

Publication number Publication date
JP2019143655A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5941359B2 (en) Buffer valve structure
JP4038654B2 (en) Damping force adjustable hydraulic shock absorber
US8590676B2 (en) Fluid pressure shock absorber
JP2021121756A5 (en) Mechanism used for shock absorber
JP4417822B2 (en) Shock absorber
JP5097732B2 (en) Hydraulic valve for hydraulic damper and hydraulic damper
JP6339717B1 (en) Pressure shock absorber
JP7112852B2 (en) Regulator and hydraulic damper
ES2961133T3 (en) Shock absorber with simultaneous regulation of hydraulic load depending on speed and frequency
JP6565442B2 (en) Cylinder device
JP2008138740A (en) Hydraulic shock absorber
JP6715036B2 (en) Regulator and hydraulic damper
JP2014181757A (en) Shock absorber
JP7461283B2 (en) buffer
JP4540965B2 (en) Hydraulic damper
JP3644883B2 (en) Oil damper for vibration control
JP5106347B2 (en) Hydraulic buffer
JP6510477B2 (en) Hydraulic circuit, hydraulic damper
JP5946143B2 (en) Hydraulic damper
JP5647183B2 (en) Hydraulic valves and hydraulic dampers
JP5713410B2 (en) Hydraulic damper
JP4636299B2 (en) Hydraulic shock absorber
JP2023088755A (en) hydraulic damper
JPH0743456Y2 (en) Cushion device for hydraulic cylinder
JP2006038036A (en) Shock-absorber for hydraulic cylinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7112852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350