JP7107110B2 - Power trading volume optimization device - Google Patents

Power trading volume optimization device Download PDF

Info

Publication number
JP7107110B2
JP7107110B2 JP2018167222A JP2018167222A JP7107110B2 JP 7107110 B2 JP7107110 B2 JP 7107110B2 JP 2018167222 A JP2018167222 A JP 2018167222A JP 2018167222 A JP2018167222 A JP 2018167222A JP 7107110 B2 JP7107110 B2 JP 7107110B2
Authority
JP
Japan
Prior art keywords
power
consumer
trading
amount
power trading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018167222A
Other languages
Japanese (ja)
Other versions
JP2020043634A (en
Inventor
良介 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018167222A priority Critical patent/JP7107110B2/en
Publication of JP2020043634A publication Critical patent/JP2020043634A/en
Application granted granted Critical
Publication of JP7107110B2 publication Critical patent/JP7107110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、所定地域に点在する電気自動車と需要家を含むグループを対象とした電力取引量最適化装置に関する。 TECHNICAL FIELD The present invention relates to an electric power trading volume optimization device for a group including electric vehicles and consumers scattered in a predetermined area.

近年、電気自動車、太陽光発電装置、需要家、電力系統との間で行われる電力取引を管理する技術が知られている。 2. Description of the Related Art In recent years, techniques for managing power transactions between electric vehicles, photovoltaic power generation devices, consumers, and power systems have been known.

例えば、特許文献1には、需要家が所有する電気自動車と電力系統との電力取引に着目した電気自動車の充放電量の管理方法について開示されている。 For example, Patent Literature 1 discloses a method for managing the charge/discharge amount of an electric vehicle, focusing on power transactions between an electric vehicle owned by a consumer and an electric power system.

また、例えば、特許文献2には、所定地域で運用される電気自動車に充電する電力を可能な限り所定地域に設置される太陽光発電装置から調達することで、太陽光発電装置の利用度を高める方法が開示されている。 Further, for example, in Patent Document 2, by procuring as much power as possible for charging an electric vehicle operated in a predetermined area from a solar power generation apparatus installed in a predetermined area, the degree of utilization of the solar power generation apparatus can be increased. A method for enhancing is disclosed.

特開2011-50240号公報Japanese Patent Application Laid-Open No. 2011-50240 特開2016-134160号公報JP 2016-134160 A

ところで、所定地域に点在する電気自動車及び需要家を含むグループを対象とした電力取引量の計画値を立案する上で、グループ全体の電力取引による収益を考慮することは重要である。 By the way, it is important to consider the profit from the power trading of the whole group when planning the planned value of the power trading volume for a group including electric vehicles and consumers scattered in a predetermined area.

そこで、本発明では、所定地域に点在する電気自動車及び需要家を含むグループ全体の電力取引による収益を最大化する電力取引量を算出することが可能な電力取引量最適化装置を提供することを目的とする。 Therefore, the present invention provides an electric power trading volume optimizing apparatus capable of calculating an electric power trading volume that maximizes profits from electric power trading of an entire group including electric vehicles and consumers scattered in a predetermined area. With the goal.

本実施形態は、所定地域に点在する電気自動車と需要家を含むグループを対象とした電力取引量最適化装置であって、前記電気自動車が関わる電力取引において前記電気自動車の電力需要を満たす制約条件、前記需要家が関わる電力取引において前記需要家の電力需要を満たす制約条件、前記電気自動車及び前記需要家が前記所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件に基づいて、前記グループ全体の電力取引による収益の最大化を目的関数とする最適化計算を行い、前記グループ内の前記電気自動車及び前記需要家が、前記電力取引相手と取引する電力取引量を算出する。 The present embodiment is an electric power trading volume optimization apparatus for a group including electric vehicles and consumers scattered in a predetermined area, and in electric power trading involving the electric vehicles, a constraint that satisfies the electric power demand of the electric vehicles. conditions, constraints to meet the power demand of the consumer in power transactions involving the consumer, and power generated when the electric vehicle and the consumer conduct power transactions with a power trading partner using the power transmission and distribution network in the predetermined area An optimization calculation is performed with an objective function of maximizing profits from power trading for the entire group based on the constraints on the amount of tradable amount, and the electric vehicle and the consumer in the group are aligned with the power trading partner. Calculate the power trading volume to be traded.

また、前記電力取引量最適化装置において、記憶装置に記憶された、電気自動車の駐車予定時刻及び駐車位置の情報、並びに需要家の位置情報に基づいて、前記グループ内の電力取引可能な電気自動車、需要家を選定し、前記選定した電気自動車及び需要家を対象に、前記電力取引量を算出することが好ましい。 Further, in the power trading volume optimization device, based on the information on the scheduled parking time and parking position of the electric vehicle and the location information of the consumer stored in the storage device, the electric vehicle capable of power trading in the group Preferably, a consumer is selected, and the electric power trading volume is calculated for the selected electric vehicle and consumer.

また、前記電力取引量最適化装置において、前記グループは、前記電気自動車、前記需要家に電力を分配する太陽光発電装置を含み、前記3つの制約条件と、前記太陽光発電装置が関わる電力取引において前記太陽光発電装置の発電量に関する制約条件とに基づいて、前記最適化計算を行うことが好ましい。 Further, in the power trading volume optimization device, the group includes the electric vehicle and a solar power generation device that distributes power to the consumer, and the three constraints and the power trading involving the solar power generation device Preferably, the optimization calculation is performed based on a constraint condition regarding the power generation amount of the photovoltaic power generation device.

また、前記電力取引量最適化装置において、記憶装置に記憶された、送配電網の許容電力量情報に基づいて、前記電力取引可能量の制約条件を設定することが好ましい。 Further, it is preferable that the power transaction volume optimization device sets the constraint condition of the power transaction volume based on the allowable power volume information of the power transmission and distribution network stored in the storage device.

また、前記電力取引量最適化装置において、前記最適化計算は、線形計画法を用いることが好ましい。 Further, in the power trading volume optimization device, it is preferable that the optimization calculation uses a linear programming method.

本発明によれば、所定地域に点在する電気自動車及び需要家を含むグループ全体の電力取引による収益を最大化する電力取引量を算出することが可能となる。 According to the present invention, it is possible to calculate the power trading volume that maximizes the profits from power trading for the entire group including electric vehicles and consumers scattered in a predetermined area.

本実施形態に係る電力取引量最適化装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the power trading volume optimization apparatus which concerns on this embodiment. 電力取引モデル作成部の処理内容を説明するフロー図である。It is a flowchart explaining the processing content of an electric power trading model preparation part. (a)~(c)は、EV{v}、需要家{d}、PV{pv}を中心として電力取引可能な電力取引相手を示す図である。(a) to (c) are diagrams showing power trading partners with which power trading is possible centering on EV {v i }, consumers {d i }, and PV {pv i }. 取引制約モデル作成部の処理内容を説明するフロー図である。It is a flowchart explaining the processing content of a transaction restrictions model preparation part. EV{v}と電力取引との間で使用する送配電網を例示する図である。FIG. 2 illustrates a transmission and distribution network used between EV{v 1 } and electricity trading; EV{v}と電力取引との間で使用する送配電網を例示する図である。FIG. 2 illustrates a transmission and distribution network used between EV{v 1 } and electricity trading; EV{v}と電力取引との間で使用する送配電網を例示する図である。FIG. 2 illustrates a transmission and distribution network used between EV{v 1 } and electricity trading; EV{v}と電力取引との間で使用する送配電網を例示する図である。FIG. 2 illustrates a transmission and distribution network used between EV{v 1 } and electricity trading;

図1は、本実施形態に係る電力取引量最適化装置の構成の一例を示すブロック図である。図1に示す電力取引量最適化装置1は、CPU等を含む処理部2、ROM及びRAM等を含む記憶部3を備える。処理部2は、記憶部3に格納される最適化プログラムを実行することによって実現される機能ブロックとして、条件設定部10、電力取引モデル作成部12、取引制約モデル作成部14、最適化計算部16を備えている。図1に示す電力取引量最適化装置1には、入力装置20、表示装置22が接続されている。入力装置20は、ユーザーからの入力操作を受け付けるためのユーザインターフェースであり、例えば、マウスやキーボード等である。表示装置22は、電力取引量最適化装置1が出力する情報や計算結果等を表示するためのユーザインターフェースであり、例えば、ディスプレイなどである。 FIG. 1 is a block diagram showing an example of the configuration of the power trading volume optimization device according to the present embodiment. The power trading volume optimization device 1 shown in FIG. 1 includes a processing unit 2 including a CPU and the like, and a storage unit 3 including a ROM, a RAM and the like. The processing unit 2 includes, as functional blocks realized by executing the optimization program stored in the storage unit 3, a condition setting unit 10, an electricity trading model creation unit 12, a transaction constraint model creation unit 14, an optimization calculation unit 16. An input device 20 and a display device 22 are connected to the power trading volume optimization device 1 shown in FIG. The input device 20 is a user interface for receiving input operations from the user, and is, for example, a mouse or keyboard. The display device 22 is a user interface for displaying information, calculation results, etc. output by the power trading volume optimization device 1, and is, for example, a display.

記憶部3は、処理部2とアクセス可能に接続され、最適化プログラム、電気自動車データベース(以下、EVデータベース24)、需要家データベース26、太陽光発電装置データベース(以下、PVデータベース28)、系統データベース30を記憶する。なお、各種データベースは、例えば、外部サーバの記憶装置に記憶されていてもよい。この場合、電力取引量最適化装置1は、インターネット等の通信部によって当該外部サーバに接続されており、処理部2は、当該外部サーバの記憶装置にアクセスすることができるように構成されている。 The storage unit 3 is accessiblely connected to the processing unit 2 and stores an optimization program, an electric vehicle database (hereinafter referred to as EV database 24), a consumer database 26, a photovoltaic power generation device database (hereinafter referred to as PV database 28), and a system database. store 30; Various databases may be stored in a storage device of an external server, for example. In this case, the power trading volume optimization device 1 is connected to the external server via a communication unit such as the Internet, and the processing unit 2 is configured to be able to access the storage device of the external server. .

EVデータベース24は、EVの駐車予定時刻及び駐車予定位置の情報、EV走行開始時の必要電池残量の情報、EVの電池の電池容量の情報、EVの電池の充放電効率の情報等を含む。 The EV database 24 includes information on the scheduled parking time and location of the EV, information on the remaining battery level required at the start of EV travel, information on the battery capacity of the EV battery, information on the charging/discharging efficiency of the EV battery, and the like. .

需要家データベース26は、需要家の位置情報、需要家が所有する充放電器の位置情報、需要家の電力需要量の情報等を含む。 The customer database 26 includes location information of the customer, location information of the charger/discharger owned by the customer, information on the amount of power demanded by the customer, and the like.

PVデータベース28は、PVの位置情報、PVの発電量の情報等を含む。 The PV database 28 includes PV position information, PV power generation amount information, and the like.

系統データベース30は、配電網における逆潮電力許容量の情報、送電網における逆潮電力許容量の情報、配電網間の許容託送量の情報、配電網間の許容託送量の情報、電力系統の電力買取単価の情報、電力系統のPV電力買取単価の情報、電力系統の電力販売単価の情報、配電網間の託送料金単価の情報を含む。 The system database 30 includes information on the allowable amount of reverse flow power in the distribution network, information on the allowable amount of reverse flow power in the power supply network, information on the allowable wheeling amount between the power grids, information on the allowable wheeling amount between the power grids, and information on the allowable wheeling amount between the power grids. It includes power purchase unit price information, power system PV power purchase unit price information, power system power sales unit price information, and transmission charge unit price information between distribution networks.

EVデータベース24、需要家データベース26及びPVデータベース28に含まれるそれぞれの情報は、所定地域に点在するEV、需要家及びPVを含むグループ内のEVの所有者、需要家、PVの所有者から事前に取得する情報であり、系統データベース30に含まれる情報は、EV、需要家、PVの電力取引の際に使用する送配電網の系統運営者から受け取る情報である。 Information contained in the EV database 24, the consumer database 26, and the PV database 28 is obtained from EV owners, consumers, and PV owners in a group containing EVs, consumers, and PVs scattered in a predetermined area. The information that is acquired in advance and included in the system database 30 is information that is received from the system operator of the power transmission and distribution network that is used for power trading between EVs, consumers, and PVs.

以下、処理部2の各機能部について説明する。 Each functional unit of the processing unit 2 will be described below.

条件設定部10は、最適化計算を行う期間と地域のデータ入力を受け付ける。 The condition setting unit 10 receives input of data on the period and region for which the optimization calculation is to be performed.

図2は、電力取引モデル作成部の処理内容を説明するフロー図である。電力取引モデル作成部12は、EVデータベース24、需要家データベース26、PVデータベース28、系統データベース30を参照して、需要家の位置情報、PVの位置情報、EVの駐車予定時刻及び駐車位置の情報から、条件設定部に入力された期間及び地域(所定地域)に含まれるEV、需要家、PVを選定し、電力系統の管轄エリア情報から、EV、需要家、PVの電力取引に関わる電力系統を選定する(ステップS10)。 FIG. 2 is a flowchart for explaining the processing contents of the power trading model creation unit. The power trading model creation unit 12 refers to the EV database 24, the consumer database 26, the PV database 28, and the system database 30 to obtain customer position information, PV position information, EV parking scheduled time and parking position information. EVs, consumers, and PV included in the period and region (predetermined region) input to the condition setting unit are selected from the above, and from the jurisdictional area information of the power system, the power system related to power trading of EVs, consumers, and PV is selected (step S10).

電力取引モデル作成部12は、需要家データベース26を参照して、選定した需要家が所有する充放電器の位置情報と、選定したEVにおける駐車予定時刻及び駐車位置の情報とを照合して、各時刻で、EVが接続可能な充放電器を選定する(ステップS12)。例えば、充放電器の位置とEVの駐車位置との距離に基づいて、EVが接続可能な充放電器を選定する。 The power trading model creation unit 12 refers to the consumer database 26, compares the position information of the charger/discharger owned by the selected consumer with the information on the scheduled parking time and parking position of the selected EV, At each time, a charger/discharger connectable to the EV is selected (step S12). For example, a charger/discharger connectable to the EV is selected based on the distance between the position of the charger/discharger and the parking position of the EV.

電力取引モデル作成部12は、最適化計算で求める変数(以下、電力取引変数)を作成する(ステップS14)。電力取引変数は、ステップS10で選定したEV、需要家、PV及び電力系統の間で交わされる電力取引量を指す。電力取引変数は、選定したEV、選定した需要家、選定したPVを中心として、それぞれと電力取引可能な電力取引相手を列挙することで得られる。例えば、選定した電力系統が{g・・・g}、選定した需要家が{d・・・d}、選定したEVが{v・・・v}、選定したPVが{pv・・・pv}の場合、以下の電力取引変数が作成される。 The power trading model creation unit 12 creates variables (hereinafter referred to as power trading variables) to be obtained by the optimization calculation (step S14). The power trading variable indicates the amount of power trading exchanged among the EV, consumer, PV, and power system selected in step S10. The power trading variables are obtained by enumerating the power trading partners with whom power trading is possible, centering on the selected EV, the selected consumer, and the selected PV. For example, the selected power system is {g 1 ... g o }, the selected consumer is {d 1 ... d p }, the selected EV is {v 1 ... v q }, and the selected PV is For {pv 1 . . . pv r }, the following power trading variables are created.

<EV{v}を中心として作成する電力取引変数>
図3(a)は、EV{v}を中心として電力取引可能な電力取引相手を示す図である。図3(a)に示すEV{v}の電力取引相手は、電力系統{g}、PV{pv}、需要家{d}、EV{v}である。この場合、時刻tにEV{v}が電力系統{g}から購入する電力量:Xg(t)(i=1・・・q、m=1・・・o)、時刻tにEV{v}が電力系統{g}へ売電する電力量:Xv(t)(i=1・・・q、m=1・・・o)、時刻tにEV{v}がPV{pv}から購入する電力量:Xpv(t)(i=1・・・q、l=1・・・r)、時刻tにEV{v}が需要家{d}へ売電する電力量:Xv(t)(i=1・・・q、k=1・・・p)、時刻tにEV{v}がEV{v}から購入する電力量:Xv(t)(i=1・・・q、j=1・・・q、i≠j)、時刻tにEV{v}がEV{v}へ売電する電力量:Xv(t)(i=1・・・q、j=1・・・q、i≠j)が電力取引変数となる。
但し、時刻tにてEVが走行中、又はEVが駐車中であっても、その駐車位置に接続可能な充放電器が無い場合、EVと電力取引相手との電力取引は不可能である。したがって、ステップS12において、EVが接続可能な充放電器を選定した時の時刻以外の時刻では、電力取引変数は0となる。
<Electricity trading variables created around EV {v i }>
FIG. 3(a) is a diagram showing power trading partners with whom power trading is possible centering on EV{v i }. The power trading partners of EV {v i } shown in FIG. 3(a) are power system {g m }, PV {pv l }, consumer {d k }, and EV {v j }. In this case, the amount of power that EV {v i } purchases from the power system {g m } at time t: Xg m v i (t) (i=1...q, m=1...o), time Amount of power sold by EV {v i } to electric power system {g m } at t: Xv i g m (t) (i=1...q, m=1...o), EV at time t Amount of electricity {v i } purchases from PV {pv l }: Xpv l v i (t) (i=1...q, l=1...r), EV{v i } at time t Amount of electric power sold to consumers {d k }: Xv i d k (t) (i=1...q, k=1...p), EV {v i } at time t becomes EV {v j }: Xv j v i (t) (i=1...q, j=1...q, i≠j), EV{v i } at time t becomes EV{v j }: Xv iv j (t) (i=1...q, j=1...q, i≠j) is the power trading variable.
However, even if the EV is running or parked at time t, if there is no connectable charger/discharger at the parking position, power trading between the EV and the power trading partner is impossible. Therefore, in step S12, the electric power transaction variable is 0 at times other than the time when the connectable charger/discharger is selected for the EV.

<需要家{d}を中心として作成する電力取引変数>
図3(b)は、需要家{d}を中心として電力取引可能な電力取引相手を示す図である。図3(b)に示す需要家{d}の電力取引相手は、電力系統{g}、PV{pv}、EV{v}である。この場合、時刻tに需要家{d}が電力系統{g}から購入する電力量:Xg(t)(k=1・・・p、m=1・・・o)、時刻tに需要家{d}がPV{pv}から購入する電力量:Xpv(t)(k=1・・・p、l=1・・・r)、時刻tに需要家{d}がEV{v}から購入する電力量:Xv(t)(k=1・・・p、i=1・・・q)が電力取引変数となる。
但し、前述したように、ステップS12において、EVが接続可能な充放電器を選定した時の時刻以外の時刻では、Xv(t)の電力取引変数は0となる。
<Electricity trading variables created centering on consumers {d k }>
FIG. 3(b) is a diagram showing power trading partners with whom power trading is possible centering on the consumer {d k }. Power trading partners of the consumer {d k } shown in FIG. 3(b) are the electric power system {g m }, PV {pv l }, and EV {v i }. In this case, the amount of power purchased by the consumer {d k } from the power system {g m } at time t: Xg m d k (t) (k=1...p, m=1...o), Power amount purchased by consumer {d k } from PV {pv l } at time t: Xpv l d k (t) (k=1 p, l=1 r), demand at time t The amount of power purchased by the house {d k } from the EV {v i }: Xv id k (t) (k=1...p, i=1...q) is the power trading variable.
However, as described above, the power trading variable of Xvid k ( t) is 0 at times other than the time when the EV connectable charger/discharger is selected in step S12.

<PV{pv}を中心として作成する電力取引変数>
図3(c)は、PV{pv}を中心として電力取引可能な電力取引相手を示す図である。図3(c)に示すPV{pv}の電力取引相手は、電力系統{g}、EV{v}、需要家{d}である。この場合、時刻tにPV{pv}から電力系統{g}へ売電する電力量:Xpv(t)(l=1・・・r、m=1・・・o)、時刻tにPV{pv}からEV{v}へ売電する電力量:Xpv(t)(l=1・・・r、i=1・・・q)、時刻tにPV{pv}から需要家{d}へ売電する電力量:Xpv(t)(l=1・・・r、k=1・・・p)が電力取引変数となる。
但し、前述したように、ステップS12において、EVが接続可能な充放電器を選定した時の時刻以外の時刻では、Xpv(t)の電力取引変数は0となる。
<Electricity trading variables created around PV {pv l }>
FIG. 3(c) is a diagram showing power trading partners with whom power trading is possible centering on PV {pv l }. The power trading partners of PV {pv l } shown in FIG. 3(c) are power system {g m }, EV {v i }, and consumer {d k }. In this case, the amount of power sold from the PV {pv l } to the power grid {g m } at time t: Xpv l g m (t) (l=1...r, m=1...o), Amount of power sold from PV {pv l } to EV {v i } at time t: Xpv l v i (t) (l=1...r, i=1...q), PV at time t The amount of power sold from {pv l } to consumers {d k }: Xpv l d k (t) (l=1...r, k=1...p) is a power trading variable.
However, as described above, the power trading variable of Xpv l v i (t) is 0 at times other than the time when the EV connectable charger/discharger is selected in step S12.

図4は、取引制約モデル作成部の処理内容を説明するフロー図である。取引制約モデル作成部14は、EVが関わる電力取引(図3(a))においてEVの電力需要を満たす制約条件を作成し(ステップS20)、需要家が関わる電力取引(図3(b))において需要家の電力需要を満たす制約条件を作成し(ステップS22)、PVが関わる電力取引(図3(c))においてPVの発電量に関する制約条件を作成し(ステップS24)、EV、需要家、PVが所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件を作成する(ステップS26)。以下、各ステップについて説明する。 FIG. 4 is a flow chart for explaining the processing contents of the transaction constraint model creating section. The transaction constraint model creation unit 14 creates constraint conditions that satisfy the power demand of EVs in power transactions involving EVs (FIG. 3(a)) (step S20), and power transactions involving consumers (FIG. 3(b)). Create a constraint condition that satisfies the power demand of the consumer (step S22), create a constraint condition regarding the power generation amount of PV in the power transaction involving PV (Fig. 3(c)) (step S24), EV, consumer , and PV use a power transmission and distribution network in a predetermined area to create constraints on the amount of electricity that can be traded (step S26). Each step will be described below.

<ステップS20>
取引制約モデル作成部14は、EVデータベース24から、EV走行開始時の必要電池残量の情報(Lvi(t))、EVの電池容量の情報(ΔSinmax vi、ΔSoutmax vi、Smax vi、Smin vi)、EVの電池の充放電効率の情報(ηin vi、ηout vi)を取得し、図3(a)のEV{v}が関わる電力取引においてEVの電力需要を満たす制約条件を作成する。具体的には、下式(1)~(5)で表される。
<Step S20>
From the EV database 24, the transaction constraint model creation unit 14 obtains information on the remaining battery level required at the start of EV travel (L vi (t)), information on the battery capacity of the EV (ΔS inmax vi , ΔS outmax vi , S max vi , S min vi ), EV battery charge/discharge efficiency information (η in vi , η out vi ), and satisfy the power demand of the EV in the power transaction involving the EV {v i } in FIG. Create constraints. Specifically, it is represented by the following formulas (1) to (5).

式(1)~(5)において、Svi(t):EV{v}の時刻tにおける電池の充電量、ηin vi:EV{v}の電池の充電効率、ηout vi:EV{v}の電池の放電効率、ΔSinmax vi:EV{v}の電池の単位時間当たりの充電可能量、ΔSoutmax vi:EV{v}の電池の単位時間当たりの放電可能量、Smax vi:EV{v}の電池の充電量の最大値、Smin vi:EV{v}の電池の充電量の最小値、Lvi(t):時刻tにおけるEV{v}の電力需要量(走行負荷)を意味する。 In formulas (1) to (5), S vi (t): battery charge amount at time t of EV {v i }, η in vi : battery charging efficiency of EV {v i }, η out vi : EV {v i } battery discharge efficiency, ΔS inmax vi : EV {v i } battery chargeable amount per unit time, ΔS outmax vi : EV {v i } battery dischargeable amount per unit time, S max vi : maximum value of battery charge amount of EV {v i }, S min vi : minimum value of battery charge amount of EV {v i }, L vi (t): EV {v i } at time t means the power demand (running load) of

式(1)~(5)において、式(1)は電池の充電量Svi(t)に基づく制約を表し、式(2)は、電池の単位時間当たりの充電可能量ΔSinmax viに基づく制約を表し、式(3)は、電池の単位時間当たりの放電可能量ΔSoutmax viに基づく制約を表し、式(4)は、電池の充電量Svi(t)の上下限に基づく制約を表し、式(5)は、EV{v}の電力需要量(走行負荷)に基づく制約を表す。 In formulas (1) to (5), formula (1) represents a constraint based on the battery charge amount S vi (t), and formula (2) is based on the chargeable amount ΔS inmax vi of the battery per unit time. Expression (3) expresses a constraint based on the dischargeable amount ΔS outmax vi of the battery per unit time, and Expression (4) expresses a constraint based on the upper and lower limits of the battery charge S vi (t). Equation (5) represents a constraint based on the power demand (running load) of EV{v i }.

Figure 0007107110000001
Figure 0007107110000001

Figure 0007107110000002
Figure 0007107110000002

Figure 0007107110000003
Figure 0007107110000003

Figure 0007107110000004
Figure 0007107110000004

Figure 0007107110000005
Figure 0007107110000005

<ステップS22>
取引制約モデル作成部14は、需要家データベース26から、需要家の電力需要量の情報を取得し、図3(b)の需要家{d}が関わる電力取引において需要家の電力需要を満たす制約条件を作成する。具体的には、下式(6)で表される。下式(6)において、Ldk(t):需要家{d}の時刻tにおける電力需要量を意味する。
<Step S22>
The transaction constraint model creation unit 14 acquires information on the electricity demand of the customer from the customer database 26, and satisfies the electricity demand of the customer in the electricity transaction involving the customer {d k } in FIG. 3(b). Create constraints. Specifically, it is represented by the following formula (6). In the following formula (6), L dk (t) means the power demand of the consumer {d k } at time t.

Figure 0007107110000006
Figure 0007107110000006

<ステップS24>
取引制約モデル作成部14は、PVデータベース28から、選定したPVの発電量の情報を取得し、図3(c)のPV{pv}が関わる電力取引においてPVの発電量に関する制約条件を作成する。具体的には、下式(7)で表される。下式(7)において、Ppvl(t):PV{pv}の時刻tにおける発電量を意味する。
<Step S24>
The transaction constraint model creation unit 14 acquires information on the power generation amount of the selected PV from the PV database 28, and creates a constraint condition on the power generation amount of the PV in the power transaction involving the PV {pv l } in FIG. 3(c). do. Specifically, it is represented by the following formula (7). In the following formula (7), P pvl (t) means the power generation amount of PV {pv l } at time t.

Figure 0007107110000007
Figure 0007107110000007

<ステップS26>
取引制約モデル作成部14は、系統データベース30から、所定地域の配電網における逆潮電力許容量の情報(DS out(t))、所定地域の送電網における逆潮電力許容量の情報(TSgm out(t))、配電網間の許容託送量の情報(DS in(t))、送電網間の許容託送量の情報(TSgm in(t))を取得して、EV、需要家、PVが所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件を作成する。具体的には、式(8)~(11)で表される。
<Step S26>
The transaction constraint model creation unit 14 obtains, from the system database 30, information on the allowable amount of reverse flow power in the distribution network in the predetermined area (DS n out (t)), information on the allowable amount of reverse flow power in the power grid in the predetermined area (TS gm out (t)), information on the allowable transmission volume between power grids (DS n in (t)), and information on the allowable transmission volume between power transmission grids (TS gmin (t)) are acquired, and EV, demand Constraint conditions for the amount of power that can be traded are created when a house or PV uses the power transmission and distribution network in a predetermined area to trade power with a power trading partner. Specifically, it is represented by the formulas (8) to (11).

下式(8)~(11)において、{TSgm(gm=1・・・u)}:所定地域に含まれる送電網、{DS(n=1・・・s)}:所定地域に含まれる配電網、IDdl{TSdk、DSdk}:需要家{d}が電力取引時に使用する送配電網、IDpvl{TSpvl、DSpvl}:PV{pv}が電力取引時に使用する送配電網、IDvj(t){TSvj(t)、DSvj(t)}:EV{v}が時刻tで充放電できる位置で電力取引時に使用する送配電網、TSgm out(t):送電網TSgmから流出する許容電力量、TSgm in(t):送電網TSgmへ流入する許容電力量、DS out(t):配電網DSから流出する許容電力量、DS in(t):配電網DSへ流入する許容電力量を意味する。 In the following formulas (8) to (11), {TS gm (gm=1...u)}: transmission network included in the predetermined area, {DS n (n=1...s)}: in the predetermined area Included distribution networks, ID dl {TS dk , DS dk }: power transmission and distribution networks used by consumers {d k } during power trading, ID pvl {TS pvl , DS pvl }: PV {pv l } used during power trading Power transmission and distribution network used, ID vj (t) {TS vj (t), DS vj (t)}: Power transmission and distribution network used at the time of power trading at a position where EV {v j } can be charged and discharged at time t, TS gm out (t): Allowable power amount flowing out of the power grid TS gm , TS gmin (t): Allowable power amount flowing into the power grid TS gm , DS n out (t): Allowable power flowing out of the power distribution network DS n Quantity, DS n in (t): means the amount of power allowed to flow into the distribution network DS n .

式(8)~(11)において、式(8)は、送電網TSgmから流出する許容電力量に基づく制約を表し、式(9)は、送電網TSgmへ流入する許容電力量に基づく制約を表し、式(10)は、配電網DSから流出する許容電力量に基づく制約を表し、式(11)は、配電網DSへ流入する許容電力量に基づく制約を表す。 In equations (8)-(11), equation (8) represents a constraint based on the amount of power allowed to flow out of the grid TS gm , and equation (9) based on the amount of power allowed to flow into the grid TS gm . Equation (10) represents a constraint based on the amount of power allowed to flow out of distribution network DS n , and Equation (11) represents a constraint based on the amount of power allowed to flow into distribution network DS n .

Figure 0007107110000008
Figure 0007107110000008

Figure 0007107110000009
Figure 0007107110000009

Figure 0007107110000010
Figure 0007107110000010

Figure 0007107110000011
Figure 0007107110000011

図5~8は、EV{v}と電力取引との間で使用する送配電網を例示する図である。例えば、図5に示すように、EV{v}が送配電網を使用せず、需要家{d}やEV{v}と電力のやり取りを行う場合には、式(8)~(11)の制約は作用しない。また、例えば、図6に示すように、EV{v}が配電網DS、送電網TS、配電網DSを使用して、需要家{d}と電力取引する場合には、DS out(t)、DS in(t)を考慮する必要があるため、式(10)及び式(11)の制約が作用する。また、図7に示すように、EV{v}が、配電網DS、送電網TSを使用して、電力系統gと電力取引する場合、DS out(t)、TS out(t)を考慮する必要があるため、式(8)及び式(10)の制約が作用する。また、図8に示すように、EV{v}が、配電網DS、送電網TS,TS、及び配電網DSを使用して、需要家{d}と電力取引する場合には、DS out(t)、TS out(t)、TS in(t)、DS in(t)を考慮する必要があるため、式(8)~式(11)の制約が作用する。上記は一例であって、例えば、EV{v}をPVに置き換えれば、需要家やEVとPVとの間での電力取引となるし、需要家{d}をEVに置き換えれば、送電網を使用した場合のEVとEVとの間での電力取引となる。 5-8 are diagrams illustrating the transmission and distribution grid used between EV{v 1 } and power trading. For example, as shown in FIG. 5, when EV {v 1 } does not use the power transmission and distribution network and exchanges electric power with consumer {d 1 } and EV {v 2 }, equations (8) to The constraint in (11) does not work. Also, for example, as shown in FIG. 6, when EV {v 1 } uses power distribution network DS 1 , power transmission network TS 1 , and power distribution network DS 2 to trade electric power with consumer {d 2 }, Since we need to consider DS 1 out (t), DS 2 in (t), the constraints of equations (10) and (11) come into play. Also, as shown in FIG. 7, when EV {v 1 } uses power distribution network DS 1 and transmission network TS 1 to trade power with power system g 1 , DS 1 out (t), TS 1 out Since (t) needs to be considered, the constraints of equations (8) and (10) come into play. Also, as shown in FIG. 8, when EV {v 1 } uses power distribution network DS 1 , power transmission networks TS 1 , TS 2 , and power distribution network DS 3 to trade electric power with consumer {d 3 } Since it is necessary to consider DS 1 out (t), TS 1 out (t), TS 2 in (t), and DS 3 in (t), the constraints of equations (8) to (11) are works. The above is just an example. For example, if EV {v 1 } is replaced with PV, it becomes a power transaction between the consumer or EV and PV, and if consumer {d 2 } is replaced with EV, transmission Power trading is between EVs using the network.

このように、EV、需要家、PVと電力取引相手との間で使用する送配電網によって、作用する制約式の組み合わせが異なる場合がある。したがって、取引制約モデル作成部14は、系統データベース30を参照し、管轄エリア情報から、EV、需要家、PVと電力取引相手との間で使用する送配電網を選定し、選定した送配電網に基づいて、作用させる制約式の組み合わせを設定する。 In this way, depending on the power transmission and distribution network used between EVs, consumers, PVs, and power trading partners, different combinations of constraint equations may be applied. Therefore, the transaction constraint model creation unit 14 refers to the system database 30, selects a transmission and distribution network to be used between EVs, consumers, PV and power trading partners from the jurisdictional area information, and selects the selected transmission and distribution network Set a combination of constraint expressions to be acted on based on .

最適化計算部16は、上記作成された制約条件(式(1)~(11))に基づいて、EV、需要家、PVを含むグループ全体の電力取引における収益の最大化を目的関数とする最適化計算を行う。最適化計算には、例えば、線形計画法、混合整数計画法、又は非線形計画法等が用いられるが、計算精度等の点で、線形計画法が好ましい。 The optimization calculation unit 16 sets maximization of profits in power trading for the entire group including EVs, consumers, and PVs as an objective function based on the created constraint conditions (formulas (1) to (11)). Perform optimization calculations. For example, linear programming, mixed integer programming, non-linear programming, or the like is used for the optimization calculation, but linear programming is preferable in terms of calculation accuracy and the like.

最適化計算における目的関数は、式(12)で示されるグループ全体の電力取引における収益(PL)の最大化とする。グループ全体の電力取引における収益(PL)は、売電収入(Income、式(13))から、系統電力の購入費用(CostP、式(14))、グループ内での電力取引における託送費用(CostT、式(15))、契約者に支払うインセンティブ(CostI、式(16))を引いた値である。なお、インセンティブとは、グループ内の契約者が特定の時刻に電力取引を行った場合に、当該契約者に支払われる報酬である。 The objective function in the optimization calculation is maximization of the profit (PL) in the power trading of the entire group shown by Equation (12). The profit (PL) in the power trading of the entire group is derived from the power sales income (Income, formula (13)), the purchase cost of grid power (CostP, formula (14)), and the wheeling cost in power trading within the group (CostT , formula (15)) and the incentive to pay to the contractor (CostI, formula (16)). An incentive is a reward paid to a contractor in a group when the contractor makes a power transaction at a specific time.

Figure 0007107110000012
Figure 0007107110000012

Figure 0007107110000013
Figure 0007107110000013

Figure 0007107110000014
Figure 0007107110000014

Figure 0007107110000015
Figure 0007107110000015

Figure 0007107110000016
Figure 0007107110000016

式(13)~(15)において、PBgm(t):電力系統{g}の電力買取単価、PBPVgm(t):電力系統{g}のPV電力買取単価、PSgm(t):電力系統{g}の電力販売単価、Tpvlvi(t):PV{pv}とEV{v}の間でかかる託送料金単価、Tpvldk(t):PV{pv}と需要家{dk}の間でかかる託送料金単価、Tvidk(t):EV{v}と需要家{dk}の間でかかる託送料金単価を意味する。式(13)~(15)で使用するこれらの単価は、系統データベース30に含まれる情報であり、最適化計算部16が、最適化計算を行う際に、系統データベース30から取得する。 In formulas (13) to (15), PB gm (t): power purchase unit price of power system {g m }, PBPV gm (t): PV power purchase unit price of power system {g m }, PS gm (t) : power sales unit price of power system {g m }, T pvlvi (t): transmission charge unit price between PV {pv l } and EV {v j }, T pvldk (t): PV {pv l } and demand A wheeling charge unit price between house {d k }, T vidk (t): Means a wheeling charge unit price between EV {v j } and customer {d k }. These unit prices used in formulas (13) to (15) are information contained in the system database 30, and are obtained from the system database 30 when the optimization calculation unit 16 performs the optimization calculation.

式(16)において、ISv:時刻tにEV{v}が電力系統{g}へ売電する際のインセンティブ係数、IBpv(t):時刻tにEV{v}がPV{pv}から購入する際のインセンティブ係数、ISv(t):時刻tにEV{v}が需要家{d}へ売電する際のインセンティブ係数、IBv(t):時刻tにEV{v}がEV{v}から購入する際のインセンティブ係数、IBv(t):時刻tにEV{v}がEV{v}へ売電する際のインセンティブ係数、IBpv(t):時刻tに需要家{d}がPV{pv}から購入する際のインセンティブ係数、IBv(t):時刻tに需要家{d}がEV{v}から購入する際のインセンティブ係数、ISpv(t):時刻tにPV{pv}から系統{g}へ売電する際のインセンティブ係数、ISpv(t):時刻tにPV{pv}からEV{v}へ売電する際のインセンティブ係数、ISpv(t):時刻tにPV{pv}から需要家{d}へ売電する際のインセンティブ係数を意味する。 In Equation (16), ISv i g m : incentive coefficient when EV {v i } at time t sells power to power grid {g m }, IBpv l v i (t): EV {v i at time t } purchases from PV {pv l }, ISv i d k (t): incentive coefficient when EV {v i } sells power to consumer {d k } at time t, IBv j v i (t): incentive coefficient when EV {v i } purchases from EV {v j } at time t, IB v i v j (t): EV {v i } to EV {v j } at time t Incentive coefficient for selling electricity, IBpv ld k (t): Incentive coefficient for consumer { d k } to purchase from PV {pv 1 } at time t, IBv id k (t): At time t Incentive coefficient when consumer {d k } purchases from EV {v i }, ISpv l g m (t): incentive coefficient when power is sold from PV {pv l } to grid {g m } at time t , ISpv l v i (t): incentive coefficient for selling power from PV {pv l } to EV {v i } at time t, ISpv l d k (t): demand from PV {pv l } at time t It means an incentive coefficient when selling electricity to a house {d k }.

各インセンティブ係数は予め設定された数値である。 Each incentive coefficient is a preset numerical value.

最適化計算部16による最適化計算によって、グループ全体の電力取引による収益を最大化する電力取引量(上記設定した電力取引変数)が算出される。本実施形態では、EV{v}が電力系統{g}から購入する電力量(Xg(t))、EV{v}が電力系統{g}へ売電する電力量(Xv(t))、EV{v}がPV{pv}から購入する電力量(Xpv(t))、EV{v}が需要家{d}へ売電する電力量(Xv(t))、EV{v}がEV{v}から購入する電力量(Xv(t))、EV{v}がEV{v}へ売電する電力量(Xv(t))、需要家{d}が電力系統{g}から購入する電力量(Xg(t))、需要家{d}がPV{pv}から購入する電力量(Xpv(t))、需要家{d}がEV{v}から購入する電力量(Xv(t))、PV{pv}から電力系統{g}へ売電する電力量(Xpv(t))、PV{pv}からEV{v}へ売電する電力量(Xpv(t))、PV{pv}から需要家{d}へ売電する電力量(Xpv(t))が算出される。 The optimization calculation by the optimization calculation unit 16 calculates the power trading volume (the power trading variable set above) that maximizes the profits from the power trading of the entire group. In this embodiment, the amount of power (Xg m v i (t)) purchased by the EV {v i } from the power system {g m } and the amount of power sold by the EV {v i } to the power system {g m } (Xv i g m (t)), EV {v i } purchases power amount from PV {pv l } (Xpv l v i (t)), EV {v i } sells to consumer {d k } electric energy (Xv i d k (t)), EV {v i } purchases electric energy from EV {v j } (Xv j v i (t)), EV {v i } is EV {v j }, the amount of power (Xv i v j (t)) purchased by the consumer {d i } from the power system {g m } (Xg m d i (t)), the consumer {d i } purchased from PV {pv l } (Xpv l d i (t)), consumer {d i } purchased from EV {v i } (Xv j d i (t)), PV The amount of power sold from {pv i } to the power system {g m } (Xpv i g m (t)), the amount of power sold from PV {pv i } to EV {v j } (Xpv i v j ( t)), the power amount (Xpv i d k (t)) to be sold from the PV {pv i } to the consumer {d k } is calculated.

また、本実施形態では、時刻毎の電力取引量が算出されるため、時刻毎の電力取引量を用いて電力取引計画を策定することも可能である。 Further, in the present embodiment, since the power trading volume is calculated for each hour, it is possible to formulate a power trading plan using the power trading volume for each hour.

最適化計算部により算出された電力取引量、当該電力取引を用いた電力取引計画、式(12)~(16)を用いて算出された収益等は、表示装置22に出力される。 The power trading volume calculated by the optimization calculation unit, the power trading plan using the power trading, profits calculated using the formulas (12) to (16), and the like are output to the display device 22 .

本実施形態では、EV、需要家、PVを含むグループを対象に電力取引量を算出しているが、PVを対象から外してもよい。この場合には、各式におけるPVに関する項を省けばよい。 In this embodiment, the power trading volume is calculated for a group including EVs, consumers, and PVs, but PVs may be excluded from the targets. In this case, the term relating to PV in each equation should be omitted.

また、本実施形態では、EV、需要家、PVが電力取引する電力取引相手の1つとして例示した電力系統は、電力市場の一例である。 Also, in the present embodiment, the power system illustrated as one of the power trading partners with which EVs, consumers, and PVs conduct power trading is an example of the power market.

1 電力取引量最適化装置、2 処理部、3 記憶部、10 条件設定部、12 電力取引モデル作成部、14 取引制約モデル作成部、16 最適化計算部、20 入力装置、22 表示装置、24 EVデータベース、26 需要家データベース、28 PVデータベース、30 系統データベース。
1 power trading volume optimization device 2 processing unit 3 storage unit 10 condition setting unit 12 power trading model creation unit 14 trading constraint model creation unit 16 optimization calculation unit 20 input device 22 display device 24 EV database, 26 consumer database, 28 PV database, 30 system database.

Claims (5)

所定地域に点在する電気自動車と需要家を含むグループを対象とした電力取引量最適化装置であって、
前記電気自動車が関わる電力取引において前記電気自動車の電力需要を満たす制約条件、前記需要家が関わる電力取引において前記需要家の電力需要を満たす制約条件、前記電気自動車及び前記需要家が前記所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件に基づいて、前記グループ全体の電力取引による収益の最大化を目的関数とする最適化計算を行い、前記グループ内の前記電気自動車及び前記需要家が、前記電力取引相手と取引する電力取引量を算出することを特徴とする電力取引量最適化装置。
A power trading volume optimization device for a group including electric vehicles and consumers scattered in a predetermined area,
Constraints satisfying the power demand of the electric vehicle in the power transaction involving the electric vehicle, constraints satisfying the power demand of the consumer in the power transaction involving the consumer, and the electric vehicle and the consumer being in the predetermined area An optimization calculation is performed with an objective function of maximizing profits from power trading for the entire group based on constraints on the amount of power that can be traded with a power trading partner using a power transmission and distribution network, and An electric power trading volume optimization device, wherein the electric vehicle and the consumer in the group calculate the electric power trading volume to be traded with the electric power trading partner.
記憶装置に記憶された、電気自動車の駐車予定時刻及び駐車位置の情報、並びに需要家の位置情報に基づいて、前記グループ内の電力取引可能な電気自動車、需要家を選定し、前記選定した電気自動車及び需要家を対象に、前記電力取引量を算出することを特徴とする請求項1に記載の電力取引量最適化装置。 Based on the information about the scheduled parking time and parking position of the electric vehicle and the location information of the customer stored in the storage device, select the electric vehicle and the customer who can conduct power transactions in the group, and 2. The power trading volume optimization device according to claim 1, wherein the power trading volume is calculated for automobiles and consumers. 前記グループは、前記電気自動車、前記需要家に電力を分配する太陽光発電装置を含み、
前記3つの制約条件と、前記太陽光発電装置が関わる電力取引において前記太陽光発電装置の発電量に関する制約条件とに基づいて、前記最適化計算を行うことを特徴とする請求項1又は2に記載の電力取引量最適化装置。
The group includes the electric vehicle and a photovoltaic power generation device that distributes power to the consumer,
3. The method according to claim 1 or 2, wherein the optimization calculation is performed based on the three constraints and a constraint on the amount of power generated by the photovoltaic power generation device in power transactions involving the photovoltaic power generation device. The power trading volume optimization device described.
記憶装置に記憶された、送配電網の許容電力量情報に基づいて、前記電力取引可能量の制約条件を設定することを特徴とする請求項1~3のいずれか1項に記載の電力取引量最適化装置。 4. The power trading according to any one of claims 1 to 3, wherein the constraint condition for the power tradeable amount is set based on the allowable power amount information of the power transmission and distribution network stored in the storage device. Quantity optimization device. 前記最適化計算は、線形計画法を用いることを特徴とする請求項1~4のいずれか1項に記載の電力取引量最適化装置。
The power trading volume optimization device according to any one of claims 1 to 4, wherein the optimization calculation uses a linear programming method.
JP2018167222A 2018-09-06 2018-09-06 Power trading volume optimization device Active JP7107110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167222A JP7107110B2 (en) 2018-09-06 2018-09-06 Power trading volume optimization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167222A JP7107110B2 (en) 2018-09-06 2018-09-06 Power trading volume optimization device

Publications (2)

Publication Number Publication Date
JP2020043634A JP2020043634A (en) 2020-03-19
JP7107110B2 true JP7107110B2 (en) 2022-07-27

Family

ID=69798933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167222A Active JP7107110B2 (en) 2018-09-06 2018-09-06 Power trading volume optimization device

Country Status (1)

Country Link
JP (1) JP7107110B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298581B2 (en) 2020-10-16 2023-06-27 トヨタ自動車株式会社 Bidding condition determination device and power trading system for power trading by mobile
JP7279698B2 (en) 2020-10-16 2023-05-23 トヨタ自動車株式会社 Bidding Condition Determining Device for Power Trading by Mobile
WO2023162771A1 (en) * 2022-02-28 2023-08-31 株式会社Sustech Information processing device, information processing method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082273A (en) 2013-10-24 2015-04-27 三菱電機株式会社 Aggregator service system, service reminder device, and energy management system
JP2015220862A (en) 2014-05-16 2015-12-07 トヨタ自動車株式会社 Power management system
JP2017199273A (en) 2016-04-28 2017-11-02 富士電機株式会社 Supply-demand planning device, supply-demand planning method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082273A (en) 2013-10-24 2015-04-27 三菱電機株式会社 Aggregator service system, service reminder device, and energy management system
JP2015220862A (en) 2014-05-16 2015-12-07 トヨタ自動車株式会社 Power management system
JP2017199273A (en) 2016-04-28 2017-11-02 富士電機株式会社 Supply-demand planning device, supply-demand planning method and program

Also Published As

Publication number Publication date
JP2020043634A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
DeForest et al. Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration
Algarvio et al. Multi-agent electricity markets: Retailer portfolio optimization using Markowitz theory
Alipour et al. Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets
Ghazvini et al. Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market
Momber et al. Retail pricing: A bilevel program for PEV aggregator decisions using indirect load control
KR101887347B1 (en) Method for virtual electric power trading between microgrids based on bidding way and agent apparatus for the same
KR101846026B1 (en) Method and system for managing electric power demand based on prior prediction of electric power demand
JP7107110B2 (en) Power trading volume optimization device
Iria et al. An energy-as-a-service business model for aggregators of prosumers
Afentoulis et al. Smart charging business model framework for electric vehicle aggregators
JP2022065828A (en) Bid condition determination device for power transaction with movable body, and power transaction system
KR102648702B1 (en) A method for evaluating the optimal ess feasibility based on the characterictics of business demand
Brijs et al. Quantifying electricity storage arbitrage opportunities in short-term electricity markets in the CWE region
Lopes et al. Agent-based simulation of electricity markets: Risk management and contracts for difference
JP2005339527A (en) Bid support system in electricity market
Ramesh et al. An optimal power flow solution to deregulated electricity power market using meta-heuristic algorithms considering load congestion environment
CN114757710A (en) Evaluation method for load aggregator bidding
JP7279698B2 (en) Bidding Condition Determining Device for Power Trading by Mobile
Lopes et al. Agent-based simulation of retail electricity markets: Bilateral trading players
Balram et al. Stochastic programming based model of an electricity retailer considering uncertainty associated with electric vehicle charging
JP2006099432A (en) Power trading system, method, and program
Badri et al. A short‐term optimal decision making framework of an electricity retailer considering optimized EVs charging model
Cowan et al. Technology Planning for Aligning Emerging Business Models and Regulatory Structures—The Case of Electric Vehicle Charging and the Smart Grid
JP6983342B1 (en) Electric power transaction support device
JP7403264B2 (en) Energy management system, integrated management device and energy management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7107110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150