JP2020043634A - Electric power transaction amount optimizing device - Google Patents

Electric power transaction amount optimizing device Download PDF

Info

Publication number
JP2020043634A
JP2020043634A JP2018167222A JP2018167222A JP2020043634A JP 2020043634 A JP2020043634 A JP 2020043634A JP 2018167222 A JP2018167222 A JP 2018167222A JP 2018167222 A JP2018167222 A JP 2018167222A JP 2020043634 A JP2020043634 A JP 2020043634A
Authority
JP
Japan
Prior art keywords
power
electric
amount
electric power
customer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018167222A
Other languages
Japanese (ja)
Other versions
JP7107110B2 (en
Inventor
良介 片岡
Ryosuke Kataoka
良介 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018167222A priority Critical patent/JP7107110B2/en
Publication of JP2020043634A publication Critical patent/JP2020043634A/en
Application granted granted Critical
Publication of JP7107110B2 publication Critical patent/JP7107110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To provide an electric power transaction amount optimizing device capable of calculating an electric power transaction amount optimizing a profit by electric power transactions in an entire group including electric vehicles and consumers scattered in a predetermined area.SOLUTION: The present invention relates to an electric power transaction amount optimizing device 1 defining a group including electric vehicles and consumers scattered in a predetermined area as a target. On the basis of a constraint condition meeting an electric power demand of an electric vehicle in an electric power transaction with which the electric vehicle is associated, a constraint condition meeting an electric power demand of a consumer in an electric power transaction with which the consumer is associated, and a constraint condition of an electric power transaction enabled amount which is generated when the electric vehicle and the consumer perform an electric power transaction with an electric power transaction partner by using a power transmission/distribution network in the predetermined area, optimization calculation is performed with maximization of a profit by the electric power transaction in the entire group defined as a target function, and an electric power transaction amount for the electric vehicle and the consumer in the group to transact with the electric power transaction partner is calculated.SELECTED DRAWING: Figure 1

Description

本発明は、所定地域に点在する電気自動車と需要家を含むグループを対象とした電力取引量最適化装置に関する。   The present invention relates to a power transaction amount optimization device for a group including electric vehicles and consumers scattered in a predetermined area.

近年、電気自動車、太陽光発電装置、需要家、電力系統との間で行われる電力取引を管理する技術が知られている。   2. Description of the Related Art In recent years, a technology for managing power transactions performed between an electric vehicle, a solar power generation device, a consumer, and a power system has been known.

例えば、特許文献1には、需要家が所有する電気自動車と電力系統との電力取引に着目した電気自動車の充放電量の管理方法について開示されている。   For example, Patent Literature 1 discloses a method of managing the charge / discharge amount of an electric vehicle that focuses on power transactions between an electric vehicle owned by a customer and an electric power system.

また、例えば、特許文献2には、所定地域で運用される電気自動車に充電する電力を可能な限り所定地域に設置される太陽光発電装置から調達することで、太陽光発電装置の利用度を高める方法が開示されている。   Further, for example, Patent Document 2 discloses that the degree of utilization of a solar power generation device is increased by procuring electric power for charging an electric vehicle operated in a predetermined region from a solar power generation device installed in a predetermined region as much as possible. A method for enhancing is disclosed.

特開2011−50240号公報JP 2011-50240 A 特開2016−134160号公報JP-A-2006-134160

ところで、所定地域に点在する電気自動車及び需要家を含むグループを対象とした電力取引量の計画値を立案する上で、グループ全体の電力取引による収益を考慮することは重要である。   By the way, it is important to consider the profits of the entire group from the power transaction when drafting the planned value of the power transaction amount for the group including the electric vehicles and the consumers scattered in the predetermined area.

そこで、本発明では、所定地域に点在する電気自動車及び需要家を含むグループ全体の電力取引による収益を最大化する電力取引量を算出することが可能な電力取引量最適化装置を提供することを目的とする。   In view of the above, the present invention provides an electric power trading amount optimizing device capable of calculating an electric power trading amount that maximizes profits from electric power trading of an entire group including electric vehicles and consumers scattered in a predetermined area. With the goal.

本実施形態は、所定地域に点在する電気自動車と需要家を含むグループを対象とした電力取引量最適化装置であって、前記電気自動車が関わる電力取引において前記電気自動車の電力需要を満たす制約条件、前記需要家が関わる電力取引において前記需要家の電力需要を満たす制約条件、前記電気自動車及び前記需要家が前記所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件に基づいて、前記グループ全体の電力取引による収益の最大化を目的関数とする最適化計算を行い、前記グループ内の前記電気自動車及び前記需要家が、前記電力取引相手と取引する電力取引量を算出する。   The present embodiment is an electric power transaction amount optimization device for a group including electric vehicles and consumers scattered in a predetermined area, and a constraint that satisfies the electric demand of the electric vehicles in electric power transactions involving the electric vehicles. A condition, a constraint condition that satisfies the power demand of the customer in the power transaction involving the customer, and an electric power generated when the electric vehicle and the customer perform power transaction with a power trading partner using the transmission and distribution network in the predetermined area. Based on the constraints of the tradable amount, perform an optimization calculation with an objective function of maximizing profits from power trading of the entire group, and the electric vehicle and the consumer in the group are able to communicate with the power trading partner. Calculate the amount of power traded.

また、前記電力取引量最適化装置において、記憶装置に記憶された、電気自動車の駐車予定時刻及び駐車位置の情報、並びに需要家の位置情報に基づいて、前記グループ内の電力取引可能な電気自動車、需要家を選定し、前記選定した電気自動車及び需要家を対象に、前記電力取引量を算出することが好ましい。   Further, in the electric power transaction amount optimizing device, the electric vehicles capable of electric power transaction within the group based on the information of the scheduled parking time and the parking position of the electric vehicle and the position information of the customer stored in the storage device. It is preferable to select a customer and calculate the power transaction amount for the selected electric vehicle and the customer.

また、前記電力取引量最適化装置において、前記グループは、前記電気自動車、前記需要家に電力を分配する太陽光発電装置を含み、前記3つの制約条件と、前記太陽光発電装置が関わる電力取引において前記太陽光発電装置の発電量に関する制約条件とに基づいて、前記最適化計算を行うことが好ましい。   In the power transaction amount optimization device, the group includes the electric vehicle and a photovoltaic power generation device that distributes power to the customer, and the three constraint conditions and a power transaction related to the photovoltaic power generation device. In the method, it is preferable that the optimization calculation is performed based on a constraint condition regarding a power generation amount of the solar power generation device.

また、前記電力取引量最適化装置において、記憶装置に記憶された、送配電網の許容電力量情報に基づいて、前記電力取引可能量の制約条件を設定することが好ましい。   Further, it is preferable that in the electric power transaction amount optimizing device, the constraint condition of the electric power transaction possible amount is set based on allowable electric energy information of a power transmission and distribution network stored in a storage device.

また、前記電力取引量最適化装置において、前記最適化計算は、線形計画法を用いることが好ましい。   Further, in the power transaction volume optimization device, it is preferable that the optimization calculation uses a linear programming method.

本発明によれば、所定地域に点在する電気自動車及び需要家を含むグループ全体の電力取引による収益を最大化する電力取引量を算出することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to calculate the electric power transaction amount which maximizes the profit by the electric power transaction of the whole group including the electric vehicle and consumer scattered in a predetermined area.

本実施形態に係る電力取引量最適化装置の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of a power transaction volume optimization device concerning this embodiment. 電力取引モデル作成部の処理内容を説明するフロー図である。It is a flowchart explaining the processing content of an electric power transaction model preparation part. (a)〜(c)は、EV{v}、需要家{d}、PV{pv}を中心として電力取引可能な電力取引相手を示す図である。(A) ~ (c) is a diagram showing the EV {v i}, customer {d i}, PV {pv i} possible power trading around the power counterparty. 取引制約モデル作成部の処理内容を説明するフロー図である。It is a flowchart explaining the processing content of a transaction constraint model preparation part. EV{v}と電力取引との間で使用する送配電網を例示する図である。Is a diagram illustrating a transmission and distribution network for use with the EV {v 1} and power trading. EV{v}と電力取引との間で使用する送配電網を例示する図である。Is a diagram illustrating a transmission and distribution network for use with the EV {v 1} and power trading. EV{v}と電力取引との間で使用する送配電網を例示する図である。Is a diagram illustrating a transmission and distribution network for use with the EV {v 1} and power trading. EV{v}と電力取引との間で使用する送配電網を例示する図である。Is a diagram illustrating a transmission and distribution network for use with the EV {v 1} and power trading.

図1は、本実施形態に係る電力取引量最適化装置の構成の一例を示すブロック図である。図1に示す電力取引量最適化装置1は、CPU等を含む処理部2、ROM及びRAM等を含む記憶部3を備える。処理部2は、記憶部3に格納される最適化プログラムを実行することによって実現される機能ブロックとして、条件設定部10、電力取引モデル作成部12、取引制約モデル作成部14、最適化計算部16を備えている。図1に示す電力取引量最適化装置1には、入力装置20、表示装置22が接続されている。入力装置20は、ユーザーからの入力操作を受け付けるためのユーザインターフェースであり、例えば、マウスやキーボード等である。表示装置22は、電力取引量最適化装置1が出力する情報や計算結果等を表示するためのユーザインターフェースであり、例えば、ディスプレイなどである。   FIG. 1 is a block diagram illustrating an example of a configuration of the power transaction amount optimizing device according to the present embodiment. The power trading amount optimizing device 1 shown in FIG. 1 includes a processing unit 2 including a CPU and the like, and a storage unit 3 including a ROM and a RAM. The processing unit 2 includes, as functional blocks realized by executing the optimization program stored in the storage unit 3, a condition setting unit 10, a power transaction model creation unit 12, a transaction constraint model creation unit 14, an optimization calculation unit 16 is provided. An input device 20 and a display device 22 are connected to the power trading amount optimizing device 1 shown in FIG. The input device 20 is a user interface for receiving an input operation from a user, and is, for example, a mouse or a keyboard. The display device 22 is a user interface for displaying information, calculation results, and the like output by the electric power trading volume optimization device 1, and is, for example, a display.

記憶部3は、処理部2とアクセス可能に接続され、最適化プログラム、電気自動車データベース(以下、EVデータベース24)、需要家データベース26、太陽光発電装置データベース(以下、PVデータベース28)、系統データベース30を記憶する。なお、各種データベースは、例えば、外部サーバの記憶装置に記憶されていてもよい。この場合、電力取引量最適化装置1は、インターネット等の通信部によって当該外部サーバに接続されており、処理部2は、当該外部サーバの記憶装置にアクセスすることができるように構成されている。   The storage unit 3 is connected to the processing unit 2 so as to be accessible, and includes an optimization program, an electric vehicle database (hereinafter, an EV database 24), a customer database 26, a solar power generation device database (hereinafter, a PV database 28), and a system database. 30 is stored. The various databases may be stored in a storage device of an external server, for example. In this case, the power trading amount optimizing device 1 is connected to the external server by a communication unit such as the Internet, and the processing unit 2 is configured to be able to access a storage device of the external server. .

EVデータベース24は、EVの駐車予定時刻及び駐車予定位置の情報、EV走行開始時の必要電池残量の情報、EVの電池の電池容量の情報、EVの電池の充放電効率の情報等を含む。   The EV database 24 includes information on the scheduled parking time and the scheduled parking position of the EV, information on the required remaining battery level at the start of EV traveling, information on the battery capacity of the EV battery, information on the charge / discharge efficiency of the EV battery, and the like. .

需要家データベース26は、需要家の位置情報、需要家が所有する充放電器の位置情報、需要家の電力需要量の情報等を含む。   The customer database 26 includes position information of the customer, position information of the charger / discharger owned by the customer, information of the power demand of the customer, and the like.

PVデータベース28は、PVの位置情報、PVの発電量の情報等を含む。   The PV database 28 includes PV position information, PV power generation amount information, and the like.

系統データベース30は、配電網における逆潮電力許容量の情報、送電網における逆潮電力許容量の情報、配電網間の許容託送量の情報、配電網間の許容託送量の情報、電力系統の電力買取単価の情報、電力系統のPV電力買取単価の情報、電力系統の電力販売単価の情報、配電網間の託送料金単価の情報を含む。   The system database 30 includes information on the allowable amount of reverse tide power in the distribution network, information on the allowable amount of reverse tide power in the transmission network, information on the allowable entrusted transmission amount between the distribution networks, information on the allowable entrusted transmission amount between the distribution networks, and the power system. The information includes information on power purchase unit price, information on PV power purchase unit price of the power system, information on power sale unit price of the power system, and information on unit price of a transmission fee between distribution networks.

EVデータベース24、需要家データベース26及びPVデータベース28に含まれるそれぞれの情報は、所定地域に点在するEV、需要家及びPVを含むグループ内のEVの所有者、需要家、PVの所有者から事前に取得する情報であり、系統データベース30に含まれる情報は、EV、需要家、PVの電力取引の際に使用する送配電網の系統運営者から受け取る情報である。   The respective information included in the EV database 24, the consumer database 26, and the PV database 28 is obtained from EV owners, consumers, and PV owners in a group including EVs, consumers, and PVs scattered in a predetermined area. Information acquired in advance and included in the grid database 30 is information received from a grid operator of a power transmission and distribution network used for electric power transactions between EVs, consumers, and PVs.

以下、処理部2の各機能部について説明する。   Hereinafter, each functional unit of the processing unit 2 will be described.

条件設定部10は、最適化計算を行う期間と地域のデータ入力を受け付ける。   The condition setting unit 10 receives data input of a period and a region where the optimization calculation is performed.

図2は、電力取引モデル作成部の処理内容を説明するフロー図である。電力取引モデル作成部12は、EVデータベース24、需要家データベース26、PVデータベース28、系統データベース30を参照して、需要家の位置情報、PVの位置情報、EVの駐車予定時刻及び駐車位置の情報から、条件設定部に入力された期間及び地域(所定地域)に含まれるEV、需要家、PVを選定し、電力系統の管轄エリア情報から、EV、需要家、PVの電力取引に関わる電力系統を選定する(ステップS10)。   FIG. 2 is a flowchart illustrating the processing performed by the power trading model creation unit. The power transaction model creation unit 12 refers to the EV database 24, the customer database 26, the PV database 28, and the system database 30, and refers to the location information of the customer, the location information of the PV, the scheduled parking time of the EV, and the information of the parking location. , An EV, a customer, and a PV included in a period and a region (predetermined region) input to the condition setting unit are selected. Is selected (step S10).

電力取引モデル作成部12は、需要家データベース26を参照して、選定した需要家が所有する充放電器の位置情報と、選定したEVにおける駐車予定時刻及び駐車位置の情報とを照合して、各時刻で、EVが接続可能な充放電器を選定する(ステップS12)。例えば、充放電器の位置とEVの駐車位置との距離に基づいて、EVが接続可能な充放電器を選定する。   The power transaction model creation unit 12 refers to the customer database 26, collates the position information of the charger / discharger owned by the selected customer with the information on the estimated parking time and the parking position in the selected EV, At each time, a charge / discharge device to which the EV can be connected is selected (step S12). For example, a charge / discharge device to which the EV can be connected is selected based on the distance between the position of the charge / discharge device and the parking position of the EV.

電力取引モデル作成部12は、最適化計算で求める変数(以下、電力取引変数)を作成する(ステップS14)。電力取引変数は、ステップS10で選定したEV、需要家、PV及び電力系統の間で交わされる電力取引量を指す。電力取引変数は、選定したEV、選定した需要家、選定したPVを中心として、それぞれと電力取引可能な電力取引相手を列挙することで得られる。例えば、選定した電力系統が{g・・・g}、選定した需要家が{d・・・d}、選定したEVが{v・・・v}、選定したPVが{pv・・・pv}の場合、以下の電力取引変数が作成される。 The power trading model creation unit 12 creates a variable (hereinafter, a power trading variable) determined by the optimization calculation (Step S14). The power trade variable indicates the amount of power traded between the EV, the customer, the PV, and the power system selected in step S10. The power trading variables can be obtained by listing the power trading partners that can perform power trading with each other, centering on the selected EV, the selected customer, and the selected PV. For example, selecting the power system {g 1 ··· g o}, chosen the consumer is {d 1 ··· d p}, selected the EV is {v 1 ··· v q}, selected the PV is for {pv 1 ··· pv r}, the following power transaction variables are created.

<EV{v}を中心として作成する電力取引変数>
図3(a)は、EV{v}を中心として電力取引可能な電力取引相手を示す図である。図3(a)に示すEV{v}の電力取引相手は、電力系統{g}、PV{pv}、需要家{d}、EV{v}である。この場合、時刻tにEV{v}が電力系統{g}から購入する電力量:Xg(t)(i=1・・・q、m=1・・・o)、時刻tにEV{v}が電力系統{g}へ売電する電力量:Xv(t)(i=1・・・q、m=1・・・o)、時刻tにEV{v}がPV{pv}から購入する電力量:Xpv(t)(i=1・・・q、l=1・・・r)、時刻tにEV{v}が需要家{d}へ売電する電力量:Xv(t)(i=1・・・q、k=1・・・p)、時刻tにEV{v}がEV{v}から購入する電力量:Xv(t)(i=1・・・q、j=1・・・q、i≠j)、時刻tにEV{v}がEV{v}へ売電する電力量:Xv(t)(i=1・・・q、j=1・・・q、i≠j)が電力取引変数となる。
但し、時刻tにてEVが走行中、又はEVが駐車中であっても、その駐車位置に接続可能な充放電器が無い場合、EVと電力取引相手との電力取引は不可能である。したがって、ステップS12において、EVが接続可能な充放電器を選定した時の時刻以外の時刻では、電力取引変数は0となる。
<Electricity trading variables to create around the EV {v i}>
3 (a) is a diagram showing a power tradable power counterparties around the EV {v i}. Power counterparty of FIG 3 (a) EV shown in {v i} is the electric power system {g m}, PV {pv l}, customer {d k}, is EV {v j}. In this case, the amount of power at time t is EV {v i} be purchased from the electric power system {g m}: Xg m v i (t) (i = 1 ··· q, m = 1 ··· o), time watt EV {v i} to t to sell electricity to the power grid {g m}: Xv i g m (t) (i = 1 ··· q, m = 1 ··· o), EV at time t watt {v i} purchase from PV {pv l}: Xpv l v i (t) (i = 1 ··· q, l = 1 ··· r), is EV {v i} at time t electric energy to sell electricity to consumers {d k}: Xv i d k (t) (i = 1 ··· q, k = 1 ··· p), EV at time t {v i} is EV {v electric energy purchased from j}: Xv j v i ( t) (i = 1 ··· q, j = 1 ··· q, i ≠ j), EV {v i} is EV at time t {v j electric energy to sell electricity to the}: Xv i v j (t ) (i = 1 ·· q, j = 1 ··· q, i ≠ j) is the power trading variables.
However, even if the EV is running or the EV is parked at time t, if there is no connectable charger / discharger at the parking position, the electric power transaction between the EV and the electric power trading partner is impossible. Therefore, in step S12, at times other than the time when the EV selects a connectable charger / discharger, the power transaction variable becomes 0.

<需要家{d}を中心として作成する電力取引変数>
図3(b)は、需要家{d}を中心として電力取引可能な電力取引相手を示す図である。図3(b)に示す需要家{d}の電力取引相手は、電力系統{g}、PV{pv}、EV{v}である。この場合、時刻tに需要家{d}が電力系統{g}から購入する電力量:Xg(t)(k=1・・・p、m=1・・・o)、時刻tに需要家{d}がPV{pv}から購入する電力量:Xpv(t)(k=1・・・p、l=1・・・r)、時刻tに需要家{d}がEV{v}から購入する電力量:Xv(t)(k=1・・・p、i=1・・・q)が電力取引変数となる。
但し、前述したように、ステップS12において、EVが接続可能な充放電器を選定した時の時刻以外の時刻では、Xv(t)の電力取引変数は0となる。
<Power trading variables created around the customer {d k }>
FIG. 3 (b) is a diagram illustrating power trading partners who can trade power centering on the customer {d k }. Power counterparty customers shown in FIG. 3 (b) {d k} is the electric power system {g m}, a PV {pv l}, EV { v i}. In this case, the electric energy purchased by the customer {d k } from the power system {g m } at the time t: Xg m d k (t) (k = 1... P, m = 1. Electric energy purchased by customer {d k } from PV {pv l } at time t: Xpv l d k (t) (k = 1... P, l = 1... R), demand at time t amount of power house {d k} to buy from EV {v i}: Xv i d k (t) (k = 1 ··· p, i = 1 ··· q) is the power trading variables.
However, as described above, at step S12, the time other than the time when the EV has selected discharge unit connectable, the Xv i d k power trading variable 0 (t).

<PV{pv}を中心として作成する電力取引変数>
図3(c)は、PV{pv}を中心として電力取引可能な電力取引相手を示す図である。図3(c)に示すPV{pv}の電力取引相手は、電力系統{g}、EV{v}、需要家{d}である。この場合、時刻tにPV{pv}から電力系統{g}へ売電する電力量:Xpv(t)(l=1・・・r、m=1・・・o)、時刻tにPV{pv}からEV{v}へ売電する電力量:Xpv(t)(l=1・・・r、i=1・・・q)、時刻tにPV{pv}から需要家{d}へ売電する電力量:Xpv(t)(l=1・・・r、k=1・・・p)が電力取引変数となる。
但し、前述したように、ステップS12において、EVが接続可能な充放電器を選定した時の時刻以外の時刻では、Xpv(t)の電力取引変数は0となる。
<Power trading variables created around PV {pv l }>
FIG. 3 (c) is a diagram showing power trading partners capable of power trading centering on PV {pv l }. Power counterparty PV {pv l} shown in FIG. 3 (c), the power system {g m}, is EV {v i}, customer {d k}. In this case, the amount of power sold from the PV {pv l } to the power system {g m } at time t: Xpv l g m (t) (l = 1... R, m = 1... O), electric energy to sell electricity from PV {pv l} at time t to the EV {v i}: Xpv l v i (t) (l = 1 ··· r, i = 1 ··· q), PV at time t The amount of power sold from {pv l } to the customer {d k }: Xpv l d k (t) (l = 1... R, k = 1... P) is a power trading variable.
However, as described above, at step S12, the time other than the time when the EV has selected discharge unit connectable, the Xpv l v power trading variable 0 i (t).

図4は、取引制約モデル作成部の処理内容を説明するフロー図である。取引制約モデル作成部14は、EVが関わる電力取引(図3(a))においてEVの電力需要を満たす制約条件を作成し(ステップS20)、需要家が関わる電力取引(図3(b))において需要家の電力需要を満たす制約条件を作成し(ステップS22)、PVが関わる電力取引(図3(c))においてPVの発電量に関する制約条件を作成し(ステップS24)、EV、需要家、PVが所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件を作成する(ステップS26)。以下、各ステップについて説明する。   FIG. 4 is a flowchart illustrating the processing content of the transaction constraint model creation unit. The transaction constraint model creating unit 14 creates a constraint condition that satisfies the electric power demand of the EV in the electric power transaction involving the EV (FIG. 3A) (Step S20), and the electric power transaction involving the customer (FIG. 3B). In step S22, a constraint condition that satisfies the power demand of the consumer is created (step S22), and in the power transaction involving the PV (FIG. 3C), a constraint condition regarding the power generation amount of the PV is created (step S24). Then, a constraint condition is created for the amount of power that can be traded when the PV trades with the power trading partner using the power transmission and distribution network in the predetermined area (step S26). Hereinafter, each step will be described.

<ステップS20>
取引制約モデル作成部14は、EVデータベース24から、EV走行開始時の必要電池残量の情報(Lvi(t))、EVの電池容量の情報(ΔSinmax vi、ΔSoutmax vi、Smax vi、Smin vi)、EVの電池の充放電効率の情報(ηin vi、ηout vi)を取得し、図3(a)のEV{v}が関わる電力取引においてEVの電力需要を満たす制約条件を作成する。具体的には、下式(1)〜(5)で表される。
<Step S20>
Trading constraints model creation unit 14, from the EV database 24, information of necessary remaining battery power at the start of the EV travel (L vi (t)), the battery capacity of the EV information (ΔS inmax vi, ΔS outmax vi , S max vi , S min vi), charge and discharge efficiency of information (eta in vi battery of EV, acquires eta out vi), satisfies the EV power demand in EV {v i} power trading involving shown in FIG. 3 (a) Create constraints. Specifically, it is represented by the following equations (1) to (5).

式(1)〜(5)において、Svi(t):EV{v}の時刻tにおける電池の充電量、ηin vi:EV{v}の電池の充電効率、ηout vi:EV{v}の電池の放電効率、ΔSinmax vi:EV{v}の電池の単位時間当たりの充電可能量、ΔSoutmax vi:EV{v}の電池の単位時間当たりの放電可能量、Smax vi:EV{v}の電池の充電量の最大値、Smin vi:EV{v}の電池の充電量の最小値、Lvi(t):時刻tにおけるEV{v}の電力需要量(走行負荷)を意味する。 In the formula (1) ~ (5), S vi (t): the amount of charge of the battery at time t of the EV {v i}, η in vi: charging efficiency of the battery of the EV {v i}, η out vi: EV {v i} battery discharge efficiency, ΔS inmax vi: chargeable amount per unit time battery EV {v i}, ΔS outmax vi: dischargeable per unit time battery EV {v i}, S max vi: EV {v i } charge amount of the maximum value of the cell, S min vi: EV {v i} charge amount minimum value of the battery, L vi (t): EV at time t {v i} Power demand (running load).

式(1)〜(5)において、式(1)は電池の充電量Svi(t)に基づく制約を表し、式(2)は、電池の単位時間当たりの充電可能量ΔSinmax viに基づく制約を表し、式(3)は、電池の単位時間当たりの放電可能量ΔSoutmax viに基づく制約を表し、式(4)は、電池の充電量Svi(t)の上下限に基づく制約を表し、式(5)は、EV{v}の電力需要量(走行負荷)に基づく制約を表す。 In Expressions (1) to (5), Expression (1) represents a constraint based on the charge amount S vi (t) of the battery, and Expression (2) is based on the chargeable amount per unit time ΔS inmax vi of the battery. Equation (3) represents a constraint based on the dischargeable amount ΔS outmax vi of the battery per unit time, and equation (4) represents a constraint based on the upper and lower limits of the battery charge S vi (t). represents the formula (5) represents a constraint that is based on the power demand of EV {v i} (running load).

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

<ステップS22>
取引制約モデル作成部14は、需要家データベース26から、需要家の電力需要量の情報を取得し、図3(b)の需要家{d}が関わる電力取引において需要家の電力需要を満たす制約条件を作成する。具体的には、下式(6)で表される。下式(6)において、Ldk(t):需要家{d}の時刻tにおける電力需要量を意味する。
<Step S22>
The transaction constraint model creation unit 14 acquires information on the power demand of the customer from the customer database 26, and satisfies the power demand of the customer in the power transaction involving the customer {d k } in FIG. Create constraints. Specifically, it is represented by the following equation (6). In the following equation (6), L dk (t) means the power demand at the time t of the customer {d k }.

Figure 2020043634
Figure 2020043634

<ステップS24>
取引制約モデル作成部14は、PVデータベース28から、選定したPVの発電量の情報を取得し、図3(c)のPV{pv}が関わる電力取引においてPVの発電量に関する制約条件を作成する。具体的には、下式(7)で表される。下式(7)において、Ppvl(t):PV{pv}の時刻tにおける発電量を意味する。
<Step S24>
The transaction constraint model creation unit 14 acquires information on the amount of power generation of the selected PV from the PV database 28, and creates a constraint on the amount of power generation of the PV in the power transaction involving the PV {pv l } in FIG. I do. Specifically, it is represented by the following equation (7). In the following equation (7), P pvl (t): means the amount of power generation at time t of PV {pv l }.

Figure 2020043634
Figure 2020043634

<ステップS26>
取引制約モデル作成部14は、系統データベース30から、所定地域の配電網における逆潮電力許容量の情報(DS out(t))、所定地域の送電網における逆潮電力許容量の情報(TSgm out(t))、配電網間の許容託送量の情報(DS in(t))、送電網間の許容託送量の情報(TSgm in(t))を取得して、EV、需要家、PVが所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件を作成する。具体的には、式(8)〜(11)で表される。
<Step S26>
From the system database 30, the transaction constraint model creation unit 14 obtains information on the allowable amount of reverse power in the distribution network in a predetermined area (DS n out (t)) and information on the allowable amount of reverse power in the transmission network in the predetermined area (TS). gm out (t)), information of allowable consignment amount of power distribution networks (DS n in (t)) , the allowable consignment amount of information of power transmission networks (TS gm in (t)) to get the, EV, demand A constraint is created on the amount of power that can be traded when a house or PV trades with a power trading partner using a power transmission and distribution network in a predetermined area. Specifically, it is represented by equations (8) to (11).

下式(8)〜(11)において、{TSgm(gm=1・・・u)}:所定地域に含まれる送電網、{DS(n=1・・・s)}:所定地域に含まれる配電網、IDdl{TSdk、DSdk}:需要家{d}が電力取引時に使用する送配電網、IDpvl{TSpvl、DSpvl}:PV{pv}が電力取引時に使用する送配電網、IDvj(t){TSvj(t)、DSvj(t)}:EV{v}が時刻tで充放電できる位置で電力取引時に使用する送配電網、TSgm out(t):送電網TSgmから流出する許容電力量、TSgm in(t):送電網TSgmへ流入する許容電力量、DS out(t):配電網DSから流出する許容電力量、DS in(t):配電網DSへ流入する許容電力量を意味する。 In the following equations (8) to (11), {TS gm (gm = 1... U)}: a transmission network included in a predetermined area, {DS n (n = 1... S)}: a predetermined area Included power grid, ID dl {TS dk , DS dk }: Power grid used by customer {d k } during power trading, ID pvl {TS pvl , DS pvl }: PV {pv l } during power trading Transmission / distribution network used, ID vj (t) {TS vj (t), DS vj (t)}: Transmission / distribution network used at the time of EV {v j } charging / discharging at time t during power trading, TS gm out (t): the allowable amount of power flowing out from the power grid TS gm, TS gm in (t ): the allowable amount of power flowing into the power grid TS gm, DS n out (t ): allowable power that flows from the power distribution network DS n amount, DS n in (t): flowing into the distribution network DS n Means that the allowable amount of power.

式(8)〜(11)において、式(8)は、送電網TSgmから流出する許容電力量に基づく制約を表し、式(9)は、送電網TSgmへ流入する許容電力量に基づく制約を表し、式(10)は、配電網DSから流出する許容電力量に基づく制約を表し、式(11)は、配電網DSへ流入する許容電力量に基づく制約を表す。 In Expressions (8) to (11), Expression (8) represents a constraint based on an allowable power amount flowing out from the power transmission network TS gm , and Expression (9) is based on an allowable power amount flowing into the power transmission network TS gm . It represents a constraint, equation (10) represents a constraint that is based on the allowable amount of power flowing from the power distribution network DS n, equation (11) represents a constraint that is based on the allowable amount of power flowing into the grid DS n.

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

図5〜8は、EV{v}と電力取引との間で使用する送配電網を例示する図である。例えば、図5に示すように、EV{v}が送配電網を使用せず、需要家{d}やEV{v}と電力のやり取りを行う場合には、式(8)〜(11)の制約は作用しない。また、例えば、図6に示すように、EV{v}が配電網DS、送電網TS、配電網DSを使用して、需要家{d}と電力取引する場合には、DS out(t)、DS in(t)を考慮する必要があるため、式(10)及び式(11)の制約が作用する。また、図7に示すように、EV{v}が、配電網DS、送電網TSを使用して、電力系統gと電力取引する場合、DS out(t)、TS out(t)を考慮する必要があるため、式(8)及び式(10)の制約が作用する。また、図8に示すように、EV{v}が、配電網DS、送電網TS,TS、及び配電網DSを使用して、需要家{d}と電力取引する場合には、DS out(t)、TS out(t)、TS in(t)、DS in(t)を考慮する必要があるため、式(8)〜式(11)の制約が作用する。上記は一例であって、例えば、EV{v}をPVに置き換えれば、需要家やEVとPVとの間での電力取引となるし、需要家{d}をEVに置き換えれば、送電網を使用した場合のEVとEVとの間での電力取引となる。 Figure 5-8 is a diagram illustrating the transmission and distribution network for use with the EV {v 1} and power trading. For example, as shown in FIG. 5, when EV {v 1 } does not use the power transmission and distribution network and exchanges power with customers {d 1 } and EV {v 2 }, equations (8) to (8) are used. The restriction of (11) does not work. For example, as shown in FIG. 6, when the EV {v 1 } trades power with the customer {d 2 } using the power distribution network DS 1 , the power transmission network TS 1 , and the power distribution network DS 2 , Since it is necessary to consider DS 1 out (t) and DS 2 in (t), the constraints of Expressions (10) and (11) act. Also, as shown in FIG. 7, when the EV {v 1 } uses the power distribution network DS 1 and the power transmission network TS 1 to trade power with the power system g 1 , DS 1 out (t) and TS 1 out Since it is necessary to consider (t), the restrictions of Expressions (8) and (10) act. Also, as shown in FIG. 8, when EV {v 1 } trades power with customer {d 3 } using distribution network DS 1 , transmission networks TS 1 and TS 2 , and distribution network DS 3. Needs to consider DS 1 out (t), TS 1 out (t), TS 2 in (t), and DS 3 in (t), so the constraints of Expressions (8) to (11) are not satisfied. Works. The above is an example. For example, if EV {v 1 } is replaced with PV, a power transaction is performed between the customer and the EV and PV, and if the customer {d 2 } is replaced with EV, power transmission is performed. It is an electric power transaction between EVs when a network is used.

このように、EV、需要家、PVと電力取引相手との間で使用する送配電網によって、作用する制約式の組み合わせが異なる場合がある。したがって、取引制約モデル作成部14は、系統データベース30を参照し、管轄エリア情報から、EV、需要家、PVと電力取引相手との間で使用する送配電網を選定し、選定した送配電網に基づいて、作用させる制約式の組み合わせを設定する。   As described above, the combination of the constraint equations that operate may differ depending on the transmission / distribution network used between the EV, the customer, the PV, and the power trading partner. Therefore, the transaction constraint model creation unit 14 refers to the grid database 30 to select a power transmission and distribution network to be used between the EV, the customer, the PV, and the power trading partner from the jurisdiction area information, and selects the selected power transmission and distribution network. , A combination of constraint expressions to be applied is set.

最適化計算部16は、上記作成された制約条件(式(1)〜(11))に基づいて、EV、需要家、PVを含むグループ全体の電力取引における収益の最大化を目的関数とする最適化計算を行う。最適化計算には、例えば、線形計画法、混合整数計画法、又は非線形計画法等が用いられるが、計算精度等の点で、線形計画法が好ましい。   The optimization calculation unit 16 sets the objective function to maximize the profit in the power transaction of the entire group including the EV, the customer, and the PV based on the constraint conditions (Equations (1) to (11)) created above. Perform optimization calculations. For the optimization calculation, for example, a linear programming, a mixed integer programming, a non-linear programming, or the like is used, but a linear programming is preferable in terms of calculation accuracy and the like.

最適化計算における目的関数は、式(12)で示されるグループ全体の電力取引における収益(PL)の最大化とする。グループ全体の電力取引における収益(PL)は、売電収入(Income、式(13))から、系統電力の購入費用(CostP、式(14))、グループ内での電力取引における託送費用(CostT、式(15))、契約者に支払うインセンティブ(CostI、式(16))を引いた値である。なお、インセンティブとは、グループ内の契約者が特定の時刻に電力取引を行った場合に、当該契約者に支払われる報酬である。   The objective function in the optimization calculation is to maximize the profit (PL) in the power trading of the entire group represented by the equation (12). The revenue (PL) in the power trading of the entire group is obtained from the power selling revenue (Income, equation (13)), the system power purchasing cost (CostP, equation (14)), and the consignment cost (CostT) in the power trading within the group. , Expression (15)) and the incentive (CostI, Expression (16)) to be paid to the contractor. The incentive is a reward paid to a contractor in a group when the contractor performs a power transaction at a specific time.

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

Figure 2020043634
Figure 2020043634

式(13)〜(15)において、PBgm(t):電力系統{g}の電力買取単価、PBPVgm(t):電力系統{g}のPV電力買取単価、PSgm(t):電力系統{g}の電力販売単価、Tpvlvi(t):PV{pv}とEV{v}の間でかかる託送料金単価、Tpvldk(t):PV{pv}と需要家{dk}の間でかかる託送料金単価、Tvidk(t):EV{v}と需要家{dk}の間でかかる託送料金単価を意味する。式(13)〜(15)で使用するこれらの単価は、系統データベース30に含まれる情報であり、最適化計算部16が、最適化計算を行う際に、系統データベース30から取得する。 In equations (13) to (15), PB gm (t): unit price of power purchase of power system {g m }, PBPV gm (t): unit price of PV power purchase of power system {g m }, PS gm (t) : Unit price of electric power sales of the electric power system {g m }, T pvvivi (t): Unit price of the consignment charge between PV {pv l } and EV {v j }, T pvldk (t): PV {pv l } and demand The unit price of the consignment fee between house {d k }, T bidk (t): means the unit price of the consignment charge between EV {v j } and customer {d k }. These unit prices used in the equations (13) to (15) are information included in the system database 30 and are acquired from the system database 30 when the optimization calculation unit 16 performs the optimization calculation.

式(16)において、ISv:時刻tにEV{v}が電力系統{g}へ売電する際のインセンティブ係数、IBpv(t):時刻tにEV{v}がPV{pv}から購入する際のインセンティブ係数、ISv(t):時刻tにEV{v}が需要家{d}へ売電する際のインセンティブ係数、IBv(t):時刻tにEV{v}がEV{v}から購入する際のインセンティブ係数、IBv(t):時刻tにEV{v}がEV{v}へ売電する際のインセンティブ係数、IBpv(t):時刻tに需要家{d}がPV{pv}から購入する際のインセンティブ係数、IBv(t):時刻tに需要家{d}がEV{v}から購入する際のインセンティブ係数、ISpv(t):時刻tにPV{pv}から系統{g}へ売電する際のインセンティブ係数、ISpv(t):時刻tにPV{pv}からEV{v}へ売電する際のインセンティブ係数、ISpv(t):時刻tにPV{pv}から需要家{d}へ売電する際のインセンティブ係数を意味する。 In the formula (16), ISv i g m : time t incentive coefficient when EV {v i} is sell electricity to the power grid {g m} in, IBpv l v i (t) : the time t EV {v i incentive coefficient of when} to buy from pV {pv l}, ISv i d k (t): incentive coefficient when the time t is EV {v i} to sell electricity to consumers {d k}, IBv j v i (t): incentive coefficient when the time t EV {v i} is purchased from EV {v j}, IBv i v j (t): the time t EV {v i} is the EV {v j} Incentive coefficient when selling electricity, IBpv 1 d k (t): Incentive coefficient when customer {d k } purchases from PV {pv l } at time t, IBv i d k (t): At time t purchase consumer {d k} is from EV {v i} Incentives factor in that, ISpv l g m (t) : Incentive coefficient when sell electricity at time t from the PV {pv l} to the system {g m}, ISpv l v i (t): time t PV { incentive coefficient of time of from pv l} to sell electricity to the EV {v i}, ISpv l d k (t): at time t the incentive coefficient of time to sell electricity to the pV {consumers from pv l} {d k} means.

各インセンティブ係数は予め設定された数値である。   Each incentive coefficient is a preset numerical value.

最適化計算部16による最適化計算によって、グループ全体の電力取引による収益を最大化する電力取引量(上記設定した電力取引変数)が算出される。本実施形態では、EV{v}が電力系統{g}から購入する電力量(Xg(t))、EV{v}が電力系統{g}へ売電する電力量(Xv(t))、EV{v}がPV{pv}から購入する電力量(Xpv(t))、EV{v}が需要家{d}へ売電する電力量(Xv(t))、EV{v}がEV{v}から購入する電力量(Xv(t))、EV{v}がEV{v}へ売電する電力量(Xv(t))、需要家{d}が電力系統{g}から購入する電力量(Xg(t))、需要家{d}がPV{pv}から購入する電力量(Xpv(t))、需要家{d}がEV{v}から購入する電力量(Xv(t))、PV{pv}から電力系統{g}へ売電する電力量(Xpv(t))、PV{pv}からEV{v}へ売電する電力量(Xpv(t))、PV{pv}から需要家{d}へ売電する電力量(Xpv(t))が算出される。 By the optimization calculation by the optimization calculation unit 16, a power trading amount (the power trading variable set as described above) that maximizes the profit from the power trading of the entire group is calculated. In the present embodiment, the amount of power EV {v i} is purchased from the electric power system {g m} (Xg m v i (t)), the amount of power EV {v i} is sell electricity to the power grid {g m} (Xv i g m (t) ), the amount of power EV {v i} purchase from PV {pv l} (Xpv l v i (t)), sold to the EV {v i} is the customer {d k} the amount of power to electricity (Xv i d k (t) ), the amount of power EV {v i} is purchased from EV {v j} (Xv j v i (t)), EV {v i} is EV {v j amount of power the power sale to} (Xv i v j (t )), the amount of power consumers is {d i} be purchased from the electric power system {g m} (Xg m d i (t)), customer {d i } amount of power purchased from PV {pv l} (Xpv l d i (t)), the amount of power consumers {d i} is purchased from EV {v i} (Xv j d i (t)), PV { pv i} amount of power sell electricity to the power grid {g m} from (Xpv i g m (t) ), the power to sell electricity from PV {pv i} to EV {v j} the amount (Xpv i v j (t) ), PV {pv i} from consumer electric energy to sell electricity to {d k} (Xpv i d k (t)) is calculated.

また、本実施形態では、時刻毎の電力取引量が算出されるため、時刻毎の電力取引量を用いて電力取引計画を策定することも可能である。   Further, in the present embodiment, since the amount of power trade at each time is calculated, it is possible to formulate a power trade plan using the amount of power trade at each time.

最適化計算部により算出された電力取引量、当該電力取引を用いた電力取引計画、式(12)〜(16)を用いて算出された収益等は、表示装置22に出力される。   The power transaction amount calculated by the optimization calculation unit, the power transaction plan using the power transaction, the profit calculated using the equations (12) to (16), and the like are output to the display device 22.

本実施形態では、EV、需要家、PVを含むグループを対象に電力取引量を算出しているが、PVを対象から外してもよい。この場合には、各式におけるPVに関する項を省けばよい。   In the present embodiment, the power transaction amount is calculated for the group including the EV, the customer, and the PV, but the PV may be excluded from the target. In this case, the term relating to PV in each equation may be omitted.

また、本実施形態では、EV、需要家、PVが電力取引する電力取引相手の1つとして例示した電力系統は、電力市場の一例である。   In the present embodiment, the electric power system exemplified as one of the electric power trading partners with which the EV, the customer, and the PV trade electric power is an example of an electric power market.

1 電力取引量最適化装置、2 処理部、3 記憶部、10 条件設定部、12 電力取引モデル作成部、14 取引制約モデル作成部、16 最適化計算部、20 入力装置、22 表示装置、24 EVデータベース、26 需要家データベース、28 PVデータベース、30 系統データベース。
DESCRIPTION OF REFERENCE NUMERALS 1 power transaction volume optimization device, 2 processing unit, 3 storage unit, 10 condition setting unit, 12 power transaction model creation unit, 14 transaction constraint model creation unit, 16 optimization calculation unit, 20 input device, 22 display device, 24 EV database, 26 customer database, 28 PV database, 30 system database.

Claims (5)

所定地域に点在する電気自動車と需要家を含むグループを対象とした電力取引量最適化装置であって、
前記電気自動車が関わる電力取引において前記電気自動車の電力需要を満たす制約条件、前記需要家が関わる電力取引において前記需要家の電力需要を満たす制約条件、前記電気自動車及び前記需要家が前記所定地域の送配電網を使って電力取引相手と電力取引する場合に生じる電力取引可能量の制約条件に基づいて、前記グループ全体の電力取引による収益の最大化を目的関数とする最適化計算を行い、前記グループ内の前記電気自動車及び前記需要家が、前記電力取引相手と取引する電力取引量を算出することを特徴とする電力取引量最適化装置。
An electric power trading volume optimization device for a group including electric vehicles and consumers scattered in a predetermined area,
A constraint satisfying the power demand of the electric vehicle in the power transaction involving the electric vehicle, a constraint satisfying the power demand of the customer in the power transaction involving the customer, the electric vehicle and the customer being located in the predetermined area. Based on the constraints on the amount of power tradeable that occurs when power trading with a power trading partner using the power transmission and distribution network, perform an optimization calculation with the objective function to maximize profits from power trading for the entire group, An electric power trading amount optimizing device, wherein the electric vehicle and the customer in a group calculate an electric power trading amount for trading with the electric power trading partner.
記憶装置に記憶された、電気自動車の駐車予定時刻及び駐車位置の情報、並びに需要家の位置情報に基づいて、前記グループ内の電力取引可能な電気自動車、需要家を選定し、前記選定した電気自動車及び需要家を対象に、前記電力取引量を算出することを特徴とする請求項1に記載の電力取引量最適化装置。   Based on the information on the scheduled parking time and parking position of the electric vehicle and the position information of the customer stored in the storage device, an electric vehicle capable of performing power transaction within the group, a customer is selected, and the selected electricity is selected. The power transaction amount optimizing device according to claim 1, wherein the power transaction amount is calculated for a car and a consumer. 前記グループは、前記電気自動車、前記需要家に電力を分配する太陽光発電装置を含み、
前記3つの制約条件と、前記太陽光発電装置が関わる電力取引において前記太陽光発電装置の発電量に関する制約条件とに基づいて、前記最適化計算を行うことを特徴とする請求項1又は2に記載の電力取引量最適化装置。
The group includes the electric vehicle, a solar power generation device that distributes electric power to the consumers,
3. The optimization calculation according to claim 1, wherein the optimization calculation is performed based on the three constraints and a constraint on a power generation amount of the photovoltaic power generation device in a power transaction involving the photovoltaic power generation device. 4. A power transaction volume optimization device as described.
記憶装置に記憶された、送配電網の許容電力量情報に基づいて、前記電力取引可能量の制約条件を設定することを特徴とする請求項1〜3のいずれか1項に記載の電力取引量最適化装置。   The electric power transaction according to any one of claims 1 to 3, wherein the constraint condition of the electric power transmissible amount is set based on allowable electric energy information of a power transmission and distribution network stored in a storage device. Quantity optimization device. 前記最適化計算は、線形計画法を用いることを特徴とする請求項1〜4のいずれか1項に記載の電力取引量最適化装置。
The power transaction amount optimization device according to any one of claims 1 to 4, wherein the optimization calculation uses a linear programming method.
JP2018167222A 2018-09-06 2018-09-06 Power trading volume optimization device Active JP7107110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018167222A JP7107110B2 (en) 2018-09-06 2018-09-06 Power trading volume optimization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167222A JP7107110B2 (en) 2018-09-06 2018-09-06 Power trading volume optimization device

Publications (2)

Publication Number Publication Date
JP2020043634A true JP2020043634A (en) 2020-03-19
JP7107110B2 JP7107110B2 (en) 2022-07-27

Family

ID=69798933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167222A Active JP7107110B2 (en) 2018-09-06 2018-09-06 Power trading volume optimization device

Country Status (1)

Country Link
JP (1) JP7107110B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710177B2 (en) 2020-10-16 2023-07-25 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus and electricity transaction system for electricity transaction by mobile object
WO2023162771A1 (en) * 2022-02-28 2023-08-31 株式会社Sustech Information processing device, information processing method, and program
US11763379B2 (en) 2020-10-16 2023-09-19 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus for electricity transaction by mobile object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082273A (en) * 2013-10-24 2015-04-27 三菱電機株式会社 Aggregator service system, service reminder device, and energy management system
JP2015220862A (en) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 Power management system
JP2017199273A (en) * 2016-04-28 2017-11-02 富士電機株式会社 Supply-demand planning device, supply-demand planning method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082273A (en) * 2013-10-24 2015-04-27 三菱電機株式会社 Aggregator service system, service reminder device, and energy management system
JP2015220862A (en) * 2014-05-16 2015-12-07 トヨタ自動車株式会社 Power management system
JP2017199273A (en) * 2016-04-28 2017-11-02 富士電機株式会社 Supply-demand planning device, supply-demand planning method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710177B2 (en) 2020-10-16 2023-07-25 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus and electricity transaction system for electricity transaction by mobile object
US11763379B2 (en) 2020-10-16 2023-09-19 Toyota Jidosha Kabushiki Kaisha Bid-offer condition determination apparatus for electricity transaction by mobile object
WO2023162771A1 (en) * 2022-02-28 2023-08-31 株式会社Sustech Information processing device, information processing method, and program

Also Published As

Publication number Publication date
JP7107110B2 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
Algarvio et al. Multi-agent electricity markets: Retailer portfolio optimization using Markowitz theory
Ghazvini et al. Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market
Shahidehpour et al. Market operations in electric power systems: forecasting, scheduling, and risk management
Mihaylov et al. Nrg-x-change-a novel mechanism for trading of renewable energy in smart grids
KR101887347B1 (en) Method for virtual electric power trading between microgrids based on bidding way and agent apparatus for the same
KR102094137B1 (en) Method for relaying electric power trading
Delarue et al. Effect of the accuracy of price forecasting on profit in a price based unit commitment
CN111127137A (en) Distributed energy P2P trading method based on centralized matching
Salehpour et al. The effect of price responsive loads uncertainty on the risk-constrained optimal operation of a smart micro-grid
Algarvio et al. Agent-based retail competition and portfolio optimization in liberalized electricity markets: A study involving real-world consumers
JP7107110B2 (en) Power trading volume optimization device
Alvarez et al. Impact of energy efficiency incentives on electricity distribution companies
Lei et al. Bridging electricity market and carbon emission market through electric vehicles: Optimal bidding strategy for distribution system operators to explore economic feasibility in China's low-carbon transitions
JP2022065828A (en) Bid condition determination device for power transaction with movable body, and power transaction system
Afentoulis et al. Smart charging business model framework for electric vehicle aggregators
JP2005339527A (en) Bid support system in electricity market
Xiao et al. A modified intra-day market to trade updated forecast information for wind power integration
Xiao et al. Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences
Ramesh et al. An optimal power flow solution to deregulated electricity power market using meta-heuristic algorithms considering load congestion environment
Tian et al. Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province
US20040181460A1 (en) Optimized load prediction for security constrained unit commitment dispatch using linear programming for electricity markets
JP7279698B2 (en) Bidding Condition Determining Device for Power Trading by Mobile
Lopes et al. Agent-based simulation of retail electricity markets: Bilateral trading players
Wang et al. Optimal day-ahead decision-making scheduling of multiple interruptible load schemes for retailer with price uncertainties
JP2006099432A (en) Power trading system, method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7107110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150