JP7105326B2 - 製品欠陥検出方法、装置、電子デバイス、記憶媒体、及びプログラム - Google Patents
製品欠陥検出方法、装置、電子デバイス、記憶媒体、及びプログラム Download PDFInfo
- Publication number
- JP7105326B2 JP7105326B2 JP2021001835A JP2021001835A JP7105326B2 JP 7105326 B2 JP7105326 B2 JP 7105326B2 JP 2021001835 A JP2021001835 A JP 2021001835A JP 2021001835 A JP2021001835 A JP 2021001835A JP 7105326 B2 JP7105326 B2 JP 7105326B2
- Authority
- JP
- Japan
- Prior art keywords
- feature information
- information
- defect detection
- channel
- target product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims description 102
- 238000001514 detection method Methods 0.000 title claims description 87
- 238000003860 storage Methods 0.000 title claims description 18
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 title 1
- 230000004927 fusion Effects 0.000 claims description 41
- 238000000605 extraction Methods 0.000 claims description 21
- 230000015654 memory Effects 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 9
- 230000010354 integration Effects 0.000 claims description 5
- 108010001267 Protein Subunits Proteins 0.000 claims 1
- 238000000034 method Methods 0.000 description 23
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000007689 inspection Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000011179 visual inspection Methods 0.000 description 5
- 238000004590 computer program Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/48—Extraction of image or video features by mapping characteristic values of the pattern into a parameter space, e.g. Hough transformation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
- G06V20/647—Three-dimensional objects by matching two-dimensional images to three-dimensional objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8883—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10141—Special mode during image acquisition
- G06T2207/10152—Varying illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Quality & Reliability (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Signal Processing (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Description
Claims (11)
- 目標製品のマルチチャネル画像を取得することと、
前記マルチチャネル画像を、複数の畳み込み分岐と、融合モジュールと、畳み込み総分岐とを含む欠陥検出モデルに入力することと、
前記複数の畳み込み分岐を用いて、前記マルチチャネル画像内の各チャネルに対して、それぞれ特徴抽出を行うことにより、複数の第1特徴情報を得ることと、
前記融合モジュールを用いて前記複数の第1特徴情報を融合することにより、第2特徴情報を得ることと、
前記畳み込み総分岐を用いて前記第2特徴情報に対して特徴抽出を行うことにより、前記欠陥検出モデルから出力された第3特徴情報を得ることと、
前記第3特徴情報に基づいて、前記目標製品の欠陥情報を決定することと、
を含み、
前記融合モジュールを用いて前記複数の第1特徴情報を融合することにより、第2特徴情報を得ることは、
前記融合モジュールにおける連結層を用いて、前記複数の第1特徴情報に対してチャネルの連結を行うことにより、第4特徴情報を得ることと、
前記融合モジュールにおける融合畳み込み層を用いて、前記第4特徴情報に対してチャネルの整列を行うことにより、標準化されたチャネル数を有する第2特徴情報を得ることと、を含む、
製品欠陥検出方法。 - 前記目標製品のマルチチャネル画像を取得することは、
複数の収集条件において、目標製品の複数の画像を収集することと、
前記複数の画像の特徴情報に基づいて、複数のチャネルの特徴情報を決定することと、
前記複数のチャネルの特徴情報に基づいて、前記目標製品のマルチチャネル画像を得ることと、を含む、
請求項1に記載の製品欠陥検出方法。 - 前記複数の画像の特徴情報に基づいて、複数のチャネルの特徴情報を決定することは、
前記複数の画像と、オプティカルフローの3次元ネットワークとに基づいて、前記目標
製品の3次元情報を計算することと、
前記複数の画像の特徴情報及び前記3次元情報を、複数のチャネルの特徴情報とすることと、を含む、
請求項2に記載の製品欠陥検出方法。 - 前記オプティカルフローの3次元ネットワークは光線補正ネットワークと、法線方向計算ネットワークと、を含み、
前記3次元情報は、前記光線補正ネットワークによって計算された深さ情報と、前記法線方向計算ネットワークによって計算された表面傾斜角度情報と、を含む、
請求項3に記載の製品欠陥検出方法。 - 目標製品のマルチチャネル画像を取得する取得モジュールと、
前記マルチチャネル画像を、複数の畳み込み分岐と、融合モジュールと、畳み込み総分岐とを含む欠陥検出モデルに入力する入力モジュールと、
前記複数の畳み込み分岐を用いて、前記マルチチャネル画像内の各チャネルに対して、それぞれ特徴抽出を行うことにより、複数の第1特徴情報を得る分岐処理モジュールと、
前記融合モジュールを用いて前記複数の第1特徴情報を融合することにより、第2特徴情報を得る分岐統合モジュールと、
前記畳み込み総分岐を用いて前記第2特徴情報に対して特徴抽出を行うことにより、前記欠陥検出モデルから出力された第3特徴情報を得る総分岐処理モジュールと、
前記第3特徴情報に基づいて、前記目標製品の欠陥情報を決定する決定モジュールと、
を備え、
前記分岐統合モジュールは、
前記融合モジュールにおける連結層を用いて、前記複数の第1特徴情報に対してチャネルの連結を行うことにより、第4特徴情報を得るチャネル連結ユニットと、
前記融合モジュールにおける融合畳み込み層を用いて、前記第4特徴情報に対してチャネルの整列を行うことにより、標準化されたチャネル数を有する第2特徴情報を得るチャネル整列ユニットと、
を備える、
製品欠陥検出装置。 - 前記取得モジュールは、
複数の収集条件において、目標製品の複数の画像を収集する収集ユニットと、
前記複数の画像の特徴情報に基づいて、複数のチャネルの特徴情報を決定するチャネル決定ユニットと、
前記複数のチャネルの特徴情報に基づいて、前記目標製品のマルチチャネル画像を得る画像取得ユニットと、を備える、
請求項5に記載の製品欠陥検出装置。 - 前記チャネル決定ユニットは、
前記複数の画像と、オプティカルフローの3次元ネットワークとに基づいて、前記目標製品の3次元情報を計算する計算サブユニットと、
前記複数の画像の特徴情報および前記3次元情報を、複数のチャネルの特徴情報とする決定サブユニットと、を備える、
請求項6に記載の製品欠陥検出装置。 - 前記オプティカルフローの3次元ネットワークは光線補正ネットワークと、法線方向計算ネットワークと、を含み、
前記3次元情報は、前記光線補正ネットワークによって計算された深さ情報と、前記法線方向計算ネットワークによって計算された表面傾斜角度情報と、を含む、
請求項7に記載の製品欠陥検出装置。 - 少なくとも1つのプロセッサと、
前記少なくとも1つのプロセッサに通信接続されるメモリと、を備え、
前記メモリには、前記少なくとも1つのプロセッサにより実行可能な命令を記憶しており、前記命令は、前記少なくとも1つのプロセッサにより実行される場合、請求項1~4のいずれか一項に記載の製品欠陥検出方法を実行させる、
電子デバイス。 - 請求項1~4のいずれか一項に記載の製品欠陥検出方法を前記コンピュータに実行させるためのコンピュータ命令を記憶した非一過性のコンピュータ可読記憶媒体。
- コンピュータにおいてプロセッサにより実行されると、請求項1~4のいずれか一項に記載の製品欠陥検出方法を実現するプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010612366.X | 2020-06-30 | ||
CN202010612366.XA CN111768386B (zh) | 2020-06-30 | 2020-06-30 | 产品缺陷检测方法、装置、电子设备和存储介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022013608A JP2022013608A (ja) | 2022-01-18 |
JP7105326B2 true JP7105326B2 (ja) | 2022-07-22 |
Family
ID=72722974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021001835A Active JP7105326B2 (ja) | 2020-06-30 | 2021-01-08 | 製品欠陥検出方法、装置、電子デバイス、記憶媒体、及びプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11615524B2 (ja) |
EP (1) | EP3836077B1 (ja) |
JP (1) | JP7105326B2 (ja) |
KR (1) | KR102636381B1 (ja) |
CN (1) | CN111768386B (ja) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021120186A1 (zh) * | 2019-12-20 | 2021-06-24 | 京东方科技集团股份有限公司 | 分布式产品缺陷分析系统、方法及计算机可读存储介质 |
CN112257619A (zh) * | 2020-10-27 | 2021-01-22 | 北京澎思科技有限公司 | 一种目标重识别方法、装置、设备及存储介质 |
CN112489037B (zh) * | 2020-12-15 | 2024-07-02 | 科大讯飞华南人工智能研究院(广州)有限公司 | 缺陷检测及相关模型的训练方法、电子设备和存储装置 |
CN112560864B (zh) * | 2020-12-22 | 2024-06-18 | 苏州超云生命智能产业研究院有限公司 | 图像语义分割方法、装置及图像语义分割模型的训练方法 |
CN112581463B (zh) * | 2020-12-25 | 2024-02-27 | 北京百度网讯科技有限公司 | 图像缺陷的检测方法、装置、电子设备、存储介质及产品 |
CN112614113A (zh) * | 2020-12-26 | 2021-04-06 | 北京工业大学 | 一种基于深度学习的带钢缺陷检测方法 |
CN113026828B (zh) * | 2021-03-04 | 2023-01-24 | 北京百度网讯科技有限公司 | 水下桩基探伤方法、装置、设备、存储介质及程序产品 |
CN113077454A (zh) * | 2021-04-19 | 2021-07-06 | 凌云光技术股份有限公司 | 一种图像缺陷拟合方法、系统和存储介质 |
CN113505650B (zh) * | 2021-06-13 | 2023-06-16 | 北京林业大学 | 地形特征线提取方法及装置、设备 |
CN113591589B (zh) * | 2021-07-02 | 2022-09-27 | 北京百度网讯科技有限公司 | 产品漏检的识别方法、装置、电子设备及存储介质 |
KR102426829B1 (ko) * | 2021-12-16 | 2022-07-29 | 주식회사 인터엑스 | Ai 기반 제품 표면 검사 장치 및 방법 |
CN113947821A (zh) * | 2021-12-20 | 2022-01-18 | 南京航空航天大学 | 一种涡轮增压叶片质量控制方法 |
CN114565834B (zh) * | 2021-12-28 | 2024-08-02 | 上汽大众汽车有限公司 | 动力总成支承安装质量的检测方法、工作台、检测系统及计算机可读存储介质 |
CN114466183B (zh) * | 2022-02-21 | 2024-09-24 | 江东电子材料有限公司 | 基于特征光谱的铜箔瑕疵检测方法、装置和电子设备 |
CN114596290B (zh) * | 2022-03-11 | 2024-08-27 | 腾讯科技(深圳)有限公司 | 缺陷检测方法及其装置、存储介质、程序产品 |
CN114897810A (zh) * | 2022-05-06 | 2022-08-12 | 阿里巴巴达摩院(杭州)科技有限公司 | 图像检测方法、装置、存储介质、电子设备 |
CN114782756B (zh) * | 2022-06-20 | 2022-10-04 | 深圳新视智科技术有限公司 | 基于特征融合的缺陷检测方法、装置、设备及存储介质 |
CN114782830B (zh) * | 2022-06-22 | 2022-09-06 | 天津大学 | 一种图像深度学习特征增强方法、系统及装置 |
CN115205224B (zh) * | 2022-06-22 | 2023-06-09 | 锋睿领创(珠海)科技有限公司 | 自适应特征增强的多源融合视觉检测方法、装置及介质 |
CN115508389B (zh) * | 2022-11-24 | 2023-05-12 | 江苏时代新能源科技有限公司 | 检测装置、缺陷检测方法、装置、计算机设备和存储介质 |
CN115963397B (zh) * | 2022-12-01 | 2023-07-25 | 华中科技大学 | 一种电机定子内轮廓表面缺陷快速在线检测方法及装置 |
CN116046790B (zh) * | 2023-01-31 | 2023-10-27 | 北京百度网讯科技有限公司 | 缺陷检测方法、装置、系统、电子设备以及存储介质 |
CN116433664B (zh) * | 2023-06-13 | 2023-09-01 | 成都数之联科技股份有限公司 | 面板缺陷检测方法、装置、存储介质、设备及程序产品 |
CN116500048B (zh) * | 2023-06-28 | 2023-09-15 | 四川联畅信通科技有限公司 | 一种线缆卡具缺陷检测方法、装置、设备及介质 |
CN117058116B (zh) * | 2023-08-25 | 2024-10-11 | 南京林业大学 | 一种基于级联质心算法的木地板缺陷检测方法 |
CN117252822B (zh) * | 2023-09-05 | 2024-07-09 | 广东奥普特科技股份有限公司 | 缺陷检测网络的构建及缺陷检测方法、装置和设备 |
CN117007611B (zh) * | 2023-09-28 | 2024-01-09 | 杭州百子尖科技股份有限公司 | 片状材料的周期性缺陷检测方法、装置、设备以及介质 |
CN117078674B (zh) * | 2023-10-14 | 2024-01-05 | 中电鹏程智能装备有限公司 | 一种pcba外观缺陷智能检测方法和检测系统 |
CN117710379B (zh) * | 2024-02-06 | 2024-05-10 | 杭州灵西机器人智能科技有限公司 | 一种无损检测模型构建方法、无损检测方法、装置及介质 |
CN118154585B (zh) * | 2024-05-09 | 2024-07-05 | 山东鑫泰新材料科技有限公司 | 一种冷轧钢板缺陷图像数据处理方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180322623A1 (en) | 2017-05-08 | 2018-11-08 | Aquifi, Inc. | Systems and methods for inspection and defect detection using 3-d scanning |
US20200126210A1 (en) | 2018-10-19 | 2020-04-23 | Genentech, Inc. | Defect Detection in Lyophilized Drug Products with Convolutional Neural Networks |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7805664B1 (en) * | 2006-10-05 | 2010-09-28 | Marvell International Ltd | Likelihood metric generation for trellis-based detection and/or decoding |
WO2018085797A1 (en) * | 2016-11-04 | 2018-05-11 | Aquifi, Inc. | System and method for portable active 3d scanning |
WO2018136262A1 (en) * | 2017-01-20 | 2018-07-26 | Aquifi, Inc. | Systems and methods for defect detection |
US20190096135A1 (en) * | 2017-09-26 | 2019-03-28 | Aquifi, Inc. | Systems and methods for visual inspection based on augmented reality |
CA3115898C (en) * | 2017-10-11 | 2023-09-26 | Aquifi, Inc. | Systems and methods for object identification |
JP7004145B2 (ja) | 2017-11-15 | 2022-01-21 | オムロン株式会社 | 欠陥検査装置、欠陥検査方法、及びそのプログラム |
CN107833220B (zh) * | 2017-11-28 | 2021-06-11 | 河海大学常州校区 | 基于深度卷积神经网络与视觉显著性的织物缺陷检测方法 |
JP7015001B2 (ja) | 2018-03-14 | 2022-02-02 | オムロン株式会社 | 欠陥検査装置、欠陥検査方法、及びそのプログラム |
KR101911061B1 (ko) | 2018-03-26 | 2018-10-23 | 주식회사 대곤코퍼레이션 | 비지도 학습기반 영역별 자가부호기를 이용한 제품 불량판별 시스템 및 비지도 학습기반 영역별 자가부호기를 이용한 제품 불량판별 방법 |
CN109087274B (zh) | 2018-08-10 | 2020-11-06 | 哈尔滨工业大学 | 基于多维融合及语义分割的电子器件缺陷检测方法及装置 |
CN110378900B (zh) | 2019-08-01 | 2020-08-07 | 北京迈格威科技有限公司 | 产品缺陷的检测方法、装置及系统 |
CN110517247A (zh) * | 2019-08-27 | 2019-11-29 | 北京百度网讯科技有限公司 | 获取信息的方法及装置 |
CN110517259A (zh) * | 2019-08-30 | 2019-11-29 | 北京百度网讯科技有限公司 | 一种产品表面状态的检测方法、装置、设备及介质 |
-
2020
- 2020-06-30 CN CN202010612366.XA patent/CN111768386B/zh active Active
-
2021
- 2021-01-07 US US17/248,053 patent/US11615524B2/en active Active
- 2021-01-08 JP JP2021001835A patent/JP7105326B2/ja active Active
- 2021-03-24 KR KR1020210037927A patent/KR102636381B1/ko active IP Right Grant
- 2021-03-25 EP EP21164862.1A patent/EP3836077B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180322623A1 (en) | 2017-05-08 | 2018-11-08 | Aquifi, Inc. | Systems and methods for inspection and defect detection using 3-d scanning |
US20200126210A1 (en) | 2018-10-19 | 2020-04-23 | Genentech, Inc. | Defect Detection in Lyophilized Drug Products with Convolutional Neural Networks |
Non-Patent Citations (2)
Title |
---|
Guanying Chen et al.,Self-calibrating Deep Photometric Stereo Networks,2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),IEEE,2019年06月15日,pages 8731-8739 |
Steffen Herbort et al.,An Introduction to Image-based 3D Surface Reconstruction and a Survey of Photometric Stereo Methods,3D Research,Springer,2021年09月,Vol. 2, No. 3,pages 1-17 |
Also Published As
Publication number | Publication date |
---|---|
KR20210040853A (ko) | 2021-04-14 |
US11615524B2 (en) | 2023-03-28 |
JP2022013608A (ja) | 2022-01-18 |
CN111768386A (zh) | 2020-10-13 |
EP3836077B1 (en) | 2023-03-22 |
EP3836077A2 (en) | 2021-06-16 |
US20210407062A1 (en) | 2021-12-30 |
KR102636381B1 (ko) | 2024-02-13 |
CN111768386B (zh) | 2024-02-20 |
EP3836077A3 (en) | 2021-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7105326B2 (ja) | 製品欠陥検出方法、装置、電子デバイス、記憶媒体、及びプログラム | |
CN110162083B (zh) | 利用无人机执行三维结构检查及维护任务的方法和系统 | |
CN111860167B (zh) | 人脸融合模型获取及人脸融合方法、装置及存储介质 | |
JP2021082308A (ja) | マルチモーダルコンテンツ処理方法、装置、機器及び記憶媒体 | |
US11887388B2 (en) | Object pose obtaining method, and electronic device | |
JP2021114296A (ja) | 近赤外画像の生成方法、近赤外画像の生成装置、生成ネットワークの訓練方法、生成ネットワークの訓練装置、電子機器、記憶媒体及びコンピュータプログラム | |
US20210073973A1 (en) | Method and apparatus for component fault detection based on image | |
JP2021193547A (ja) | キーポイント学習モデルを構築するための方法、装置、電子デバイス及びコンピュータ可読記憶媒体 | |
CN111968203B (zh) | 动画驱动方法、装置、电子设备及存储介质 | |
US20220051004A1 (en) | Image processing method, apparatus, device and storage medium | |
WO2023241097A1 (zh) | 一种语义实例重建方法、装置、设备及介质 | |
JP2021101365A (ja) | 測位方法、測位装置及び電子機器 | |
US20230186583A1 (en) | Method and device for processing virtual digital human, and model training method and device | |
JP2021103573A (ja) | 文字認識の方法、装置、電子設備、コンピュータ可読記憶媒体、及びプログラム | |
CN112149741B (zh) | 图像识别模型的训练方法、装置、电子设备及存储介质 | |
EP3869402A1 (en) | Method and apparatus for positioning key point, device, storage medium and computer program product | |
CN115578515B (zh) | 三维重建模型的训练方法、三维场景渲染方法及装置 | |
CN111862030A (zh) | 一种人脸合成图检测方法、装置、电子设备及存储介质 | |
CN112001248A (zh) | 主动交互的方法、装置、电子设备和可读存储介质 | |
CN105051718B (zh) | 用于监视-挖掘-管理循环的方法和系统 | |
CN112508027B (zh) | 用于实例分割的头部模型、实例分割模型、图像分割方法及装置 | |
CN111967481A (zh) | 视觉定位方法、装置、电子设备及存储介质 | |
CN112508163B (zh) | 神经网络模型中子图的展示方法、装置和存储介质 | |
Charter | Human-Centered Intelligent Monitoring and Control of Industrial Systems: A Framework for Immersive Cyber-Physical Systems | |
Fang et al. | A multi-modal context-aware sequence stage validation for human-centric AR assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7105326 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |