JP7105305B2 - 多段画像ベースの物体検出および認識 - Google Patents
多段画像ベースの物体検出および認識 Download PDFInfo
- Publication number
- JP7105305B2 JP7105305B2 JP2020530478A JP2020530478A JP7105305B2 JP 7105305 B2 JP7105305 B2 JP 7105305B2 JP 2020530478 A JP2020530478 A JP 2020530478A JP 2020530478 A JP2020530478 A JP 2020530478A JP 7105305 B2 JP7105305 B2 JP 7105305B2
- Authority
- JP
- Japan
- Prior art keywords
- stage
- portions
- machine learning
- data
- sensor data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 143
- 238000010801 machine learning Methods 0.000 claims description 187
- 238000000034 method Methods 0.000 claims description 112
- 238000003066 decision tree Methods 0.000 claims description 54
- 238000012545 processing Methods 0.000 claims description 44
- 230000015654 memory Effects 0.000 claims description 33
- 238000013528 artificial neural network Methods 0.000 claims description 31
- 230000000007 visual effect Effects 0.000 claims description 29
- 238000007477 logistic regression Methods 0.000 claims description 6
- 238000012706 support-vector machine Methods 0.000 claims description 6
- 230000001629 suppression Effects 0.000 claims description 5
- 238000007637 random forest analysis Methods 0.000 claims description 3
- 238000001931 thermography Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims 1
- 238000013145 classification model Methods 0.000 description 44
- 238000004891 communication Methods 0.000 description 35
- 230000033001 locomotion Effects 0.000 description 25
- 238000012549 training Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 230000009471 action Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 10
- 230000000306 recurrent effect Effects 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000007787 long-term memory Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 engine Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/08—Volume rendering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/28—Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/584—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/617—Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
- G05D1/622—Obstacle avoidance
- G05D1/628—Obstacle avoidance following the obstacle profile, e.g. a wall or undulated terrain
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30261—Obstacle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Evolutionary Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Computer Graphics (AREA)
- Optics & Photonics (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Traffic Control Systems (AREA)
- Image Analysis (AREA)
Description
本願は、両方とも参照することによって本明細書に組み込まれる、2017年12月5日の出願日を有する米国仮特許出願第62/594,631号、および2018年5月7日の出願日を有する米国非仮特許出願第15/972,566号に基づき、その利益を主張する。
Claims (19)
- 自律走行車両動作のコンピュータ実装方法であって、前記コンピュータ実装方法は、
1つ以上のコンピューティングデバイスを備えるコンピューティングシステムによって、センサデータの1つ以上の部分を備える物体データを受信することと、
前記コンピューティングシステムによって、1つ以上のハードウェアコンポーネントを使用する多段分類の第1の段階で、第1の機械学習モデルに部分的に基づいて、前記センサデータの1つ以上の部分の1つ以上の第1段階特性を決定することと、
ここで、前記1つ以上の第1段階特性は、前記センサデータの1つ以上の部分の一部が、前景または背景であるときのインジケーションを備え、
ここで、前記センサデータの1つ以上の部分が前景または背景であるという決定は、自律走行車両の進行するエリアに関連するマップデータに基づき、
前記コンピューティングシステムによって、前記多段分類の第2の段階で、前記第1の段階で決定された前記1つ以上の第1段階特性に基づいて、および、第2の機械学習モデルに部分的に基づいて、前記センサデータの1つ以上の部分の1つ以上の第2段階特性を決定することと、
前記コンピューティングシステムによって、前記1つ以上の第1段階特性および前記1つ以上の第2段階特性に部分的に基づいて、物体出力を生成することであって、前記物体出力は、前記センサデータの1つ以上の部分の中の1つ以上の物体の検出と関連付けられる1つ以上のインジケーションを備え、
ここで、前記1つ以上の第2段階特性は、前記センサデータの1つ以上の部分の前景部分の物体分類を備える、ことと、
を含む、コンピュータ実装方法。 - 前記1つ以上のハードウェアコンポーネントは、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、またはグラフィックス処理ユニット(GPU)を備える、請求項1に記載のコンピュータ実装方法。
- 前記センサデータの1つ以上の部分は、1つ以上の画像を備え、
前記コンピューティングシステムによって、前記第1の段階で、前記物体データに部分的に基づいて、前記1つ以上の画像と関連付けられる視覚記述子出力を生成することであって、前記視覚記述子出力は、色調情報、色飽和情報、明度情報、または配向勾配情報のヒストグラムを備え、前記1つ以上の第1段階特性は、前記視覚記述子出力に部分的に基づいて決定される、こと
をさらに含む、請求項1または請求項2に記載のコンピュータ実装方法。 - 前記コンピューティングシステムによって、前記第2の段階で、前記第1の段階からの前記視覚記述子出力に部分的に基づいて、前記1つ以上の画像と関連付けられるヒートマップを生成することであって、前記ヒートマップは、前記1つ以上の物体のうちの少なくとも1つが複数のエリアのうちの個別のものの内側にある確率と関連付けられる複数のエリアを備え、前記1つ以上の第2段階特性は、前記ヒートマップに部分的に基づいて決定される、こと
をさらに含む、請求項3に記載のコンピュータ実装方法。 - 前記多段分類の前記第2の段階で、前記第1の段階で決定された前記1つ以上の第1段階特性に基づいて、および、前記第2の機械学習モデルに部分的に基づいて、前記センサデータの1つ以上の部分の前記1つ以上の第2段階特性を決定することは、
前記コンピューティングシステムによって、前記1つ以上の背景部分と関連付けられる前記1つ以上の画像の1つ以上の部分を除外することとを含む、請求項3または請求項4に記載のコンピュータ実装方法。 - 前記1つ以上の第1段階特性および前記1つ以上の第2段階特性は、それぞれ、前記第1の機械学習モデルおよび前記第2の機械学習モデルのトラバーサルに部分的に基づいており、前記第1の機械学習モデルは、第1の複数の分類子標識と関連付けられる第1の複数のノードを備え、前記第2の機械学習モデルは、第2の複数の分類子標識と関連付けられる第2の複数のノードを備える、請求項1-請求項5のいずれかに記載のコンピュータ実装方法。
- 前記コンピューティングシステムによって、前記物体データおよび前記第2の機械学習モデルに部分的に基づいて、発生した前記1つ以上の物体の1つ以上の第2段階特性の誤検出決定の量を決定することと、
前記コンピューティングシステムによって、発生したと決定される前記誤検出の量が所定の閾値レベルを超えるときに、第2の決定木のトラバーサルを終了することと、
をさらに含む、請求項6に記載のコンピュータ実装方法。 - 前記第2の機械学習モデル内の前記第2の複数のノードのうちの少なくとも1つのノードは、前記第1の機械学習モデル内の前記第1の複数のノードのうちの端末ノードであり、前記第2の機械学習モデルは、前記第1の複数のノードと等しい数のノードを備える、または、前記第2の機械学習モデルは、前記第1の複数のノードよりも多数のノードを備える、請求項6または請求項7に記載のコンピュータ実装方法。
- 前記コンピューティングシステムによって、前記物体出力に部分的に基づいて、前記センサデータの1つ以上の部分の中の前記1つ以上の物体と関連付けられる1つ以上の境界形状のための場所を決定することと、
前記コンピューティングシステムによって、非最大抑制を含む画像処理技法に部分的に基づいて、前記1つ以上の境界形状のための場所のセットを選択することと
前記コンピューティングシステムによって、前記1つ以上の境界形状のための前記場所のセットの中で前記1つ以上の境界形状を生成することと、
をさらに含む、請求項1-請求項8のいずれかに記載のコンピュータ実装方法。 - 前記センサデータの1つ以上の部分は、1つ以上のセンサからのセンサ出力に部分的に基づいており、前記1つ以上のセンサは、1つ以上の光検出および測距デバイス(ライダ)、1つ以上のカメラ、1つ以上のレーダデバイス、1つ以上のソナーデバイス、または1つ以上の熱画像デバイスを備える、請求項1-請求項9のいずれかに記載のコンピュータ実装方法。
- 前記第1の機械学習モデルまたは前記第2の機械学習モデルは、1つ以上の分類技法に部分的に基づいており、前記1つ以上の分類技法は、ニューラルネットワーク、ランダムフォレスト分類子、勾配ブースティング、サポートベクタマシン、ロジスティック回帰分類子、またはブーステッドフォレスト分類子を含む、請求項1-請求項10のいずれかに記載のコンピュータ実装方法。
- 1つ以上の有形の非一過性コンピュータ可読媒体であって、前記1つ以上の有形の非一過性コンピュータ可読媒体は、コンピュータ可読命令を記憶しており、前記コンピュータ可読命令は、1つ以上のプロセッサによって実行されると、前記1つ以上のプロセッサに動作を実施させ、前記動作は、
センサデータの1つ以上の部分を備える物体データを受信することと、
多段分類の第1の段階で、第1の機械学習モデルに部分的に基づいて、前記センサデータの1つ以上の部分の1つ以上の第1段階特性を決定することと、
ここで、前記1つ以上の第1段階特性は、前記センサデータの1つ以上の部分の一部が、前景または背景であるときのインジケーションを備え、
ここで、前記センサデータの1つ以上の部分が前景または背景であるという決定は、自律走行車両の進行するエリアに関連するマップデータに基づき、
前記多段分類の第2の段階で、前記第1の段階の1つ以上の第1段階特性基づいて、および、第2の機械学習モデルに部分的に基づいて、前記センサデータの1つ以上の部分の1つ以上の第2段階特性を決定することと、
前記1つ以上の第1段階特性および前記1つ以上の第2段階特性に部分的に基づいて、物体出力を生成することであって、前記物体出力は、前記センサデータの1つ以上の部分の中の1つ以上の物体の検出と関連付けられる1つ以上のインジケーションを備え、
ここで、前記1つ以上の第2段階特性は、前記センサデータの1つ以上の部分の前景部分の物体分類を備える、ことと、
を含む、1つ以上の有形の非一過性コンピュータ可読媒体。 - 前記センサデータの1つ以上の部分は、1つ以上の画像を備え、
前記第1の段階で、前記物体データに部分的に基づいて、前記1つ以上の画像と関連付けられる視覚記述子出力を生成することであって、前記視覚記述子出力は、色調情報、色飽和情報、明度情報、または配向勾配情報のヒストグラムを備え、前記1つ以上の第1段階特性は、前記視覚記述子出力に部分的に基づいて決定される、こと、
をさらに含む、請求項12に記載の1つ以上の有形の非一過性コンピュータ可読媒体。 - 前記物体出力に部分的に基づいて、前記センサデータの1つ以上の部分の中の前記1つ以上の物体と関連付けられる1つ以上の境界形状のための場所を決定することと、
非最大抑制を含む画像処理技法に部分的に基づいて、前記1つ以上の境界形状のための場所のセットを選択することと、
前記1つ以上の境界形状のための前記場所のセットの中で前記1つ以上の境界形状を生成することと、
をさらに含む、請求項12または請求項13に記載の1つ以上の有形の非一過性コンピュータ可読媒体。 - コンピューティングシステムであって、
1つ以上のプロセッサと、
1つ以上のコンピュータ可読媒体を備えるメモリであって、前記メモリは、コンピュータ可読命令を記憶しており、前記コンピュータ可読命令は、前記1つ以上のプロセッサによって実行されると、前記1つ以上のプロセッサに、
センサデータの1つ以上の部分を備える物体データを受信することと、
1つ以上のハードウェアコンポーネントを使用する多段分類の第1の段階で、第1の機械学習モデルに部分的に基づいて、前記センサデータの1つ以上の部分の1つ以上の第1段階特性を決定することと、
ここで、前記1つ以上の第1段階特性は、前記センサデータの1つ以上の部分の一部が、前景または背景であるときのインジケーションを備え、
ここで、前記センサデータの1つ以上の部分が前景または背景であるという決定は、自律走行車両の進行するエリアに関連するマップデータに基づき、
前記多段分類の第2の段階で、前記第1の段階の1つ以上の第1段階特性基づいて、および、第2の機械学習モデルに部分的に基づいて前記センサデータの1つ以上の部分の1つ以上の第2段階特性を決定することと、
前記1つ以上の第1段階特性および前記1つ以上の第2段階特性に部分的に基づいて、物体出力を生成することであって、前記物体出力は、前記センサデータの1つ以上の部分の中の1つ以上の物体の検出と関連付けられる1つ以上のインジケーションを備え、
ここで、前記1つ以上の第2段階特性は、前記センサデータの1つ以上の部分の前景部分の物体分類を備える、ことと、
を含む動作を実施させる、メモリと、
を備える、コンピューティングシステム。 - 前記1つ以上のハードウェアコンポーネントは、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、またはグラフィックス処理ユニット(GPU)を備える、請求項15に記載のコンピューティングシステム。
- 前記センサデータの1つ以上の部分は、1つ以上の画像を備え、
前記第1の段階で、前記物体データに部分的に基づいて、前記1つ以上の画像と関連付けられる視覚記述子出力を生成することであって、前記視覚記述子出力は、色調情報、色飽和情報、明度情報、または配向勾配情報のヒストグラムを備え、前記1つ以上の第1段階特性は、前記視覚記述子出力に部分的に基づいて決定される、こと、
をさらに含む、請求項15または請求項16に記載のコンピューティングシステム。 - 前記1つ以上の第1段階特性および前記1つ以上の第2段階特性は、それぞれ、前記第1の機械学習モデルの第1の決定木および前記第2の機械学習モデルの第2の決定木のトラバーサルに部分的に基づいており、前記第1の決定木は、第1の複数の分類子標識と関連付けられる第1の複数のノードを備え、前記第2の決定木は、前記第1の決定木に部分的に基づいており、第2の複数の分類子標識と関連付けられる第2の複数のノードを備える、請求項15-請求項17のいずれかに記載のコンピューティングシステム。
- 前記物体出力に部分的に基づいて、前記センサデータの1つ以上の部分の中の前記1つ以上の物体と関連付けられる1つ以上の境界形状のための場所を決定することと、
非最大抑制を含む画像処理技法に部分的に基づいて、前記1つ以上の境界形状のための場所のセットを選択することと、
前記1つ以上の境界形状のための前記場所のセットの中で前記1つ以上の境界形状を生成することと、
をさらに含む、請求項15-請求項18のいずれかに記載のコンピューティングシステム。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762594631P | 2017-12-05 | 2017-12-05 | |
US62/594,631 | 2017-12-05 | ||
US15/972,566 US10762396B2 (en) | 2017-12-05 | 2018-05-07 | Multiple stage image based object detection and recognition |
US15/972,566 | 2018-05-07 | ||
PCT/US2018/063839 WO2019113063A1 (en) | 2017-12-05 | 2018-12-04 | Multiple stage image based object detection and recognition |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2021506000A JP2021506000A (ja) | 2021-02-18 |
JP2021506000A5 JP2021506000A5 (ja) | 2022-01-11 |
JP7105305B2 true JP7105305B2 (ja) | 2022-07-22 |
Family
ID=66659239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020530478A Active JP7105305B2 (ja) | 2017-12-05 | 2018-12-04 | 多段画像ベースの物体検出および認識 |
Country Status (4)
Country | Link |
---|---|
US (3) | US10762396B2 (ja) |
EP (1) | EP3704627A1 (ja) |
JP (1) | JP7105305B2 (ja) |
WO (1) | WO2019113063A1 (ja) |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8326775B2 (en) | 2005-10-26 | 2012-12-04 | Cortica Ltd. | Signature generation for multimedia deep-content-classification by a large-scale matching system and method thereof |
US9984314B2 (en) * | 2016-05-06 | 2018-05-29 | Microsoft Technology Licensing, Llc | Dynamic classifier selection based on class skew |
WO2018176000A1 (en) | 2017-03-23 | 2018-09-27 | DeepScale, Inc. | Data synthesis for autonomous control systems |
WO2019008581A1 (en) | 2017-07-05 | 2019-01-10 | Cortica Ltd. | DETERMINATION OF DRIVING POLICIES |
US11899707B2 (en) | 2017-07-09 | 2024-02-13 | Cortica Ltd. | Driving policies determination |
US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US20190079526A1 (en) * | 2017-09-08 | 2019-03-14 | Uber Technologies, Inc. | Orientation Determination in Object Detection and Tracking for Autonomous Vehicles |
US11403816B2 (en) * | 2017-11-30 | 2022-08-02 | Mitsubishi Electric Corporation | Three-dimensional map generation system, three-dimensional map generation method, and computer readable medium |
US10473788B2 (en) * | 2017-12-13 | 2019-11-12 | Luminar Technologies, Inc. | Adjusting area of focus of vehicle sensors by controlling spatial distributions of scan lines |
US11042163B2 (en) | 2018-01-07 | 2021-06-22 | Nvidia Corporation | Guiding vehicles through vehicle maneuvers using machine learning models |
US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
WO2019152888A1 (en) | 2018-02-02 | 2019-08-08 | Nvidia Corporation | Safety procedure analysis for obstacle avoidance in autonomous vehicle |
CN111133447B (zh) | 2018-02-18 | 2024-03-19 | 辉达公司 | 适于自主驾驶的对象检测和检测置信度的方法和系统 |
DE112019000122T5 (de) | 2018-02-27 | 2020-06-25 | Nvidia Corporation | Echtzeiterfassung von spuren und begrenzungen durch autonome fahrzeuge |
CN110494863B (zh) | 2018-03-15 | 2024-02-09 | 辉达公司 | 确定自主车辆的可驾驶自由空间 |
US11080590B2 (en) | 2018-03-21 | 2021-08-03 | Nvidia Corporation | Stereo depth estimation using deep neural networks |
CN108537151A (zh) * | 2018-03-27 | 2018-09-14 | 上海小蚁科技有限公司 | 一种非极大值抑制运算装置及系统 |
US11436484B2 (en) | 2018-03-27 | 2022-09-06 | Nvidia Corporation | Training, testing, and verifying autonomous machines using simulated environments |
US11334960B2 (en) * | 2018-06-08 | 2022-05-17 | Uatc, Llc | Systems and methods for pipelined processing of sensor data using hardware |
US11966838B2 (en) | 2018-06-19 | 2024-04-23 | Nvidia Corporation | Behavior-guided path planning in autonomous machine applications |
US11215999B2 (en) | 2018-06-20 | 2022-01-04 | Tesla, Inc. | Data pipeline and deep learning system for autonomous driving |
US11361457B2 (en) | 2018-07-20 | 2022-06-14 | Tesla, Inc. | Annotation cross-labeling for autonomous control systems |
US11636333B2 (en) | 2018-07-26 | 2023-04-25 | Tesla, Inc. | Optimizing neural network structures for embedded systems |
US11562231B2 (en) | 2018-09-03 | 2023-01-24 | Tesla, Inc. | Neural networks for embedded devices |
CN109376594A (zh) * | 2018-09-11 | 2019-02-22 | 百度在线网络技术(北京)有限公司 | 基于自动驾驶车辆的视觉感知方法、装置、设备以及介质 |
US11205093B2 (en) | 2018-10-11 | 2021-12-21 | Tesla, Inc. | Systems and methods for training machine models with augmented data |
US10839694B2 (en) | 2018-10-18 | 2020-11-17 | Cartica Ai Ltd | Blind spot alert |
US20200133308A1 (en) | 2018-10-18 | 2020-04-30 | Cartica Ai Ltd | Vehicle to vehicle (v2v) communication less truck platooning |
US11181911B2 (en) | 2018-10-18 | 2021-11-23 | Cartica Ai Ltd | Control transfer of a vehicle |
US11126870B2 (en) | 2018-10-18 | 2021-09-21 | Cartica Ai Ltd. | Method and system for obstacle detection |
US11196678B2 (en) | 2018-10-25 | 2021-12-07 | Tesla, Inc. | QOS manager for system on a chip communications |
US11270132B2 (en) | 2018-10-26 | 2022-03-08 | Cartica Ai Ltd | Vehicle to vehicle communication and signatures |
US11610115B2 (en) | 2018-11-16 | 2023-03-21 | Nvidia Corporation | Learning to generate synthetic datasets for training neural networks |
US10789535B2 (en) | 2018-11-26 | 2020-09-29 | Cartica Ai Ltd | Detection of road elements |
US11816585B2 (en) | 2018-12-03 | 2023-11-14 | Tesla, Inc. | Machine learning models operating at different frequencies for autonomous vehicles |
US11537811B2 (en) | 2018-12-04 | 2022-12-27 | Tesla, Inc. | Enhanced object detection for autonomous vehicles based on field view |
US11610117B2 (en) | 2018-12-27 | 2023-03-21 | Tesla, Inc. | System and method for adapting a neural network model on a hardware platform |
WO2020140049A1 (en) | 2018-12-28 | 2020-07-02 | Nvidia Corporation | Distance to obstacle detection in autonomous machine applications |
US11170299B2 (en) | 2018-12-28 | 2021-11-09 | Nvidia Corporation | Distance estimation to objects and free-space boundaries in autonomous machine applications |
US11308338B2 (en) | 2018-12-28 | 2022-04-19 | Nvidia Corporation | Distance to obstacle detection in autonomous machine applications |
US10997461B2 (en) | 2019-02-01 | 2021-05-04 | Tesla, Inc. | Generating ground truth for machine learning from time series elements |
US11150664B2 (en) | 2019-02-01 | 2021-10-19 | Tesla, Inc. | Predicting three-dimensional features for autonomous driving |
US11520345B2 (en) | 2019-02-05 | 2022-12-06 | Nvidia Corporation | Path perception diversity and redundancy in autonomous machine applications |
US11567514B2 (en) | 2019-02-11 | 2023-01-31 | Tesla, Inc. | Autonomous and user controlled vehicle summon to a target |
US10956755B2 (en) | 2019-02-19 | 2021-03-23 | Tesla, Inc. | Estimating object properties using visual image data |
US11643005B2 (en) | 2019-02-27 | 2023-05-09 | Autobrains Technologies Ltd | Adjusting adjustable headlights of a vehicle |
US11285963B2 (en) | 2019-03-10 | 2022-03-29 | Cartica Ai Ltd. | Driver-based prediction of dangerous events |
CN113811886B (zh) | 2019-03-11 | 2024-03-19 | 辉达公司 | 自主机器应用中的路口检测和分类 |
US11694088B2 (en) | 2019-03-13 | 2023-07-04 | Cortica Ltd. | Method for object detection using knowledge distillation |
US11132548B2 (en) | 2019-03-20 | 2021-09-28 | Cortica Ltd. | Determining object information that does not explicitly appear in a media unit signature |
US12055408B2 (en) | 2019-03-28 | 2024-08-06 | Autobrains Technologies Ltd | Estimating a movement of a hybrid-behavior vehicle |
US11488290B2 (en) | 2019-03-31 | 2022-11-01 | Cortica Ltd. | Hybrid representation of a media unit |
US10789527B1 (en) | 2019-03-31 | 2020-09-29 | Cortica Ltd. | Method for object detection using shallow neural networks |
US11222069B2 (en) | 2019-03-31 | 2022-01-11 | Cortica Ltd. | Low-power calculation of a signature of a media unit |
US10776669B1 (en) | 2019-03-31 | 2020-09-15 | Cortica Ltd. | Signature generation and object detection that refer to rare scenes |
US10796444B1 (en) | 2019-03-31 | 2020-10-06 | Cortica Ltd | Configuring spanning elements of a signature generator |
EP3734391A1 (en) * | 2019-05-03 | 2020-11-04 | Terabee S.A.S. | Simultaneous localization and mapping |
US10984543B1 (en) | 2019-05-09 | 2021-04-20 | Zoox, Inc. | Image-based depth data and relative depth data |
US11087494B1 (en) | 2019-05-09 | 2021-08-10 | Zoox, Inc. | Image-based depth data and localization |
US10937178B1 (en) * | 2019-05-09 | 2021-03-02 | Zoox, Inc. | Image-based depth data and bounding boxes |
US11373318B1 (en) | 2019-05-14 | 2022-06-28 | Vulcan Inc. | Impact detection |
CN110502979B (zh) * | 2019-07-11 | 2023-04-14 | 哈尔滨工业大学 | 一种基于决策树的激光雷达波形信号分类方法 |
US11829896B2 (en) * | 2019-07-11 | 2023-11-28 | Ghost Autonomy Inc. | Uncertainty-based data filtering in a vehicle |
US11698272B2 (en) | 2019-08-31 | 2023-07-11 | Nvidia Corporation | Map creation and localization for autonomous driving applications |
US11599799B1 (en) | 2019-09-17 | 2023-03-07 | Rockwell Collins, Inc. | Digital signal processing with neural networks |
JP7423951B2 (ja) * | 2019-09-19 | 2024-01-30 | 富士フイルムビジネスイノベーション株式会社 | 画像処理装置及び画像処理プログラム |
US11958183B2 (en) | 2019-09-19 | 2024-04-16 | The Research Foundation For The State University Of New York | Negotiation-based human-robot collaboration via augmented reality |
CN111008561B (zh) * | 2019-10-31 | 2023-07-21 | 重庆小雨点小额贷款有限公司 | 一种牲畜的数量确定方法、终端及计算机存储介质 |
US12056810B2 (en) * | 2019-12-06 | 2024-08-06 | Eigen Innovations Inc. | Virtual thermal camera imaging system |
US10748022B1 (en) * | 2019-12-12 | 2020-08-18 | Cartica Ai Ltd | Crowd separation |
US11593662B2 (en) | 2019-12-12 | 2023-02-28 | Autobrains Technologies Ltd | Unsupervised cluster generation |
CN111242178A (zh) * | 2020-01-02 | 2020-06-05 | 杭州睿琪软件有限公司 | 对象识别方法、装置及设备 |
CN111310670B (zh) * | 2020-02-19 | 2024-02-06 | 江苏理工学院 | 一种基于预定义和随机视点的多视图三维形状识别方法 |
US11590988B2 (en) | 2020-03-19 | 2023-02-28 | Autobrains Technologies Ltd | Predictive turning assistant |
JP7115502B2 (ja) | 2020-03-23 | 2022-08-09 | トヨタ自動車株式会社 | 物体状態識別装置、物体状態識別方法及び物体状態識別用コンピュータプログラムならびに制御装置 |
US11827215B2 (en) | 2020-03-31 | 2023-11-28 | AutoBrains Technologies Ltd. | Method for training a driving related object detector |
JP7359735B2 (ja) * | 2020-04-06 | 2023-10-11 | トヨタ自動車株式会社 | 物体状態識別装置、物体状態識別方法及び物体状態識別用コンピュータプログラムならびに制御装置 |
JP7388971B2 (ja) | 2020-04-06 | 2023-11-29 | トヨタ自動車株式会社 | 車両制御装置、車両制御方法及び車両制御用コンピュータプログラム |
US11203361B2 (en) * | 2020-05-05 | 2021-12-21 | StradVision, Inc. | Method for performing on-device learning of machine learning network on autonomous vehicle by using multi-stage learning with adaptive hyper-parameter sets and device using the same |
US12077190B2 (en) | 2020-05-18 | 2024-09-03 | Nvidia Corporation | Efficient safety aware path selection and planning for autonomous machine applications |
US11756424B2 (en) | 2020-07-24 | 2023-09-12 | AutoBrains Technologies Ltd. | Parking assist |
US12049116B2 (en) | 2020-09-30 | 2024-07-30 | Autobrains Technologies Ltd | Configuring an active suspension |
US11978266B2 (en) | 2020-10-21 | 2024-05-07 | Nvidia Corporation | Occupant attentiveness and cognitive load monitoring for autonomous and semi-autonomous driving applications |
WO2022109000A1 (en) * | 2020-11-17 | 2022-05-27 | Uatc, Llc | Systems and methods for video object segmentation |
US11443147B2 (en) * | 2020-12-11 | 2022-09-13 | Argo AI, LLC | Systems and methods for object detection using stereovision information |
JP7423505B2 (ja) * | 2020-12-21 | 2024-01-29 | 株式会社日立製作所 | データ分析システムおよび方法 |
US11760376B2 (en) | 2020-12-29 | 2023-09-19 | Ford Global Technologies, Llc | Machine learning updating with sensor data |
EP4194300A1 (en) | 2021-08-05 | 2023-06-14 | Autobrains Technologies LTD. | Providing a prediction of a radius of a motorcycle turn |
KR102657142B1 (ko) * | 2021-11-11 | 2024-04-15 | 한국전력 국제원자력대학원대학교 산학협력단 | 드론의 장애물 충돌회피를 위한 2d 히스토그램 생성방법 |
US20230311930A1 (en) * | 2022-03-31 | 2023-10-05 | Zoox, Inc. | Capturing and simulating radar data for autonomous driving systems |
US11829959B1 (en) * | 2022-11-18 | 2023-11-28 | Prince Mohammad Bin Fahd University | System and methods for fully autonomous potholes detection and road repair determination |
CN117854114B (zh) * | 2024-03-06 | 2024-06-04 | 中国地质大学(武汉) | 一种斑马鱼求偶行为智能识别方法、设备及介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016100814A1 (en) | 2014-12-19 | 2016-06-23 | United Technologies Corporation | Multi-modal sensor data fusion for perception systems |
JP2017130155A (ja) | 2016-01-22 | 2017-07-27 | 富士通テン株式会社 | 物体認識装置および物体認識方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150363660A1 (en) * | 2014-06-12 | 2015-12-17 | Asap54.Com Ltd | System for automated segmentation of images through layout classification |
US10289940B2 (en) * | 2015-06-26 | 2019-05-14 | Here Global B.V. | Method and apparatus for providing classification of quality characteristics of images |
US10140522B2 (en) * | 2015-12-16 | 2018-11-27 | Intel Corporation | Fully convolutional pyramid networks for pedestrian detection |
WO2018035805A1 (en) * | 2016-08-25 | 2018-03-01 | Intel Corporation | Coupled multi-task fully convolutional networks using multi-scale contextual information and hierarchical hyper-features for semantic image segmentation |
US20180211403A1 (en) * | 2017-01-20 | 2018-07-26 | Ford Global Technologies, Llc | Recurrent Deep Convolutional Neural Network For Object Detection |
-
2018
- 2018-05-07 US US15/972,566 patent/US10762396B2/en active Active
- 2018-12-04 JP JP2020530478A patent/JP7105305B2/ja active Active
- 2018-12-04 WO PCT/US2018/063839 patent/WO2019113063A1/en unknown
- 2018-12-04 EP EP18821944.8A patent/EP3704627A1/en active Pending
-
2020
- 2020-08-31 US US17/007,969 patent/US11443148B2/en active Active
-
2022
- 2022-09-12 US US17/942,898 patent/US11922708B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016100814A1 (en) | 2014-12-19 | 2016-06-23 | United Technologies Corporation | Multi-modal sensor data fusion for perception systems |
JP2017130155A (ja) | 2016-01-22 | 2017-07-27 | 富士通テン株式会社 | 物体認識装置および物体認識方法 |
Also Published As
Publication number | Publication date |
---|---|
US10762396B2 (en) | 2020-09-01 |
US20190171912A1 (en) | 2019-06-06 |
JP2021506000A (ja) | 2021-02-18 |
US20230004762A1 (en) | 2023-01-05 |
WO2019113063A1 (en) | 2019-06-13 |
US20200394474A1 (en) | 2020-12-17 |
US11443148B2 (en) | 2022-09-13 |
US11922708B2 (en) | 2024-03-05 |
EP3704627A1 (en) | 2020-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7105305B2 (ja) | 多段画像ベースの物体検出および認識 | |
US11934962B2 (en) | Object association for autonomous vehicles | |
US11475351B2 (en) | Systems and methods for object detection, tracking, and motion prediction | |
US11835950B2 (en) | Autonomous vehicle safe stop | |
US12097844B2 (en) | Constraining vehicle operation based on uncertainty in perception and/or prediction | |
US11354913B1 (en) | Systems and methods for improving vehicle predictions using point representations of scene | |
CN112789481B (zh) | 对自上而下场景的轨迹预测 | |
US20190145765A1 (en) | Three Dimensional Object Detection | |
US20190079526A1 (en) | Orientation Determination in Object Detection and Tracking for Autonomous Vehicles | |
US20220261601A1 (en) | Multiple Stage Image Based Object Detection and Recognition | |
US20210197720A1 (en) | Systems and methods for incident detection using inference models | |
US20210197813A1 (en) | Systems and methods for appropriate speed inference | |
JP2022538113A (ja) | 目標車両速度を決定するためのシステム及び方法 | |
CN114072841A (zh) | 根据图像使深度精准化 | |
CN115615445A (zh) | 处理地图数据的方法、系统和存储介质 | |
EP4224217A1 (en) | Use of low frequency electromagnetic signals to detect occluded anomalies by a vehicle | |
US20230084623A1 (en) | Attentional sampling for long range detection in autonomous vehicles | |
US12123734B2 (en) | Automatic annotation of drivable road segments | |
US20230391358A1 (en) | Retrofit vehicle computing system to operate with multiple types of maps | |
US20230168100A1 (en) | Automatic annotation of drivable road segments | |
US20220245950A1 (en) | Association and Tracking for Autonomous Devices | |
US20240132112A1 (en) | Path-based trajectory prediction | |
WO2024102431A1 (en) | Systems and methods for emergency vehicle detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20211013 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20211021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211203 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211203 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20211203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7105305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |