JP7111308B2 - High-concentration stabilization method and treatment method for bleaching agents for clothing and building interior and exterior materials - Google Patents

High-concentration stabilization method and treatment method for bleaching agents for clothing and building interior and exterior materials Download PDF

Info

Publication number
JP7111308B2
JP7111308B2 JP2019000456A JP2019000456A JP7111308B2 JP 7111308 B2 JP7111308 B2 JP 7111308B2 JP 2019000456 A JP2019000456 A JP 2019000456A JP 2019000456 A JP2019000456 A JP 2019000456A JP 7111308 B2 JP7111308 B2 JP 7111308B2
Authority
JP
Japan
Prior art keywords
available chlorine
bleaching
primary
chlorine concentration
bleaching agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000456A
Other languages
Japanese (ja)
Other versions
JP2019196578A (en
Inventor
智洋 石田
秀行 関
Original Assignee
智洋 石田
株式会社メルス技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智洋 石田, 株式会社メルス技研 filed Critical 智洋 石田
Publication of JP2019196578A publication Critical patent/JP2019196578A/en
Application granted granted Critical
Publication of JP7111308B2 publication Critical patent/JP7111308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

漂白は、白物衣料だけでなく建築物内外装のカビ汚れ除去にも有効な作用であり、これまで数多の商品が市場に出回ってきた。「酸化漂白剤」と総称されるものには、一般に「塩素系」と「酸素系」とがある。
前者の「塩素系」は、次亜塩素酸(化学示性式HOCl)又は同イオン(同OCl)が有する塩素化作用に併せ酸化・分解作用に期待するもので、染料や色素とは反応しても植物性繊維衣料(綿や麻等のセルロース)やポリエステルPET・ポリプロレンPP・ポリエチレンPE等の合成繊維とは反応し難い物質特性を利用している。
後者の「酸素系」は、次亜塩素酸等の塩素系製剤による塩素化(クロラミン生成)や分解を避けるために、塩素化反応を起こさない過酸化水素に代表される化学物質を含有する製剤であり、主に動物性繊維衣料(羊毛や絹)の漂白に使われている。
Bleaching is an effective action not only for white clothing but also for removing mold stains from the interior and exterior of buildings, and a large number of products have hitherto appeared on the market. Generally, "oxidizing bleaches" include "chlorine-based" and "oxygen-based" bleaches.
The former "chlorine system" is expected to have an oxidation and decomposition action in addition to the chlorination action of hypochlorous acid (chemical formula HOCl) or the same ion (chemical formula OCl - ), and does not react with dyes and pigments. However, it utilizes the property of the material that it hardly reacts with vegetable fiber clothing (cellulose such as cotton and linen) and synthetic fibers such as polyester PET, polypropylene PP, and polyethylene PE.
The latter "oxygen system" is a formulation containing chemical substances such as hydrogen peroxide that does not cause chlorination reaction in order to avoid chlorination (chloramine generation) and decomposition by chlorine-based formulations such as hypochlorous acid. and is mainly used for bleaching animal fiber clothing (wool and silk).

合成化学物質によらなくても漂白することは可能で、古くは製紙用のコウゾやミツマタ等の外皮繊維、麻や綿等の天然繊維及び織物が、雪上に晒されることによって漂白されることが知られている。この伝統技術は、太陽光中の紫外線が雪の水分子を励起し活性酸素を生成すると共に素材中色素も紫外線吸収して光化学反応を起こし、最終的に色素が分解される機構で説明される。又、アナターゼ型二酸化チタンが酸化加速の光触媒として注目されている。 Bleaching can be done without using synthetic chemicals, and in the olden days, outer skin fibers such as paper mulberry and mitsumata for papermaking, natural fibers such as linen and cotton, and textiles were bleached when exposed to snow. Are known. This traditional technique is explained by the mechanism by which ultraviolet rays in the sunlight excite the water molecules in the snow to generate active oxygen, and the pigments in the material also absorb the ultraviolet rays, causing a photochemical reaction and finally decomposing the pigments. . Also, anatase titanium dioxide has attracted attention as a photocatalyst for accelerating oxidation.

本発明は、セルロース系天然繊維やポリエステル繊維を主体として成る下着やワイシャツ等白物衣料の織物繊維隙間に残り常在菌が餌とする脂質残渣由来の「黄ばみ汚れ」、及び、建築物内外装材の深部に食い込んだカビ菌糸由来の色素の何れも漂白する薬剤の高濃度安定化調製方法及び漂白処理方法に関する。 The present invention relates to "yellowing stains" derived from lipid residues remaining in the interstices of fabric fibers of white clothing such as underwear and dress shirts mainly composed of cellulose-based natural fibers and polyester fibers, which are fed by indigenous bacteria, and the interior and exterior of buildings. The present invention relates to a high-concentration stabilization preparation method and a bleaching treatment method for a chemical that bleaches any pigment derived from fungal mycelium that has invaded the deep part of the wood.

ヒトの表皮には皮脂腺があり、皮脂で皮膚・毛髪などの整調を行っている。又、下着やワイシャツ等の白物衣料は「黄ばみ汚れ」を嫌う。そのため、家庭内やクリーング工場では、洗濯・洗浄及び染み抜きを頻繁に行なう。一方、建築物内外装材の深部に食い込んだカビ菌糸由来の色素を漂白することはきわめて難しかった。皮脂や脂溶性成分が白物衣料の繊維隙間に、或いは、内外装素材表層に残留したままになると、体表や内外装材表面の常在菌がこれを変質させ有色の汚れが付く。これが俗にいう「黄ばみ汚れ」や「カビの有色汚れ」である。尚、カビは真菌の一種である。 The human epidermis has sebaceous glands, and sebum regulates the skin and hair. In addition, white clothes such as underwear and shirts do not like "yellow stains". Therefore, at home and in cleaning factories, washing, washing and stain removal are frequently carried out. On the other hand, it has been extremely difficult to bleach the pigment derived from fungal hyphae that has penetrated deep into the interior and exterior materials of buildings. If sebum and fat-soluble components remain in the interstices between the fibers of white clothing or on the surface of the interior and exterior materials, the indigenous bacteria on the surface of the body and the interior and exterior materials will change their properties and stain them with colored stains. This is commonly called "yellow stain" or "colored mold stain". Mold is a type of fungus.

漂白剤として知られる薬剤は総じて酸化剤であり、気体としてオゾン、液体として次亜塩素酸水、過酸化水素水及びオゾン水が知られ、今は汎用になっている。但し、還元系漂白剤として亜硫酸ナトリウム等が知られるが、用途は酸化系に比較して限定されている。
又、上述の塩素剤に属する次亜塩素酸ナトリウムは、水溶液中でイオン解離している。
実質的に100%次亜塩素酸イオン(OCl)になっている塩素水で望む漂白力を得ようとすれば、0.5%(=5,000mg/L)以上の高濃度を必要とするのが実態である。流通時は3~12%の次亜塩素酸ナトリウム液を希釈しても、0.5%以上では気液平衡により次亜塩素酸水和物が気化し、強い塩素臭を発すると共に有効塩素濃度が自然低下即ち「失活」する。こうした不具合は、これまで未解決の懸案事項になっていた。
一方、酸素系の過酸化水素水やこれを吸着させた特許文献1等に記載の過炭酸水を選択すると、脱離した過酸化水素が早期分解し未反応の酸素気泡となって失活し易く、漂白等の効能は次亜塩素酸水に劣る。因って、洗濯作業では動物性繊維の漂白に向くとされてきた。
Chemicals known as bleaching agents are generally oxidizing agents, and ozone is known as gas, and hypochlorous acid water, hydrogen peroxide water, and ozone water are known as liquids, and are now widely used. However, although sodium sulfite and the like are known as reducing bleaching agents, their applications are limited compared to oxidizing bleaching agents.
In addition, sodium hypochlorite, which belongs to the above chlorine agents, is ionized in an aqueous solution.
If you want to obtain the desired bleaching power with chlorine water that is substantially 100% hypochlorite ion (OCl - ), you need a high concentration of 0.5% (= 5,000 mg / L) or more. It is the actual situation to do. Even if the sodium hypochlorite solution is diluted to 3 to 12% during distribution, if it is 0.5% or more, the hypochlorous acid hydrate will evaporate due to gas-liquid equilibrium, giving off a strong chlorine odor and effective chlorine concentration. naturally declines or "deactivates". These glitches were previously unresolved concerns.
On the other hand, if the oxygen-based hydrogen peroxide solution or the percarbonated water described in Patent Document 1, which adsorbs this, is selected, the desorbed hydrogen peroxide is quickly decomposed and deactivated as unreacted oxygen bubbles. Efficacy such as bleaching is inferior to hypochlorous acid water. Therefore, it has been considered suitable for bleaching animal fibers in laundry operations.

上述塩素剤のpH=6以上における失活は、特許文献2記載の通り、次亜塩素酸(分子式はHOCl)との解離平衡反応で生成した次亜塩素酸イオン(OCl)の3分子間で不均化反応が起き、本願発明者の永年の研究で、2分子中の酸素原子が離れて自らは塩化物イオンになり、残る1分子に該酸素原子が転位し塩素酸イオン(ClO )に転化する機構が主因と判明している。又、pH=4以下における失活も「Cl・8HO」で概略提示される水和ガスの気相への拡散が主因である。即ち、毒ガスとしてトラウマ化している乾燥塩素ガス(Cl)の揮散ではない。更に、強い刺激を与える塩素臭の正体も該水和塩素ガスであるが、該拡散速度がpH=4以下になると急上昇するのも周知事実である。 Inactivation of the chlorine agent at pH = 6 or higher is, as described in Patent Document 2, between three molecules of hypochlorous acid ion ( OCl- ) generated by a dissociation equilibrium reaction with hypochlorous acid (molecular formula: HOCl). In the long-term research of the inventor of the present application, the oxygen atoms in the two molecules are separated and become chloride ions themselves, and the oxygen atoms are rearranged to the remaining one molecule and chlorate ions (ClO 3 - ) is found to be the main cause. Also, the deactivation at pH=4 or less is mainly due to the diffusion of the hydrated gas outlined by “Cl 2 .8H 2 O” into the gas phase. That is, it is not volatilization of dry chlorine gas (Cl 2 ), which is traumatized as a poison gas. Furthermore, it is also a well-known fact that the hydrated chlorine gas is the identity of the chlorine odor that gives a strong stimulus, and that the diffusion rate rises sharply when the pH becomes 4 or less.

他方、高濃度モノクロラミン(化学示性式NHCl)の濃度低下は、平衡関係にあるジクロラミン(NHCl)への塩素化進行及び不可逆の自然分解によるものと考えられている。因って、次亜塩素酸イオン、次亜塩素酸及びモノクロラミンの高濃度安定化は、上述不均化反応を抑制することで可能となるはずである。即ち、溶液中における次亜塩素酸イオン(OCl)3分子の近接を阻害する錯化合物を該イオン間に挟めば、高濃度安定化が図れることになる。但し、特許文献3記載の「有色カビの除去方法」に於いて高濃度モノクロラミン水を得るために現場調製を必要としたが、本願発明を実施すれば課題を克服でき、高濃度モノクロラミン水の事前調製及び長期保管が可能となる。 On the other hand, the decrease in concentration of high-concentration monochloramine (chemical formula NH 2 Cl) is believed to be due to the progress of chlorination to dichloramine (NHCl 2 ) in equilibrium and irreversible spontaneous decomposition. Therefore, high-concentration stabilization of hypochlorite ions, hypochlorous acid, and monochloramine should be possible by suppressing the above-described disproportionation reaction. That is, if a complex compound that inhibits the proximity of three hypochlorite ions (OCl ) in the solution is interposed between the ions, high concentration stabilization can be achieved. However, in the "method for removing colored mold" described in Patent Document 3, on-site preparation was required to obtain high-concentration monochloramine water. can be prepared in advance and stored for a long time.

本願発明者は、2-メルカプトピリジン-N-オキシド(互変異性体としてピリチオン)がヨウ素と比較的安定な錯体をつくること及び遊離ヨウ素による着色の解消策を発見、更なる成分と工夫を加えて特許文献4記載の抗真菌剤を発明した。但し、該抗真菌剤による処理では、カビの増殖阻止に用途が限定され、分生子柄が成熟して重なり真っ黒になるまで、即ち既に生えてしまったカビ汚れを早期に分解・漂白することは困難であった。
基材深くまで貫入した菌糸を根こそぎ不活性化するための前処理に最適な薬剤は特許文献5で示されるモノクロラミン水溶液であるが、漂白の面では、モノクロラミンの効能判定に約一カ月を要する程に速度が遅い難点があった。
上述の単一薬剤による前処理では漂白力の発揮は弱いが、生えたカビの除去に、併用して威力を発揮するのは特許文献2で示される弱酸性・次亜塩素酸水に他ならない。特許文献3の「有色カビの除去方法」は正に該併用効果に基づくものである。但し、特許文献3のpH緩衝性・弱酸性次亜塩素酸水の濃度上限は1,000mg/L=0.1%であるが、漂白目的では失活速度を見込んだ上で、より高濃度の次亜塩素酸水も実用に供せる。
The inventor of the present application discovered that 2-mercaptopyridine-N-oxide (pyrithione as a tautomer) forms a relatively stable complex with iodine and a solution to the coloring caused by free iodine, and added further components and devices. and invented an antifungal agent described in Patent Document 4. However, in the treatment with the antifungal agent, the application is limited to inhibiting the growth of mold, and until the conidiophores mature and overlap and turn black, that is, it is not possible to quickly decompose and bleach mold stains that have already grown. It was difficult.
The most suitable pretreatment agent for inactivating mycelium that has penetrated deep into the substrate is the monochloramine aqueous solution shown in Patent Document 5, but in terms of bleaching, it takes about a month to determine the efficacy of monochloramine. In short, there was a drawback that the speed was slow.
Although the bleaching power is weak in the above-mentioned pretreatment with a single agent, it is none other than the weakly acidic hypochlorous acid water shown in Patent Document 2 that exhibits its power in combination with the removal of mold that has grown. . The "Method for Removing Colored Mold" in Patent Document 3 is based on this combination effect. However, the upper limit of the concentration of pH-buffering and weakly acidic hypochlorous acid water in Patent Document 3 is 1,000 mg/L = 0.1%, but for the purpose of bleaching, a higher concentration is required after considering the deactivation rate. Hypochlorous acid water can also be put to practical use.

一方、10mg/Lを超える高濃度モノクロラミン水について、遮光だけの高濃度安定化及び保存には難点があり、商品としての流通もなかった。モノクロラミン水の高濃度安定化は、次亜塩素酸、次亜塩素酸イオン及びモノクロラミンと共有結合しないまでも、水素結合等の物理化学的結合を形成する「錯体と成り得る化学物質」を捜索することが基本となる。
錯体形成の根幹となる感応基は、「≡N→O」で示される窒素と酸素の配列構造である。又、該N-オキシドの錯体形成には最外殻のπ軌道電子が関与し、ヨウ素以外の相手が同族ハロゲン元素である塩素又は臭素であっても同様の錯結合が存在し得る。
On the other hand, high-concentration monochloramine water exceeding 10 mg/L has difficulty in stabilizing and preserving the high-concentration only by shading, and it has not been distributed as a commercial product. Stabilization of high-concentration monochloramine water is a "chemical substance that can form a complex" that forms physical and chemical bonds such as hydrogen bonds, even if it does not covalently bond with hypochlorous acid, hypochlorite ion, and monochloramine. Searching is the key.
The sensitive group that forms the basis of complex formation is an arrangement structure of nitrogen and oxygen represented by "[identical to]N→O". In addition, the outermost π-orbital electrons are involved in the complex formation of the N-oxide, and similar complex bonds may exist even if the partner other than iodine is chlorine or bromine, which is a homologous halogen element.

但し、活性酸素を収奪又は放出するような化学物質の添加では、次亜塩素酸イオンとの化学反応が進行し、錯結合形成による失活防止どころではなくなる。この種の漂白剤は、水溶液中に安定に溶存することが不可欠で、課題未解決によりこれまで登場してこなかった。 However, the addition of a chemical substance that captures or releases active oxygen promotes a chemical reaction with hypochlorite ions, far from preventing deactivation due to complex bond formation. This type of bleaching agent must be stably dissolved in an aqueous solution, and has not been introduced so far due to unsolved problems.

一方、次亜塩素酸及び次亜塩素酸イオンと錯結合より強固な共有結合を形成する化学物質として、塩素化イソシアヌル酸(イソシアヌル酸クロリド)が既に知られている。シアヌル酸構造は窒素原子(N)と炭素原子(C)とが交互に結合した六員環であり、塩素化物もモノ(1)、ジ(2)、トリ(3)の塩素置換体が3種存在する。
但し、粉末又は顆粒の該化学物質は、水中に添加すると、塩素置換数に関わらず容易に溶解し、加水分解して解離する。生成するのは次亜塩素酸、次亜塩素酸イオン及びシアヌル酸であり、双方の間には、安定な錯体とは断定し難いが、ある程度の錯結合が存在する。但し、殺菌力に該錯体と遊離塩素とで大差がないことから、解離物質間の錯結合は極めて弱いことが判っている。そこで、残留塩素濃度測定のための試薬種、例えばロイコクリスタルバイオレット等を選択すれば、「結合が弱く実質的に遊離の残留塩素」を「結合残留塩素」として分別測定することも可能である。
On the other hand, chlorinated isocyanuric acid (isocyanuric chloride) is already known as a chemical substance that forms stronger covalent bonds than complex bonds with hypochlorous acid and hypochlorite ions. The cyanuric acid structure is a six-membered ring in which a nitrogen atom (N) and a carbon atom (C) are alternately bonded. species exist.
However, when the chemical substance in the form of powder or granules is added to water, it easily dissolves and hydrolyzes to dissociate regardless of the number of chlorine substitutions. Hypochlorous acid, hypochlorite ions, and cyanuric acid are produced, and there is some degree of complex bonding between them, although it is difficult to conclude that they are stable complexes. However, since there is no great difference in bactericidal activity between the complex and free chlorine, it is known that the complex bond between the dissociated substances is extremely weak. Therefore, if a reagent species for residual chlorine concentration measurement, such as leuco crystal violet, is selected, it is possible to separate and measure "substantially free residual chlorine that is weakly bound" as "bonded residual chlorine".

従って、塩素化イソシアヌル酸水溶液にアンモニア若しくはアンモニウム塩を添加しても、モノクロラミンはpH律速で生成する。上述のN-オキシド処方例程ではないが、シアヌル酸共存の高濃度モノクロラミン水も、濃度安定性が増して分解し難くなる。 Therefore, even if ammonia or an ammonium salt is added to an aqueous solution of chlorinated isocyanuric acid, monochloramine is produced in a pH-controlled manner. Although not as much as the N-oxide formulation example described above, high-concentration monochloramine water in which cyanuric acid coexists also increases in concentration stability and becomes difficult to decompose.

塩素系漂白剤の多くは、処理対象物がアンモニア、アミン、アミノ酸、尿素等カルバミドが構造内に有する「R-NH」と塩素(Cl)とが一置換してモノクロラミン(R-NHCl)を塩基性側で速く生成する。二置換してジクロラミン(R-NCl)を生成する速度が増すのは酸性側においてである。従来は、この一般原則をよく理解できないまま、試行錯誤で該反応の実用化を図ってきた。従って、遊離塩素及び結合塩素の特性を詳細に把握し、体系づけた失活防止策を講じることなく、塩素要求量が少ない界面活性剤等を闇雲に添加して商品化を図ってきた経緯がある。 Most of the chlorine-based bleaches are monochloramine (R-NHCl) in which chlorine (Cl) and "R-NH 2 " in the structure of carbamide such as ammonia, amines, amino acids, urea, etc., are monosubstituted. quickly on the basic side. It is on the acidic side that the rate of disubstitution to form dichloramine (R-NCl 2 ) increases. In the past, without a good understanding of this general principle, attempts have been made to put the reaction to practical use through trial and error. Therefore, the characteristics of free chlorine and combined chlorine were grasped in detail, and without systematic measures to prevent deactivation, surfactants with low chlorine demand were blindly added and commercialized. be.

本願冒頭で述べた衣類の「黄ばみ汚れ」の多くは、身体から分泌される脂肪酸のグリセリンエステルが体表の微生物によって分解・変性した物質である。生乾き臭の元凶とされる4-メチル-3-ヘキセン酸も正に該微生物の産生物で構造内に二重結合を有している。又、上述脂肪酸も飽和物とは限らず不飽和脂肪酸も含まれており、微生物の分解によって種々の着色物質が生成する。即ち、界面活性剤に起因する石鹸滓を含めて、不飽和炭化水素の分子鎖が残っていると却って黄色に呈色しやすい。更に、分子鎖の二重結合がオキシドになったり、高分子化したりすることもある。該「黄ばみ汚れ」は、繊維に食い込んでおり落し難い。現実として、一旦乾燥し固化した黄ばみ汚れ落しに、従来の「界面活性剤分子で取り囲んで懸濁性を高めるミセル形成の洗濯理論」は通用しない。 Many of the "yellow stains" on clothing mentioned at the beginning of the present application are substances produced by decomposition and denaturation of fatty acid glycerin esters secreted from the body by microorganisms on the body surface. 4-Methyl-3-hexenoic acid, which is said to be the cause of the dry smell, is also a product of this microorganism and has a double bond in its structure. In addition, the above-mentioned fatty acids are not limited to saturated fatty acids and contain unsaturated fatty acids, and various colored substances are produced by the decomposition of microorganisms. That is, if the molecular chains of unsaturated hydrocarbons remain, including the soap scum resulting from the surfactant, the color tends to turn yellow. Furthermore, the double bond of the molecular chain may be oxidized or polymerized. The "yellow stain" is embedded in the fibers and is difficult to remove. As a matter of fact, the conventional washing theory of micelle formation that surrounds with surfactant molecules to increase suspension properties does not apply to removing yellowed stains that have once dried and solidified.

因って、これまで未解決課題となっていた「黄ばみ汚れ」の除去・漂白には、新たな洗浄概念の導入を必要とする。即ち、衣料の繊維と有色汚れとの付着力を弱めるために、静電気的反発を受け難く、且つ分子量が小さい薬剤を深部の該付着面まで先ず浸透させる概念が不可欠となった。この概念は期せずして、建築物内外装材の深部に食い込んだカビ菌糸由来の色素を漂白する場合に不可欠な概念と一致した。新たな発想で具体例の筆頭に挙げられる化学物質は、非解離分子で、「NHCl」の分子式で示されるモノクロラミンである。 Therefore, the removal and bleaching of "yellow stains", which has been an unsolved problem so far, requires the introduction of a new cleaning concept. That is, in order to weaken the adhesive force between the fibers of the clothing and the colored stains, the concept of first penetrating the adhesive surface deep into the adhesive surface with a chemical that is less susceptible to electrostatic repulsion and has a small molecular weight has become essential. This concept unexpectedly coincided with the concept indispensable for bleaching pigments derived from fungal hyphae embedded deep in building interior and exterior materials. A chemical substance that can be cited as the first example of a new idea is monochloramine, which is a non-dissociating molecule and has the molecular formula of "NH 2 Cl".

漂白処理中に液中で化学反応を起こさせ、漂白性化学物質を新たに生成させる、若しくは、再生させる発想は従来の漂白剤にはなかった。即ち、従来は一定濃度に処方された水溶液に処理対象物を浸漬するか、処理対象物に漂白剤を噴霧し、溶存成分の漂白力を発揮させようとするものであり、漂白力の効能は漸減し、作用途中で増大することはなかった。
しかし、非特許文献1及び非特許文献2に記載の通り、pH=5~9の条件でモノクロラミンの塩素化を進行させジクロラミン(NHCl)を生成させれば、自然分解して次亜塩素酸(HOCl)を再生する。発明者はこの事実をスイミングプール水の処理で立証済みである。結論すれば、次亜塩素酸の再生を遊離残留塩素濃度の上昇で確認することは、再生速度と再反応に伴う消費速度との関係からpH=6.5~7.2及び水温15℃以下で比較的容易で、確認しにくい再生反応はより広いpH範囲で起きていることが判明している。
Conventional bleaching agents do not have the concept of generating new or regenerating bleaching chemical substances by causing chemical reactions in the liquid during bleaching treatment. That is, conventionally, the object to be treated is immersed in an aqueous solution formulated to a certain concentration, or the object to be treated is sprayed with a bleaching agent to exert the bleaching power of the dissolved components, and the effect of the bleaching power is It decreased gradually and did not increase during the action.
However, as described in Non-Patent Document 1 and Non-Patent Document 2, if the chlorination of monochloramine proceeds under the condition of pH = 5 to 9 to generate dichloramine (NHCl 2 ), it naturally decomposes and hypochlorite Regenerate the acid (HOCl). The inventor has established this fact in the treatment of swimming pool water. In conclusion, confirming the regeneration of hypochlorous acid by the increase in free residual chlorine concentration is based on the relationship between the regeneration rate and the consumption rate accompanying the re-reaction, pH = 6.5 to 7.2 and water temperature 15 ° C or less It has been found that the relatively easy and hard-to-identify renaturation reaction occurs over a wider pH range.

又、微生物が分泌、主に多糖体からなるスライム(生物膜)の剥離にモノクロラミンが著効を示すことも非特許文献3に記載の通りであり、この知見はすでに情報公開済みである。
いずれの特性も、用水からの脱窒素、アメーバのシスト化および細菌叢の剥離に活用でき既に実用化されているが、「黄ばみ汚れ」の除去・漂白に活用しても威力を発揮すると確信し数多の実験を行って本願発明に至った。
In addition, as described in Non-Patent Document 3, monochloramine exhibits a marked effect on exfoliation of slime (biofilm) secreted by microorganisms and mainly composed of polysaccharides, and this knowledge has already been disclosed.
All of these properties can be used for denitrification from water, cyst formation of amoebas, and exfoliation of bacterial flora, and have already been put to practical use. A number of experiments were conducted to arrive at the present invention.

特開昭49-119933号公報JP-A-49-119933 特開2014-9227号公報JP 2014-9227 A 特開2018-16550号公報JP 2018-16550 A 特開2015-81233号公報JP 2015-81233 A 特開2008-264678号公報JP-A-2008-264678

Bernard M.Saunier and Robert E.Selleck,The “Kinetics of Breakpoint Chlorination in continuous Flow Systems”Jour.AWWA,164-172(Mar.1979)Bernard M. Saunier and Robert E. Selleck, The "Kinetics of Breakpoint Chlorination in continuous Flow Systems"Jour. AWWA, 164-172 (Mar. 1979) 関秀行、李正雄;プール水質管理への提言/プール水におけるモノクロラミンの測定と遊離塩素再生の証明,用水と廃水Vol.33,ナンバー5(1991)Seki Hideyuki, Li Zhengxiong; Proposal for Pool Water Quality Management/Measurement of Monochloramine in Pool Water and Proof of Regeneration of Free Chlorine, Water and Wastewater Vol. 33, Number 5 (1991) 関秀行、中尾豊;レジオネラ対策としてのモノクロラミン/遊離塩素消毒併用法の実用事例報告,用水と廃水,Vol.53、ナンバー8(2011)Hideyuki Seki, Yutaka Nakao; Practical case report of monochloramine/free chlorine disinfection combined method as a countermeasure against Legionella, Water and Wastewater, Vol. 53, Number 8 (2011) Caroline Nguyen,Carolyn Elfland,MarcEdwards,Impact of advanced water conservation and new copper pipe on rapid chloramine decay and microbial regrowth,Water Research 46(2012)611-621Caroline Nguyen, Carolyn Elfland, MarcEdwards, Impact of advanced water consumption and new copper pipe on rapid chloramine decay and microbial regeneration

先ず、セルロース系天然繊維やポリエステル繊維を主体として成る下着やワイシャツ等白物衣料の織物繊維隙間に残る常在菌が餌とする脂質残渣由来の「黄ばみ汚れ」、及び、建築物内外装材の深部に食い込んだカビ菌糸由来の「色素」、まで高濃度で浸透し、浸透途中で分解を起こし難い高濃度のモノクロラミンを調製する方法が課題となる。次の課題は、漂白処理対象物の深部において漂白力の強い化学物質即ち次亜塩素酸を如何に生成させるかである。 First, "yellow stains" derived from lipid residues that are fed by indigenous bacteria remaining in the interstices between fabric fibers of white clothing such as underwear and dress shirts mainly composed of cellulose-based natural fibers and polyester fibers, and the use of building interior and exterior materials. The problem is how to prepare a high-concentration monochloramine that penetrates deep into the “pigment” derived from fungal hyphae and does not readily decompose during penetration. The next problem is how to generate a chemical substance with strong bleaching power, that is, hypochlorous acid, deep inside the object to be bleached.

最初の課題解決には、高塩基性(高pH)において略全量が次亜塩素酸イオンとして解離している塩素剤水溶液に如何なる錯体形成物質を添加して失活原因になる不均化反応を抑えるかであり、種々の実験を行ってアルキルアミンオキシドを選択した。これにアンモニア(NH)又はアンモニウム塩を加えると、高pH条件下であるので、次亜塩素酸イオンとアンモニアとが反応し高濃度のモノクロラミンを生成する。因って、これが「一次漂白剤」になる。尚、添加されている錯体形成物質はクロラミン生成反応を阻害することはなく、むしろ生成したモノクロラミンの構造安定化の役割も果たす。 To solve the first problem, the disproportionation reaction that causes deactivation is caused by adding any complex-forming substance to a chlorine agent aqueous solution in which almost the entire amount is dissociated as hypochlorite ions at high basicity (high pH). Therefore, various experiments were conducted to select an alkylamine oxide. When ammonia (NH 3 ) or an ammonium salt is added to this, hypochlorite ions and ammonia react under high pH conditions to produce monochloramine at a high concentration. Hence, this becomes the "primary bleaching agent". The added complex-forming substance does not inhibit the chloramine formation reaction, but rather plays a role in stabilizing the structure of the produced monochloramine.

該一次漂白剤による処理に続き、モノクロラミンの塩素化を進行させ、且つ反応速度を加速するための中和の役割を果たすイソシアヌル酸クロリド(塩素化イソシアヌル酸)の水溶液を調製する。これが「二次漂白剤」になる。尚、モノクロラミンの塩素化進行は弱酸性にpH調節した次亜塩素酸水溶液でも遂行可能であり、使用時の現場で中和を行なう等の作業をして次亜塩素酸濃度を高く確保できれば汎用の次亜塩素酸ナトリウム水溶液を代用することも可能である。
モノクロラミンの塩素化が進行しジクロラミンを生成する反応の速度は、モノクロラミン生成とは逆に、低pHにおいて大になる。また、ジクロラミンの自然分解反応を含め、有効塩素の分解反応はすべて酸性化反応であり、分解の進行とともに漂白剤水溶液のpHは低下して分解はより加速する。よって、漂白処理対象物の深部で次亜塩素酸を再生させる開始剤として、該二次漂白剤は弱酸性であることが好ましい。
Following treatment with the primary bleach, an aqueous solution of isocyanuric chloride (chlorinated isocyanuric acid) is prepared which acts as a neutralizer to drive the chlorination of monochloramine and accelerate the reaction rate. This becomes the "secondary bleach". The progress of chlorination of monochloramine can be carried out even with an aqueous solution of hypochlorous acid whose pH is adjusted to be weakly acidic. It is also possible to substitute a general-purpose sodium hypochlorite aqueous solution.
The rate of reaction in which chlorination of monochloramine proceeds to form dichloramine is greater at low pH, contrary to monochloramine formation. In addition, all of the decomposition reactions of available chlorine, including the natural decomposition reaction of dichloramine, are acidification reactions, and as the decomposition progresses, the pH of the aqueous bleach solution decreases, further accelerating the decomposition. Therefore, as an initiator for regenerating hypochlorous acid deep inside the object to be bleached, the secondary bleach is preferably weakly acidic.

つまり本発明ならば、高pHにて高濃度のモノクロラミンによる一次漂白剤として機能を奏するのみならず、低pHにてジクロラミンの生成及び分解と次亜塩素酸再生による二次漂白剤機能を奏させる、という二段構えでの顕著な漂白効果を奏する。 In other words, the present invention not only functions as a primary bleaching agent with a high concentration of monochloramine at high pH, but also functions as a secondary bleaching agent at low pH by generating and decomposing dichloramine and regenerating hypochlorous acid. It has a remarkable bleaching effect in two steps.

上述の課題を解決するための手段は以下の通りである。
(1)有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液に、有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシド、及び、有効塩素に対し同1~2モル相当のアンモニア性窒素(NH-N/Cl=1~2[M/M]≒0.2~0.4[wt./wt.])を加えて高濃度のモノクロラミンを生成させ、pH=8.0~10.4に調節して薬剤の高濃度安定化を図ったことを特徴とする一次漂白剤及び該水溶液に被処理物を浸漬する又は該水溶液を被処理物に向けて噴霧する漂白処理方法。
(2)(1)の漂白処理の途中に加える為の、有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、使用の直前にpH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液を特徴とする二次漂白剤及び処理中の一次漂白液に該二次漂白剤を追加して上述(1)の漂白処理に引き続き被処理物を浸漬する、又は、(1)の漂白処理に続いて二次漂白剤を被処理物に向けて噴霧する漂白処理方法。
Means for solving the above problems are as follows.
(1) In an aqueous hypochlorite solution with an available chlorine concentration of 2,001 to 20,000 mg/L, 1/4 to 1 mol of alkylamine oxide per 1 mol of available chlorine, and 1 mol of available chlorine Ammonia nitrogen (NH 3 —N/Cl 2 =1 to 2 [M/M]≈0.2 to 0.4 [wt./wt.]) equivalent to ~2 moles is added to produce a high concentration of monochloramine. A primary bleaching agent and an aqueous solution characterized by stabilizing a high concentration of the agent by adjusting the pH to 8.0 to 10.4, and immersing the object to be treated in the aqueous solution or immersing the object to be treated in the aqueous solution A bleaching treatment method that sprays toward.
(2) An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500 to 30,000 mg/L for addition during the bleaching treatment of (1), or pH = 5.0 to 7 immediately before use A secondary bleaching agent characterized by an aqueous hypochlorite solution with an available chlorine concentration of 500 to 30,000 mg/L adjusted to 0.0 and adding said secondary bleaching agent to the primary bleaching solution during treatment as described above (1 A bleaching treatment method comprising immersing the object to be treated following the bleaching treatment of (1), or spraying a secondary bleaching agent onto the object to be treated following the bleaching treatment of (1).

上述(1)の手段によれば、天然繊維やポリエステル繊維等を主体として成る白物下着、ワイシャツ及び作業用靴下等の繊維隙間に残った「脂溶性物質」を酸化及び分解して漂白することが可能になった。併せて、水溶液中におけるアルキルアミンオキシドとモノクロラミンの錯結合により、反応時に発生し易い次亜塩素酸水和ガス及び三塩化窒素NClに代表される高度塩素化物ガスに付随する両臭気の低減効果も得られた。 According to the means of (1) above, the "fat-soluble substances" remaining in the interstices between the fibers of white underwear, dress shirts, work socks, etc., mainly composed of natural fibers, polyester fibers, etc., are bleached by oxidizing and decomposing them. became possible. At the same time, due to the complex bonding of alkylamine oxide and monochloramine in the aqueous solution, both odors associated with hypochlorous acid hydrated gas and high chloride gas represented by nitrogen trichloride NCl 3 , which are likely to be generated during the reaction, are reduced. effect was also obtained.

上述(1)の薬剤に関し、水溶液を調製する次亜塩素酸塩はナトリウム塩に限定されたものではなく、カルシウム塩やカリウム塩も使用できる。又、実用に供し易いアルキルアミンオキシドとして、界面活性剤として市販されているジメチルラウリル(C12)アミンオキシド、ジメチルミリスチル(C13)アミンオキシド及びジメチルステアリル(C18)アミンオキシドが挙げられ、いずれの選択も可となる。加えて、次亜塩素酸イオンが塩素酸イオンに転化するのを阻止できる他種のアルキルアミンオキシドも使用可能である。
実施例では、入手容易なジメチルミリスチル(C13)アミンオキシドを選択した。
Regarding the agent (1) above, hypochlorite for preparing an aqueous solution is not limited to sodium salt, and calcium salt and potassium salt can also be used. Examples of alkylamine oxides that are easy to put into practical use include dimethyllauryl (C 12 ) amine oxide, dimethylmyristyl (C 13 ) amine oxide and dimethylstearyl (C 18 ) amine oxide, which are commercially available as surfactants. can also be selected. Additionally, other types of alkylamine oxides that can prevent the conversion of hypochlorite ions to chlorate ions can be used.
In the examples, dimethylmyristyl (C 13 ) amine oxide was chosen because it is readily available.

上述(1)の薬剤に関し、アンモニア性窒素とは、アンモニア及びアンモニウムイオンの少なくともいずれかである。アンモニアを選択する場合はアンモニア水を使用してもよい。アンモニウムイオンを選択する場合はアンモニウム塩を使用してもよい。例えば塩化アンモニウム、硫酸アンモニウム、又はその他塩を使用してもよい。なお塩化アンモニウムは後述の実施例にて使用した。
また、有効塩素に対し同1~2モル相当のアンモニア性窒素のことを、(NH-N/Cl=1~2[M/M]≒0.2~0.4[wt./wt.])と記載する。
Regarding the drug of (1) above, ammoniacal nitrogen is at least one of ammonia and ammonium ions. Ammonia water may be used when ammonia is selected. Ammonium salts may be used if the ammonium ion is selected. For example, ammonium chloride, ammonium sulfate, or other salts may be used. Ammonium chloride was used in Examples described later.
Ammonia nitrogen corresponding to 1 to 2 moles of available chlorine is expressed as (NH 3 —N/Cl 2 =1 to 2 [M/M]≈0.2 to 0.4 [wt./wt .]).

上述(2)の手段によれば、上述(1)の手段に追加された二次漂白剤の有効塩素が既に浸透している一次漂白剤の方向に濃度拡散することで、モノクロラミンの塩素化が進行する。
一方、イソシアヌル酸ジクロリドの粉末や顆粒を水に溶解しただけで、上述(2)の手段における二次漂白剤のpHは6.3~6.7になった。又、イソシアヌル酸トリクロリドの粉末や顆粒では、水溶液のpHは更に低下する。因って、一次漂白剤と二次漂白剤を混合することに伴い中和反応が起き、pH低下によってジクロラミンの生成及び分解と次亜塩素酸再生の反応は加速する。
更に、使用の直前にpH=5.0~7.0に調節した有効塩素濃度1,000~30,000mg/Lの次亜塩素酸塩水溶液を二次漂白剤として用いても同じ現象が起きる。なお、両水溶液を混合しても構わない。
生成したジクロラミンは自然分解し、被処理物の深部に於いて次亜塩素酸を再生すると共に窒素ガス(N)を放出する。再生した次亜塩素酸は、有色物質の構造内にある二重結合の一方である結合π軌道電子を奪うことで酸化(オキシド生成)、更に反応が進んで二重結合を切断し無色の物質に分解する。
即ち、再生遊離塩素により、脂溶性の「黄ばみ汚れ」及び内外装素材深部に食い込んだ真菌の菌糸由来の色素を徹底して分解・漂白することが可能になった。
According to the means (2) above, the effective chlorine of the secondary bleaching agent added to the means (1) above diffuses in the direction of the already permeated primary bleaching agent, thereby chlorinating monochloramine. progresses.
On the other hand, by simply dissolving the powder or granules of isocyanuric acid dichloride in water, the pH of the secondary bleaching agent obtained by means (2) above became 6.3 to 6.7. Further, the pH of the aqueous solution is further lowered with the powder or granules of isocyanuric acid trichloride. Therefore, a neutralization reaction occurs as a result of mixing the primary bleaching agent and the secondary bleaching agent, and the decrease in pH accelerates the formation and decomposition of dichloramine and the regeneration of hypochlorous acid.
Furthermore, the same phenomenon occurs when a hypochlorite aqueous solution with an effective chlorine concentration of 1,000 to 30,000 mg/L adjusted to pH = 5.0 to 7.0 immediately before use is used as a secondary bleaching agent. . In addition, you may mix both aqueous solutions.
The generated dichloramine decomposes spontaneously, regenerates hypochlorous acid deep inside the object to be treated, and releases nitrogen gas (N 2 ). The regenerated hypochlorous acid is oxidized (oxide generation) by taking away the π-orbital electron, which is one of the double bonds in the structure of the colored substance, and the reaction further proceeds to break the double bond, resulting in a colorless substance. decompose into
In other words, it has become possible to thoroughly decompose and bleach oil-soluble "yellow stains" and fungal mycelium-derived pigments embedded deep in interior and exterior materials by regenerated free chlorine.

上述(2)の二次漂白剤においては、イソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドを水溶液にすることで、次亜塩素酸、次亜塩素酸イオンとシアヌル酸の3物質は解離平衡している。因って、塩素酸イオン生成に伴う失活を懸念しなくて構わない。
即ち、モノクロラミンの塩素化が進みジクロラミンを生成することで、自然分解に伴う次亜塩素酸の再生と窒素気泡の発生が起き、結果として漂白効果を高めることが可能になった。該反応式は「2NHCl+HO→N+HOCl+3H+3Cl」で示される。
更に、該分解は水素イオン(H)を生成する酸性化反応であり、分解が進むほどpHが低下して未反応の次亜塩素酸生成へと解離平衡反応(H+OCl→HOCl)は傾く。よって、有効塩素起因の酸化反応による漂白は更に加速することになる。
In the secondary bleaching agent (2) above, by making isocyanuric acid dichloride or isocyanuric acid trichloride into an aqueous solution, the three substances of hypochlorous acid, hypochlorite ion and cyanuric acid are in dissociation equilibrium. Therefore, there is no need to worry about deactivation due to the generation of chlorate ions.
That is, chlorination of monochloramine progresses to form dichloramine, which causes regeneration of hypochlorous acid and generation of nitrogen bubbles accompanying natural decomposition, and as a result, it has become possible to enhance the bleaching effect. The reaction formula is shown as "2NHCl 2 +H 2 O→N 2 +HOCl+3H + +3Cl ".
Furthermore, the decomposition is an acidification reaction that generates hydrogen ions (H + ), and as the decomposition progresses, the pH decreases and unreacted hypochlorous acid is generated, leading to a dissociation equilibrium reaction (H + +OCl →HOCl). tilts. Therefore, the bleaching due to the oxidation reaction caused by available chlorine is further accelerated.

一方、非解離のモノクロラミン(分子式:NHCl)と弱酸性・次亜塩素酸(同:HOCl)の2物質を高濃度で各安定化させ、漂白処理の過程で双方を反応させれば、強い殺菌・漂白力を発揮すると同時に、各種繊維の隙間への浸透性を期待できる。モノクロラミンと次亜塩素酸の分子径はともに水分子径と略同じであり、反応性が弱いモノクロラミンの方が繊維の隙間深くに浸透し易く、脂溶性汚れ剥離への寄与も期待できる。
本願発明の要点は、処理対象物の深部において漂白力の強い次亜塩素酸を再生させることにあり、処理対象物の表面で漂白力が強く分解もし易い薬剤を接触させる従来の技術とは発想が全く異なる。尚、該分解・漂白及び脱窒素に伴う微細気泡発生の現象は、本願発明者が初めて発見し実用化に応用したものである。
On the other hand, if two substances, undissociated monochloramine (molecular formula: NH 2 Cl) and weakly acidic hypochlorous acid (same as: HOCl), are stabilized at high concentrations and reacted during the bleaching process, At the same time as exhibiting strong sterilization and bleaching power, it can be expected to penetrate into the gaps between various fibers. The molecular diameters of both monochloramine and hypochlorous acid are approximately the same as the molecular diameters of water, and monochloramine, which has weaker reactivity, is more likely to penetrate deep into the gaps between fibers, and can be expected to contribute to the removal of fat-soluble stains.
The main point of the present invention is to regenerate hypochlorous acid, which has a strong bleaching power, in the deep part of the object to be treated. is completely different. It should be noted that the phenomenon of microbubble generation accompanying decomposition/bleaching and denitrification was first discovered by the inventor of the present application and applied to practical use.

上述(2)の二次漂白剤に関し、水溶液の解離平衡が異なればpHも異なってくる。実施例では、pH=8.0~9.0に調節する難易度及び発する臭気強度の兼ね合いで、イソシアヌル酸ジクロリド(別称:ジクロロイソシアヌル酸)を選択して二次漂白剤を調製した。イソシアヌル酸トリクロリド(別称:トリクロロイソシアヌル酸)の選択も無論できる。 With respect to the secondary bleaching agent in (2) above, different dissociation equilibria of aqueous solutions will result in different pH. In the examples, isocyanuric acid dichloride (also known as dichloroisocyanuric acid) was selected to prepare the secondary bleaching agent, considering the difficulty of adjusting the pH to 8.0 to 9.0 and the strength of the odor emitted. Of course, isocyanuric acid trichloride (also known as trichloroisocyanuric acid) can be selected.

その他の態様は以下の通りである。
<1>有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液に、有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシド、及び、有効塩素に対し同1~2モル相当のアンモニア性窒素を加えてモノクロラミンを生成させ、pH=8.0~10.4に調節した一次漂白剤に被処理物を浸漬する又は該一次漂白剤を被処理物に向けて噴霧する、漂白処理方法。
<2>有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液、又は、前記一次漂白剤に前記各水溶液の少なくともいずれかを追加してなる二次漂白剤に、請求項1に記載の漂白処理後の被処理物を浸漬する又は該二次漂白剤を<1>に記載の漂白処理後の被処理物に向けて噴霧する、漂白処理方法。
<3>有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液に、有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシド、及び、有効塩素に対し同1~2モル相当のアンモニア性窒素を加え、pH=8.0~10.4に調節した、一次漂白剤の製造方法。
<4><3>にて製造された一次漂白剤に対し、有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液、又は、前記一次漂白剤に前記各水溶液の少なくともいずれかを追加した、二次漂白剤の製造方法。
<5>有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液と、
有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシドと、
有効塩素に対し同1~2モル相当のアンモニア性窒素と、
を含有し、pH=8.0~10.4である、一次漂白剤。
<6>有効塩素濃度2,001~20,000mg/Lのモノクロラミンを含有し、且つ、pH=8.0~10.4であり、且つ、モノクロラミンの有効塩素濃度の減少率が1%/日以下である、一次漂白剤。
<7>有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液である、二次漂白剤。
<8><5>又は<6>に記載の一次漂白剤と、
有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリド水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液と、
を含有する、二次漂白剤。
<9><5>又は<6>に記載の一次漂白剤と、
有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液と、
からなる、漂白剤セット。
Other aspects are as follows.
<1> In an aqueous solution of hypochlorite with an available chlorine concentration of 2,001 to 20,000 mg/L, an alkylamine oxide equivalent to 1/4 to 1 mol per 1 mol of available chlorine, and 1 equivalent to available chlorine Add ammonia nitrogen equivalent to ~2 moles to generate monochloramine and immerse the object to be treated in a primary bleach adjusted to pH = 8.0 to 10.4 or direct the primary bleach to the object to be treated bleaching treatment method.
<2> An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500 to 30,000 mg/L, or an aqueous solution with an available chlorine concentration of 500 to 30,000 mg/L adjusted to pH = 5.0 to 7.0 The object to be treated after bleaching according to claim 1 is immersed in a chlorite aqueous solution or a secondary bleaching agent obtained by adding at least one of the above aqueous solutions to the primary bleaching agent. A bleaching method, comprising: spraying a bleaching agent onto the object to be treated after bleaching according to <1>.
<3> In an aqueous solution of hypochlorite with an available chlorine concentration of 2,001 to 20,000 mg/L, an alkylamine oxide equivalent to 1/4 to 1 mol per 1 mol of available chlorine, and 1 mol per available chlorine A process for the preparation of a primary bleach, with the addition of ˜2 moles of ammoniacal nitrogen, adjusted to pH=8.0-10.4.
<4> For the primary bleach manufactured in <3>, an aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an effective chlorine concentration of 500 to 30,000 mg / L, or pH = 5.0 to 7.0 A method for producing a secondary bleaching agent, comprising an adjusted hypochlorite aqueous solution having an available chlorine concentration of 500 to 30,000 mg/L, or adding at least one of the above aqueous solutions to the primary bleaching agent.
<5> A hypochlorite aqueous solution with an available chlorine concentration of 2,001 to 20,000 mg/L;
an alkylamine oxide equivalent to 1/4 to 1 mol per 1 mol of available chlorine;
Ammonia nitrogen equivalent to 1 to 2 moles of available chlorine,
and pH=8.0-10.4.
<6> Contains monochloramine with an available chlorine concentration of 2,001 to 20,000 mg/L, pH = 8.0 to 10.4, and a reduction rate of the available chlorine concentration of monochloramine of 1% / day or less, primary bleach.
<7> An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an effective chlorine concentration of 500 to 30,000 mg/L, or an aqueous solution with an effective chlorine concentration of 500 to 30,000 mg/L adjusted to pH = 5.0 to 7.0 A secondary bleaching agent that is an aqueous chlorite solution.
<8> the primary bleaching agent according to <5> or <6>;
An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500-30,000 mg/L, or hypochlorite with an available chlorine concentration of 500-30,000 mg/L adjusted to pH = 5.0-7.0 an aqueous solution;
A secondary bleaching agent containing
<9> The primary bleaching agent according to <5> or <6>;
An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500 to 30,000 mg/L, or hypochlorous acid with an available chlorine concentration of 500 to 30,000 mg/L adjusted to pH = 5.0 to 7.0. an aqueous salt solution;
A bleach set, consisting of:

先ず、セルロース系天然繊維やポリエステル繊維を主体として成る下着やワイシャツ等白物衣料の織物繊維隙間に残る常在菌が餌とする脂質残渣由来の「黄ばみ汚れ」、及び、建築物内外装材の深部に食い込んだカビ菌糸由来の「色素」、まで高濃度で浸透し、浸透途中で分解を起こし難い高濃度のモノクロラミンを調製できる。次の効果は、漂白処理対象物の深部において漂白力の強い化学物質即ち次亜塩素酸を生成させられる。 First, "yellow stains" derived from lipid residues that are fed by indigenous bacteria remaining in the interstices between fabric fibers of white clothing such as underwear and dress shirts mainly composed of cellulose-based natural fibers and polyester fibers, and the use of building interior and exterior materials. It is possible to prepare a high-concentration monochloramine that penetrates deep into the “pigment” derived from the fungal mycelium and is difficult to decompose during the penetration. The next effect is the production of a strong bleaching chemical, hypochlorous acid, deep within the bleached object.

本発明に係るアルキルアミンオキシドの構造の一例を説明するための図である。It is a figure for demonstrating an example of the structure of the alkylamine oxide which concerns on this invention. 本発明に係る塩素化イソシアヌル酸の構造の一例を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating an example of the structure of the chlorinated isocyanuric acid based on this invention. 本発明に係る一次漂白剤の塩素濃度が安定であることを説明するための図である。It is a figure for demonstrating that the chlorine concentration of the primary bleaching agent which concerns on this invention is stable. 本発明に係る漂白処理結果の実施例1を説明するための写真である。1 is a photograph for explaining Example 1 of bleaching treatment results according to the present invention. 本発明に係る漂白処理結果の実施例2を説明するための写真である。2 is a photograph for explaining Example 2 of bleaching treatment results according to the present invention. 本発明に係るカビ汚れ漂白の実施例3を説明するための写真である。3 is a photograph for explaining Example 3 of mold stain bleaching according to the present invention.

以下、図1及至図6を参照にしながら本発明の実施の形態にかかる漂白剤の調製並びに処理方法を説明する。
図1は、ジメチルラウリル-アミンオキシド及びジメチルミリスチル-アミンオキシドの示性式で、一次漂白剤には同族のアルキルアミンオキシドを添加、次亜塩素酸イオン及びモノクロラミンの構造安定化を図っている。
図2は、上述(2)の手段に用いたイソシアヌル酸ジクロリドの構造を示したものである。
Hereinafter, the method for preparing and treating bleach according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. FIG.
Fig. 1 shows the chemical formulas of dimethyllauryl-amine oxide and dimethylmyristyl-amine oxide, and the homologous alkylamine oxide is added to the primary bleaching agent to stabilize the structure of hypochlorite ion and monochloramine. .
FIG. 2 shows the structure of the isocyanuric acid dichloride used in the method (2) above.

図3は、非特許文献4に載る一般的手法によって生成調製された低濃度モノクロラミン水溶液と上述(1)の薬剤(一次漂白剤)其々の有効塩素濃度変化を経時的に測定した結果である。有効塩素濃度はDPD法及びヨード法のデジタル表示式吸光光度計によって測定した。
Y軸は対数目盛にしてあるが、本願発明の薬剤調製後少なくも2ヶ月間は2,000mg/L前後の有効塩素濃度を維持でき、商品流通時の失活を心配しなくて済む。即ち、時間軸単位と勾配を比較すれば、従来と比較し約50倍の安定性が得られる。勿論、有効塩素濃度が半分の1,000mg/Lになった一次漂白剤を使用した場合、漂白速度は相応に低下するが全くの使用不可にはならず、これを承知した上で使用することに支障はない。本願発明の一次漂白剤においてモノクロラミンの有効塩素濃度の低下度合は非常に緩慢である。例えばモノクロラミンの有効塩素濃度の初期値(作製日)からの減少率は1%/日以下が好ましく、0.5%/日以下がより好ましく、0.25%/日以下が更に好ましい。
FIG. 3 shows the results of measuring the change in effective chlorine concentration over time for each of the low-concentration monochloramine aqueous solution produced and prepared by the general method described in Non-Patent Document 4 and the above-mentioned agent (1) (primary bleaching agent). be. The effective chlorine concentration was measured by a digital display type absorptiometer of the DPD method and the iodine method.
Although the Y axis is scaled logarithmically, the available chlorine concentration can be maintained at around 2,000 mg/L for at least two months after preparation of the drug of the present invention, and there is no need to worry about deactivation during commercial distribution. That is, when comparing the time axis unit and the gradient, about 50 times the stability can be obtained as compared with the conventional method. Of course, if a primary bleaching agent with an effective chlorine concentration of 1,000 mg/L, which is half the concentration, is used, the bleaching speed will decrease accordingly, but it will not be completely unusable. there is no problem. In the primary bleaching agent of the present invention, the decrease in the effective chlorine concentration of monochloramine is very slow. For example, the rate of decrease of the effective chlorine concentration of monochloramine from the initial value (day of production) is preferably 1%/day or less, more preferably 0.5%/day or less, and even more preferably 0.25%/day or less.

なお、上述(1)の一次漂白剤と、上述(2)の二次漂白剤とからなる漂白剤セットにも本願発明の技術的思想が反映されている。例えば、実施例3のように食品販売店舗天井の汚れ落としを行う場合、一次漂白剤にて処理を行った後、別途持参していた二次漂白剤をその場で一次漂白剤と混合させて二次漂白剤を作製してもよい。また、別途持参していた二次漂白剤を取り出し、一次漂白剤にて処理を行った箇所に噴霧しても構わない。いずれにせよ本願発明の効果が発揮される。 The technical idea of the present invention is also reflected in the bleaching agent set consisting of the above (1) primary bleaching agent and the above (2) secondary bleaching agent. For example, when removing stains from the ceiling of a food store as in Example 3, after treatment with the primary bleaching agent, the secondary bleaching agent brought separately was mixed with the primary bleaching agent on the spot. A secondary bleach may be made. Alternatively, you can take out the secondary bleach that you brought separately and spray it on the areas treated with the primary bleach. In any case, the effects of the present invention are exhibited.

[実施例1]
実施例1にかかる白物衣料の漂白において、襟に黄ばみ汚れが残り着辛くなったワイシャツ一例を一次漂白剤に続いて二次漂白剤で汚れ落しを行った結果が図4である。
尚、一次漂白剤及び二次漂白剤のpH及び成分は次の通りである。
<一次漂白剤>
≪1≫有効塩素濃度:総残留塩素として2,150mg/L
≪2≫添加したジメチルミリスチルアミンオキシド濃度:2,000mg/L
≪3≫添加したアンモニア性窒素(NH-N)の初期濃度:450mg/L
生成モノクロラミン濃度も、有効塩素濃度として2,150mg/L。
≪4≫pH≒10
<二次漂白剤>
≪1≫有効塩素濃度:約2,000mg/L
≪2≫内容成分:イソシアヌル酸ジクロリドの水溶液
≪3≫pH≒6.7
本発明の実施に於いて被処理物としたワイシャツは、クリーニング業者に何回も出して尚「黄ばみ汚れ」を落とし切れず、長期間着ることなく保管されていたものである。
図4の写真を比較すれば、ワイシャツの襟折返し部に残った「黄ばみ汚れ」が素地損傷しないで完全に漂白されたことを見て取れる。
[Example 1]
FIG. 4 shows the result of removing stains from an example of a dress shirt with yellow stains remaining on the collar and difficult to wear in the bleaching of white clothing according to Example 1 with the primary bleaching agent and then the secondary bleaching agent.
The pH and components of the primary bleaching agent and secondary bleaching agent are as follows.
<Primary bleach>
<<1>> Effective chlorine concentration: 2,150 mg / L as total residual chlorine
<<2>> Added dimethylmyristylamine oxide concentration: 2,000 mg/L
<<3>> Initial concentration of added ammoniacal nitrogen (NH 3 —N): 450 mg/L
The produced monochloramine concentration is also 2,150 mg/L as effective chlorine concentration.
<<4>> pH≈10
<Secondary bleach>
<<1>> Effective chlorine concentration: about 2,000 mg/L
<<2>> Ingredients: Aqueous solution of isocyanuric acid dichloride <<3>> pH≈6.7
A dress shirt used as an object to be treated in the practice of the present invention was kept without being worn for a long period of time because the "yellow stain" could not be completely removed even after being taken out to the cleaning company many times.
Comparing the photographs in FIG. 4, it can be seen that the "yellow stain" remaining on the folded collar portion of the shirt was completely bleached without damaging the substrate.

[実施例2]
実施例2にかかる白物衣料に於いて、実施例1同様に漂白できた結果を示すのが図5である。該事例の衣料も実施例1の衣料と同じ経歴で保管されていたものである。
[Example 2]
FIG. 5 shows the result that the white clothing according to Example 2 was bleached in the same manner as in Example 1. FIG. The garment of the example was also stored with the same history as the garment of Example 1.

[実施例3]
実施例3にかかる食品販売店舗天井に生えたカビの漂白に於いて、一次漂白剤に続いて二次漂白剤を噴霧して1時間後の天井漂白具合を処理前と比較した結果が図6である。
図6の写真において、漂白処理前の写真に見られる黒色のカビ汚れは主にクラドスポリウム(学名Cladosporium)に属する「クロカビ」が繁殖したものである。一次漂白剤の浸透後に二次漂白剤を噴霧した結果、モノクロラミンの塩素化進行及びジクロラミンの自然分解に伴う次亜塩素酸再生によって、細菌検査で効果証明するまでもなく、頑固なカビ汚れも瞬く間に漂白された。そして、天井面は綺麗な状態に復旧したことを見て取れる。
[Example 3]
In the bleaching of the mold growing on the ceiling of the food store according to Example 3, the result of spraying the secondary bleaching agent following the primary bleaching agent and comparing the ceiling bleaching condition after 1 hour with that before treatment is shown in FIG. is.
In the photograph of FIG. 6, the black mold stains seen in the photograph before bleaching treatment are mainly propagated by "black mold" belonging to Cladosporium (scientific name: Cladosporium). As a result of spraying the secondary bleach after the penetration of the primary bleach, the chlorination of monochloramine and the regeneration of hypochlorous acid accompanying the natural decomposition of dichloramine caused stubborn mold stains without proof of effectiveness through bacterial tests. bleached in no time. And it can be seen that the ceiling surface has been restored to a beautiful state.

本発明によれば、セルロース系天然繊維やポリエステル繊維を主体として成る下着やワイシャツ等白物衣料の織物繊維隙間に残る脂質残渣由来の「黄ばみ汚れ」を、クリーニング工場のみならず一般家庭内においても漂白できる。加えて、衛生的外観や美観を損ねた建築物の内装及び外装、疎水性又は吸水性が弱い調度品・備品・装飾品に関して、漂白して支障をきたさない場合のカビ汚れ除去に活用できる。
更に、浴室の天井や洗濯機の脱水籠又は該洗濯機パンチメタル円筒の外側で手が届かない箇所のカビ取りにも応用でき、カビの付着力を弱めることで剥離を容易にして漂白することができる。勿論、本来の特性の一つである殺菌も同時になされる。加えて、使用する2種の薬剤(水溶液)は、水道及びスイミングプールの塩素消毒で安全性が証明されている次亜塩素酸、モノクロラミン(結合塩素)、シアヌル酸及び界面活性剤として汎用のアルキルアミンオキシドである為、美術・工芸品の修復作業においても活用の可能性が十分にある。人体の安全性確保にも支障は生じない。
According to the present invention, "yellowing stains" derived from lipid residues remaining in the interstices of fabric fibers of white clothing such as underwear and dress shirts mainly composed of cellulose natural fibers and polyester fibers can be removed not only in cleaning factories but also in ordinary homes. Can be bleached. In addition, it can be used to remove mold stains on the interior and exterior of buildings that impair the hygienic appearance and aesthetic appearance, and furniture, fixtures, and decorations that are hydrophobic or have weak water absorption, if bleaching does not cause problems.
Furthermore, it can be applied to remove mold from the ceiling of the bathroom, the dewatering basket of the washing machine, or the outside of the punched metal cylinder of the washing machine, which is hard to reach. can be done. Of course, sterilization, which is one of the original characteristics, is also performed at the same time. In addition, the two chemicals (aqueous solution) used are hypochlorous acid, monochloramine (combined chlorine), cyanuric acid, and general-purpose surfactants that have been proven safe for chlorine disinfection of tap water and swimming pools. Since it is an alkylamine oxide, it has ample potential for use in the restoration of arts and crafts. There is no problem in ensuring the safety of the human body.

Claims (7)

有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液に、有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシド、及び、有効塩素に対し同1~2モル相当のアンモニア性窒素を加えてモノクロラミンを生成させ、pH=8.0~10.4に調節した一次漂白剤に被処理物を浸漬する又は該一次漂白剤を被処理物に向けて噴霧する、漂白処理方法。 In an aqueous hypochlorite solution with an available chlorine concentration of 2,001 to 20,000 mg/L, 1/4 to 1 mol of alkylamine oxide per 1 mol of available chlorine and 1 to 2 mol of the available chlorine are added. Substantial ammoniacal nitrogen is added to generate monochloramine, and the object to be treated is immersed in a primary bleach adjusted to pH=8.0-10.4 or the primary bleach is sprayed onto the object to be treated. , bleaching treatment method. 有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液、又は、前記一次漂白剤に前記各水溶液の少なくともいずれかを追加してなる二次漂白剤に、請求項1に記載の漂白処理後の被処理物を浸漬する又は該二次漂白剤を請求項1に記載の漂白処理後の被処理物に向けて噴霧する、漂白処理方法。 An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500 to 30,000 mg/L, or hypochlorous acid with an available chlorine concentration of 500 to 30,000 mg/L adjusted to pH = 5.0 to 7.0. The object to be treated after the bleaching treatment according to claim 1 is immersed in a salt solution or a secondary bleaching agent obtained by adding at least one of the above aqueous solutions to the primary bleaching agent, or the secondary bleaching agent. A bleaching treatment method, which sprays toward the object to be treated after bleaching treatment according to claim 1. 有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液に、有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシド、及び、有効塩素に対し同1~2モル相当のアンモニア性窒素を加え、pH=8.0~10.4に調節した、一次漂白剤の製造方法。 In an aqueous hypochlorite solution with an available chlorine concentration of 2,001 to 20,000 mg/L, 1/4 to 1 mol of alkylamine oxide per 1 mol of available chlorine and 1 to 2 mol of the available chlorine are added. A process for the preparation of primary bleaches with the addition of substantial ammoniacal nitrogen and adjusted to pH=8.0-10.4. 請求項3にて製造された一次漂白剤に対し、有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液、又は、前記一次漂白剤に前記各水溶液の少なくともいずれかを追加した、二次漂白剤の製造方法。 For the primary bleaching agent produced in claim 3, an aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an effective chlorine concentration of 500 to 30,000 mg / L, or an effective pH adjusted to 5.0 to 7.0 A method for producing a secondary bleach, comprising an aqueous hypochlorite solution having a chlorine concentration of 500 to 30,000 mg/L, or adding at least one of the above aqueous solutions to the primary bleach. 有効塩素濃度2,001~20,000mg/Lの次亜塩素酸塩水溶液と、
有効塩素1モルに対し1/4~1モル相当のアルキルアミンオキシドと、
有効塩素に対し同1~2モル相当のアンモニア性窒素と、
を含有し、pH=8.0~10.4である、一次漂白剤。
A hypochlorite aqueous solution with an available chlorine concentration of 2,001 to 20,000 mg / L,
an alkylamine oxide equivalent to 1/4 to 1 mol per 1 mol of available chlorine;
Ammonia nitrogen equivalent to 1 to 2 moles of available chlorine,
and pH=8.0-10.4.
請求項5記載の一次漂白剤と、
有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリド水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液と、
を含有する、二次漂白剤。
a primary bleaching agent according to claim 5;
An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500-30,000 mg/L, or hypochlorite with an available chlorine concentration of 500-30,000 mg/L adjusted to pH = 5.0-7.0 an aqueous solution;
A secondary bleaching agent containing
請求項5記載の一次漂白剤と、
有効塩素濃度500~30,000mg/Lのイソシアヌル酸ジクロリド若しくはイソシアヌル酸トリクロリドの水溶液、又は、pH=5.0~7.0に調節した有効塩素濃度500~30,000mg/Lの次亜塩素酸塩水溶液と、
からなる、漂白剤セット。
a primary bleaching agent according to claim 5;
An aqueous solution of isocyanuric acid dichloride or isocyanuric acid trichloride with an available chlorine concentration of 500 to 30,000 mg/L, or hypochlorous acid with an available chlorine concentration of 500 to 30,000 mg/L adjusted to pH = 5.0 to 7.0. an aqueous salt solution;
A bleach set, consisting of:
JP2019000456A 2018-05-07 2019-01-07 High-concentration stabilization method and treatment method for bleaching agents for clothing and building interior and exterior materials Active JP7111308B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018089276 2018-05-07
JP2018089276 2018-05-07

Publications (2)

Publication Number Publication Date
JP2019196578A JP2019196578A (en) 2019-11-14
JP7111308B2 true JP7111308B2 (en) 2022-08-02

Family

ID=68537899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000456A Active JP7111308B2 (en) 2018-05-07 2019-01-07 High-concentration stabilization method and treatment method for bleaching agents for clothing and building interior and exterior materials

Country Status (1)

Country Link
JP (1) JP7111308B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302425A (en) 1999-12-10 2001-10-31 Kao Corp Sterilization method
JP2001302423A (en) 2000-04-28 2001-10-31 Kao Corp Mold removing agent composition
JP2004155651A (en) 2002-11-04 2004-06-03 Isochem Sa Method for synthesis of monochloramine
JP2013022541A (en) 2011-07-22 2013-02-04 Hakuto Co Ltd Method for removing slime
JP2013502377A5 (en) 2010-08-19 2013-10-03
JP2017053054A (en) 2015-09-08 2017-03-16 株式会社片山化学工業研究所 Method for producing old paper pulp
JP2018016550A (en) 2016-07-25 2018-02-01 株式会社ピュアソン Method for removing colored mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993799A (en) * 1982-11-20 1984-05-30 サンポ−ル・クロロツクス株式会社 Liquid detergent
US20090311164A1 (en) 2006-12-29 2009-12-17 Amit Gupta Method for producing a stable oxidizing biocide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302425A (en) 1999-12-10 2001-10-31 Kao Corp Sterilization method
JP2001302423A (en) 2000-04-28 2001-10-31 Kao Corp Mold removing agent composition
JP2004155651A (en) 2002-11-04 2004-06-03 Isochem Sa Method for synthesis of monochloramine
JP2013502377A5 (en) 2010-08-19 2013-10-03
JP2013022541A (en) 2011-07-22 2013-02-04 Hakuto Co Ltd Method for removing slime
JP2017053054A (en) 2015-09-08 2017-03-16 株式会社片山化学工業研究所 Method for producing old paper pulp
JP2018016550A (en) 2016-07-25 2018-02-01 株式会社ピュアソン Method for removing colored mold

Also Published As

Publication number Publication date
JP2019196578A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
CA1314477C (en) Disinfection method and composition therefor
JP5556838B2 (en) Slime control method in pulp and paper manufacturing process
US7601755B2 (en) Process for treating water
JPS60144399A (en) Laundry detergent composition
JP2013001620A (en) Weakly acidic hypochlorous acid and apparatus and method for preparing the same
CA2567507A1 (en) Generation of chlorine dioxide
JP6118915B2 (en) Chlorous acid water production method by chlorine dioxide adsorption
WO1996002624A1 (en) A cleaning kit and a cleaning composition and methods of use
JP2004510878A (en) Detergents and disinfectants
JPH06102522B2 (en) Method for producing modified chlorite aqueous solution
JP7111308B2 (en) High-concentration stabilization method and treatment method for bleaching agents for clothing and building interior and exterior materials
NO309893B1 (en) Composition suitable for cleaning, disinfecting and / or bleaching containing hydrogen peroxide, surfactant and a phosphonic acid-based complexing agent, and use of the same
JPH0660086B2 (en) Foaming aqueous solution and method of using the same
US5254526A (en) Method to prevent algae growth in pools and spas
JP2011153095A (en) Disinfection liquid and method for producing the same
US7252772B2 (en) Method for producing an essentially chlorite-free, stable aqueous chlorine-oxygen solution, the chlorine-oxygen solution obtained by means of said method, and the use of the same
JP3656164B2 (en) Chalk deodorant
US20150099014A1 (en) Method for preparing biocidal and antifouling aqueous compositions comprising hydrobromic acid, urea and sodium hypochlorite
US20070032397A1 (en) Fragrant monopersulfate compositions for water treatment and articles containing them
JPS5846585B2 (en) Acrylic/cotton bleaching method
JP2006007190A (en) Method for generating chlorine dioxide solution
JPH07119437B2 (en) Cleaning composition
JP2023092410A (en) Method for reactivating iodine-based bactericidal material
JP2019208821A (en) Method for stabilizing and treating deodorant at high concentration
KR20220017778A (en) Chlorine dioxide and its manufacturing methods that can be preserved for long time

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7111308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150