JP7101384B2 - Joining method - Google Patents

Joining method Download PDF

Info

Publication number
JP7101384B2
JP7101384B2 JP2018132252A JP2018132252A JP7101384B2 JP 7101384 B2 JP7101384 B2 JP 7101384B2 JP 2018132252 A JP2018132252 A JP 2018132252A JP 2018132252 A JP2018132252 A JP 2018132252A JP 7101384 B2 JP7101384 B2 JP 7101384B2
Authority
JP
Japan
Prior art keywords
reaction
self
melting point
joined
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018132252A
Other languages
Japanese (ja)
Other versions
JP2020006653A (en
Inventor
健二 宮本
成幸 中川
明夫 廣瀬
智一 佐野
朋己 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Osaka University NUC
Original Assignee
Nissan Motor Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Osaka University NUC filed Critical Nissan Motor Co Ltd
Priority to JP2018132252A priority Critical patent/JP7101384B2/en
Publication of JP2020006653A publication Critical patent/JP2020006653A/en
Application granted granted Critical
Publication of JP7101384B2 publication Critical patent/JP7101384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、接合方法に係り、更に詳細には、発熱材の反応熱を利用して被接合材同士を接合する接合方法及び該接合方法で接合した接合体に関する。 The present invention relates to a joining method, and more particularly to a joining method of joining materials to be joined by utilizing the reaction heat of an exothermic material and a joined body joined by the joining method.

テルミット反応や自己燃焼反応で生じる反応熱を利用し、被接合材同士を接合する接合方法が知られている。上記接合方法は、最初にエネルギーを加えるだけで反応が伝播し発熱するため、継続的な外部からの熱供給が不要である。 A joining method is known in which the materials to be joined are joined to each other by using the heat of reaction generated by the thermite reaction or the self-combustion reaction. In the above joining method, the reaction propagates and heat is generated only by first applying energy, so that continuous external heat supply is not required.

特許文献1の特表2003-531758号公報には、NiフォイルとAlフォイルとを交互に積層し、さらに圧延した反応性多層フォイルは、NiとAlとの自己燃料反応の発熱を利用した接合が可能である旨が記載されている。 In Japanese Patent Application Laid-Open No. 2003-531758, Ni foil and Al foil are alternately laminated, and the rolled reactive multilayer foil is bonded by utilizing the heat generated by the self-fuel reaction between Ni and Al. It is stated that it is possible.

特表2003-531758号公報Special Table 2003-531758 Gazette

しかしながら、NiとAlとの反応など、自己燃料合成反応の反応熱を利用し、鋼材やアルミニウム合金材などの構造用の被接合材同士を接合する場合、未反応の反応材が残り易い。また反応熱が被接合材に均一に伝わらず、接合界面に空隙などが生じ易く接合強度が低下する。 However, when the heat of reaction of the self-fuel synthesis reaction such as the reaction of Ni and Al is used to join structurally bonded materials such as steel materials and aluminum alloy materials, unreacted reaction materials tend to remain. Further, the heat of reaction is not uniformly transmitted to the material to be joined, and voids and the like are likely to be generated at the joining interface, and the joining strength is lowered.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、接合界面に未反応の反応材が残存せず、均一で密着性が高い接合界面を形成できる接合方法を提供することにある。 The present invention has been made in view of the problems of the prior art, and the purpose of the present invention is to provide a uniform and highly adhesive bonding interface in which no unreacted reactant remains at the bonding interface. The purpose is to provide a joining method that can be formed.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、反応の発熱継続時間を適正化し、かつ反応熱を被接合材に均一に伝えることで、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventor has found that the above object can be achieved by optimizing the heat generation duration of the reaction and uniformly transmitting the heat of reaction to the material to be bonded. The invention was completed.

即ち、本発明の接合方法は、被接合材間の発熱材を発熱させ、上記被接合材同士を接合する接合方法である。
そして、上記発熱材が、自己燃焼合成反応材とテルミット反応材とを含有し、かつ、少なくとも一方の被接合材との接触面に低融点金属材を備え、
上記低融点金属材の融点が、接合する双方の被接合材の融点以下であることを特徴とする。
That is, the joining method of the present invention is a joining method in which the exothermic material between the materials to be joined is generated to generate heat and the above-mentioned materials to be joined are joined to each other.
The exothermic material contains a self-combustion synthetic reaction material and a thermite reaction material, and has a low melting point metal material on a contact surface with at least one of the materials to be joined.
The melting point of the low melting point metal material is equal to or lower than the melting point of both bonded materials to be bonded.

また、本発明の接合体は、複数の被接合材が上記接合方法で接合されて成る。
そして、上記被接合材間の界面に、テルミット反応材の反応生成物と、自己燃焼合成反応材の反応生成物と、低融点金属とを含有し、
上記低融点金属材の融点が、上記被接合材双方の融点以下であることを特徴とする。
Further, the joined body of the present invention is formed by joining a plurality of materials to be joined by the above-mentioned joining method.
Then, the reaction product of the thermite reaction material, the reaction product of the self-combustion synthetic reaction material, and the low melting point metal are contained at the interface between the materials to be joined.
The melting point of the low melting point metal material is equal to or lower than the melting point of both of the materials to be joined.

本発明によれば、発熱材が、自己燃焼合成反応材とテルミット反応材とを含有し、かつ、少なくとも一方の被接合材との接触面に低融点金属材を備え、該発熱材を発熱させて接合することとしたため、接合界面に未反応の反応材が残存せず、均一で密着性が高い接合界面を形成できる接合方法を提供することができる。 According to the present invention, the exothermic material contains a self-burning synthetic reaction material and a thermite reaction material, and a low melting point metal material is provided on a contact surface with at least one of the materials to be joined to generate the exothermic material. Therefore, it is possible to provide a bonding method capable of forming a uniform and highly adhesive bonding interface without leaving an unreacted reaction material on the bonding interface.

発熱材の層構成の一例を示す断面図である。It is sectional drawing which shows an example of the layer structure of the exothermic material. 実施例1の接合体の接合界面の断面SEM像である。It is a cross-sectional SEM image of the junction interface of the junction of Example 1. 実施例9の接合体の接合界面の断面SEM像である。6 is a cross-sectional SEM image of the joining interface of the joining body of Example 9. 実施例10の接合体の接合界面の断面SEM像である。It is a cross-sectional SEM image of the junction interface of the junction of Example 10.

本発明の接合方法について詳細に説明する。
上記接合方法は、反応熱により被接合材の一部を溶融させて接合する接合方法であり、被接合材間に発熱材を配置し、該発熱材を発熱させて被接合材同士の接合を行う。
The joining method of the present invention will be described in detail.
The above-mentioned joining method is a joining method in which a part of the material to be joined is melted by the heat of reaction to be joined. conduct.

上記発熱材1は、図1に示すように、自己燃焼合成反応材4とテルミット反応材3とを含有し、かつ、少なくとも一方の被接合材との接触面に低融点金属材2を備える。 As shown in FIG. 1, the exothermic material 1 contains a self-combustion synthetic reaction material 4 and a thermite reaction material 3, and has a low melting point metal material 2 on a contact surface with at least one of the materials to be joined.

自己燃焼合成反応は、一般に反応が穏やかで長時間発熱が継続して被接合材の接合面を溶融し易い一方で、活性化エネルギーが高い。したがって、反応を開始させるためには、例えば、レーザなどによる高エネルギーが必要であり、安価な接合が困難である。 In the self-combustion synthesis reaction, the reaction is generally mild and heat generation continues for a long time to easily melt the joint surface of the material to be joined, but the activation energy is high. Therefore, in order to initiate the reaction, high energy such as by a laser is required, and inexpensive bonding is difficult.

上記反応熱を利用する接合方法では、接合面の端部からエネルギーを加え、接合面の面内方向に反応を伝播させるため、必然的に伝播距離が長くなり、自己燃焼合成反応が接合面の全面に伝播し難く、未反応の自己燃焼合成反応材が残存し易い。 In the joining method using the heat of reaction described above, energy is applied from the end of the joining surface to propagate the reaction in the in-plane direction of the joining surface, so that the propagation distance is inevitably long and the self-combustion synthesis reaction is carried out on the joining surface. It is difficult to propagate to the entire surface, and unreacted self-burning synthetic reactants tend to remain.

また、テルミット反応は、反応の伝播速度が非常に速く反応が一瞬で終了するため、温度の上昇降下が急激で被接合材に熱が均一に伝わり難く、均一な接合が困難で空隙が生じ易く密着性が低下する一方で、上記自己燃焼合成反応に比して活性化エネルギーが低い。したがって、反応の開始に、例えば、放電などを利用でき、安価な接合が可能である。 In the thermite reaction, the propagation speed of the reaction is very fast and the reaction is completed in an instant. Therefore, the temperature rises and falls rapidly, it is difficult for heat to be transferred uniformly to the material to be bonded, uniform bonding is difficult, and voids are likely to occur. While the adhesion is lowered, the activation energy is lower than that of the self-burning synthesis reaction. Therefore, for example, electric discharge can be used to start the reaction, and inexpensive bonding is possible.

本発明においては、自己燃焼合成反応材とテルミット反応材とを含有する発熱材を用いる。したがって、テルミット反応の反応熱により自己燃焼合成反応を誘起できるため、テルミット反応を開始させるエネルギーを加えれば足り、高いエネルギーを必要としない。 In the present invention, an exothermic material containing a self-burning synthetic reaction material and a thermite reaction material is used. Therefore, since the self-burning synthesis reaction can be induced by the reaction heat of the thermite reaction, it is sufficient to add the energy for initiating the thermite reaction, and high energy is not required.

加えて、図1に示すように、発熱材が自己燃焼合成反応材とテルミット反応材とが層状に積層されていることで、自己燃焼合成反応は、接合面の端部から開始して接合面の中心に向けて伝播するのではなく、テルミット反応によって接合面の全面でほぼ同時に開始する。したがって、自己燃焼合成反応が接合面の面外方向、すなわち、発熱材の厚さ方向に伝播するため伝播距離が短くなる。 In addition, as shown in FIG. 1, the exothermic material is a layered layer of the self-combustion synthetic reaction material and the thermite reaction material, so that the self-combustion synthetic reaction starts from the end of the joint surface and is formed on the joint surface. Rather than propagating towards the center of, the thermite reaction initiates at about the same time on the entire surface of the junction. Therefore, the self-combustion synthesis reaction propagates in the out-of-plane direction of the joint surface, that is, in the thickness direction of the exothermic material, so that the propagation distance becomes short.

さらに、自己燃焼合成反応の反応熱とテルミット反応の反応熱とが、互いの反応を誘起し合い、自己燃焼合成反応とテルミット反応とがそれぞれ伝播するため、未反応の自己燃焼合成反応材やテルミット反応材の発生を防止できる。 Furthermore, the heat of reaction of the self-burning synthesis reaction and the heat of reaction of the thermit reaction induce each other's reaction, and the self-burning synthesis reaction and the thermit reaction propagate respectively. It is possible to prevent the generation of a reactant.

また、発熱材と被接合材とを密着させても、固体と固体との接触界面には微視的な空隙が生じ易く、発熱材と被接合材とを完全に密着させることは困難である。したがって、発熱材から被接合材への熱伝導経路が上記空隙によって分断され、被接合材の接合面全面に均一に熱が伝わらないだけでなく、伝熱効率が低下する。 Further, even if the exothermic material and the material to be joined are brought into close contact with each other, microscopic voids are likely to occur at the contact interface between the solid and the solid, and it is difficult to completely adhere the exothermic material and the material to be joined. .. Therefore, the heat conduction path from the exothermic material to the material to be joined is divided by the voids, and not only the heat is not uniformly transferred to the entire surface of the joint surface of the material to be joined, but also the heat transfer efficiency is lowered.

上記発熱材は、被接合材との接触面、すなわち、表面に低融点金属材を備えるため、反応熱により低融点金属材が溶融して接触界面の空隙を埋め、被接合材と発熱材とが密着して、発熱材の反応熱を接合面の全面に均一かつ効率よく伝えることができる。
したがって、被接合材の接合面が均一かつ充分に溶融し、均一かつ密着性に優れた接合界面の形成が可能である。
Since the heat-generating material has a low-melting-point metal material on the contact surface with the material to be bonded, that is, the surface thereof, the low-melting-point metal material melts due to the heat of reaction to fill the voids at the contact interface, and the material to be bonded and the heat-generating material Can adhere to each other and transfer the heat of reaction of the heating material uniformly and efficiently to the entire surface of the joint surface.
Therefore, the joint surface of the material to be joined is uniformly and sufficiently melted, and it is possible to form a uniform and excellent bonding interface.

上記低融点金属材は、テルミット反応材に接触して積層されていることが好ましい。
低融点金属材がテルミット反応材に接触していることで、最初に起こるテルミット反応の反応熱によって低融点金属材が早期に溶融するため、自己燃焼合成反応の反応熱を効率よく被接合材に伝えることができる。
The low melting point metal material is preferably laminated in contact with the thermite reaction material.
When the low melting point metal material is in contact with the thermite reaction material, the low melting point metal material melts early due to the reaction heat of the first thermite reaction, so that the reaction heat of the self-burning synthesis reaction is efficiently used as the material to be bonded. I can tell.

上記低融点金属材を構成する金属材料としては、被接合材の金属材料と反応層を形成し、かつ被接合材よりも早期に溶融すれば特に制限はなく、接合する双方の被接合材の融点以下の融点を有する金属材料を使用できる。 The metal material constituting the low melting point metal material is not particularly limited as long as it forms a reaction layer with the metal material of the material to be joined and melts earlier than the material to be joined, and both of the materials to be joined are not particularly limited. A metal material having a melting point equal to or lower than the melting point can be used.

すなわち、接合する被接合材同士が同種材料で融点が同じである場合は、低融点金属材の融点が上記被接合材の融点以下であればよく、接合する被接合材が異種材料で融点が異なる場合の低融点金属材の融点は、融点が低い方の被接合材の融点以下であればよい。 That is, when the materials to be joined are of the same type and have the same melting point, the melting point of the low melting point metal material may be equal to or lower than the melting point of the material to be joined, and the materials to be joined are different materials and have a melting point. The melting point of the low melting point metal material in different cases may be equal to or lower than the melting point of the material to be joined, which has a lower melting point.

具体的には、融点が低い方の被接合材と同じ金属を含む合金や、該被接合材の金属材料と金属間化合物などを形成する金属又はその合金を挙げることができる。 Specific examples thereof include an alloy containing the same metal as the material to be joined having a lower melting point, a metal forming an intermetallic compound with the metal material of the material to be joined, or an alloy thereof.

上記低融点金属材の形状としては、メッシュ状シート、圧粉体、箔などを使用できるが、メッシュ状のシートであることが好ましい。
メッシュ状シートの低融点金属材は、被接合材との間に空隙を形成し、テルミット反応の伝播時には、反応熱の被接合材への伝熱経路を分断し、被接合材に反応熱が奪われてテルミット反応の伝播が停止することを防止する。加えて、同じ厚さの箔などに比して体積熱容量が小さく、テルミット反応が伝播した後には、早期に溶融して上記反応材と被接合材との熱のやりとりを促進する。
As the shape of the low melting point metal material, a mesh-like sheet, a green compact, a foil or the like can be used, but a mesh-like sheet is preferable.
The low melting point metal material of the mesh-like sheet forms a gap between it and the material to be bonded, and when the thermite reaction propagates, it divides the heat transfer path of the reaction heat to the material to be bonded, and the heat of reaction is transferred to the material to be bonded. Prevents being deprived and stopping the propagation of the thermite reaction. In addition, the volume heat capacity is smaller than that of a foil having the same thickness, and after the thermite reaction has propagated, it melts at an early stage to promote heat exchange between the reaction material and the material to be joined.

本発明において、メッシュ状のシートとは、低融点金属で形成された金属線を規則的に編んだ網目状のシート、複数のスリットや孔が規則的又は不規則的に形成されたシートを意味する。 In the present invention, the mesh-like sheet means a mesh-like sheet in which metal wires formed of a low melting point metal are regularly knitted, and a sheet in which a plurality of slits and holes are regularly or irregularly formed. do.

上記低融点金属材の厚さは、被接合材との接触界面の空隙を溶融により埋められればよく、被接合材の表面粗さなどにもよるが、100μm以上700μm以下であることが好ましい。低融点金属材の厚さが700μmを超えると、低融点金属材の溶融に要するエネルギーが大きくなり、多くの反応材が必要になる。 The thickness of the low melting point metal material may be such that the voids at the contact interface with the material to be joined may be filled by melting, and although it depends on the surface roughness of the material to be joined, it is preferably 100 μm or more and 700 μm or less. When the thickness of the low melting point metal material exceeds 700 μm, the energy required for melting the low melting point metal material increases, and a large amount of reaction material is required.

上記テルミット反応材は、金属酸化物粉末と金属アルミニウム粉末とを含有し、必要に応じて、テルミット反応生成物など、テルミット反応に関与せずに見かけの反応速度を低下させる燃焼速度調整材を含有することができる。 The thermite reaction material contains a metal oxide powder and a metal aluminum powder, and if necessary, contains a combustion rate adjusting material such as a thermite reaction product that reduces the apparent reaction rate without being involved in the thermite reaction. can do.

上記金属酸化物としては、従来からテルミット反応に用いられている金属酸化物を使用できるが、なかでも、酸化銅(CuO)、酸化マンガン(MnO)、酸化スズ(SnO)、及び酸化鉄(Fe)は、活性化エネルギーが低く、低いエネルギーでテルミット反応を生じさせることができる。 As the metal oxide, metal oxides conventionally used for thermite reaction can be used, and among them, copper oxide (CuO), manganese oxide (MnO 2 ), tin oxide (SnO 2 ), and iron oxide. (Fe 2 O 3 ) has a low activation energy and can cause a thermite reaction with a low energy.

金属酸化物と金属アルミニウムの混合比(金属酸化物/金属アルミニウム)は、化学量論比であることが好ましい。 The mixing ratio of the metal oxide and the metal aluminum (metal oxide / metal aluminum) is preferably a chemical quantitative ratio.

上記金属酸化物の平均粒径は、0.1μm以上10μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましい。 The average particle size of the metal oxide is preferably 0.1 μm or more and 10 μm or less, and more preferably 0.5 μm or more and 3 μm or less.

また、上記金属アルミニウムの平均粒径は、1μm以上50μm以下であることが好ましく、5μm以上20μm以下であることがより好ましい。
1μm未満では、燃焼が激しく制御が難しくなり、50μmを超えると反応が中断し易くなり反応材が残存するおそれがある。
The average particle size of the metallic aluminum is preferably 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 20 μm or less.
If it is less than 1 μm, combustion is severe and control becomes difficult, and if it exceeds 50 μm, the reaction is likely to be interrupted and the reactant may remain.

上記自己燃焼合成反応材は、発熱反応により自発的に化合物を生成する2種以上無機物を含有する。
上記無機物の組み合わせとしては、自己燃焼合成反応が起こればよく、自己燃焼合成反応が生じる従来公知の2種以上の無機物を組み合わせて使用することができる。
The self-combustion synthetic reaction material contains two or more kinds of inorganic substances that spontaneously generate a compound by an exothermic reaction.
As the combination of the above-mentioned inorganic substances, it is sufficient that a self-combustion synthesis reaction occurs, and two or more conventionally known inorganic substances that cause a self-combustion synthesis reaction can be used in combination.

なかでも、ホウ素(B)とチタン(Ti)若しくはジルコニウム(Zr)とを組み合わせた自己燃焼合成反応材、又は、炭素(C)とチタン(Ti)若しくはジルコニウム(Zr)とを組み合わせた自己燃焼合成反応材は、活性化エネルギーが低く、自己燃焼合成反応を容易に開始させることができ、好ましく使用できる。 Among them, a self-combustion synthetic reaction material that combines boron (B) and titanium (Ti) or zirconium (Zr), or a self-combustion synthesis that combines carbon (C) and titanium (Ti) or zirconium (Zr). The reaction material has a low activation energy, can easily initiate a self-combustion synthesis reaction, and can be preferably used.

上記ホウ素又は炭素と、チタン又はジルコニウムとの混合比(Ti又はZr/B又はC)は、化学量論比であることが好ましく、無機物の組み合わせにもよるが0.5~1.0(Mol比)であることが好ましい。 The mixing ratio (Ti or Zr / B or C) of the above boron or carbon and titanium or zirconium is preferably a chemical quantitative ratio, and is 0.5 to 1.0 (Mol) depending on the combination of inorganic substances. Ratio) is preferable.

上記自己燃焼合成反応材は、必要に応じて、充填剤を含有することができる。
自己燃焼合成反応材の反応生成物が、空隙が生じ易く延性に乏しい場合であっても、上記充填剤を含有することで空隙の発生を防止できると共に延性を付与することができる。
The self-combustion synthetic reaction material may contain a filler, if necessary.
Even when the reaction product of the self-combustion synthetic reaction material tends to have voids and has poor ductility, the inclusion of the filler can prevent the formation of voids and impart ductility.

上記充填剤としては、被接合材の金属材料と同種の金属材料使用することができ、上記自己燃焼合成反応材中の充填剤の含有量は、10質量%以上30質量%であることが好ましい。上記範囲の充填剤を含むことで、空隙の発生を防止でき、接合強度が向上する。 As the filler, a metal material of the same type as the metal material of the material to be joined can be used, and the content of the filler in the self-burning synthetic reaction material is preferably 10% by mass or more and 30% by mass. .. By including the filler in the above range, the generation of voids can be prevented and the bonding strength is improved.

上記自己燃焼合成反応材は、必ずしも紛体の混合物である必要はなく、メッキ、スパッタなどで積層してもよい。 The self-combustion synthetic reaction material does not necessarily have to be a mixture of powders, and may be laminated by plating, spattering, or the like.

上記発熱材の自己燃焼合成反応材とテルミット反応材との含有比(自己燃焼合成反応材/テルミット反応材)は、50/50~30/70(質量%)であることが好ましい。 The content ratio of the self-burning synthetic reaction material to the thermite reaction material (self-burning synthetic reaction material / thermite reaction material) of the exothermic material is preferably 50/50 to 30/70 (mass%).

上記発熱材は、所定量の金属酸化物粉末と金属アルミニウム粉末とを混合したテルミット反応材と、同様に所定量の2種以上の無機物を混合した自己燃焼合成反応材とを積層した積層体に低融点金属材を付与することで作製できる。また、上記積層体は、プレス成形、コールドスプレー、スラリーを固めること等により作製できる。 The exothermic material is a laminate obtained by laminating a thermite reaction material in which a predetermined amount of metal oxide powder and metal aluminum powder are mixed, and a self-burning synthetic reaction material in which a predetermined amount of two or more kinds of inorganic substances are similarly mixed. It can be produced by adding a low melting point metal material. Further, the laminate can be produced by press molding, cold spraying, solidifying the slurry, or the like.

本発明の接合方法は、上記発熱材を被接合材間に挿入し、例えば5~20MPaで加圧して発熱材と被接合材とを密着させ、上記発熱材に着火することで反応が開始し、制御された反応によって得られる反応熱によって被接合材同士を接合することができる。 In the joining method of the present invention, the exothermic material is inserted between the exothermic materials, pressurized at, for example, 5 to 20 MPa to bring the exothermic material into close contact with the exothermic material, and the exothermic material is ignited to start the reaction. , The materials to be joined can be joined by the reaction heat obtained by the controlled reaction.

上記発熱材に着火する着火装置としては、コンデンサー放電、電熱線、点火玉等を使用できる。 As an ignition device for igniting the exothermic material, a condenser discharge, a heating wire, an ignition ball, or the like can be used.

上記本発明の接合方法で接合した接合体は、被接合材間の界面に、テルミット反応材の反応生成物と、自己燃焼合成反応材の反応生成物と、低融点金属とを含有し、均一で密着性が高い接合界面を形成するため、高い接合強度を有する。 The joined body joined by the above-mentioned joining method of the present invention contains the reaction product of the Thermit reaction material, the reaction product of the self-combustion synthetic reaction material, and the low melting point metal at the interface between the materials to be joined, and is uniform. It has a high bonding strength because it forms a bonding interface with high adhesion.

上記接合界面に生成した、テルミット反応材の反応生成物、自己燃焼合成反応材の反応生成物、及び低融点金属は、電子線マイクロアナライザ(EPMA)エネルギー分散形X線分析(EDS、EDX)、波長分散X線分光法(WDX)などにより観察できる。 The reaction products of the Thermit reactants, the reaction products of the self-burning synthetic reactants, and the low melting point metals produced at the junction interface are described by electron probe microanalyzer (EPMA) energy dispersion X-ray analysis (EDS, EDX). It can be observed by wavelength dispersive X-ray spectroscopy (WDX) or the like.

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

[実施例1]
平均粒径が38μmのチタン粉末1.26gと、平均粒径が40μmのホウ素の粉末0.57gとを10分間メノウ乳鉢で混合し、自己燃焼合成反応材パウダーを作製した。
[Example 1]
1.26 g of titanium powder having an average particle size of 38 μm and 0.57 g of boron powder having an average particle size of 40 μm were mixed in an agate mortar for 10 minutes to prepare a self-burning synthetic reaction material powder.

同様に平均粒径20μmの金属アルミニウム粉末0.22gと、平均粒径1μmの酸化銅(CuO)粉末0.95gとを10分間メノウ乳鉢で混合し、テルミット反応材パウダーを作製した。 Similarly, 0.22 g of metallic aluminum powder having an average particle size of 20 μm and 0.95 g of copper oxide (CuO) powder having an average particle size of 1 μm were mixed in a Menou mortar for 10 minutes to prepare a thermite reaction material powder.

自己燃焼合成反応材パウダーとテルミット反応材パウダーとの含有比が30.56/38.88/30.56になるように、自己燃焼合成反応材パウダー、テルミット反応材パウダー、自己燃焼合成反応材パウダーの順に、φ10 mmの穴の開いた金属金型に投入し、プレス機を用いて1.5 GPaの加圧力で上記粉末を圧縮して、直径10mm、厚さ約1mmの円盤形状の三層構造の積層体を成形した。 Self-burning synthetic reaction material powder, thermite reaction material powder, self-burning synthetic reaction material powder so that the content ratio of self-burning synthetic reaction material powder and thermite reaction material powder is 30.56 / 38.88 / 30.56. In this order, the powder is put into a metal mold with a hole of φ10 mm, and the powder is compressed with a pressing force of 1.5 GPa using a press machine to form a disk-shaped three-layer with a diameter of 10 mm and a thickness of about 1 mm. A laminated body of the structure was molded.

メッシュ状のアルミニウム合金シート(融点650℃、線径:100mesh、空間率:32.141%、目開き:0.144mm、厚さ:0.22mm)を1枚ずつ上記積層体の両側に付与し、上記積層体をアルミニウム合金シートで挟んで発熱材を形成した。 A mesh-shaped aluminum alloy sheet (melting point 650 ° C., wire diameter: 100 mesh, space ratio: 32.141%, opening: 0.144 mm, thickness: 0.22 mm) is applied to both sides of the laminate one by one. , The laminated body was sandwiched between aluminum alloy sheets to form a heat generating material.

上記発熱材をその両側から被接合材であるアルミニウム合金(A6061、t2.0:融点652℃)で挟み、5MPaで加圧し発熱材と被接合材とを密着させ、大気雰囲気で、コンデンサー放電によって、接合開始のエネルギーを加え、アルミニウム合金同士を接合した接合体を得た。 The exothermic material is sandwiched from both sides of the aluminum alloy (A6061, t2.0: melting point 652 ° C.), which is the material to be bonded, and is pressurized at 5 MPa to bring the exothermic material and the material to be bonded into close contact with each other. , The energy for starting the bonding was applied to obtain a bonded body in which the aluminum alloys were bonded to each other.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られた。
また、この接合体の継手強度は引張せん断強度が9MPaであった。
実施例1の接合体の接合界面の断面SEM像を図2に示す。
At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, and a good adhesion interface was obtained.
The joint strength of this joint was 9 MPa in tensile shear strength.
FIG. 2 shows a cross-sectional SEM image of the joining interface of the joining body of Example 1.

[実施例2]
発熱材をアルミニウム合金(A6061、t2.0:融点652℃)と、鋼板(軟鋼板、t0.8:融点1527℃)とで挟む他は実施例1と同様にして、アルミニウム合金と鋼板との接合体を得た。
[Example 2]
The aluminum alloy and the steel plate are used in the same manner as in Example 1 except that the heat generating material is sandwiched between an aluminum alloy (A6061, t2.0: melting point 652 ° C.) and a steel plate (mild steel plate, t0.8: melting point 1527 ° C.). An alloy was obtained.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例3]
平均粒径が38μmのジルコニウム粉末1.62gと、平均粒径が40μmのホウ素の粉末0.38gとを10分間メノウ乳鉢で混合し、自己燃焼合成反応材パウダーを作製した。
[Example 3]
1.62 g of zirconium powder having an average particle size of 38 μm and 0.38 g of boron powder having an average particle size of 40 μm were mixed in an agate mortar for 10 minutes to prepare a self-burning synthetic reaction material powder.

同様に平均粒径10μmの金属アルミニウム粉末0.29gと、平均粒径1μmの酸化マンガン(MnO)粉末0.70gとを10分間メノウ乳鉢で混合し、テルミット反応材パウダーを作製した。 Similarly, 0.29 g of metallic aluminum powder having an average particle size of 10 μm and 0.70 g of manganese oxide (MnO 2 ) powder having an average particle size of 1 μm were mixed in a Menou mortar for 10 minutes to prepare a thermite reaction material powder.

自己燃焼合成反応材パウダーとテルミット反応材パウダーとの含有比が33.47/33.06/33.47になるように、テルミット反応材パウダー、自己燃焼合成反応材パウダー、テルミット反応材パウダーの順に、φ10 mmの穴の開いた金属金型に投入し、プレス機を用いて1.5 GPaの加圧力で上記粉末を圧縮して、直径10mm、厚さ約1mmの円盤形状の三層構造の積層体を成形した。 Thermite reaction material powder, self-burning synthetic reaction material powder, and thermite reaction material powder are in this order so that the content ratio of the self-burning synthetic reaction material powder and the thermite reaction material powder is 33.47 / 33.06 / 33.47. , Put into a metal mold with a hole of φ10 mm, and compress the powder with a pressing force of 1.5 GPa using a press machine to form a disk-shaped three-layer structure with a diameter of 10 mm and a thickness of about 1 mm. The laminate was molded.

上記積層体の両側に、メッシュ状のアルミニウム合金シート(融点650℃、線径:100mesh、空間率:32.141%、目開き:0.144mm、厚さ:0.22mm)を1枚ずつ付与した発熱材を用いる他は実施例1と同様にして、アルミニウム合金同士の接合体を得た。 A mesh-shaped aluminum alloy sheet (melting point 650 ° C., wire diameter: 100 mesh, space ratio: 32.141%, opening: 0.144 mm, thickness: 0.22 mm) is provided on both sides of the laminate. A bonded body of aluminum alloys was obtained in the same manner as in Example 1 except that the heat-generating material was used.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例4]
発熱材をアルミニウム合金(A6061、t2.0:融点652℃)と、鋼板(軟鋼板、t0.8:融点1527℃)とで挟む他は実施例3と同様にして、アルミニウム合金と鋼板との接合体を得た。
[Example 4]
The aluminum alloy and the steel plate are used in the same manner as in Example 3 except that the heat generating material is sandwiched between an aluminum alloy (A6061, t2.0: melting point 652 ° C.) and a steel plate (mild steel plate, t0.8: melting point 1527 ° C.). An alloy was obtained.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例5]
平均粒径が38μmのチタン粉末0.99gと、平均粒径が40μmの炭素の粉末0.25gとを10分間メノウ乳鉢で混合し、自己燃焼合成反応材パウダーを作製した。
[Example 5]
0.99 g of titanium powder having an average particle size of 38 μm and 0.25 g of carbon powder having an average particle size of 40 μm were mixed in an agate mortar for 10 minutes to prepare a self-burning synthetic reaction material powder.

同様に平均粒径10μmの金属アルミニウム粉末0.34gと、平均粒径1μmの酸化スズ(SnO)粉末1.42gとを10分間メノウ乳鉢で混合し、テルミット反応材パウダーを作製した。 Similarly, 0.34 g of metallic aluminum powder having an average particle size of 10 μm and 1.42 g of tin oxide (SnO 2 ) powder having an average particle size of 1 μm were mixed in a Menou mortar for 10 minutes to prepare a thermite reaction material powder.

自己燃焼合成反応材パウダーとテルミット反応材パウダーとの含有比が20.72/58.56/20.72になるように、テルミット反応材パウダー、自己燃焼合成反応材パウダー、テルミット反応材パウダーの順に、φ10 mmの穴の開いた金属金型に投入し、プレス機を用いて1.5 GPaの加圧力で上記粉末を圧縮して、直径10mm、厚さ約1mmの円盤形状の三層構造の積層体を成形した。 Thermite reaction material powder, self-burning synthetic reaction material powder, and thermite reaction material powder are in this order so that the content ratio of the self-burning synthetic reaction material powder and the thermite reaction material powder is 20.72 / 58.56 / 20.72. , Put into a metal mold with a hole of φ10 mm, and compress the powder with a pressing force of 1.5 GPa using a press machine to form a disk-shaped three-layer structure with a diameter of 10 mm and a thickness of about 1 mm. The laminate was molded.

上記積層体の両側に、メッシュ状のアルミニウム合金シート(融点650℃、線径:100mesh、空間率:32.141%、目開き:0.144mm、厚さ:0.22mm)を1枚ずつ付与した発熱材を用いる他は実施例1と同様にして、アルミニウム合金同士の接合体を得た。 A mesh-shaped aluminum alloy sheet (melting point 650 ° C., wire diameter: 100 mesh, space ratio: 32.141%, opening: 0.144 mm, thickness: 0.22 mm) is provided on both sides of the laminate. A bonded body of aluminum alloys was obtained in the same manner as in Example 1 except that the heat-generating material was used.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例6]
発熱材をアルミニウム合金(A6061、t2.0:融点652℃)と、鋼板(軟鋼板、t0.8:融点1527℃)とで挟む他は実施例5と同様にして、アルミニウム合金と鋼板との接合体を得た。
[Example 6]
The aluminum alloy and the steel plate are used in the same manner as in Example 5 except that the heat generating material is sandwiched between an aluminum alloy (A6061, t2.0: melting point 652 ° C.) and a steel plate (mild steel plate, t0.8: melting point 1527 ° C.). An alloy was obtained.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例7]
平均粒径が38μmのジルコニウム粉末2.02gと、平均粒径が40μmの炭素の粉末0.27gとを10分間メノウ乳鉢で混合し、自己燃焼合成反応材パウダーを作製した。
[Example 7]
2.02 g of zirconium powder having an average particle size of 38 μm and 0.27 g of carbon powder having an average particle size of 40 μm were mixed in an agate mortar for 10 minutes to prepare a self-burning synthetic reaction material powder.

同様に平均粒径10μmの金属アルミニウム粉末0.18gと、平均粒径1μmの酸化鉄(Fe)粉末0.53gとを10分間メノウ乳鉢で混合し、テルミット反応材パウダーを作製した。 Similarly, 0.18 g of metallic aluminum powder having an average particle size of 10 μm and 0.53 g of iron oxide (Fe 2 O 3 ) powder having an average particle size of 1 μm were mixed in a Menou dairy pot for 10 minutes to prepare a thermit reaction material powder.

自己燃焼合成反応材パウダーとテルミット反応材パウダーとの含有比が38.09/23.82/38.09になるように、テルミット反応材パウダー、自己燃焼合成反応材パウダー、テルミット反応材パウダーの順に、φ10 mmの穴の開いた金属金型に投入し、プレス機を用いて1.5 GPaの加圧力で上記粉末を圧縮して、直径10mm、厚さ約1mmの円盤形状の三層構造の積層体を成形した。 Thermite reaction material powder, self-burning synthetic reaction material powder, and thermite reaction material powder are in this order so that the content ratio of the self-burning synthetic reaction material powder and the thermite reaction material powder is 38.09 / 23.82 / 38.09. , Put into a metal mold with a hole of φ10 mm, and compress the powder with a pressing force of 1.5 GPa using a press machine to form a disk-shaped three-layer structure with a diameter of 10 mm and a thickness of about 1 mm. The laminate was molded.

上記積層体の両側に、メッシュ状のアルミニウム合金シート(融点650℃、線径:100mesh、空間率:32.141%、目開き:0.144mm、厚さ:0.22mm)を1枚ずつ付与した発熱材を用いる他は実施例1と同様にして、アルミニウム合金同士の接合体を得た。 A mesh-shaped aluminum alloy sheet (melting point 650 ° C., wire diameter: 100 mesh, space ratio: 32.141%, opening: 0.144 mm, thickness: 0.22 mm) is provided on both sides of the laminate. A bonded body of aluminum alloys was obtained in the same manner as in Example 1 except that the heat-generating material was used.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例8]
発熱材をアルミニウム合金(A6061、t2.0:融点652℃)と、鋼板(軟鋼板、t0.8:融点1527℃)とで挟む他は実施例7と同様にして、アルミニウム合金と鋼板との接合体を得た。
[Example 8]
The aluminum alloy and the steel plate are used in the same manner as in Example 7 except that the heat generating material is sandwiched between an aluminum alloy (A6061, t2.0: melting point 652 ° C.) and a steel plate (mild steel plate, t0.8: melting point 1527 ° C.). An alloy was obtained.

この接合体の接合界面には、未反応の自己燃焼合成反応材と未反応のテルミット反応材が少なく、良好な密着界面が得られ、高い継手強度を有していた。 At the bonding interface of this bonded body, there were few unreacted self-burning synthetic reaction materials and unreacted thermite reaction materials, a good adhesion interface was obtained, and the joint strength was high.

[実施例9]
実施例1の自己燃焼合成反応材パウダーに平均粒径20μmのアルミニウム粒子を20質量%加える他は実施例1と同様にしてアルミニウム合金同士の接合体を得た。
この接合体の引張せん断強度は21MPaであり、高い継手強度を有していた。
実施例9の接合体の接合界面の断面SEM像を図3に示す。
[Example 9]
A bonded body of aluminum alloys was obtained in the same manner as in Example 1 except that 20% by mass of aluminum particles having an average particle size of 20 μm were added to the self-burning synthetic reaction material powder of Example 1.
The tensile shear strength of this joint was 21 MPa, and it had a high joint strength.
FIG. 3 shows a cross-sectional SEM image of the joining interface of the joining body of Example 9.

[実施例10]
実施例1の自己燃焼合成反応材パウダーに平均粒径20μmのアルミニウム粒子を40質量%加える他は実施例1と同様にしてアルミニウム合金同士の接合体を得た。
この接合体の引張せん断強度は13MPaの継手強度を有していた。
実施例10の接合体の接合界面の断面SEM像を図4に示す。
[Example 10]
A bonded body of aluminum alloys was obtained in the same manner as in Example 1 except that 40% by mass of aluminum particles having an average particle size of 20 μm were added to the self-burning synthetic reaction material powder of Example 1.
The tensile shear strength of this joint had a joint strength of 13 MPa.
FIG. 4 shows a cross-sectional SEM image of the joining interface of the joining body of Example 10.

[比較例1]
積層体にメッシュ状のアルミニウム合金シートを付与しない他は実施例1と同様にして接合体を得た。
[Comparative Example 1]
A bonded body was obtained in the same manner as in Example 1 except that the mesh-shaped aluminum alloy sheet was not applied to the laminated body.

この接合体の接合界面は、空隙が生じており、未反応のTi-B自己燃焼合成反応材、Al-CuOテルミット反応材が残存していた。このことから、本発明の接合界面に低融点金属を備えた発熱材を用いることによる効果が確認された。 Voids were formed at the bonding interface of this bonded body, and unreacted Ti-B self-burning synthetic reaction material and Al-CuO thermite reaction material remained. From this, it was confirmed that the effect of using the exothermic material provided with the low melting point metal at the bonding interface of the present invention was confirmed.

[比較例2]
テルミット反応材パウダーを用いずに、自己燃焼合成反応材パウダーの圧粉体にメッシュ状のアルミニウム合金シートを付与した発熱材を用いる他は、実施例1と同様にして接合体を得た。
[Comparative Example 2]
A bonded body was obtained in the same manner as in Example 1 except that an exothermic material having a mesh-shaped aluminum alloy sheet added to the green compact of the self-burning synthetic reaction material powder was used without using the thermite reaction material powder.

この接合体の接合界面は、低融点金属、および被接合材であるAl合金の非溶融領域が混在しており、不均一な接合界面となった。このことから、本発明の自己燃焼合成反応材と酸化還元反応材とを備えた発熱材を用いることによる効果が確認された。 The bonding interface of this bonded body was a non-uniform bonding interface in which a low melting point metal and a non-melted region of an Al alloy as a material to be bonded were mixed. From this, the effect of using the exothermic material provided with the self-burning synthetic reaction material and the redox reaction material of the present invention was confirmed.

[比較例3]
自己燃焼合成反応材パウダーを用いずに、テルミット反応材パウダーの圧粉体にメッシュ状のアルミニウム合金シートを付与した発熱材を用いる他は、実施例1と同様にして接合体を得た。
[Comparative Example 3]
A bonded body was obtained in the same manner as in Example 1 except that an exothermic material having a mesh-shaped aluminum alloy sheet added to the green compact of the thermite reaction material powder was used without using the self-burning synthetic reaction material powder.

この接合体の接合界面は、空隙が存在する不均一な接合界面であった。これは、テルミット反応材の反応が急峻なため、溶融と凝固が短時間で起こったためであると考えられる。このことから、本発明の自己燃焼合成反応材と酸化還元反応材とを備えた発熱材を用いることによる効果が確認された。 The bonding interface of this bonded body was a non-uniform bonding interface in which voids were present. It is considered that this is because the reaction of the thermite reactant is steep and melting and solidification occur in a short time. From this, the effect of using the exothermic material provided with the self-burning synthetic reaction material and the redox reaction material of the present invention was confirmed.

[比較例4]
メッシュ状のアルミニウム合金シート及びテルミット反応材パウダーを用いずに、自己燃焼合成反応材パウダーの圧粉体を用いる他は、比較例2と同様にして接合体を得た。
[Comparative Example 4]
A bonded body was obtained in the same manner as in Comparative Example 2 except that the ingot powder of the self-burning synthetic reaction material powder was used without using the mesh-shaped aluminum alloy sheet and the thermite reaction material powder.

この接合体の接合界面は、被接合材であるAl合金の非溶融領域が存在し、かつ未反応のTi-B自己燃焼合成反応材が残存した不均一な接合界面であった。 The bonding interface of this bonded body was a non-uniform bonding interface in which a non-melted region of the Al alloy as the material to be bonded was present and an unreacted Ti-B self-burning synthetic reaction material remained.

[比較例5]
メッシュ状のアルミニウム合金シート及び自己燃焼合成反応材パウダーを用いずに、テルミット反応材パウダーの圧粉体を用いる他は、比較例3と同様にして接合体を得た。
[Comparative Example 5]
A bonded body was obtained in the same manner as in Comparative Example 3 except that the powder of thermite reaction material powder was used without using the mesh-shaped aluminum alloy sheet and the self-burning synthetic reaction material powder.

この接合体の接合界面は、空隙が存在し、かつ未反応のAl-CuOテルミット反応材が残存した不均一な接合界面であった。 The bonding interface of this bonded body was a non-uniform bonding interface in which voids were present and an unreacted Al—CuO thermite reactant remained.

1 発熱材
2 低融点金属材
3 テルミット反応材
4 自己燃焼合成反応材
1 Exothermic material 2 Low melting point metal material 3 Thermite reaction material 4 Self-burning synthetic reaction material

Claims (4)

被接合材間の発熱材を発熱させ、上記被接合材同士を接合する接合方法であって、
上記発熱材が、自己燃焼合成反応材とテルミット反応材とを含有し、かつ、少なくとも一方の被接合材との接触面に低融点金属材を備え、
上記低融点金属材の融点が、接合する双方の被接合材の融点以下であり、
上記自己燃焼合成反応材と上記テルミット反応材とが、パウダーであることを特徴とする接合方法。
It is a joining method in which the exothermic material between the materials to be joined is generated to generate heat and the above-mentioned materials to be joined are joined to each other.
The exothermic material contains a self-burning synthetic reaction material and a thermite reaction material, and has a low melting point metal material on a contact surface with at least one of the materials to be joined.
The melting point of the low melting point metal material is equal to or lower than the melting point of both bonded materials to be bonded .
A joining method characterized in that the self-burning synthetic reaction material and the thermite reaction material are powders .
低融点金属材の形状が、メッシュ状シートであることを特徴とする請求項1に記載の接合方法。 The joining method according to claim 1, wherein the shape of the low melting point metal material is a mesh-like sheet. 上記テルミット反応材が、酸化銅(CuO)、酸化マンガン(MnO)、酸化スズ(SnO)、及び酸化鉄(Fe)から成る群から選ばれた少なくとも1種の金属酸化物と、アルミニウム(Al)と、を含むことを特徴とする請求項1又は2に記載の接合方法。 The thermite reactant is composed of at least one metal oxide selected from the group consisting of copper oxide (CuO), manganese oxide (MnO 2 ), tin oxide (SnO 2 ), and iron oxide (Fe 2 O 3 ). The joining method according to claim 1 or 2 , wherein the bonding method comprises aluminum (Al). 上記自己燃焼合成反応材が、ホウ素(B)とチタン(Ti)若しくはジルコニウム(Zr)との組み合わせ、又は、炭素(C)とチタン(Ti)若しくはジルコニウム(Zr)との組み合わせであることを特徴とする請求項1~のいずれか1つの項に記載の接合方法。 The self-burning synthetic reaction material is characterized by a combination of boron (B) and titanium (Ti) or zirconium (Zr), or a combination of carbon (C) and titanium (Ti) or zirconium (Zr). The joining method according to any one of claims 1 to 3 .
JP2018132252A 2018-07-12 2018-07-12 Joining method Active JP7101384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018132252A JP7101384B2 (en) 2018-07-12 2018-07-12 Joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018132252A JP7101384B2 (en) 2018-07-12 2018-07-12 Joining method

Publications (2)

Publication Number Publication Date
JP2020006653A JP2020006653A (en) 2020-01-16
JP7101384B2 true JP7101384B2 (en) 2022-07-15

Family

ID=69149997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018132252A Active JP7101384B2 (en) 2018-07-12 2018-07-12 Joining method

Country Status (1)

Country Link
JP (1) JP7101384B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531758A (en) 2000-05-02 2003-10-28 ジョンズ ホプキンス ユニバーシティ Method for producing reactive multilayer foil and resulting product
US20090078345A1 (en) 2007-09-25 2009-03-26 Ensign-Bickford Aerospace & Defense Company Heat generating structures
US20140174583A1 (en) 2012-12-26 2014-06-26 Yongli Yang Linepipe with cermet internal liner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331924U (en) * 1986-08-19 1988-03-01
JPS63182529U (en) * 1987-05-18 1988-11-24
JPH03159969A (en) * 1989-11-18 1991-07-09 Yokogawa Electric Corp Bonding between silicon and alumina
US5580517A (en) * 1994-11-08 1996-12-03 Kyushu Ceramics Industry Co., Ltd. Method of making composites of metals and oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531758A (en) 2000-05-02 2003-10-28 ジョンズ ホプキンス ユニバーシティ Method for producing reactive multilayer foil and resulting product
JP2004501047A (en) 2000-05-02 2004-01-15 ジョンズ ホプキンス ユニバーシティ Self-supporting reactive multilayer foil
US20090078345A1 (en) 2007-09-25 2009-03-26 Ensign-Bickford Aerospace & Defense Company Heat generating structures
US20140174583A1 (en) 2012-12-26 2014-06-26 Yongli Yang Linepipe with cermet internal liner

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
宮本欽生,自己燃焼反応とセラミックス材料の開発,鉱物学雑誌,日本,一般社団法人日本鉱物科学会,1988年11月,Vol.18, No.6,Page.383-391,https://doi.org/10.2465/gkk1952.18.383,ISSN:0454-1146
松田朋己,他2名,自己燃焼合成およびテルミット反応を用いたアルミニウムの接合,溶接学会平成27年度秋季全国大会講演概要,Vol.97,日本,一般社団法人溶接学会,2015年09月02日,Page.88-89,https://doi.org/10.14920/jwstaikai.2015f.0_88
松田朋己,他2名,複合的な発熱反応を利用したアルミニウムの瞬間接合とその組織評価,溶接学会平成28年度秋季全国大会講演概要,Vol.99,日本,一般社団法人溶接学会,2016年09月14日,Page.288-289,https://doi.org/10.14920/jwstaikai.2016f.0_288

Also Published As

Publication number Publication date
JP2020006653A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US7810704B2 (en) Method for fabricating large dimension bonds using reactive multilayer joining
JP2009269085A (en) Method of bonding different metals and bonded structure
US8590768B2 (en) Battery tab joint by reaction metallurgy
WO2017087959A4 (en) Systems and methods for forming a layer onto a surface of a solid substrate and products formed thereby
CN101607344B (en) Compound welding method of simultaneously explosive welding of multiple local parts in metal explosive welding
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
JP2006175502A (en) Different kinds of metal welding method
JP6488875B2 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
US5753885A (en) Powder materials for use in resistance welding aluminum articles and method of resistance welding aluminum articles
CN101707295A (en) Copper-aluminium explosion composite electrical T type copper-aluminium bimetal binding clip and explosion welding method
CA2650605A1 (en) Method for production of composite bodies and composite bodies produced thereby
JP7101384B2 (en) Joining method
US4139140A (en) Method for producing an electrical contact element
JP2006326612A (en) Method of welding different kind of metal by resistance seam welding
WO2016068176A1 (en) Porous aluminum sintered body and method for producing porous aluminum sintered body
CN112935621A (en) Welding wire for graphene-enhanced TA1-Q345 middle layer and preparation method
RU2463140C1 (en) Method of producing titanium-aluminium composite material
JP3588137B2 (en) Metal material surface coating method
JP4108505B2 (en) Bonding method of carbon-based copper composite and ceramics or copper
KR101924130B1 (en) Multilayered Composite Pellets and Method for fabricating the same and Method for Bonding Intermetallic Substrates using the same
JPH0565272B2 (en)
JPH10314933A (en) Method of joining aluminum material to iron material
CN114535603A (en) Method for improving ductility and toughness of weak area of additive manufactured metal laminar composite material
GB1577874A (en) Electrical contact element and method of producing the same
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7101384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150