JP7111041B2 - Laminate manufacturing method - Google Patents

Laminate manufacturing method Download PDF

Info

Publication number
JP7111041B2
JP7111041B2 JP2019055803A JP2019055803A JP7111041B2 JP 7111041 B2 JP7111041 B2 JP 7111041B2 JP 2019055803 A JP2019055803 A JP 2019055803A JP 2019055803 A JP2019055803 A JP 2019055803A JP 7111041 B2 JP7111041 B2 JP 7111041B2
Authority
JP
Japan
Prior art keywords
producing
group
laminate
photocurable silicone
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019055803A
Other languages
Japanese (ja)
Other versions
JP2020158548A (en
Inventor
武春 豊島
利之 小材
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019055803A priority Critical patent/JP7111041B2/en
Priority to PCT/JP2020/007298 priority patent/WO2020195443A1/en
Priority to TW109108878A priority patent/TW202100367A/en
Publication of JP2020158548A publication Critical patent/JP2020158548A/en
Application granted granted Critical
Publication of JP7111041B2 publication Critical patent/JP7111041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)

Description

本発明は、積層体の製造方法に関し、さらに詳述すると、光硬化型シリコーン組成物の硬化物からなる接着層を備える積層体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a laminate, and more particularly to a method for producing a laminate having an adhesive layer made of a cured product of a photocurable silicone composition.

ディスプレイやタッチパネルなどの画像表示能力を有する電子機器は、一般的にアクリルやポリカーボネート等の高透明樹脂またはガラス等からなる光透過性に優れた保護用のカバーパネル、および偏光板や画像表示素子を基板上に備えた画像表示部を有している。
これらカバーパネルと画像表示部との間には、視認性および機械的強度を向上させるために、光学透明樹脂層が配置されることが多い。
Electronic devices with image display capabilities such as displays and touch panels generally consist of a protective cover panel with excellent light transmittance made of highly transparent resin such as acrylic or polycarbonate or glass, as well as a polarizing plate and an image display element. It has an image display section provided on the substrate.
An optically transparent resin layer is often arranged between the cover panel and the image display section in order to improve visibility and mechanical strength.

上記光学透明樹脂層として、紫外線付加硬化型の透明シリコーン接着剤組成物が提案されている(特許文献1)。この接着剤組成物は、紫外線の照射を契機として白金触媒による硬化反応が徐々に進行するため、画像表示部の偏光板上に接着剤組成物を塗布し、紫外線照射した後にカバーパネルを貼り合わせる加工プロセスを採用することができる。これにより、上述の一体型の成形手法では紫外線が照射されない箇所(暗部)への使用が可能となったり、対候性付与のために紫外線吸収剤を有するカバーパネルも使用可能となったりするメリットが得られる。 As the optically transparent resin layer, an ultraviolet addition-curable transparent silicone adhesive composition has been proposed (Patent Document 1). In this adhesive composition, since the curing reaction by the platinum catalyst gradually progresses when irradiated with ultraviolet rays, the adhesive composition is applied on the polarizing plate of the image display portion, and after ultraviolet irradiation, the cover panel is attached. Machining processes can be employed. As a result, it is possible to use it in places (dark areas) that are not exposed to UV rays using the integrated molding method described above, and it is also possible to use cover panels with UV absorbers to provide weather resistance. is obtained.

一方で、偏光板と液状樹脂が接している状態で、一般的に紫外線硬化に使用されるピーク波長365nmの紫外線を照射した際に、樹脂の硬化が遅れる現象が生じることがある。この現象は、紫外線の照射によって偏光板から発生した硬化阻害物質が、白金触媒の活性を阻害するためであると考えられる。この現象が生じると、偏光板上での樹脂の硬化が不十分となる結果、密着力や接着力が低下してデバイスの信頼性が損なわれる。
このような場合、硬化性を確保するために加熱設備を用いた昇温工程を追加したり、硬化するまでの静置時間を延長したりする必要が生じ、量産性が低下する懸念や、熱による膨張収縮に伴う部材の反りや樹脂劣化が起こりやすくなる等の懸念がある。しかも、偏光板の種類によって硬化の挙動が変わるため、偏光板を変更するたびに製造プロセスを見直さなければならないという問題もある。
On the other hand, when the polarizing plate and the liquid resin are in contact with each other, when the liquid resin is irradiated with ultraviolet rays having a peak wavelength of 365 nm, which is generally used for ultraviolet curing, a phenomenon occurs in which curing of the resin is delayed. This phenomenon is considered to be caused by the curing inhibitor generated from the polarizing plate by the irradiation of ultraviolet rays, which inhibits the activity of the platinum catalyst. When this phenomenon occurs, the curing of the resin on the polarizing plate becomes insufficient, and as a result, the adhesion and adhesive strength are lowered, and the reliability of the device is impaired.
In such cases, it becomes necessary to add a heating process using heating equipment or to extend the standing time until curing in order to ensure curability. There is a concern that warping of members and deterioration of resin due to expansion and contraction due to deformation are likely to occur. Moreover, since the curing behavior varies depending on the type of polarizing plate, there is also the problem that the manufacturing process must be reviewed each time the polarizing plate is changed.

特開2015-110752号公報JP 2015-110752 A

本発明は、上記事情に鑑みてなされたものであって、光硬化型シリコーン組成物からなる接着剤層の硬化を室温で行う場合でも、偏光板等の被着体からの硬化阻害を受けない積層体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and even when an adhesive layer made of a photocurable silicone composition is cured at room temperature, it is not inhibited by an adherend such as a polarizing plate. It aims at providing the manufacturing method of a laminated body.

本発明者らは、上記課題を解決すべく鋭意検討した結果、所定のオルガノポリシロキサンを含むシリコーン組成物に、特定波長の光を照射して硬化させて接着剤層を形成することで、室温で硬化を行う場合でも偏光板上で速やかに接着剤層が硬化することを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that a silicone composition containing a predetermined organopolysiloxane is cured by irradiating it with light of a specific wavelength to form an adhesive layer at room temperature. The inventors have found that the adhesive layer can be rapidly cured on the polarizing plate even when the curing is performed with , and completed the present invention.

すなわち、本発明は、
1. 第一の基材と、この第一の基材に積層された接着剤層とを備える積層体の製造方法であって、前記接着剤層を、下記(A)~(C)成分を含有する光硬化型シリコーン組成物に、ピーク波長380~420nmの光を照射して硬化させて形成することを特徴とする積層体の製造方法、
(A)下記平均式(1)で表される直鎖状オルガノポリシロキサン:100質量部
(R12 2SiO1/2a(R2 3SiO1/22-a(Ar2SiO2/2b(R2 2SiO2/2c (1)
{式中、R1は、それぞれ独立して、置換または非置換のアルケニル基を表し、R2は、それぞれ独立して、置換または非置換のアルキル基を表し、Arは、それぞれ独立して、置換または非置換のアリール基を表し、aは、0.3~2の数を表し、bは、0~100、cは、1~1,000、かつ、b/(b+c)=0~0.7を満たす数を表す。}
(B)下記平均組成式(2)で表される、1分子中に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサン:1~200質量部
3 deSiO[(4-d-e)/2] (2)
(式中、R3は、それぞれ独立して、脂肪族不飽和炭化水素基を除く置換または非置換の一価炭化水素基を表し、dおよびeは、0.7≦d≦2.5、0.01≦e≦1.0、かつ、0.8≦d+e≦2.7を満たす数を表す。)
(C)β-ジケトナト基、β-ケトエステラート基、および1,3-ジエステラート基の少なくとも1つを配位子として有する白金化合物
2、 前記(C)成分が、ビスアセチルアセトナト白金(II)である1の積層体の製造方法、
3. (i)光硬化型シリコーン組成物を第一の基材表面に塗布する塗布工程と、
(ii)光硬化型シリコーン組成物にピーク波長380~420nmの光を照射する光照射工程と、
(iii)光硬化型シリコーン組成物を硬化させて接着剤層を形成する硬化工程と、
(iv)光硬化型シリコーン組成物または接着剤層の上に第二の基材を積層して第一および第二の基材を前記接着剤組成物または接着剤層を介して貼り合わせる貼合工程と
を含む1または2の積層体の製造方法、
4. 前記硬化工程が、5~35℃で行われる3の積層体の製造方法、
5. 前記第二の基材が、偏光板または偏光フィルムである3または4の積層体の製造方法、
6. 前記第一の基材が、偏光板または偏光フィルムである1~5のいずれかの積層体の製造方法、
7. 前記光のピーク波長が405nmである1~6のいずれかの積層体の製造方法、
8. 前記積層体が画像表示装置である1~7のいずれかの積層体の製造方法
を提供する。
That is, the present invention
1. A method for producing a laminate comprising a first substrate and an adhesive layer laminated on the first substrate, wherein the adhesive layer contains the following components (A) to (C) A method for producing a laminate comprising irradiating a photocurable silicone composition with light having a peak wavelength of 380 to 420 nm to cure the composition,
(A) Linear organopolysiloxane represented by the following average formula ( 1 ): 100 parts by mass (R1R22SiO1 /2 ) a ( R23SiO1 /2 ) 2 - a (Ar2 SiO2 / 2 ) b ( R22SiO2 /2 ) c (1)
{wherein each R 1 independently represents a substituted or unsubstituted alkenyl group, each R 2 independently represents a substituted or unsubstituted alkyl group, and each Ar independently represents represents a substituted or unsubstituted aryl group, a represents a number of 0.3 to 2, b is 0 to 100, c is 1 to 1,000, and b / (b + c) = 0 to 0 Represents a number that satisfies .7. }
(B) Organohydrogenpolysiloxane having at least two Si—H bonds in one molecule, represented by the following average compositional formula (2): 1 to 200 parts by mass R 3 d H e SiO [(4- de)/2] (2)
(wherein each R 3 independently represents a substituted or unsubstituted monovalent hydrocarbon group excluding an aliphatic unsaturated hydrocarbon group; d and e are 0.7≤d≤2.5; represents a number that satisfies 0.01≦e≦1.0 and 0.8≦d+e≦2.7.)
(C) a platinum compound 2 having at least one of a β-diketonato group, a β-ketoesterate group, and a 1,3-diesterate group as a ligand, wherein the component (C) is bisacetylacetonatoplatinum (II) ), the manufacturing method of the laminate of 1,
3. (i) a coating step of coating the photocurable silicone composition on the surface of the first substrate;
(ii) a light irradiation step of irradiating the photocurable silicone composition with light having a peak wavelength of 380 to 420 nm;
(iii) a curing step of curing the photocurable silicone composition to form an adhesive layer;
(iv) Lamination in which a second substrate is laminated on a photocurable silicone composition or adhesive layer and the first and second substrates are laminated via the adhesive composition or adhesive layer. 1 or 2 methods of manufacturing a laminate,
4. The method for producing a laminate of 3, wherein the curing step is performed at 5 to 35 ° C.
5. The method for producing a laminate of 3 or 4, wherein the second substrate is a polarizing plate or a polarizing film;
6. The method for producing a laminate according to any one of 1 to 5, wherein the first substrate is a polarizing plate or a polarizing film;
7. The method for producing a laminate according to any one of 1 to 6, wherein the peak wavelength of the light is 405 nm;
8. Provided is the method for producing a laminate according to any one of 1 to 7, wherein the laminate is an image display device.

本発明の積層体の製造方法によれば、光硬化型シリコーン組成物が25℃程度の室温においても接触する偏光板の種類によらず速やかに硬化する。このような特徴を有する本発明の製造方法は、タッチパネルやディスプレイ等の画像表示装置の貼り合せ法として好適に使用できる。 According to the method for producing a laminate of the present invention, the photocurable silicone composition cures rapidly even at a room temperature of about 25° C. regardless of the type of polarizing plate with which it comes into contact. The manufacturing method of the present invention having such characteristics can be suitably used as a bonding method for image display devices such as touch panels and displays.

以下、本発明について具体的に説明する。
本発明に係る積層体の製造方法は、第一の基材と、この第一の基材に積層された接着剤層とを備える積層体の製造方法であって、接着剤層を、上記(A)~(C)成分を含有する光硬化型シリコーン組成物に、ピーク波長380~420nmの光を照射して硬化させて形成することを特徴とする。
The present invention will be specifically described below.
A method for producing a laminate according to the present invention is a method for producing a laminate including a first base material and an adhesive layer laminated on the first base material, wherein the adhesive layer is the above ( It is formed by irradiating a photocurable silicone composition containing components A) to (C) with light having a peak wavelength of 380 to 420 nm for curing.

〔光硬化型シリコーン接着剤組成物〕
本発明で用いる光硬化型シリコーン接着剤組成物を構成する各成分について説明する。
[1](A)成分
本発明で用いる光硬化型シリコーン組成物における(A)成分は、下記平均式(1)で表される直鎖状オルガノポリシロキサンである。
(R12 2SiO1/2a(R2 3SiO1/22-a(Ar2SiO2/2b(R2 2SiO2/2c (1)
[Photocurable silicone adhesive composition]
Each component constituting the photocurable silicone adhesive composition used in the present invention will be described.
[1] Component (A) Component (A) in the photocurable silicone composition used in the present invention is a linear organopolysiloxane represented by the following average formula (1).
(R1R22SiO1 /2 ) a (R23SiO1 /2 ) 2 -a ( Ar2SiO2 / 2 ) b ( R22SiO2 /2 ) c ( 1 )

式(1)において、R1は、それぞれ独立して置換または非置換のアルケニル基を表す。
このアルケニル基は、特に限定されるものではなく、直鎖、分岐、環状のいずれでもよいが、炭素原子数2~20のものが好ましく、炭素原子数2~10のものがより好ましく、炭素原子数2~6のものがより一層好ましい。
アルケニル基の具体例としては、ビニル、アリル、ブテニル、ペンテニル、ヘキセニル基等が挙げられるが、ビニル基が好ましい。
また、上記アルケニル基の水素原子の一部または全部は、F、Cl、Br等のハロゲン原子、シアノ基等で置換されていてもよい。
In formula (1), each R 1 independently represents a substituted or unsubstituted alkenyl group.
This alkenyl group is not particularly limited and may be linear, branched or cyclic, but preferably has 2 to 20 carbon atoms, more preferably 2 to 10 carbon atoms. Those of numbers 2 to 6 are even more preferable.
Specific examples of alkenyl groups include vinyl, allyl, butenyl, pentenyl, and hexenyl groups, with vinyl groups being preferred.
Also, some or all of the hydrogen atoms in the alkenyl group may be substituted with halogen atoms such as F, Cl, and Br, cyano groups, and the like.

2は、それぞれ独立して、置換または非置換のアルキル基を表す。
このアルキル基は、特に限定されるものではなく、直鎖、分岐、環状のいずれでもよいが、炭素原子数1~20のものが好ましく、炭素原子数1~10のものがより好ましく、炭素原子数1~5のものがより一層好ましい。
アルキル基の具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル基等の直鎖または分岐のアルキル基;シクロヘキシル基等の環状アルキル基などが挙げられる。
また、上記アルキル基の水素原子の一部または全部は、F、Cl、Br等のハロゲン原子、シアノ基等で置換されていてもよく、そのような基の具体例としては、クロロメチル、3-クロロプロピル、3,3,3-トリフルオロプロピル基等のハロゲン置換アルキル基等が挙げられる。
これらの中でも、耐熱性の点からメチル基が好ましい。
Each R 2 independently represents a substituted or unsubstituted alkyl group.
The alkyl group is not particularly limited and may be linear, branched or cyclic, preferably having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, Numbers 1 to 5 are even more preferred.
Specific examples of alkyl groups include linear or branched alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, n-pentyl, n-hexyl and n-heptyl groups; A cyclic alkyl group and the like can be mentioned.
Further, some or all of the hydrogen atoms in the above alkyl groups may be substituted with halogen atoms such as F, Cl, and Br, cyano groups, etc. Specific examples of such groups include chloromethyl, 3 -chloropropyl, and halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl groups.
Among these, a methyl group is preferable from the viewpoint of heat resistance.

Arは、それぞれ独立して置換または非置換のアリール基を表す。
このアリール基は、特に限定されるものではないが、炭素原子数6~20のものが好ましく、炭素原子数6~10のものがより好ましい。
アリール基の具体例としては、フェニル、ナフチル、トリル、キシリル、メシチル基等が挙げられる。
また、上記アリール基の水素原子の一部または全部は、F、Cl、Br等のハロゲン原子、シアノ基等で置換されていてもよく、そのような基の具体例としては、クロロフェニル基等が挙げられる。
これらの中でもフェニル基が好ましい。
Each Ar independently represents a substituted or unsubstituted aryl group.
The aryl group is not particularly limited, but preferably has 6 to 20 carbon atoms, more preferably 6 to 10 carbon atoms.
Specific examples of aryl groups include phenyl, naphthyl, tolyl, xylyl, and mesityl groups.
In addition, some or all of the hydrogen atoms in the aryl group may be substituted with a halogen atom such as F, Cl, Br, or a cyano group. mentioned.
Among these, a phenyl group is preferred.

上記式(1)において、aは、0.3~2の数を表す。aが0.3未満であると、R1の含有量が低いため、未架橋成分のブリードアウトや、組成物が柔らかくなりすぎるおそれがある。
bは、0~100の数であるが、0~50の数が好ましい。bが100よりも大きいと、粘度が高くなりすぎるおそれがある。
cは、1~1,000の数であるが、1~500の数が好ましく、100~300の数がより好ましい。cが1未満であると、硬化物が硬くなりすぎるおそれがあり、1,000よりも大きいと、粘度が高くなりすぎるおそれがある。
b/(b+c)は0~0.7であるが、0~0.3が好ましい。b/(b+c)が0.7よりも大きいと、粘度が高くなりすぎるおそれがある。
In the above formula (1), a represents a number from 0.3 to 2. If a is less than 0.3, the content of R 1 is low, so that the uncrosslinked component may bleed out or the composition may become too soft.
b is a number from 0 to 100, preferably a number from 0 to 50; If b is greater than 100, the viscosity may become too high.
c is a number from 1 to 1,000, preferably from 1 to 500, more preferably from 100 to 300. When c is less than 1, the cured product may become too hard, and when it is greater than 1,000, the viscosity may become too high.
b/(b+c) is 0 to 0.7, preferably 0 to 0.3. If b/(b+c) is greater than 0.7, the viscosity may become too high.

(A)成分の分子量は、THF溶媒を用いたゲル浸透クロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量(Mw)が500~100,000であることが好ましく、700~50,000がより好ましく、1,000~30,000がより一層好ましい。 The molecular weight of component (A) is preferably 500 to 100,000, preferably 700 to 50,000, in terms of standard polystyrene equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) using THF solvent. More preferably, 1,000 to 30,000 is even more preferable.

(A)成分の具体例としては、下記平均式(3)~(5)で表されるものが挙げられるが、これらに限定されるものではない。
なお、(A)成分のオルガノポリシロキサンは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
Specific examples of component (A) include, but are not limited to, those represented by the following average formulas (3) to (5).
The organopolysiloxane of component (A) may be used alone or in combination of two or more.

Figure 0007111041000001
〔式中、Meは、メチル基を表し、Phは、フェニル基を表し、Viは、ビニル基を表す(以下同様)。式(3)において、シロキサン単位の配列順は任意である。〕
Figure 0007111041000001
[In the formula, Me represents a methyl group, Ph represents a phenyl group, and Vi represents a vinyl group (the same applies hereinafter). In formula (3), the order of arrangement of the siloxane units is arbitrary. ]

[2](B)成分
本発明で用いる光硬化型シリコーン組成物における(B)成分は、下記平均組成式(2)で表される、1分子中に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサンである。
3 deSiO[(4-d-e)/2] (2)
[2] Component (B) Component (B) in the photocurable silicone composition used in the present invention has at least two Si—H bonds in one molecule, represented by the following average compositional formula (2). It is an organohydrogenpolysiloxane.
R3dHeSiO [ ( 4-de)/2] (2)

式(2)において、R3は、それぞれ独立して、脂肪族不飽和炭化水素基を除く置換または非置換の一価炭化水素基を表す。
3の1価炭化水素基は、脂肪族不飽和炭化水素基を有しないものであれば特に限定はなく、直鎖、分岐、環状のいずれでもよいが、炭素原子数1~20のものが好ましく、炭素原子数1~10のものがより好ましく、炭素原子数1~5のものがより一層好ましい。
その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、n-ヘキシル基等の直鎖または分岐のアルキル基;シクロヘキシル基等の環状アルキル基;フェニル、トリル基等のアリール基;ベンジル、フェニルエチル基等のアラルキル基などが挙げられる。
また、これらの1価炭化水素基の水素原子の一部または全部は、F、Cl、Br等のハロゲン原子、シアノ基等で置換されていてもよく、そのような基の具体例としては、3,3,3-トリフルオロプロピル基等のハロゲン置換炭化水素基;2-シアノエチル基等のシアノ置換炭化水素基等が挙げられる。
これらの中でも、メチル基が好ましい。
In formula (2), each R 3 independently represents a substituted or unsubstituted monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon group.
The monovalent hydrocarbon group for R 3 is not particularly limited as long as it does not have an aliphatic unsaturated hydrocarbon group, and may be linear, branched or cyclic, but it should have 1 to 20 carbon atoms. Preferably, those having 1 to 10 carbon atoms are more preferred, and those having 1 to 5 carbon atoms are even more preferred.
Specific examples thereof include linear or branched alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl and n-hexyl groups; cyclic alkyl groups such as cyclohexyl groups; phenyl and tolyl groups. aryl groups such as benzyl; and aralkyl groups such as benzyl and phenylethyl groups.
Further, some or all of the hydrogen atoms of these monovalent hydrocarbon groups may be substituted with halogen atoms such as F, Cl, and Br, cyano groups, etc. Specific examples of such groups include Halogen-substituted hydrocarbon groups such as 3,3,3-trifluoropropyl group; cyano-substituted hydrocarbon groups such as 2-cyanoethyl group;
Among these, a methyl group is preferred.

また、上記(A)成分との相溶性や、硬化物の物性等の点から、(B)成分中のR3とSi-H基の総数のうち20モル%以上はメチル基が好ましく、50モル%以上はメチル基がより好ましい。 From the viewpoint of compatibility with component (A) and the physical properties of the cured product, 20 mol % or more of the total number of R 3 and Si—H groups in component (B) is preferably a methyl group. A methyl group is more preferable for mol % or more.

式(2)において、dは、0.7≦d≦2.5の数であるが、0.7≦d≦2.1の数が好ましく、1.0≦d≦1.8の数がより好ましい。dが0.7未満では、硬化時に発泡するおそれがあるうえ、経時での硬度変化が大きくなりやすく、2.5を超えると、十分な硬度が得られない。
eは、0.01≦e≦1.0の数であるが、0.02≦e≦1.0の数が好ましく、0.1≦e≦1.0の数がより好ましい。eが0.01未満では、十分な硬度が得られず、1.0を超えると、硬化時に発泡するおそれがあるうえ、経時での硬度変化が大きくなりやすい。
d+eは、0.8≦d+e≦2.7を満たすが、好ましくは1≦d+e≦2.4、より好ましくは1.6≦d+e≦2.2を満たす。d+eが0.8未満では、硬化物が硬く、また脆くなりやすいため接着剤層中にクラックが入りやすく、2.7を超えると硬化物が柔らかくなり、積層体の補強性に乏しくなる。
In formula (2), d is a number of 0.7 ≤ d ≤ 2.5, preferably a number of 0.7 ≤ d ≤ 2.1, and a number of 1.0 ≤ d ≤ 1.8 more preferred. If d is less than 0.7, there is a risk of foaming during curing, and the change in hardness over time tends to increase. If d exceeds 2.5, sufficient hardness cannot be obtained.
e is a number satisfying 0.01≦e≦1.0, preferably a number satisfying 0.02≦e≦1.0, and more preferably a number satisfying 0.1≦e≦1.0. If e is less than 0.01, sufficient hardness cannot be obtained, and if it exceeds 1.0, there is a risk of foaming during curing, and the change in hardness over time tends to increase.
d+e satisfies 0.8≦d+e≦2.7, preferably 1≦d+e≦2.4, more preferably 1.6≦d+e≦2.2. When d+e is less than 0.8, the cured product tends to be hard and brittle, and cracks tend to occur in the adhesive layer.

(B)成分のオルガノハイドロジェンポリシロキサンの25℃での動粘度は、1,000mm2/s以下が好ましく、0.5~1,000mPa・sがより好ましく、1~500mm2/sがより一層好ましい。なお、本発明において、動粘度はキャノン・フェンスケ粘度計を用いた測定値である。 The kinematic viscosity of component (B) organohydrogenpolysiloxane at 25° C. is preferably 1,000 mm 2 /s or less, more preferably 0.5 to 1,000 mPa·s, and more preferably 1 to 500 mm 2 /s. More preferred. In the present invention, kinematic viscosity is a value measured using a Canon Fenske viscometer.

上記(B)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)成分100質量部に対して1~200質量部であるが、5~80質量部が好ましい。配合量が1質量部未満では、硬化性が不十分となり、200質量部を超えると、十分な硬度・強度が得られない。
また、この(B)成分のオルガノハイドロジェンポリシロキサンは、(A)成分中のアルケニル基に対する(B)成分中のケイ素原子結合水素原子(すなわち、SiH基)のモル比が0.5~2モル/モルとなる量で配合することが好ましく、1~1.5モル/モルとなる量で配合することがより好ましい。
The amount of the organohydrogenpolysiloxane of component (B) is 1 to 200 parts by mass, preferably 5 to 80 parts by mass, per 100 parts by mass of component (A). If the amount is less than 1 part by mass, curability will be insufficient, and if it exceeds 200 parts by mass, sufficient hardness and strength will not be obtained.
The organohydrogenpolysiloxane of component (B) has a molar ratio of silicon-bonded hydrogen atoms (that is, SiH groups) in component (B) to alkenyl groups in component (A) of 0.5 to 2. It is preferably blended in an amount of mol/mol, and more preferably blended in an amount of 1 to 1.5 mol/mol.

(B)成分の具体例としては、下記平均式(6)~(8)で表されるものが挙げられるが、これらに限定されるものではない。
なお、(B)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても、2種以上を組み合わせて用いてもよい。
Me2.00.1SiO[1.9/2] (6)
Me1.80.3SiO[1.9/2] (7)
Me1.70.4SiO[1.9/2] (8)
Specific examples of component (B) include, but are not limited to, those represented by the following average formulas (6) to (8).
The organohydrogenpolysiloxane of component (B) may be used alone or in combination of two or more.
Me2.0H0.1SiO [ 1.9 /2] (6)
Me1.8H0.3SiO [ 1.9 /2] (7)
Me1.7H0.4SiO [ 1.9 /2] (8)

[3](C)成分
本発明で用いる光硬化型シリコーン組成物における(C)成分は、β-ジケトナト基、β-ケトエステラート基、および1,3-ジエステラート基の少なくとも1つを配位子として有する白金化合物である。この白金化合物は、遮光された状態では不活性であるが、波長380~420nmの光を照射することによって室温で活性な白金触媒に変化し、上述した(A)成分中のアルケニル基と、(B)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進する機能を有する。
[3] Component (C) The component (C) in the photocurable silicone composition used in the present invention coordinates at least one of a β-diketonate group, a β-ketoesterate group, and a 1,3-diesterate group. It is a platinum compound that has as a child. This platinum compound is inactive when shielded from light, but changes to an active platinum catalyst at room temperature by irradiation with light having a wavelength of 380 to 420 nm, and the alkenyl group in the component (A) described above and ( B) It has a function of promoting hydrosilylation reaction with silicon-bonded hydrogen atoms in the component.

(C)成分の具体例としては、トリメチル(アセチルアセトナト)白金錯体、トリメチル(2,4-ペンタンジオネ-ト)白金錯体、トリメチル(3,5-ヘプタンジオネート)白金錯体、トリメチル(メチルアセトアセテート)白金錯体、ビス(アセチルアセトナト)白金錯体、ビス(2,4-ペンタンジオナト)白金錯体、ビス(2,4-へキサンジオナト)白金錯体、ビス(2,4-へプタンジオナト)白金錯体、ビス(3,5-ヘプタンジオナト)白金錯体、ビス(1-フェニル-1,3-ブタンジオナト)白金錯体、ビス(1,3-ジフェニル-1,3-プロパンジオナト)白金錯体等が挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。
これらの中でも、ビス(アセチルアセトナト)白金錯体、およびそのアセチルアセトナト基上を修飾した誘導体が好適である。
Specific examples of component (C) include trimethyl(acetylacetonato)platinum complex, trimethyl(2,4-pentanedionate)platinum complex, trimethyl(3,5-heptanedionate)platinum complex, trimethyl(methylacetoacetate) ) platinum complex, bis(acetylacetonato)platinum complex, bis(2,4-pentanedionato)platinum complex, bis(2,4-hexanedionato)platinum complex, bis(2,4-heptanedionato)platinum complex, bis(3,5-heptanedionato)platinum complex, bis(1-phenyl-1,3-butanedionato)platinum complex, bis(1,3-diphenyl-1,3-propanedionato)platinum complex, etc., and these may be used singly or in combination of two or more.
Among these, bis(acetylacetonato)platinum complexes and their derivatives modified on the acetylacetonato group are preferred.

(C)成分の含有量は、光硬化型シリコーン組成物の硬化(ヒドロシリル化反応)を促進する量であれば限定されないが、(A)成分に対して、組成物中の金属原子が質量換算で0.01~500ppmの範囲となる量が好ましく、0.05~100ppmの範囲となる量がより好ましく、0.01~50ppmの範囲となる量がより一層好ましい。 The content of component (C) is not limited as long as it promotes curing (hydrosilylation reaction) of the photocurable silicone composition. is preferably in the range of 0.01 to 500 ppm, more preferably in the range of 0.05 to 100 ppm, and even more preferably in the range of 0.01 to 50 ppm.

[4](D)成分
本発明で用いる光硬化型シリコーン組成物には、必要に応じて(D)成分として、偏光板、ガラス、ポリカーボネート樹脂またはアクリル樹脂等の基材に対して接着性を付与するための接着助剤を添加してもよい。
(D)成分のうち、シロキサン結合を含む接着助剤の具体例としては、ビニルトリメトキシシラン(信越化学工業(株)製、KBM-1003)、γ-(グリシジロキシプロピル)トリメトキシシラン(信越化学工業(株)製、KBM-403)、γ-(メタクリロキシプロピル)トリメトキシシラン(信越化学工業(株)製、KBM-503)、およびそれらの加水分解物、並びに下記構造式で表される化合物等が挙げられる。
[4] Component (D) In the photocurable silicone composition used in the present invention, the component (D) may optionally be added to provide adhesiveness to a substrate such as a polarizing plate, glass, polycarbonate resin or acrylic resin. Adhesion aids for application may be added.
Among component (D), specific examples of adhesion promoters containing siloxane bonds include vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-1003), γ-(glycidyloxypropyl)trimethoxysilane ( Shin-Etsu Chemical Co., Ltd., KBM-403), γ-(methacryloxypropyl)trimethoxysilane (Shin-Etsu Chemical Co., Ltd., KBM-503), hydrolysates thereof, and represented by the following structural formula and the like.

Figure 0007111041000002
Figure 0007111041000002

また、シロキサン結合を含まない接着助剤の具体例としては、アリルグリシジルエーテル、ビニルシクロヘキセンモノオキサイド、2-アリルマロン酸ジエチル、ジアリルビスフェノールエーテル、安息香酸アリル、フタル酸ジアリル、ピロメリット酸テトラアリルエステル(富士フイルム和光純薬(株)製、TRIAM805)、トリアリルイソシアヌレート等が挙げられる。
なお、(D)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
Further, specific examples of adhesion promoters that do not contain siloxane bonds include allyl glycidyl ether, vinylcyclohexene monoxide, diethyl 2-allylmalonate, diallyl bisphenol ether, allyl benzoate, diallyl phthalate, tetraallyl pyromellitic acid ester ( Fuji Film Wako Pure Chemical Industries, Ltd., TRIAM805), triallyl isocyanurate, and the like.
In addition, (D) component may be used individually by 1 type, or may be used in combination of 2 or more type.

(D)成分を用いる場合、その添加量は、(A)成分100質量部に対して0.05~10質量部が好ましく、0.05~5質量部がより好ましい。(D)成分の配合量が上記範囲であれば、適度な接着性が付与できる。 When component (D) is used, the amount added is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, per 100 parts by mass of component (A). If the blending amount of the component (D) is within the above range, appropriate adhesiveness can be imparted.

[5](E)成分
本発明で用いる光硬化型シリコーン接着剤組成物には、組成物を調製する際や、組成物を基材に塗工する際などの加熱硬化前に増粘やゲル化を起こさないようにヒドロシリル化反応触媒の反応性を制御する目的で、必要に応じて(E)反応制御剤を添加してもよい。
反応制御剤の具体例としては、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、1-エチニルシクロヘキサノール、エチニルメチルデシルカルビノール、3-メチル-3-トリメチルシロキシ-1-ブチン、3-メチル-3-トリメチルシロキシ-1-ペンチン、3,5-ジメチル-3-トリメチルシロキシ-1-ヘキシン、1-エチニル-1-トリメチルシロキシシクロヘキサン、ビス(2,2-ジメチル-3-ブチノキシ)ジメチルシラン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン等が挙げられ、これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。
これらの中でも、1-エチニルシクロヘキサノール、エチニルメチルデシルカルビノール、3-メチル-1-ブチン-3-オール、ビス(2,2-ジメチル-3-ブチノキシ)ジメチルシランが好ましい。
[5] Component (E) The photocurable silicone adhesive composition used in the present invention may be thickened or gelled prior to heat curing, such as when the composition is prepared or when the composition is applied to a substrate. For the purpose of controlling the reactivity of the hydrosilylation reaction catalyst so as not to cause reaction, (E) a reaction control agent may be added as necessary.
Specific examples of reaction control agents include 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynyl cyclohexanol, ethynylmethyldecylcarbinol, 3-methyl-3-trimethylsiloxy-1-butyne, 3-methyl-3-trimethylsiloxy-1-pentyne, 3,5-dimethyl-3-trimethylsiloxy-1-hexyne, 1-ethynyl-1-trimethylsiloxycyclohexane, bis(2,2-dimethyl-3-butynoxy)dimethylsilane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,1,3,3-tetramethyl-1,3-divinyldisiloxane and the like can be mentioned, and these may be used alone or in combination of two or more.
Among these, 1-ethynylcyclohexanol, ethynylmethyldecylcarbinol, 3-methyl-1-butyn-3-ol, and bis(2,2-dimethyl-3-butynoxy)dimethylsilane are preferred.

(E)成分の配合量は、(A)成分の合計100質量部に対して0.01~2.0質量部が好ましく、0.01~0.1質量部がより好ましい。このような範囲であれば反応制御の効果が十分発揮される。 The amount of component (E) to be blended is preferably 0.01 to 2.0 parts by mass, more preferably 0.01 to 0.1 parts by mass, per 100 parts by mass of component (A). Within such a range, the effect of reaction control is sufficiently exhibited.

[6]その他の成分
本発明で用いる光硬化型シリコーン接着剤組成物は、上記(A)~(E)成分以外にも、本発明の目的を損なわない限り、以下に例示するその他の成分を含有していてもよい。
その他の成分としては、例えば、フュームドシリカ等のチクソ性制御剤;結晶性シリカ等の補強剤;酸化防止剤;光安定剤;金属酸化物、金属水酸化物等の耐熱向上剤;酸化チタン等の着色剤;アルミナ、結晶性シリカ等の熱伝導性付与充填剤;反応性官能基を有しない非反応性シリコーンオイル等の粘度調整剤;銀、金等の金属粉等の導電性付与剤等が挙げられる。
[6] Other Components The photocurable silicone adhesive composition used in the present invention may contain, in addition to the above components (A) to (E), the following other components as long as they do not impair the purpose of the present invention. may contain.
Other components include, for example, thixotropic agents such as fumed silica; reinforcing agents such as crystalline silica; antioxidants; light stabilizers; heat resistance improvers such as metal oxides and metal hydroxides; thermal conductivity imparting fillers such as alumina and crystalline silica; viscosity modifiers such as non-reactive silicone oils having no reactive functional groups; conductivity imparting agents such as metal powders such as silver and gold etc.

本発明で用いる光硬化型シリコーン接着剤組成物は、上記の(A)~(C)成分、必要に応じて用いられる(D)および(E)成分、並びにその他の成分を公知の方法で混合して調製することができる。 The photocurable silicone adhesive composition used in the present invention is prepared by mixing the above components (A) to (C), optional components (D) and (E), and other components by a known method. can be prepared by

〔積層体の製造方法〕
上述した光硬化型シリコーン接着剤組成物を用いる積層体の製造方法について説明する。
上記光硬化型シリコーン接着剤組成物は、光デバイス、ディスプレイ、タッチパネル等の積層体を構成する二枚の基材を、接着層を介して貼り合せる際の接着層形成用組成物として好適に使用できる。
この場合、積層体の製造方法は、塗布工程、光照射工程、硬化工程、および貼合工程を含み、それぞれの工程の詳細としては、例えば、以下に示すものが挙げられる。
[Method for manufacturing laminate]
A method for producing a laminate using the photocurable silicone adhesive composition described above will now be described.
The photocurable silicone adhesive composition is suitably used as a composition for forming an adhesive layer when two substrates constituting a laminate such as an optical device, display, or touch panel are laminated via an adhesive layer. can.
In this case, the method for manufacturing the laminate includes a coating step, a light irradiation step, a curing step, and a bonding step, and details of each step include, for example, the following.

(i)塗布工程
塗布工程では、上述した光硬化型シリコーン接着剤組成物を基材(第一の基材)上に塗布する。
塗布方法としては、例えば、スリットコートを利用した塗布や、DAM-Fill法、フィッシュボーン法等による手法が挙げられる。
塗布量は、特に限定されるものではないが、硬化後のシリコーン層の厚さが100~5,000μmとなる量が好ましい。
(i) Coating Step In the coating step, the photocurable silicone adhesive composition described above is coated onto the substrate (first substrate).
Examples of the coating method include coating using slit coating, a DAM-Fill method, a fishbone method, and the like.
The coating amount is not particularly limited, but the amount is preferably such that the thickness of the silicone layer after curing is 100 to 5,000 μm.

基材としては、偏光材料および複合材料、金属部材、プラスチック部材、セラミック部材等が挙げられ、特に、電気用途、電子用途、光学用途等のケーシング、部材の被覆、注型、接着、封止等の分野で使用されるものに有用であり、偏光板、偏光フィルムに対して特に有用である。
なお、上記光硬化型シリコーン接着剤組成物は、プライマー処理、プラズマ処理、エキシマ光処理などの周知の前処理工程によって活性化された基材に対しても用いることができる。
Examples of the base material include polarizing materials and composite materials, metal members, plastic members, ceramic members, etc. In particular, casings for electrical applications, electronic applications, optical applications, etc., covering members, casting, bonding, sealing, etc. and is particularly useful for polarizing plates and polarizing films.
The photocurable silicone adhesive composition can also be used on substrates that have been activated by well-known pretreatment processes such as primer treatment, plasma treatment, and excimer light treatment.

(ii)光照射工程
光照射工程では、光硬化型シリコーン接着剤組成物に光を照射する。
光照射方法としては、光源としてピーク波長380~420nmのランプを使用し、適量の光を照射する方法等が挙げられる。
光源としては、405nmのUV-LEDランプが好ましい。
照射する光は、ピーク波長が380~420nm、好ましくは395~410nm、より好ましくは405nmの光である。
光照射時の温度は、硬化速度と変色防止の観点から、5~60℃が好ましく、5~35℃がより好ましい。
照射強度は、300~2,000mW/cm2が好ましく、照射線量は硬化性および作業性の点から1,000~20,000mJ/cm2が好ましい。
(ii) Light irradiation step In the light irradiation step, the photocurable silicone adhesive composition is irradiated with light.
Examples of the light irradiation method include a method of using a lamp with a peak wavelength of 380 to 420 nm as a light source and irradiating an appropriate amount of light.
A 405 nm UV-LED lamp is preferred as the light source.
The light to be irradiated has a peak wavelength of 380 to 420 nm, preferably 395 to 410 nm, more preferably 405 nm.
The temperature during light irradiation is preferably 5 to 60°C, more preferably 5 to 35°C, from the viewpoints of curing speed and prevention of discoloration.
The irradiation intensity is preferably 300 to 2,000 mW/cm 2 , and the irradiation dose is preferably 1,000 to 20,000 mJ/cm 2 from the viewpoint of curability and workability.

(iii)硬化工程
硬化工程では、光照射した組成物を硬化させる。
硬化方法は、特に限定されるものではないが、例えば、光照射した組成物を所定の環境下に静置して硬化させ、接着剤層を形成する手法等が挙げられる。
硬化温度は、特に限定されるものではないが、積層体の熱膨張/収縮による反りや劣化を抑える観点から、5~60℃が好ましく、5~35℃がより好ましい。
硬化雰囲気は、任意であるが大気雰囲気下が好ましい。
硬化時間は、特に限定されるものではないが、1分~24時間程度が好ましい。
(iii) Curing Step In the curing step, the composition irradiated with light is cured.
Although the curing method is not particularly limited, for example, a method of leaving the irradiated composition to stand in a predetermined environment to cure it, and forming an adhesive layer can be used.
The curing temperature is not particularly limited, but is preferably 5 to 60°C, more preferably 5 to 35°C, from the viewpoint of suppressing warpage and deterioration due to thermal expansion/contraction of the laminate.
The curing atmosphere is arbitrary, but an atmospheric atmosphere is preferred.
The curing time is not particularly limited, but is preferably about 1 minute to 24 hours.

(iv)貼合工程
貼合工程では、光硬化型シリコーン接着剤組成物または接着剤層の上に第二の基材を積層して、二枚の基材を接着剤組成物または接着剤層を介して貼り合わせた積層体を形成する。
貼合方法としては、塗布工程、光照射工程および硬化工程を経て、液状から半固体状となった接着剤層-基材積層物や、塗布工程後の光硬化型シリコーン接着剤組成物、あるいは塗布工程および光照射工程後の光硬化型シリコーン接着剤組成物層-基材積層物を、真空あるいは大気圧貼り合わせ装置に設置し、第二の基材を光硬化型シリコーン接着剤組成物または接着剤層の上に積層して貼り合わせて、組成物の場合は残りの工程を行って硬化させて積層体を形成する手法等が挙げられる。
(iv) Lamination step In the lamination step, the second substrate is laminated on the photocurable silicone adhesive composition or adhesive layer, and the two substrates are laminated together with the adhesive composition or adhesive layer. A laminated body is formed by bonding through the
The lamination method includes an adhesive layer-substrate laminate that has changed from a liquid state to a semi-solid state through the coating step, the light irradiation step and the curing step, a photocurable silicone adhesive composition after the coating step, or After the coating step and the light irradiation step, the photocurable silicone adhesive composition layer-substrate laminate is placed in a vacuum or atmospheric pressure bonding device, and the second substrate is coated with the photocurable silicone adhesive composition or For example, a method of laminating and bonding on an adhesive layer and, in the case of a composition, performing the remaining steps and curing to form a laminate.

本発明の積層体の製造方法は、酸素による硬化阻害を受けない点、および光を照射してからの硬化時間を接着剤組成物の設計や加熱温度により変えられる点から、フラットディスプレイや曲面ディスプレイ等、製造するデバイスの構造に合わせて塗布工程、光照射工程、硬化工程、および貼合工程の手順を自由に選択・変更することができる。 The method for producing a laminate of the present invention is not affected by oxygen curing inhibition, and the curing time after light irradiation can be changed by the design and heating temperature of the adhesive composition. Therefore, flat displays and curved displays For example, it is possible to freely select and change the procedures of the coating process, the light irradiation process, the curing process, and the bonding process according to the structure of the device to be manufactured.

本発明の積層体の製造方法の具体例として、カバーパネルおよび画像表示パネルを有する積層体の製造方法に挙げる。
まず、本発明の光硬化型シリコーン組成物を、画像表示パネルを構成する偏光板上に塗布する。その後、波長のピークが405nmにあるUV-LEDランプを用い、光硬化型シリコーン組成物に405nm光を指標とする照射強度100mW/cm2の光を25℃にて100秒間、線量にして10,000mJ/cm2となるように照射する。続いて、25℃の環境で30分間静置してシリコーン組成物を硬化させ接着剤層を形成する。その後、真空貼り合わせ装置を用いて接着剤層の上にカバーパネルを積層することで、カバーパネルと画像表示パネルとを接着剤層を介して貼り合わせた積層体を得る。
また、光照射工程後、先に真空貼り合わせ装置を用いてシリコーン組成物の上にカバーパネルを積層することで、画像表示パネルとカバーパネルとをシリコーン組成物を介して貼り合わせ、次いで25℃の環境で30分間静置してシリコーン組成物を硬化させてもよい。あるいは、カバーパネルが透明であるため、塗布工程後、真空貼り合わせを行い、次いでカバーパネル越しに光照射を行い、硬化させてもよい。また、予め光照射を行ったシリコーン組成物を画像表示パネルに塗布し、カバーパネルと真空貼り合わせ、硬化させてもよい。
A specific example of the method for producing a laminate of the present invention is a method for producing a laminate having a cover panel and an image display panel.
First, the photocurable silicone composition of the present invention is applied onto the polarizing plate that constitutes the image display panel. Then, using a UV-LED lamp with a peak wavelength of 405 nm, the photocurable silicone composition was exposed to light with an irradiation intensity of 100 mW/cm 2 at 25° C. for 100 seconds, with a dose of 10,000 nm. Irradiate to 000 mJ/cm 2 . Subsequently, the silicone composition is cured by standing for 30 minutes in an environment of 25° C. to form an adhesive layer. After that, a cover panel is laminated on the adhesive layer by using a vacuum laminating device to obtain a laminate in which the cover panel and the image display panel are laminated via the adhesive layer.
In addition, after the light irradiation step, the image display panel and the cover panel are laminated via the silicone composition by first laminating the cover panel on the silicone composition using a vacuum laminating device, and then the temperature is maintained at 25°C. The silicone composition may be cured by standing for 30 minutes in an environment of . Alternatively, since the cover panel is transparent, vacuum bonding may be performed after the coating step, and then light irradiation may be performed through the cover panel to cure. Alternatively, a silicone composition that has been irradiated with light in advance may be applied to the image display panel, vacuum bonded to the cover panel, and cured.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、下記の例において、MwはTHF溶媒を用いたGPC測定による標準ポリスチレン換算の重量平均分子量を表す。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
In the following examples, Mw represents the weight average molecular weight in terms of standard polystyrene by GPC measurement using THF solvent.

[製造例1,2および比較製造例1,2]
下記成分を表1に示す配合量(質量部)にて混合し、光硬化型シリコーン組成物を調製した。
(A)成分:
(A-1)下記平均構造式(3)で表されるオルガノポリシロキサン(Mw:28,000)
[Production Examples 1 and 2 and Comparative Production Examples 1 and 2]
A photocurable silicone composition was prepared by mixing the following components in the amounts (parts by mass) shown in Table 1.
(A) Component:
(A-1) Organopolysiloxane represented by the following average structural formula (3) (Mw: 28,000)

Figure 0007111041000003
(式中、シロキサン単位の配列順は不定である。)
Figure 0007111041000003
(In the formula, the arrangement order of the siloxane units is undefined.)

(A-2)下記平均構造式(4)で表されるオルガノポリシロキサン(Mw:22,400) (A-2) Organopolysiloxane represented by the following average structural formula (4) (Mw: 22,400)

Figure 0007111041000004
Figure 0007111041000004

(A-3)下記平均式(5)で表されるオルガノポリシロキサン(Mw:16,500)
(ViMe2Si)0.57(Me3SiO)1.43(Me2SiO)220 (5)
(A-3) Organopolysiloxane represented by the following average formula (5) (Mw: 16,500)
( ViMe2Si ) 0.57 ( Me3SiO ) 1.43 ( Me2SiO ) 220 (5)

(B)成分:
(B-1)下記平均組成式(6)で表され、23℃における動粘度が17mm2/sである分子鎖両末端ヒドロジメチルシロキシ基封鎖のジメチルシロキサン
Me2.00.1SiO[1.9/2] (6)
(B-2)下記平均組成式(7)で表され、23℃における動粘度が27mm2/sである分子鎖両末端ヒドロジメチルシロキシ基封鎖のジメチルシロキサン
Me1.80.3SiO[1.9/2] (7)
(B-3)下記平均組成式(8)で表され、23℃における動粘度が105mm2/sである分子鎖両末端ヒドロジメチルシロキシ基封鎖のジメチルシロキサン
Me1.70.4SiO[1.9/2] (8)
(B) Component:
(B-1) Hydrodimethylsiloxy-blocked dimethylsiloxane Me 2.0 H 0.1 SiO [1.9/2] represented by the following average composition formula (6) and having a kinematic viscosity of 17 mm 2 /s at 23° C. (6)
(B-2) Hydrodimethylsiloxy-blocked dimethylsiloxane Me 1.8 H 0.3 SiO [1.9/2] at both ends of the molecular chain, represented by the following average composition formula (7) and having a kinematic viscosity of 27 mm 2 /s at 23°C. (7)
(B-3) Hydrodimethylsiloxy-blocked dimethylsiloxane Me 1.7 H 0.4 SiO [1.9/2] represented by the following average composition formula (8) and having a kinematic viscosity of 105 mm 2 /s at 23° C. (8)

(C)成分:
(C-1)ビスアセチルアセトナト白金錯体の酢酸2-(2-ブトキシエトキシ)エチル溶液(白金含有量0.5質量%)
(C-2)比較成分 トリメチル(メチルシクロペンタジエニル)白金錯体のトルエン溶液(白金含有量0.5質量%)
(C) Component:
(C-1) 2-(2-butoxyethoxy)ethyl acetate solution of bisacetylacetonatoplatinum complex (platinum content 0.5% by mass)
(C-2) Comparative component Toluene solution of trimethyl(methylcyclopentadienyl)platinum complex (platinum content 0.5% by mass)

(D)成分:接着助剤
(D-1)7-オクテニルトリメトキシシラン(信越化学工業(株)製、KBM-1083)
(D-2)下記構造式(10)で表される化合物
Component (D): Adhesion aid (D-1) 7-octenyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-1083)
(D-2) a compound represented by the following structural formula (10)

Figure 0007111041000005
Figure 0007111041000005

(D-3)下記構造式(11)で表される化合物 (D-3) a compound represented by the following structural formula (11)

Figure 0007111041000006
Figure 0007111041000006

(E)成分:反応制御剤
(E-1)下記式(9)で表される化合物
(E) component: reaction control agent (E-1) compound represented by the following formula (9)

Figure 0007111041000007
Figure 0007111041000007

その他の成分:
フュームドシリカ(アエロジルNSX-200(平均一次粒子径8nm)、日本アエロジル(株))
Other Ingredients:
Fumed silica (Aerosil NSX-200 (average primary particle size 8 nm), Nippon Aerosil Co., Ltd.)

Figure 0007111041000008
Figure 0007111041000008

[実施例1,2および比較例1~4]
上記各製造例および比較製造例で調製した光硬化型シリコーン接着剤組成物について、下記手法によってゲル化時間を評価した。結果を表2に示す。
[ゲル化時間]
UV硬化アクセサリを備えた粘弾性測定装置ARES-G2(ティー・エイ・インスツルメント・ジャパン(株)製)を用いてゲル化時間を測定した。
調製した各光硬化型シリコーン組成物1mlをステンレススチール製のプレート部、またはこのプレート部上に固定された下記の各偏光板上に塗布し、ピーク波長365nmのUV-LEDランプ(パナソニック(株)製、ANOJ6186)または波長405nmのUV-LEDランプ(パナソニック(株)製、ANOJ6189)を用い、100mW/cm2の光を10,000mJ/cm2となるように25℃で各組成物に照射した。
その後、25℃に温度を保ち、粘弾性を測定した。UV照射を完了してからtanδ=1となるまでに要した時間(分)をゲル化時間とした。
[Examples 1 and 2 and Comparative Examples 1 to 4]
The photocurable silicone adhesive compositions prepared in each of the production examples and comparative production examples above were evaluated for gelling time by the following method. Table 2 shows the results.
[Gelling time]
The gelation time was measured using a viscoelasticity measuring device ARES-G2 (manufactured by TA Instruments Japan Co., Ltd.) equipped with a UV curing accessory.
1 ml of each photocurable silicone composition prepared is applied onto a stainless steel plate or onto each of the following polarizing plates fixed on this plate, and a UV-LED lamp with a peak wavelength of 365 nm (Panasonic Corporation ANOJ6186 manufactured by Panasonic Corporation) or a UV-LED lamp with a wavelength of 405 nm (ANOJ6189 manufactured by Panasonic Corporation) was used to irradiate each composition with light of 100 mW/cm 2 at 25° C. so as to obtain 10,000 mJ/cm 2 . .
After that, the temperature was kept at 25° C. and the viscoelasticity was measured. The time (minutes) required from the completion of UV irradiation until tan δ=1 was defined as the gelling time.

偏光板1:日東電工(株)製NPF-CWQ1463VCU
偏光板2:日東電工(株)製NAZ-EFCWQVAG15AR
偏光板3:日東電工(株)製NAZ-EFCWQVAG150
偏光板4:日東電工(株)製NPF-CWQ1463VCUAG15ARS
偏光板5:日東電工(株)製NPF-SWQ1423CUARC380
偏光板6:日東電工(株)製NPF-CWQ1463VCUAG150
Polarizing plate 1: NPF-CWQ1463VCU manufactured by Nitto Denko Corporation
Polarizing plate 2: NAZ-EFCWQVAG15AR manufactured by Nitto Denko Corporation
Polarizing plate 3: NAZ-EFCWQVAG150 manufactured by Nitto Denko Corporation
Polarizing plate 4: NPF-CWQ1463VCUAG15ARS manufactured by Nitto Denko Corporation
Polarizing plate 5: NPF-SWQ1423CUARC380 manufactured by Nitto Denko Corporation
Polarizing plate 6: NPF-CWQ1463VCUAG150 manufactured by Nitto Denko Corporation

Figure 0007111041000009
Figure 0007111041000009

表2に示されるように、本発明の積層体の製造方法によれば、接触する偏光板の種類によらず、光硬化型シリコーン組成物が25℃において速やかに硬化し、タッチパネルやディスプレイ等の画像表示装置の貼り合せに好適に使用できることが示されたといえる。
一方、本発明の(C)成分以外の付加反応触媒を使用した比較例1,2では、ピーク波長405nmのLED光源を用いた光照射による硬化が起こらず、実施例1,2における光源をピーク波長365nmのLED光源に変更した比較例3,4では、偏光板に起因する硬化阻害が発生する場合があることがわかる。
As shown in Table 2, according to the method for producing a laminate of the present invention, the photocurable silicone composition rapidly cures at 25° C. regardless of the type of polarizing plate that comes into contact with it, and the composition can be used for touch panels, displays, and the like. It can be said that it was shown that it can be suitably used for bonding image display devices.
On the other hand, in Comparative Examples 1 and 2 using an addition reaction catalyst other than the component (C) of the present invention, curing by light irradiation using an LED light source with a peak wavelength of 405 nm did not occur, and the light source in Examples 1 and 2 peaked. It can be seen that in Comparative Examples 3 and 4 in which the LED light source with a wavelength of 365 nm was used, curing inhibition caused by the polarizing plate may occur.

Claims (8)

第一の基材と、この第一の基材に積層された接着剤層とを備える積層体の製造方法であって、
前記接着剤層を、下記(A)~(C)成分を含有する光硬化型シリコーン組成物に、ピーク波長380~420nmの光を照射して硬化させて形成することを特徴とする積層体の製造方法。
(A)下記平均式(1)で表される直鎖状オルガノポリシロキサン:100質量部
(R12 2SiO1/2a(R2 3SiO1/22-a(Ar2SiO2/2b(R2 2SiO2/2c (1)
{式中、R1は、それぞれ独立して、置換または非置換のアルケニル基を表し、R2は、それぞれ独立して、置換または非置換のアルキル基を表し、Arは、それぞれ独立して、置換または非置換のアリール基を表し、aは、0.3~2の数を表し、bは、0~100、cは、1~1,000、かつ、b/(b+c)=0~0.7を満たす数を表す。}
(B)下記平均組成式(2)で表される、1分子中に少なくとも2個のSi-H結合を有するオルガノハイドロジェンポリシロキサン:1~200質量部
3 deSiO[(4-d-e)/2] (2)
(式中、R3は、それぞれ独立して、脂肪族不飽和炭化水素基を除く置換または非置換の一価炭化水素基を表し、dおよびeは、0.7≦d≦2.5、0.01≦e≦1.0、かつ、0.8≦d+e≦2.7を満たす数を表す。)
(C)β-ジケトナト基、β-ケトエステラート基、および1,3-ジエステラート基の少なくとも1つを配位子として有する白金化合物
A method for producing a laminate comprising a first base material and an adhesive layer laminated on the first base material,
A laminate characterized in that the adhesive layer is formed by irradiating and curing a photocurable silicone composition containing the following components (A) to (C) with light having a peak wavelength of 380 to 420 nm. Production method.
(A) Linear organopolysiloxane represented by the following average formula ( 1 ): 100 parts by mass (R1R22SiO1 /2 ) a ( R23SiO1 /2 ) 2 - a (Ar2 SiO2 / 2 ) b ( R22SiO2 /2 ) c (1)
{wherein each R 1 independently represents a substituted or unsubstituted alkenyl group, each R 2 independently represents a substituted or unsubstituted alkyl group, and each Ar independently represents represents a substituted or unsubstituted aryl group, a represents a number of 0.3 to 2, b is 0 to 100, c is 1 to 1,000, and b / (b + c) = 0 to 0 Represents a number that satisfies .7. }
(B) Organohydrogenpolysiloxane having at least two Si—H bonds in one molecule, represented by the following average compositional formula (2): 1 to 200 parts by mass R 3 d H e SiO [(4- de)/2] (2)
(wherein each R 3 independently represents a substituted or unsubstituted monovalent hydrocarbon group excluding an aliphatic unsaturated hydrocarbon group; d and e are 0.7≤d≤2.5; represents a number that satisfies 0.01≦e≦1.0 and 0.8≦d+e≦2.7.)
(C) a platinum compound having at least one of a β-diketonato group, a β-ketoesterate group, and a 1,3-diesterate group as a ligand
前記(C)成分が、ビスアセチルアセトナト白金(II)である請求項1記載の積層体の製造方法。 2. The method for producing a laminate according to claim 1, wherein the component (C) is bisacetylacetonatoplatinum (II). (i)光硬化型シリコーン組成物を第一の基材表面に塗布する塗布工程と、
(ii)光硬化型シリコーン組成物にピーク波長380~420nmの光を照射する光照射工程と、
(iii)光硬化型シリコーン組成物を硬化させて接着剤層を形成する硬化工程と、
(iv)光硬化型シリコーン組成物または接着剤層の上に第二の基材を積層して第一および第二の基材を前記光硬化型シリコーン組成物または接着剤層を介して貼り合わせる貼合工程と
を含む請求項1または2記載の積層体の製造方法。
(i) a coating step of coating the photocurable silicone composition on the surface of the first substrate;
(ii) a light irradiation step of irradiating the photocurable silicone composition with light having a peak wavelength of 380 to 420 nm;
(iii) a curing step of curing the photocurable silicone composition to form an adhesive layer;
(iv) A second substrate is laminated on the photocurable silicone composition or adhesive layer, and the first and second substrates are bonded together via the photocurable silicone composition or adhesive layer. 3. The method for manufacturing a laminate according to claim 1, further comprising a bonding step.
前記硬化工程が、5~35℃で行われる請求項3記載の積層体の製造方法。 The method for producing a laminate according to claim 3, wherein the curing step is performed at 5 to 35°C. 前記第二の基材が、偏光板または偏光フィルムである請求項3または4記載の積層体の製造方法。 5. The method for producing a laminate according to claim 3, wherein said second base material is a polarizing plate or a polarizing film. 前記第一の基材が、偏光板または偏光フィルムである請求項1~5のいずれか1項記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the first base material is a polarizing plate or a polarizing film. 前記光のピーク波長が405nmである請求項1~6のいずれか1項記載の積層体の製造方法。 7. The method for producing a laminate according to any one of claims 1 to 6, wherein the light has a peak wavelength of 405 nm. 前記積層体が画像表示装置である請求項1~7のいずれか1項記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 7, wherein the laminate is an image display device.
JP2019055803A 2019-03-25 2019-03-25 Laminate manufacturing method Active JP7111041B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019055803A JP7111041B2 (en) 2019-03-25 2019-03-25 Laminate manufacturing method
PCT/JP2020/007298 WO2020195443A1 (en) 2019-03-25 2020-02-25 Production method for layered product
TW109108878A TW202100367A (en) 2019-03-25 2020-03-18 Production method for layered product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019055803A JP7111041B2 (en) 2019-03-25 2019-03-25 Laminate manufacturing method

Publications (2)

Publication Number Publication Date
JP2020158548A JP2020158548A (en) 2020-10-01
JP7111041B2 true JP7111041B2 (en) 2022-08-02

Family

ID=72609453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019055803A Active JP7111041B2 (en) 2019-03-25 2019-03-25 Laminate manufacturing method

Country Status (3)

Country Link
JP (1) JP7111041B2 (en)
TW (1) TW202100367A (en)
WO (1) WO2020195443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088634A (en) * 2019-12-03 2021-06-10 信越化学工業株式会社 Adhesion method of substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121960A (en) 2010-12-07 2012-06-28 Shin-Etsu Chemical Co Ltd Method for curing silicone resin composition
JP2015214637A (en) 2014-05-09 2015-12-03 信越化学工業株式会社 Method of adhering together thermoplastic resin substrate and organopolysiloxane resin
US20170312729A1 (en) 2016-04-29 2017-11-02 Saint-Gobain Performance Plastics Corporation Radiation curable system and method for making a radiation curable article
JP2017218513A (en) 2016-06-08 2017-12-14 信越化学工業株式会社 Photocurable fluoropolyether-based rubber composition and cured product of the same
JP2018003194A (en) 2016-07-01 2018-01-11 信越化学工業株式会社 Manufacturing method of silicone rubber coating base fabric for air bag, ultraviolet curable air bag coating agent and base fabric for air bag
WO2018079678A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 Layered body and method for manufacturing electronic component
JP2018180551A (en) 2010-03-23 2018-11-15 株式会社朝日ラバー Flexible reflective substrate, manufacturing method therefor and raw material composition used for the reflective substrate
WO2019049950A1 (en) 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 Cured silicone elastomer having radical reactivity and use of same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472241B2 (en) * 2011-09-16 2014-04-16 信越化学工業株式会社 Method for producing cured thin film using photocurable silicone resin composition
JP6217328B2 (en) * 2013-11-11 2017-10-25 信越化学工業株式会社 UV shielding silicone adhesive sheet for solar cell sealing and solar cell module using the same
US11555120B2 (en) * 2017-10-31 2023-01-17 Dow Toray Co., Ltd. Organopolysiloxane composition, and half-cured product and cured product produced from same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180551A (en) 2010-03-23 2018-11-15 株式会社朝日ラバー Flexible reflective substrate, manufacturing method therefor and raw material composition used for the reflective substrate
JP2012121960A (en) 2010-12-07 2012-06-28 Shin-Etsu Chemical Co Ltd Method for curing silicone resin composition
JP2015214637A (en) 2014-05-09 2015-12-03 信越化学工業株式会社 Method of adhering together thermoplastic resin substrate and organopolysiloxane resin
US20170312729A1 (en) 2016-04-29 2017-11-02 Saint-Gobain Performance Plastics Corporation Radiation curable system and method for making a radiation curable article
JP2017218513A (en) 2016-06-08 2017-12-14 信越化学工業株式会社 Photocurable fluoropolyether-based rubber composition and cured product of the same
JP2018003194A (en) 2016-07-01 2018-01-11 信越化学工業株式会社 Manufacturing method of silicone rubber coating base fabric for air bag, ultraviolet curable air bag coating agent and base fabric for air bag
WO2018079678A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 Layered body and method for manufacturing electronic component
WO2019049950A1 (en) 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 Cured silicone elastomer having radical reactivity and use of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021088634A (en) * 2019-12-03 2021-06-10 信越化学工業株式会社 Adhesion method of substrate
JP7220138B2 (en) 2019-12-03 2023-02-09 信越化学工業株式会社 Substrate bonding method

Also Published As

Publication number Publication date
JP2020158548A (en) 2020-10-01
WO2020195443A1 (en) 2020-10-01
TW202100367A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
JP5775231B1 (en) Addition-curing silicone composition
JP6897695B2 (en) Method for manufacturing UV curable silicone adhesive composition and laminate
JP6911741B2 (en) UV curable resin composition, adhesive and cured product
TW201827524A (en) Laminated body, manufacturing process thereof and manufacturing process for electronic article
TWI724402B (en) Ultraviolet curing type liquid organopolysiloxane composition for image display device, curing method thereof, method of bonding image display device components, and image display device
CN111212876B (en) Method for producing cured organopolysiloxane, laminate, and optical component
JP5805348B1 (en) Addition-curing silicone composition
JP2006181878A (en) Adhesion composite comprising silicone resin and epoxy resin and its production method
KR20200034356A (en) Silicone Composition
TWI816893B (en) Ultraviolet curable polysiloxane adhesive composition and method for manufacturing laminate
JP7111041B2 (en) Laminate manufacturing method
TWI785555B (en) Photocurable silicone composition, adhesive, silicone cured product
CN109415565B (en) Curable polyorganosiloxane composition and use thereof
TW201922938A (en) Organopolysiloxane composition
JP7172805B2 (en) Addition-curable silicone adhesive composition
KR20230106638A (en) UV-curable organopolysiloxane composition and use thereof
TWI845574B (en) UV-curable polysilicone adhesive composition and method for producing a laminate
JP7220138B2 (en) Substrate bonding method
JP2024033609A (en) Ultraviolet curable type liquid silicone composition for image display device, bonding method of image display device member, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7111041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150