JP7110770B2 - 化合物の分析方法 - Google Patents

化合物の分析方法 Download PDF

Info

Publication number
JP7110770B2
JP7110770B2 JP2018128985A JP2018128985A JP7110770B2 JP 7110770 B2 JP7110770 B2 JP 7110770B2 JP 2018128985 A JP2018128985 A JP 2018128985A JP 2018128985 A JP2018128985 A JP 2018128985A JP 7110770 B2 JP7110770 B2 JP 7110770B2
Authority
JP
Japan
Prior art keywords
compound
compounds
purity
impurities
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128985A
Other languages
English (en)
Other versions
JP2019020401A (ja
Inventor
公彦 冨士田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JP2019020401A publication Critical patent/JP2019020401A/ja
Application granted granted Critical
Publication of JP7110770B2 publication Critical patent/JP7110770B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、化合物の分析方法に属する。
従来、試料に含有される化合物の情報を得るための分析手法としては、高速液体クロマトグラフ(HPLC)、ガスクロマトグラフ(GC)等の各種クロマトグラフィーあるいはガスクロマトグラフ質量分析計(GC-MS)や液体クロマトグラフ質量分析計(LC-MS)、誘導結合プラズマ発光質量分析装置(ICP)(特許文献1の段落0087)等の質量分析が広く利用されている。これらの手法は、互いに異種の元素を有する化合物を別々に検出する上では有用である。
特開2017-66463号公報
試料に含有される化合物のうち、例えば有機金属錯体のように同種の元素を有するが配位子の数が異なることに起因して構造式や組成として異なる複数の化合物を分けて分析するには多くの困難が伴う。例えば上記の各種クロマトグラフィーや質量分析装置を使用する場合、同種の元素を有するが構造式や組成として異なる複数の化合物を各々分離するための分離条件の検討が必要となり、結果が得られるまで多くの時間を要してしまう。
なお、本明細書においては「所定の化合物の純度」「不純物」という用語を使用するが、「所定の化合物の純度」は、同種の元素を有するが構造式や組成として異なる複数の化合物のうち、所定の化合物の含有量(重量)の割合(後述の本実施形態での化合物X、Yの合計重量に対する化合物Xの重量の割合)のことを指し、「不純物」は、所望でない化合物(後述の本実施形態での化合物Y)のことを指す。
本発明の課題は、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能な手法を提供することにある。
本発明者は上記の知見に基づき、上記課題を解決するための手段を検討した。その結果、核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたうえで、核磁気共鳴分光法(以降、単にNMRと称する。)を用いた測定によって、同種の元素を有するが構造式や組成として異なる複数の化合物各々に由来したピークを表出させて、上記のような純度に係る分析を行う、という新規かつ画期的な手法を想到した。
上記の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の態様は、
核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたNMRスペクトルにおいて、該元素αを含有する所定の化合物X由来のピークと、該元素αを含有する化合物であって前記所定の化合物X以外の化合物Y由来のピークと、から、該元素αを含有する化合物X、Yのうちの化合物Xの純度に係る分析を行う分析工程を有する、化合物の分析方法である。
本発明の第2の態様は、第1の態様に記載の発明において、
前記元素αは、Sn、S、P、Cl、Mn、Rh、Pb、Pd、Cr、Cu、Mo、Liのいずれかである。
本発明の第3の態様は、第1または第2の態様に記載の発明において、
前記分析工程においては化合物X由来のピークと化合物Y由来のピークとから化合物Xおよび化合物Yの少なくともいずれかについての定量分析を行う。
本発明によれば、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能な手法を提供することが可能となる。
本実施形態における試料管(二重管)の概略断面図である。
以下、本発明の実施の形態について説明する。
なお、本明細書において「~」は所定の数値以上かつ所定の数値以下のことを指す。
また、本明細書における「化合物」とは元素そのもの(例えば金属単体)であるものは含まず、例えば複数の種類の元素を含有するものを指す。
また、特記の無い場合、スペクトルやピークとは、核磁気共鳴分光法を用いた測定における、縦軸を検出強度、横軸を化学シフト(ppm)とした際のスペクトルやピークを指す。
本実施形態に係る化合物の分析方法は主として分析工程と、該分析に対する準備工程とを有する。分析工程においては、核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたNMRスペクトルにおいて、該元素αを含有する所定の化合物X由来のピークと、該元素αを含有する化合物であって所定の化合物X以外の化合物Y由来のピークと、から、化合物Xの純度に係る分析を行う。
本実施形態においてはNMRを行う際に核磁気共鳴可能な元素αを使用するが、この元素αにおいては核磁気共鳴可能なものであって水素、炭素、窒素、酸素が(場合によってはリン、アルミニウムも)除かれたものであり、そうであれば特に限定は無い。例えば、化合物X、Yとなっても常磁性を有する金属元素(例えば鉄(Fe)、ニッケル(Ni)、コバルト(Co))を元素α(すなわちNMRの核)とした場合に、これらのαを含む化合物は、NMRスペクトルがブロードとなり、構造に関する情報を、不可能ではないが多少得づらくなる。
その一方、後述のマンガン(Mn)のように、価数が0価、2価、3価および4価であるMnは常磁性を示す一方で、価数が7価であるMnは常磁性を示さないような場合、Mnを元素α(すなわちNMRの核)としても差し支えない。
例えば元素αは核磁気共鳴可能である金属元素であるのが好ましい。こうすることにより、後述の実施例の項目にて示すように、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物Xの純度や化合物X以外の化合物Yであるところの不純物についてさらに簡便に分析可能となる。例えば、該元素αを含有する化合物であって化合物X以外の化合物Yは、化合物Xとは異なるピークを表出させる。本実施形態においてはこれを利用して化合物Xの純度に係る分析を行う。
元素αの具体例を以下に列挙する。
元素αが硫黄(S)の場合、化合物Xが硫酸ナトリウム(NaSO)、不純物である化合物Y1がチオ硫酸(H)としてもよい。硫酸ナトリウムは排水処理に用いられることがある。その一方、この試薬としての硫酸ナトリウムに不純物としてチオ硫酸が混在していた場合、排水中に白濁をもたらす等の不具合をもたらすおそれもある。
そこで、この試薬に対し本実施形態を適用すなわちこの試薬に対してSを核としてNMR測定を行うことにより、試薬における硫酸ナトリウムの純度を予め把握することが可能となる。
元素αがリン(P)の場合、試薬がリン系有機溶媒であり例えば化合物Xがリン酸ジエチルヘキシル、不純物である化合物Yがリン酸モノエチルヘキシル、化合物Yがリン酸としてもよい。リン酸系有機溶媒は所望の元素を抽出するために用いられる。その一方、その一方、この試薬としてのリン酸ジエチルヘキシルに不純物としてリン酸モノエチルヘキシルおよびリン酸が混在していた場合、抽出効率の低下等の不具合をもたらすおそれもある。
そこで、この試薬に対し本実施形態を適用すなわちこの試薬に対してPを核としてNMR測定を行うことにより、試薬におけるリン酸ジエチルヘキシルの純度を予め把握することが可能となる。
元素αが塩素(Cl)の場合、例えば塩素ガスを溶液中に吹き込み対象物に対して溶解ないし浸出処理を行う際に、正常な溶解ないし浸出処理が行われるには溶液中で塩素ガスは塩化物イオンとなる必要がある。
その一方、溶液中で、塩素ガスの塩素が次亜塩素酸、亜塩素酸、あるいは塩素ガスのままとなっている可能性もある。
そこで、塩化物イオンを化合物Xとし、不純物である次亜塩素酸、亜塩素酸、あるいは塩素ガスをそれぞれY、Y、Yとしてもよい。つまり、塩素ガスが吹き込まれた溶液に対し本実施形態を適用すなわちこの溶液に対してClを核としてNMR測定を行うことにより、溶液における塩化物イオンの純度(例えば濃度)を予め把握することが可能となる。
上記以外の元素αとしては、例えばすず(Sn)またはマンガン(Mn)が挙げられる。Snについては実施例の項目にて後述する。Mnの場合、化合物XをMnO としてもよい。同様の過酸化やそれ以外の組成の違いの有無による純度の把握は、他の金属元素にも適用可能である。例えば、白金族元素やその他(ロジウム(Rh)、鉛(Pb)、パラジウム(Pd)、クロム(Cr)、銅(Cu)、モリブデン(Mo)、リチウム(Li))を元素αとした場合にも適用可能である。
なお、化合物X、Yの同定は、所定の元素を核にしたときの公知の化学シフト対応表を使用すればよい。仮に新規物質について化合物X、Yの同定を行うことになったとしても、標準液を作製したうえで通常のNMR(核をH等)にて化合物X、Yを同定すれば済む。
化合物Xには特に限定は無いが、有機金属化合物または無機金属錯体であれば、後述の実施例の項目にて示すように、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物Xの純度や化合物X以外の化合物Yであるところの不純物についてさらに簡便に分析可能となる。例えば、有機金属化合物または無機金属錯体だと、配位子の種類や配位数が化合物Xとは異なる化合物Yや、炭化水素骨格が化合物Xとは異なる化合物Yが生成される可能性があり、そうなると化合物Yは化合物Xとは異なるピークを表出させる。本実施形態においてはこれを利用して化合物Xの純度に係る分析を行っている。
化合物Yは、例えば構造式や組成が多少異なる化合物であり、複数種類存在する場合はスペクトルにおける低い化学シフト側から順に化合物Y、Y、Y・・・と称し、これらを総称して化合物Yと称する。
なお、NMRを用いた測定の具体的手法としては公知の手法を用いればよく特に限定は無いが、以下、一例を挙げる。
本実施形態におけるNMRを用いた測定(本実施形態においてはFTNMR測定(FTNMR:Fourier Transfer NMR、以下、特記の無い限りNMRはFTNMRを指す。))においては、図1に示すような二重管、さらに言うと各管が同心となる多重管(もちろん三重管や四重管などであっても構わない。)を用いる。当該多重管のうち一つの管には磁場固定用重水素化溶媒(いわゆるロック溶媒)を配置し、別の管には上記化合物Xおよび化合物Yを含有する測定対象を配置するのが好ましい。例えば、多重管が二重管の場合、中心の管にはロック溶媒を配置し、その外側の管には測定対象を配置するのが好ましい。
ちなみに本実施形態における、上記化合物Xおよび化合物Y、ひいてはそれらを含有する測定対象の形態には特に限定は無いが、液体である方が簡便に分析可能であり好ましい。
なお、分析工程にて行う分析の内容であるが、NMRスペクトルにおいて化合物Xに起因する大きなピークの他に何本のピークが存在するかを調べることにより、何種類の化合物Yが存在するか、という定性的な分析を行うことが可能となる。
また、定量的な分析を行う場合の手法は公知の手法を採用すればよい。例えば後述の実施例の項目にて示すように、NMRスペクトルにおける化合物Xに由来するピークの面積と化合物Y、Y、・・・に由来するピークの面積の合計値との比(例えば面積百分率)により、該元素αを含有する化合物のうちの化合物Xの純度(すなわち純物である化合物Xと不純物である化合物Yとの合計重量に対する化合物Xの割合)を定量的に求めることが可能となる。もちろん純度ではなく不純度を求めても構わず、該不純度から純度を求めても構わず、化合物XとYとの含有量(重量、モル)の比を求めても構わない。つまり、化合物Xおよび化合物Yの少なくともいずれかについての定量分析を行えばよい。
なお、化合物Xに係る純度に係る分析の一環として化合物X、Yの濃度を定量する場合には、以下の手法を用いることも可能である。
一例を挙げると、化合物Xについてピーク面積と濃度との関係を表す検量線を作製しておき、化合物X、Yを含有する測定対象をNMRにかけNMRスペクトルを取得し、化合物Xに由来するピークの面積を求め、該検量線により濃度を求めるという手法を採用すればよい。
また、上記の例では内管にロック溶媒を挿入したが、元素αを含有する化合物であって化合物X、Yとは化学シフト(ピーク位置)が被らない濃度既知の化合物を基準物質としつつ該基準物質に対してロック溶媒を加えたものを使用しても構わない。該基準物質に由来するピークと、測定対象に含有される化合物X、Yに由来するピークとを一つのスペクトルで得ることができ、組成および濃度が既知の該基準物質に由来するピークの面積と化合物Xに由来するピークの面積との比から、化合物Xの濃度、ひいては一つのNMRスペクトル上に存在する化合物Yに由来するピーク面積に基づいて化合物Y、Y、Y・・・の濃度を算出することが可能となる。複数の測定対象を用意しておき、各測定対象における化合物X、Y各々の濃度の大小により純度を判断するという手法を用い、純度に係る分析を行ってもよい。
本実施形態においては、スペクトルのピークの面積は、ピークが出ていないピークの両端部分の間に基準となる直線を設定し、当該直線から上の部分すなわちピークの部分の強度の積分値として得ている。当該手法は、後述の実施例の項目に記載されたNMR装置を使用すれば容易に実施可能である。
以上に列挙した各分析内容をまとめて本実施形態においては「元素αを含有する化合物X、Yのうちの化合物Xの純度に係る分析」と称する。
以上の結果、本実施形態によれば、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能な手法を提供することが可能となる。しかも、試料を非破壊で分析することが可能であり、試料の変質といった形態変化を伴わずに分析可能となる。
本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
以下、本項目について説明する。本項目においては、化合物Xを所定の有機すず(Sn)化合物とした。つまり化合物Yは、すずを含有しつつも化合物Xとは異なる組成や構造式を有するものである。そのうえで実施例および比較例を行っているが、本発明の技術的範囲は本項目の記載に限定されるものではない。
説明の便宜上、比較例から説明し、その後、実施例について説明する。
所定の組成および構造式を有する有機すず化合物(化合物X)を純分として含有する試料A、試料B、試料Cを用意した。
(比較例1)
試料Aに含有される、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの複数の不純物(化合物Y)の割合を確認するために、化合物XをHPLC分析で定量しようと試みた。しかしながら、化合物Xのみならず化合物Yも、分析で使用する分離カラムに吸着してしまい、化合物Xを定量することができなかった。
(比較例2)
試料Aに含有される上記所定の有機すず化合物(化合物X)の純分と不純物(化合物Y)の割合を確認するために、化合物XをLC/MS分析で定量しようと試みた。しかしながら、化合物Xのみならず化合物Yも、分析で使用する分離カラムに吸着し、化合物Xを定量することが困難であった。
(比較例3)
試料Aに含有される上記所定の有機すず化合物(化合物X)の純分と不純物(化合物Y)の割合を確認するために、予め、化合物XとYに対するエチル化およびブチル化による誘導体化処理を行い、GC分析で定量しようと試みた。しかしながら、化合物Yが上手く誘導体化できず、定量することが困難であった。
(比較例4)
試料Aに含有される上記所定の有機すず化合物(化合物X)の純分と不純物(化合物Y)の割合を確認するために、予め、化合物XとYを水素化し、GC/MS分析で定量した。しかしながらこの定量に際し誘導体化処理を行う必要があるため、化合物XとYの割合を確認できるまでに1日を要した。
(実施例1)
試料Aの有機すず化合物の溶液を図1に示す試料管(二重管)の外管(日本精密化学製N-5P)に添加し、FTNMR測定時に必要な磁場固定用重水素化溶媒である重クロロホルム(関東化学製、特級)を二重管の内管(日本精密化学製N-502A)に添加した。その後、内管を外管に挿入し、119Sn核観測のFTNMR測定(Bruker Biospin製AVANCE400型)を行い、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの不純物(化合物Y、Y、Y・・・)のNMRスペクトルを得た。次いで、NMRスペクトル上に観測される純分と不純物に対するピークを帰属させ、純分と不純物が与えるピークの面積を算出した。
次に、純分と不純物が与えるピークの全面積に対する純分のピーク面積を百分率で算出し、有機すず化合物の純分と不純物の割合を確認した。その結果、有機すず化合物の純分(化合物X)と不純物(化合物Y)の割合は82.8%と17.2%であり、所要時間はたったの10分であった。
(実施例2)
実施例1で使用した有機すず化合物を試料Bにしたこと以外は、実施例1と同様の測定を行い、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの不純物(化合物Y、Y、Y・・・)のNMRスペクトルを得た。次いで、NMRスペクトル上に観測される純分と不純物に対するピークを帰属させ、純分と不純物が与えるピークの面積を算出した。
その後、有機すず化合物の純分と不純物の割合を確認した。その結果、有機すず化合物の純分(化合物X)と不純物(化合物Y)の割合は71.4%と28.6%であり、所要時間はたったの12分であった。
(実施例3)
実施例1で使用した有機すず化合物を試料Cにしたこと以外は、実施例1と同様の測定を行い、所定の組成および構造を有する有機すず化合物(化合物X)の純分と、そうでない組成または構造を有する有機すず化合物であるところの不純物(化合物Y、Y、Y・・・)のNMRスペクトルを得た。次いで、NMRスペクトル上に観測される純分と不純物に対するピークを帰属させ、純分と不純物が与えるピークの面積を算出し、有機すず化合物の純分と不純物の割合を確認した。
その結果、有機すず化合物の純分(化合物X)と不純物(化合物Y)の割合は91.5%と8.5%であり、所要時間はたったの14分であった。
上記の各実施例の結果をまとめたものを以下の表1に示す。
Figure 0007110770000001
上記表1が示すように、各実施例によれば、同種の元素を有するが構造式や組成として異なる複数の化合物のうち所定の化合物の純度やそれ以外の化合物であるところの不純物について簡便に分析可能であることがわかった。

Claims (2)

  1. 核磁気共鳴可能な元素α(水素、炭素、窒素、酸素を除く)を核にしたNMRスペクトルにおいて、該元素αを含有する所定の化合物X由来のピークと、該元素αを含有する化合物であって前記所定の化合物X以外の化合物Y由来のピークと、から、該元素αを含有する化合物X、Yのうちの化合物Xの純度に係る分析を行う分析工程を有し、
    前記元素αは、Sn、S、Cl、Mn、Rh、Pd、Cr、Cu、Mo、Liのいずれかである、化合物の分析方法。
  2. 前記分析工程においては化合物X由来のピークと化合物Y由来のピークとから化合物Xおよび化合物Yの少なくともいずれかについての定量分析を行う、請求項1に記載の化合物の分析方法。
JP2018128985A 2017-07-14 2018-07-06 化合物の分析方法 Active JP7110770B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138202 2017-07-14
JP2017138202 2017-07-14

Publications (2)

Publication Number Publication Date
JP2019020401A JP2019020401A (ja) 2019-02-07
JP7110770B2 true JP7110770B2 (ja) 2022-08-02

Family

ID=65355376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128985A Active JP7110770B2 (ja) 2017-07-14 2018-07-06 化合物の分析方法

Country Status (1)

Country Link
JP (1) JP7110770B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986305A (zh) * 2019-12-16 2021-06-18 有研工程技术研究院有限公司 一种新型核磁管及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130116547A1 (en) 2011-09-15 2013-05-09 The United States Government As Represented By The Department Of Veteran Affairs Measurement of Anaplerotic Flux by Hyperpolarization Transfer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190846A (ja) * 1984-03-10 1985-09-28 Jeol Ltd 核磁気共鳴装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130116547A1 (en) 2011-09-15 2013-05-09 The United States Government As Represented By The Department Of Veteran Affairs Measurement of Anaplerotic Flux by Hyperpolarization Transfer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Michael Weber et al.,"Method development in quantitative NMR towards metrologically traceable organic certified reference materials used as 31P qNMR standards",Analytical & Bioanalytical Chemistry,2015年04月,Vol.407, No.11,pp.3115-3123
Mohammad A. Al-Ghamdi et al.,"Evaluation and measurement of tetraethyl lead and impurities by lead-207 nuclear magnetic resonance",Preprints of Symposia,Vol.48, No.2,the Division of Petroleum Chemistry, Inc., American Chemical Society,2003年03月,pp.80-86

Also Published As

Publication number Publication date
JP2019020401A (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
Hernández et al. Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology
Abdolmohammad-Zadeh et al. A novel microextraction technique based on 1-hexylpyridinium hexafluorophosphate ionic liquid for the preconcentration of zinc in water and milk samples
Yuan et al. Methods for trace analysis of short-, medium-, and long-chain chlorinated paraffins: Critical review and recommendations
Ojeda et al. Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview
Sleno The use of mass defect in modern mass spectrometry
McIndoe et al. Assigning the ESI mass spectra of organometallic and coordination compounds
Agüera et al. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters
Manzoori et al. Ionic liquid-based single drop microextraction combined with electrothermal atomic absorption spectrometry for the determination of manganese in water samples
Liang et al. Displacement-dispersive liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of trace silver in environmental and geological samples
Liu et al. Profiling and classification of illicit heroin by ICP-MS analysis of inorganic elements
Buratti et al. Aluminum determination in biological fluids and dialysis concentrates via chelation with 8-hydroxyquinoline and solvent extraction/fluorimetry
Ieda et al. Evaluation of a data-processing method for target and non-target screening using comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry for environmental samples
Rister et al. Formation of multimeric steroid metal adducts and implications for isomer mixture separation by traveling wave ion mobility spectrometry
Lu et al. Nontargeted identification of chlorinated disinfection byproducts formed from natural organic matter using Orbitrap mass spectrometry and a halogen extraction code
Astolfi et al. An optimized method for sample preparation and elemental analysis of extra-virgin olive oil by inductively coupled plasma mass spectrometry
JP7110770B2 (ja) 化合物の分析方法
DeBord et al. Profiling of heroin and assignment of provenance by 87Sr/86Sr isotope ratio analysis
Liang et al. Determination of trace palladium in complicated matrices by displacement dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry
Zeng et al. Synergistic enhancement effect of room temperature ionic liquids for cloud point extraction combined with UV–vis spectrophotometric determination nickel in environmental samples
Liu et al. Profiling of illicit cocaine seized in China by ICP-MS analysis of inorganic elements
Ivanova et al. Determination of lanthanoids and some heavy and toxic elements in plant certified reference materials by inductively coupled plasma mass spectrometry
Filewood et al. A rapid gas chromatography quadrupole time-of-flight mass spectrometry method for the determination of polycyclic aromatic hydrocarbons and sulfur heterocycles in spilled crude oils
Zahn et al. Finding a needle in a haystack—Analyte-driven tools and techniques for information extraction and prioritization of chemicals from environmental (chromatography-) HRMS nontarget screening data
Xie et al. Determination of trace elements in residual oil by high-resolution inductively coupled plasma mass spectrometry
Dodbiba et al. Sensitive analysis of metal cations in positive ion mode electrospray ionization mass spectrometry using commercial chelating agents and cationic ion‐pairing reagents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7110770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150