JP7100996B2 - Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers - Google Patents

Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers Download PDF

Info

Publication number
JP7100996B2
JP7100996B2 JP2018041167A JP2018041167A JP7100996B2 JP 7100996 B2 JP7100996 B2 JP 7100996B2 JP 2018041167 A JP2018041167 A JP 2018041167A JP 2018041167 A JP2018041167 A JP 2018041167A JP 7100996 B2 JP7100996 B2 JP 7100996B2
Authority
JP
Japan
Prior art keywords
styrene
copolymer
heat
resin composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018041167A
Other languages
Japanese (ja)
Other versions
JP2019156880A (en
Inventor
泰生 山口
雅史 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Styrene Co Ltd
Original Assignee
Toyo Styrene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Styrene Co Ltd filed Critical Toyo Styrene Co Ltd
Priority to JP2018041167A priority Critical patent/JP7100996B2/en
Publication of JP2019156880A publication Critical patent/JP2019156880A/en
Application granted granted Critical
Publication of JP7100996B2 publication Critical patent/JP7100996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐熱性と靱性、成形性のバランスに優れた耐熱性スチレン系樹脂組成物、並びに該耐熱性スチレン系樹脂組成物を用いて形成される成形品、及び発泡シートに関する。 The present invention relates to a heat-resistant styrene-based resin composition having an excellent balance between heat resistance, toughness, and moldability, a molded product formed by using the heat-resistant styrene-based resin composition, and a foamed sheet.

スチレン-(メタ)アクリル酸系共重合体は、一般のポリスチレンと比較して耐熱性に優れることから、食品容器等の包装材料、住宅の断熱材用途の発泡ボード、液晶テレビの光拡散板等の原料として広く用いられている。包装材料の分野では、スチレン-(メタ)アクリル酸系共重合体は、電子レンジ等での加熱に供する食品包装容器として使用されることが多いが、近年、コンビニエンスストア等では、加熱時間の短縮による業務の効率化のため、高出力の電子レンジが普及しており、従来に比べて高い耐熱性が要求される。また、省資源化のため、成形品の軽量化が求められており、更には、内容物の増量に伴う容器の大型化や意匠性の観点から、脆性等の機械的強度や成形性を改良した樹脂が望まれている。 Since styrene- (meth) acrylic acid-based copolymers are superior in heat resistance to general polystyrene, they are used as packaging materials for food containers, foam boards for heat insulating materials in houses, light diffusers for liquid crystal televisions, etc. It is widely used as a raw material for. In the field of packaging materials, styrene- (meth) acrylic acid-based copolymers are often used as food packaging containers for heating in microwave ovens, etc., but in recent years, in convenience stores, etc., the heating time has been shortened. High-output microwave ovens have become widespread in order to improve work efficiency, and higher heat resistance than before is required. Further, in order to save resources, it is required to reduce the weight of the molded product, and further, from the viewpoint of increasing the size of the container and designability due to the increase in the amount of contents, the mechanical strength such as brittleness and the moldability are improved. Resin is desired.

スチレン-(メタ)アクリル酸系共重合体は、一般のポリスチレンに比べて、脆いという欠点を有しているため、スチレン-(メタ)アクリル酸系共重合体に補強材としてゴム質成分を添加する方法が提案されている。例えば、特許文献1には、ゴム質成分として、耐衝撃性ポリスチレン(HIPS)やメタクリル酸メチル-ブタジエン-スチレン共重合樹脂(MBS)を添加してなる発泡シートが開示されており、特許文献2には、スチレン-メタクリル酸共重合樹脂とスチレン-ブタジエン共重合樹脂からなるスチレン系樹脂発泡シートが開示されている。 Since the styrene- (meth) acrylic acid-based copolymer has the disadvantage of being more brittle than general polystyrene, a rubbery component is added to the styrene- (meth) acrylic acid-based copolymer as a reinforcing material. How to do it is proposed. For example, Patent Document 1 discloses a foamed sheet obtained by adding impact-resistant polystyrene (HIPS) or methyl methacrylate-butadiene-styrene copolymer resin (MBS) as a rubber component, and Patent Document 2 Discloses a styrene-based resin foam sheet composed of a styrene-methacrylic acid copolymer resin and a styrene-butadiene copolymer resin.

また、ゴム質成分を添加せずに脆性と成形性を改良する方法として、特許文献3には、スチレン-(メタ)アクリル酸系共重合体に、特定の重量平均分子量以上のメチルメタクリレートを主成分とする樹脂を添加する方法が開示されている。 Further, as a method for improving brittleness and moldability without adding a rubbery component, Patent Document 3 mainly describes methyl methacrylate having a specific weight average molecular weight or more in a styrene- (meth) acrylic acid-based copolymer. A method of adding a resin as a component is disclosed.

特開平2-58548号公報Japanese Unexamined Patent Publication No. 2-58548 特開2000-136257号公報Japanese Unexamined Patent Publication No. 2000-136257 特開平10-87929号公報Japanese Unexamined Patent Publication No. 10-87929

しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。
第一に、特許文献1~2の技術では、脆性等の機械的強度の改良が不十分であり、脆性を改良するためにゴム質成分を多く添加すると、耐熱性や剛性が低下する問題があった。また、発泡シートの2次成形において、成形品に割れやナキ等の成形不良が発生することがあった。
第二に、特許文献3の技術では、従来の技術に比べて、耐熱性と成形性は改善されるものの、脆性の改良効果については不十分であった。
本発明は上記事情に鑑みてなされたものであり、上記に記載した耐熱性と、靱性、成形性のバランスに優れるという課題を達成することを目的とする。
However, the prior art described in the above document has room for improvement in the following points.
First, the techniques of Patent Documents 1 and 2 are insufficient to improve mechanical strength such as brittleness, and if a large amount of rubbery component is added to improve brittleness, there is a problem that heat resistance and rigidity are lowered. there were. In addition, in the secondary molding of the foamed sheet, molding defects such as cracks and naki may occur in the molded product.
Secondly, the technique of Patent Document 3 is improved in heat resistance and moldability as compared with the conventional technique, but the effect of improving brittleness is insufficient.
The present invention has been made in view of the above circumstances, and an object of the present invention is to achieve the above-mentioned problem of excellent balance between heat resistance, toughness, and moldability.

本発明者らは、上記問題点に鑑み、鋭意研究を進めたところ、スチレン-(メタ)アクリル酸共重合体(A)と、MBS樹脂(B)とを含む樹脂組成物において、スチレン-(メタ)アクリル酸共重合体(A)の海相に分散するMBS樹脂(B)の分散粒子径を特定の範囲とすることで、従来の技術では達成できなかった耐熱性、靱性、成形性のバランスを有する耐熱性スチレン系樹脂組成物が得られ、更に、該耐熱性スチレン系樹脂組成物を用いることで、耐熱性、靱性、成形性のバランスに優れる発泡シートが得られることを見出し、本発明の完成に至った。 In view of the above problems, the present inventors have conducted diligent research, and found that a resin composition containing a styrene- (meth) acrylic acid copolymer (A) and an MBS resin (B) contains styrene- (meth). By setting the dispersed particle size of the MBS resin (B) dispersed in the sea phase of the meta) acrylic acid copolymer (A) within a specific range, heat resistance, toughness, and moldability that could not be achieved by conventional techniques can be achieved. We have found that a heat-resistant styrene-based resin composition having a balance can be obtained, and further, by using the heat-resistant styrene-based resin composition, a foamed sheet having an excellent balance of heat resistance, toughness, and moldability can be obtained. The invention was completed.

即ち、本発明は、下記(1)~(8)に示すところである。
(1)スチレン-(メタ)アクリル酸共重合体(A)、コア相がブタジエン系ゴムでシェル相がメタクリル酸メチル単量体とスチレン系単量体を主成分とする共重合体である、MBS樹脂(B)を含む、耐熱性スチレン系樹脂組成物であって、
前記共重合体(A)からなる海相に、前記MBS樹脂(B)が島相として分散し、電子顕微鏡写真の画像観察から得られる、前記MBS樹脂(B)のゴム島相の重量平均円相当粒子径が120nm以上であり、且つ、100nm以上の円相当粒子径の個数割合が40%以上であることを特徴とする耐熱性スチレン系樹脂組成物。
(2)前記共重合体(A)、及び前記MBS樹脂(B)の合計量を100質量%としたとき、前記共重合体(A)の含有量が70~99質量%、前記MBS樹脂(B)の含有量が1~30質量%である、前記(1)に記載の耐熱性スチレン系樹脂組成物。
(3)前記共重合体(A)に含まれる、スチレン系単量体単位、(メタ)アクリル酸単量体単位の合計量を100質量%としたとき、スチレン系単量体単位の含有量が80~99質量%であり、(メタ)アクリル酸単量体単位の含有量が1~20質量%である、前記(1)又は(2)に記載の耐熱性スチレン系樹脂組成物。
(4)前記共重合体(A)の重量平均分子量(Mw)が10万~40万である、前記(1)~(3)のいずれかに記載の耐熱性スチレン系樹脂組成物。
(5)ビカット軟化温度が110℃以上である、前記(1)~(4)のいずれかに記載の耐熱性スチレン系樹脂組成物。
(6)前記(1)~(5)のいずれかに記載の耐熱性スチレン系樹脂組成物を成形してなる、成形品。
(7)前記(1)~(5)のいずれかに記載の耐熱性スチレン系樹脂組成物を成形してなる、発泡シート。
(8)前記(7)に記載の発泡シートを成形してなる食品包装用容器。
That is, the present invention is as shown in the following (1) to (8).
(1) A styrene- (meth) acrylic acid copolymer (A), a copolymer having a butadiene-based rubber core phase and a methyl methacrylate monomer and a styrene-based monomer as main components in the shell phase. A heat-resistant styrene-based resin composition containing the MBS resin (B).
The MBS resin (B) is dispersed as an island phase in the sea phase composed of the copolymer (A), and the weight average circle of the rubber island phase of the MBS resin (B) obtained from the image observation of the electron micrograph. A heat-resistant styrene-based resin composition having an equivalent particle size of 120 nm or more and a number ratio of a circle-equivalent particle size of 100 nm or more of 40% or more.
(2) When the total amount of the copolymer (A) and the MBS resin (B) is 100% by mass, the content of the copolymer (A) is 70 to 99% by mass, and the MBS resin (2). The heat-resistant styrene resin composition according to (1) above, wherein the content of B) is 1 to 30% by mass.
(3) The content of the styrene-based monomer unit when the total amount of the styrene-based monomer unit and the (meth) acrylic acid monomer unit contained in the copolymer (A) is 100% by mass. The heat-resistant styrene resin composition according to (1) or (2) above, wherein the content is 80 to 99% by mass and the content of the (meth) acrylic acid monomer unit is 1 to 20% by mass.
(4) The heat-resistant styrene resin composition according to any one of (1) to (3) above, wherein the copolymer (A) has a weight average molecular weight (Mw) of 100,000 to 400,000.
(5) The heat-resistant styrene resin composition according to any one of (1) to (4) above, wherein the Vicat softening temperature is 110 ° C. or higher.
(6) A molded product obtained by molding the heat-resistant styrene resin composition according to any one of (1) to (5) above.
(7) A foamed sheet obtained by molding the heat-resistant styrene resin composition according to any one of (1) to (5) above.
(8) A food packaging container formed by molding the foam sheet according to (7) above.

本発明の耐熱性スチレン系樹脂組成物は耐熱性と靱性、成形性のバランスに優れるため、特に電子レンジ用食品容器として好適に使用することができ、割れの発生が少ない食品容器を得ることができる。 Since the heat-resistant styrene resin composition of the present invention has an excellent balance between heat resistance, toughness, and moldability, it can be particularly suitably used as a food container for a microwave oven, and a food container with less cracking can be obtained. can.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

<耐熱性スチレン系樹脂組成物>
本発明の耐熱性スチレン系樹脂組成物は、スチレン-(メタ)アクリル酸共重合体(A)、及び、コア相がブタジエン系ゴムでシェル相がメタクリル酸メチル単量体とスチレン系単量体を主成分とする共重合体である、MBS樹脂(B)を含む。
<Heat-resistant styrene resin composition>
The heat-resistant styrene-based resin composition of the present invention comprises a styrene- (meth) acrylic acid copolymer (A), a butadiene-based rubber as the core phase, and a methyl methacrylate monomer and a styrene-based monomer as the shell phase. Includes MBS resin (B), which is a copolymer containing styrene as a main component.

本発明の耐熱性スチレン系樹脂組成物は、前記共重合体(A)、及び前記MBS樹脂(B)の合計量を100質量%としたとき、前記共重合体(A)の含有量が70~99質量%、前記MBS樹脂(B)の含有量が1~30質量%であることが好ましく、前記共重合体(A)の含有量が75~97質量%であり、前記MBS樹脂(B)の含有量が3~25質量%であることがより好ましく、前記共重合体(A)の含有量が80~95質量%であり、前記MBS樹脂(B)の含有量が5~20質量%であることが特に好ましい。前記MBS樹脂(B)の含有量が1質量%未満の場合、脆性や成形性の改良効果が小さく、前記MBS樹脂(B)の含有量が20質量%を超える場合、流動性が下がり過ぎるため、成形加工性が低下する。 The heat-resistant styrene resin composition of the present invention has a content of the polymer (A) of 70 when the total amount of the copolymer (A) and the MBS resin (B) is 100% by mass. The content of the MBS resin (B) is preferably 1 to 30% by mass, and the content of the copolymer (A) is 75 to 97% by mass, and the MBS resin (B) is contained. ) Is more preferably 3 to 25% by mass, the polymer (A) is 80 to 95% by mass, and the MBS resin (B) is 5 to 20% by mass. % Is particularly preferable. When the content of the MBS resin (B) is less than 1% by mass, the effect of improving brittleness and moldability is small, and when the content of the MBS resin (B) exceeds 20% by mass, the fluidity is too low. , Moldability is reduced.

本発明の耐熱性スチレン系樹脂組成物の200℃、49N荷重の条件にて測定したメルトマスフローレート(MFR)は、0.1~10g/10分であることが好ましく、0.2~5.0g/10分であることがより好ましく、0.3~3.0g/10分であることが特に好ましい。メルトマスフローレート(MFR)が0.1g/10分未満では、押出成形時の生産性が悪化し、10g/10分を超えると、機械的強度が低下する場合がある。 The melt mass flow rate (MFR) of the heat-resistant styrene resin composition of the present invention measured under the conditions of 200 ° C. and 49 N load is preferably 0.1 to 10 g / 10 minutes, preferably 0.2 to 5. It is more preferably 0 g / 10 minutes, and particularly preferably 0.3 to 3.0 g / 10 minutes. If the melt mass flow rate (MFR) is less than 0.1 g / 10 minutes, the productivity during extrusion molding may deteriorate, and if it exceeds 10 g / 10 minutes, the mechanical strength may decrease.

本発明の耐熱性スチレン系樹脂組成物のビカット軟化温度は、110℃以上であることが好ましく、112℃以上であることがより好ましく、115℃以上であることが特に好ましい。ビカット軟化温度が110℃未満の場合、耐熱性スチレン系樹脂組成物から得られる成形品の耐熱性が不十分となる場合がある。 The Vicat softening temperature of the heat-resistant styrene resin composition of the present invention is preferably 110 ° C. or higher, more preferably 112 ° C. or higher, and particularly preferably 115 ° C. or higher. If the Vicat softening temperature is less than 110 ° C., the heat resistance of the molded product obtained from the heat-resistant styrene resin composition may be insufficient.

本発明の耐熱性スチレン系樹脂組成物の200℃で測定した溶融張力(MT)は10gf以上であることが好ましく、15gf以上であることがより好ましい。溶融張力が10gf未満では、成形性の改良効果が小さい。 The melt tension (MT) of the heat-resistant styrene resin composition of the present invention measured at 200 ° C. is preferably 10 gf or more, and more preferably 15 gf or more. When the melt tension is less than 10 gf, the effect of improving the moldability is small.

本発明の耐熱性スチレン系樹脂組成物は、前記共重合体(A)からなる海相に、前記MBS樹脂(B)が島相として分散しており、電子顕微鏡写真の画像観察から得られる、前記MBS樹脂(B)のゴム島相の重量平均円相当粒子径が120nm以上であり、且つ、100nm以上の円相当粒子径の個数割合が40%以上である。MBS樹脂(B)のゴム島相の重量平均円相当粒子径は、好ましくは150nm以上であり、特に好ましくは200nm以上である。また、100nm以上の円相当粒子径の個数割合は、好ましくは50%以上であり、特に好ましくは60%以上である。重量平均円相当粒子径、及び100nm以上の円相当粒子径の個数割合が上記範囲を外れる場合、本発明の脆性改良効果が得られない。 In the heat-resistant styrene resin composition of the present invention, the MBS resin (B) is dispersed as an island phase in the sea phase composed of the copolymer (A), which can be obtained by observing an image of an electron micrograph. The weight average circle-equivalent particle size of the rubber island phase of the MBS resin (B) is 120 nm or more, and the number ratio of the circle-equivalent particle diameters of 100 nm or more is 40% or more. The particle size corresponding to the weight average circle of the rubber island phase of the MBS resin (B) is preferably 150 nm or more, and particularly preferably 200 nm or more. The number ratio of the particle size corresponding to a circle having a diameter of 100 nm or more is preferably 50% or more, and particularly preferably 60% or more. When the weight average circle-equivalent particle diameter and the number ratio of the circle-equivalent particle diameters of 100 nm or more are out of the above range, the brittleness improving effect of the present invention cannot be obtained.

<スチレン-(メタ)アクリル酸共重合体(A)>
本発明のスチレン-(メタ)アクリル酸共重合体(A)はスチレン系単量体と(メタ)アクリル酸単量体を必須成分とするが、必要に応じてこれらと共重合可能な他のビニル系モノマーを共重合することができる。
<Styrene- (meth) acrylic acid copolymer (A)>
The styrene- (meth) acrylic acid copolymer (A) of the present invention contains a styrene-based monomer and a (meth) acrylic acid monomer as essential components, but other copolymers capable of copolymerizing with these are required. Vinyl-based monomers can be copolymerized.

スチレン系単量体としては、スチレン、αメチルスチレン、o-、m-、p-メチルスチレン等の置換スチレンが挙げられ、これら1種、若しくは2種以上の混合物でもよいが、好ましいのはスチレンである。 Examples of the styrene-based monomer include substituted styrenes such as styrene, α-methylstyrene, o-, m-, and p-methylstyrene, and one or a mixture of two or more of these may be used, but styrene is preferable. Is.

(メタ)アクリル酸単量体としては、アクリル酸、メタクリル酸が挙げられ、これらの混合物でもよいが、中でも製造の容易さから、メタクリル酸が好ましい。 Examples of the (meth) acrylic acid monomer include acrylic acid and methacrylic acid, and a mixture thereof may be used, but methacrylic acid is preferable because of ease of production.

上記、スチレン系単量体および(メタ)アクリル酸単量体と共重合可能なビニル系モノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル等のアクリル系モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニル系モノマー、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-オクチルマレイミド、N-イソプロピルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系モノマー、無水マレイン酸、無水イタコン酸、無水シトラコン酸等の不飽和カルボン酸無水物が挙げられ、これら1種、若しくは2種以上を併用して使用することもできる。 Examples of the vinyl-based monomer copolymerizable with the styrene-based monomer and the (meth) acrylic acid monomer include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, and methacryl. Acrylic monomers such as butyl acid acid, vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, N-octylmaleimide, N-isopropylmaleimide, N-phenylmaleimide , N-cyclohexyl maleimide and other maleimide-based monomers, maleic anhydride, itaconic anhydride, citraconic anhydride and other unsaturated carboxylic acid anhydrides, and one or more of these may be used in combination. can.

本発明のスチレン-(メタ)アクリル酸共重合体(A)の重合方法としては塊状重合法、溶液重合法、懸濁重合法等の公知のスチレン重合法が挙げられる。また、溶媒として例えばベンゼン、トルエン、エチルベンゼン、及びキシレン等のアルキルベンゼン類やアセトン、メチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等が使用できる。反応器の様式としては、完全混合型反応器、プラグフロー反応器、ループ型反応器等を組み合わせた連続重合方式が好適に用いられる。 Examples of the polymerization method of the styrene- (meth) acrylic acid copolymer (A) of the present invention include known styrene polymerization methods such as a bulk polymerization method, a solution polymerization method, and a suspension polymerization method. Further, as the solvent, for example, alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane can be used. As a mode of the reactor, a continuous polymerization method in which a completely mixed reactor, a plug flow reactor, a loop reactor and the like are combined is preferably used.

本発明のスチレン-(メタ)アクリル酸共重合体(A)は、スチレン系単量体単位、(メタ)アクリル酸単量体単位の合計量を100質量%としたとき、スチレン系単量体単位の含有量が80~99質量%であり、(メタ)アクリル酸単量体単位の含有量が1~20質量%であることが好ましく、スチレン系単量体単位の含有量が85~98質量%であり、(メタ)アクリル酸単量体単位の含有量が2~15質量%であることがより好ましく、スチレン系単量体単位の含有量が87~96質量%であり、(メタ)アクリル酸単量体単位の含有量が4~13質量%であることが特に好ましい。(メタ)アクリル酸単量体単位の含有量が1質量%未満では、耐熱スチレン系樹脂組成物から得られる成形品の耐熱性が不十分となり、(メタ)アクリル酸単量体単位の含有量が20質量%を超える場合、耐熱スチレン系樹脂組成物や得られる発泡シートの成形性が低下する。(メタ)アクリル酸単量体単位の含有量は、重合工程における原料液の(メタ)アクリル酸単量体濃度によって調整出来る。 The styrene- (meth) acrylic acid copolymer (A) of the present invention is a styrene-based monomer when the total amount of the styrene-based monomer unit and the (meth) acrylic acid monomer unit is 100% by mass. The content of the unit is preferably 80 to 99% by mass, the content of the (meth) acrylic acid monomer unit is preferably 1 to 20% by mass, and the content of the styrene-based monomer unit is 85 to 98. It is more preferably by mass% and the content of the (meth) acrylic acid monomer unit is 2 to 15% by mass, and the content of the styrene-based monomer unit is 87 to 96% by mass and (meth). ) It is particularly preferable that the content of the acrylic acid monomer unit is 4 to 13% by mass. If the content of the (meth) acrylic acid monomer unit is less than 1% by mass, the heat resistance of the molded product obtained from the heat-resistant styrene resin composition becomes insufficient, and the content of the (meth) acrylic acid monomer unit is insufficient. When it exceeds 20% by mass, the moldability of the heat-resistant styrene resin composition and the obtained foamed sheet is lowered. The content of the (meth) acrylic acid monomer unit can be adjusted by adjusting the concentration of the (meth) acrylic acid monomer in the raw material liquid in the polymerization step.

本発明のスチレン-(メタ)アクリル酸共重合体(A)の重量平均分子量(Mw)は10万~40万であることが好ましく、12~35万であることがより好ましく、15万~30万であることが特に好ましい。Mwが10万未満では強度が不十分であり、Mwが40万を超える場合、流動性が低下する。スチレン-(メタ)アクリル酸共重合体のMwは重合工程での反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量等によって調整する事が出来る。 The weight average molecular weight (Mw) of the styrene- (meth) acrylic acid copolymer (A) of the present invention is preferably 100,000 to 400,000, more preferably 120,000 to 350,000, and 150,000 to 30. It is particularly preferable that it is 10,000. If the Mw is less than 100,000, the strength is insufficient, and if the Mw exceeds 400,000, the fluidity decreases. Mw of the styrene- (meth) acrylic acid copolymer is the reaction temperature in the polymerization step, the residence time, the type and amount of the polymerization initiator, the type and amount of the chain transfer agent, and the type and amount of the solvent used in the polymerization. It can be adjusted by such as.

<MBS樹脂(B)>
本発明のMBS樹脂(B)は、コア相がブタジエン系ゴムでシェル相がメタクリル酸メチル単量体とスチレン系単量体を主成分とする共重合体である、いわゆるコアシェル構造を有するメタクリル酸メチル-ブタジエン-スチレン共重合体である。
<MBS resin (B)>
The MBS resin (B) of the present invention has a so-called core-shell structure, which is a copolymer having a butadiene-based rubber core phase and a methyl methacrylate-based monomer and a styrene-based monomer as main components in the shell phase. It is a methyl-butadiene-styrene copolymer.

上記コア相を構成するブタジエン系ゴムとしては、ポリブタジエン、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、ブタジエン-アクリル共重合体ゴムが挙げられ、好ましくは、ポリブタジエン、スチレン-ブタジエン共重合体である。 Examples of the butadiene rubber constituting the core phase include polybutadiene, styrene-butadiene rubber, acrylonitrile-butadiene copolymer rubber, and butadiene-acrylic copolymer rubber, and polybutadiene and styrene-butadiene copolymer are preferable. ..

また、上記シェル相は、上記ブタジエン系ゴムにメタクリル酸メチル単量体とスチレン単量体を主成分とする共重合体がグラフトすることによって形成され、グラフトする共重合体の全単量体単位に対するメタクリル酸メチル単量体とスチレン単量体の合計の割合が、90質量%以上であることが好ましく、92質量%以上であることがより好ましく、94質量%以上であることが特に好ましい。メタクリル酸メチル単量体とスチレン単量体以外の単量体単位としては、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステルが挙げられ、流動性改良の観点から、アクリル酸ブチルが好ましい。 Further, the shell phase is formed by grafting a copolymer containing a methyl methacrylate monomer and a styrene monomer as main components on the butadiene-based rubber, and all the monomer units of the copolymer to be grafted are formed. The total ratio of the methyl methacrylate monomer and the styrene monomer to the ratio is preferably 90% by mass or more, more preferably 92% by mass or more, and particularly preferably 94% by mass or more. Examples of the monomer unit other than the methyl methacrylate monomer and the styrene monomer include (meth) acrylic acid esters such as ethyl (meth) acrylate and butyl (meth) acrylate, from the viewpoint of improving fluidity. Therefore, butyl acrylate is preferable.

本発明のMBS樹脂(B)に含まれるゴム含有量は、60~98質量%であることが好ましく、70~95質量%であることがより好ましく、80~90質量%であることが特に好ましい。ゴム含有量が60質量%未満の場合、補強効果が小さく、ゴム含有量が98%を超える場合、前記スチレン-(メタ)アクリル酸共重合体(A)からなる海相と、MBS樹脂(B)のゴム島相との相溶性が低下するため好ましくない。 The rubber content contained in the MBS resin (B) of the present invention is preferably 60 to 98% by mass, more preferably 70 to 95% by mass, and particularly preferably 80 to 90% by mass. .. When the rubber content is less than 60% by mass, the reinforcing effect is small, and when the rubber content exceeds 98%, the sea phase made of the styrene- (meth) acrylic acid copolymer (A) and the MBS resin (B). ) Is not preferable because the compatibility with the rubber island phase is reduced.

<耐熱性スチレン系樹脂組成物の製造方法>
本発明の耐熱性スチレン系樹脂組成物の製造方法としては、前記スチレン-(メタ)アクリル酸共重合体(A)、及び前記MBS樹脂(B)を一括でブレンドし、溶融押出する方法や、予め、MBS樹脂(B)を含むマスターバッチを作成しておいて、後から前記スチレン-(メタ)アクリル酸共重合体(A)とブレンドし、溶融押出する方法等が挙げられる。
<Manufacturing method of heat-resistant styrene resin composition>
Examples of the method for producing the heat-resistant styrene resin composition of the present invention include a method in which the styrene- (meth) acrylic acid copolymer (A) and the MBS resin (B) are collectively blended and melt-extruded. Examples thereof include a method in which a masterbatch containing the MBS resin (B) is prepared in advance, and later blended with the styrene- (meth) acrylic acid copolymer (A) and melt-extruded.

本発明の耐熱性スチレン系樹脂組成物には、必要に応じて、別の熱可塑性樹脂やゴム補強材を本発明の効果を損なわない範囲で配合する事ができる。 If necessary, another thermoplastic resin or rubber reinforcing material can be added to the heat-resistant styrene resin composition of the present invention as long as the effects of the present invention are not impaired.

熱可塑性樹脂の具体例としては、ポリスチレン、耐衝撃性ポリスチレン(HIPS)、シンジオタクチックポリスチレン、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、メタクリル酸-メタクリル酸メチル-スチレン共重合体、メタクリル酸ブチル-スチレン共重合体、無水マレイン酸-スチレン共重合体、マレイミド-スチレン共重合体、αメチルスチレン-スチレン共重合体等のポリスチレン系樹脂、ポリプロピレン、プロピレン-α-オレフィン共重合体等のポリオレフィン系樹脂、ポリL-乳酸、ポリD-乳酸、ポリD、L-乳酸等の脂肪族ポリエステル系樹脂等が挙げられ、これら1種若しくは2種以上を組み合わせて用いることができる。 Specific examples of the thermoplastic resin include polystyrene, impact resistant polystyrene (HIPS), syndiotactic polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, and methacrylate-methyl methacrylate-styrene copolymer. Combined, polystyrene resin such as butyl methacrylate-styrene copolymer, maleic anhydride-styrene copolymer, maleimide-styrene copolymer, α-methylstyrene-styrene copolymer, polypropylene, propylene-α-olefin copolymer weight Examples thereof include polymer resins such as coalesced and aliphatic polyester resins such as poly L-lactic acid, poly D-lactic acid, poly D, and L-lactic acid, and one or a combination of two or more thereof can be used.

ゴム補強材の具体例としては、天然ゴム、ポリブタジエン、ポリイソプレン、ポリイソブチレン、ポリクロロプレン、ポリスルフィドゴム、チオコールゴム、アクリルゴム、ウレタンゴム、シリコーンゴム、エピクロロヒドリンゴム、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、水素添加スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエン-スチレンブロック共重合体、水素添加スチレン-イソプレンブロック共重合体、水素添加スチレン-イソプレン-スチレンブロック共重合体などのスチレン系ゴム、さらにはエチレンプロピレンゴム、エチレンプロピレンジエンゴム、直鎖状低密度ポリエチレン系エラストマー等のオレフィン系ゴムが挙げられ、これら1種若しくは二種以上を組み合わせて用いることができる。 Specific examples of the rubber reinforcing material include natural rubber, polybutadiene, polyisoprene, polyisobutylene, polychloroprene, polysulfide rubber, thiocol rubber, acrylic rubber, urethane rubber, silicone rubber, epichlorohydrin rubber, styrene-butadiene block copolymer, and the like. Styrene-butadiene-styrene copolymer, styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated styrene-butadiene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer, hydrogen Styrene-based rubbers such as added styrene-isoprene block copolymers and hydrogenated styrene-isoprene-styrene block copolymers, as well as olefin-based rubbers such as ethylene propylene rubber, ethylene propylene diene rubber, and linear low-density polyethylene-based elastomers. Can be used in combination of one or more of these.

本発明の耐熱性スチレン系樹脂組成物には、添加剤として、リン系、フェノール系、アミン系等の酸化防止剤、ステアリン酸等の高級脂肪酸、及びその塩やエチレンビスステアリルアミド等の滑剤、流動パラフィン、ポリエチレンワックス、マイクロクリスタリンワックス等の可塑剤、タルク、無機フィラー、紫外線吸収剤、帯電防止剤、難燃剤、着色剤、顔料、消臭剤、防曇剤等を必要に応じて添加することができる。 The heat-resistant styrene resin composition of the present invention contains, as additives, antioxidants such as phosphorus, phenol and amine, higher fatty acids such as stearic acid, and lubricants such as salts thereof and ethylene bisstearylamide. Add plasticizers such as liquid paraffin, polyethylene wax, microcrystallin wax, lubricants, inorganic fillers, ultraviolet absorbers, antistatic agents, flame retardants, colorants, pigments, deodorants, antifogging agents, etc. as necessary. be able to.

<発泡シートの製造方法> <Manufacturing method of foam sheet>

本発明の発泡シートの製造方法としては、公知の押出発泡シート製造方法を用いることができる。具体的には、単軸押出機や二軸押出機を2基直列に配置し、1基目の押出機で発泡剤を発泡核剤とともに溶融混錬し、2基目の押出機で冷却により樹脂温度を120℃~180℃に調整した後、サーキュラーダイスにより大気に放出し減圧発泡する方法が挙げられる。 As a method for producing a foamed sheet of the present invention, a known extruded foamed sheet manufacturing method can be used. Specifically, two single-screw extruders and twin-screw extruders are arranged in series, and the foaming agent is melt-kneaded together with the foam nucleating agent in the first extruder and cooled by the second extruder. Examples thereof include a method in which the resin temperature is adjusted to 120 ° C. to 180 ° C. and then released into the atmosphere with a circular die to foam under reduced pressure.

発泡剤としては、プロパン、ノルマルブタン、イソブタン、ペンタン、ヘキサン等の脂肪族炭化水素、シクロブタン、シクロペンタン等の環式脂肪族炭化水素、トリクロロフロロメタン、ジクロロジフロロメタン、1,1-ジフルオロエタン、1,1-ジフルオロ-クロライド、メチレンクロライド等のハロゲン化炭化水素等の物理発泡剤を用いることができる。また、アゾジカルボンアミド、ジニトロソペンタメチレンテトラミン、アゾビスイソブチロニトリル、重炭酸ナトリウム、クエン酸等の分解型発泡剤、二酸化炭素、窒素等の無機ガスや水を使用することもできる。これら発泡剤を適宜混合して使用できるが、工業的にはブタンが使用されることが多く、発泡押出性や発泡シートの二次成形性、発泡剤の観点から、イソブタンとノルマルブタンからなる混合ブタンを使用することが好ましい。ブタンはポリスチレン系樹脂に対する透過速度が遅いため、発泡押出直後は発泡シート中に通常1~3質量%程度残存する。この残存量は二次成形における二次発泡厚や熱成形性に影響するため、一定の熟成期間を設けることで適宜調整する。 Examples of the foaming agent include aliphatic hydrocarbons such as propane, normal butane, isobutane, pentane, and hexane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, trichlorofluoromethane, dichlorodifluoromethane, 1,1-difluoroethane, and the like. Physical foaming agents such as halogenated hydrocarbons such as 1,1-difluoro-chloride and methylene chloride can be used. Further, a decomposable foaming agent such as azodicarbonamide, dinitrosopentamethylenetetramine, azobisisobutyronitrile, sodium bicarbonate and citric acid, an inorganic gas such as carbon dioxide and nitrogen, and water can also be used. Although these foaming agents can be appropriately mixed and used, butane is often used industrially, and is a mixture of isobutane and normal butane from the viewpoint of foam extrudability, secondary moldability of foam sheet, and foaming agent. It is preferable to use butane. Since butane has a slow permeation rate with respect to polystyrene resin, it usually remains in the foamed sheet in an amount of about 1 to 3% by mass immediately after foam extrusion. Since this residual amount affects the secondary foam thickness and thermoforming property in the secondary molding, it is appropriately adjusted by providing a certain aging period.

発泡核剤としては、タルク、炭酸カルシウム、クレー等の無機物粉末が挙げられ、これらを単独あるいは混合物としても用いることができる。中でも、気泡径を小さくする効果が大きく、安価という点でタルクが最も好ましい。発泡核剤の添加方法は特に制限が無く、直接押出機の供給孔に添加しても良いし、樹脂と共に添加することもできる。また、スチレンの単独重合体やスチレン-メタクリル酸メチル共重合体等を基材としたマスターバッチを作成し、そのマスターバッチを用いて供給することもできる。発泡核剤の添加量は通常、0.1~5質量%である。また、該マスターバッチには高級脂肪酸や高級脂肪酸の金属塩をあらかじめ配合しておいても良い。また、エチレンビスステアリルアミド等の滑材、流動パラフィンやシリコーンオイル等の展着剤、その他の界面活性剤、帯電防止剤、酸化防止剤、可塑剤、耐候剤、顔料等が含まれていても良い。 Examples of the effervescent nucleating agent include inorganic powders such as talc, calcium carbonate, and clay, which can be used alone or as a mixture. Among them, talc is most preferable because it has a large effect of reducing the bubble diameter and is inexpensive. The method of adding the foam nucleating agent is not particularly limited, and the foam nucleating agent may be added directly to the supply hole of the extruder, or may be added together with the resin. It is also possible to prepare a masterbatch using a styrene homopolymer, a styrene-methyl methacrylate copolymer or the like as a base material, and supply the masterbatch using the masterbatch. The amount of the foam nucleating agent added is usually 0.1 to 5% by mass. Further, the masterbatch may be pre-blended with a higher fatty acid or a metal salt of the higher fatty acid. Even if a lubricant such as ethylene bisstearylamide, a spreading agent such as liquid paraffin or silicone oil, other surfactants, an antistatic agent, an antioxidant, a plasticizer, a weathering agent, a pigment, etc. are contained. good.

本発明の発泡シートの厚さは、一般的に0.1~100mmであり、0.5~4mmが
好ましく、1~3mmがより好ましい。発泡シートの厚さが0.1mm未満では、2次成形後の容器の強度や断熱性が低下する。発泡シートの厚さが100mmを超えると、2次成形時にシートの温度ムラが発生しやすく、成形性が悪化する場合がある。
The thickness of the foamed sheet of the present invention is generally 0.1 to 100 mm, preferably 0.5 to 4 mm, and more preferably 1 to 3 mm. If the thickness of the foamed sheet is less than 0.1 mm, the strength and heat insulating properties of the container after the secondary molding are lowered. If the thickness of the foamed sheet exceeds 100 mm, temperature unevenness of the sheet is likely to occur during secondary molding, and the moldability may deteriorate.

本発明の発泡シートの密度は、一般的に5~500kg/mであり、50~400kg/mが好ましく、60~300kg/mがより好ましい。発泡シートの密度が5kg/m未満であると、2次成形後の容器の強度が低下する。発泡シートの密度が500kg/mを超える場合、軽量化、断熱性の観点から望ましくない。密度D(kg/m)は、発泡シートの坪量S(g/m)とシート厚さT(mm)より、D=S/Tで算出することができる。 The density of the foamed sheet of the present invention is generally 5 to 500 kg / m 3 , preferably 50 to 400 kg / m 3 , and more preferably 60 to 300 kg / m 3 . If the density of the foamed sheet is less than 5 kg / m 3 , the strength of the container after the secondary molding is lowered. When the density of the foamed sheet exceeds 500 kg / m 3 , it is not desirable from the viewpoint of weight reduction and heat insulating property. The density D (kg / m 3 ) can be calculated by D = S / T from the basis weight S (g / m 2 ) of the foamed sheet and the sheet thickness T (mm).

また、本発明の発泡シートには、厚み方向の中央部に比べて密度が低い、いわゆるスキン層と呼ばれる表面層をシートの表裏面に設けることができる。スキン層を設けることで、シートの強度を上げることができ、外観も美麗に仕上がる。スキン層はサーキュラーダイスを出た直後の発泡シート表面を風冷することによって調整できる。 Further, in the foamed sheet of the present invention, a surface layer called a so-called skin layer, which has a lower density than the central portion in the thickness direction, can be provided on the front and back surfaces of the sheet. By providing a skin layer, the strength of the sheet can be increased and the appearance is beautifully finished. The skin layer can be adjusted by air cooling the surface of the foam sheet immediately after leaving the circular die.

本発明の発泡シートは、その片面もしくは両面に熱可塑性樹脂シート又はフィルムを積層することにより、成形性、強度、剛性、耐油性等の特性を改良することができる。上記、シートやフィルムを構成する熱可塑性樹脂としてはポリスチレン、ハイインパクトポリスチレン等のポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、エチレン-酢酸ビニル共重合体等が挙げられる。シート又はフィルムの厚みに特に制限はないが、0.01mm~0.3mmが好ましい。 The foamed sheet of the present invention can be improved in properties such as moldability, strength, rigidity, and oil resistance by laminating a thermoplastic resin sheet or film on one side or both sides thereof. The thermoplastic resins constituting the sheets and films include polystyrene-based resins such as polystyrene and high-impact polystyrene, polypropylene-based resins, polyester-based resins, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ethylene-vinyl acetate. Examples thereof include a copolymer. The thickness of the sheet or film is not particularly limited, but is preferably 0.01 mm to 0.3 mm.

本発明の発泡シートは、真空成形や圧空成形、マッチドモールド成形、リバースドロー成形、エアスリップ成形、リッジ成形、プラグアンドリッジ成形、プラグアシスト成形、プラグアシストリバースドロー成形等、公知の熱成形方法を用いて、トレー、弁当容器、丼容器、カップ、蓋付箱型等の各種形状や大きさの容器に加工することができる。 The foamed sheet of the present invention uses known thermoforming methods such as vacuum molding, pressure molding, matched molding, reverse draw molding, air slip molding, ridge molding, plug and ridge molding, plug assist molding, and plug assist reverse draw molding. It can be used to process containers of various shapes and sizes such as trays, lunch containers, bowl containers, cups, and box molds with lids.

本発明の発泡シートを成形して得られる容器は、食品を入れた状態で電子レンジ加熱調理を行っても、容器の変形や火脹れが発生しないので、電子レンジ用食品容器として好適に使用できる。 The container obtained by molding the foamed sheet of the present invention is suitably used as a food container for a microwave oven because the container does not deform or swell even when cooked in a microwave oven with food in it. can.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

<スチレン-メタクリル酸共重合体(A)の製造>
(1)スチレン-メタクリル酸共重合体S-1の製造
下記第1~第3反応器を直列に接続して重合工程を構成した。
<Manufacturing of styrene-methacrylic acid copolymer (A)>
(1) Production of Styrene-Methacrylic Acid Copolymer S-1 The following first to third reactors were connected in series to form a polymerization step.

第1反応器:容積39Lの攪拌翼付完全混合型反応器
第2反応器:容積39Lの攪拌翼付完全混合型反応器
第3反応器:容積16Lのスタティックミキサー付プラグフロー反応器
1st reactor: Completely mixed reactor with stirring blade of 39 L volume 2nd reactor: Completely mixed reactor with stirring blade of 39 L volume 3rd reactor: Plug flow reactor with static mixer of 16 L volume

各反応器の条件は以下の通りとした。 The conditions for each reactor were as follows.

第1反応器:[反応温度] 120℃
第2反応器:[反応温度] 125℃
第3反応器:[反応温度] 流れ方向に125~130℃の温度勾配がつくように調整
First reactor: [Reaction temperature] 120 ° C
Second reactor: [Reaction temperature] 125 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 130 ° C is formed in the flow direction.

原料液としては、以下のものを用いた。 The following materials were used as the raw material liquid.

スチレン94.8質量%、メタクリル酸5.2質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4-t-ブチルパーオキシシクロへキシル)プロパン0.025質量部を混合した原料液。 10 parts by mass of ethylbenzene and 2,2 bis (4,5-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of a monomer composition of 94.8% by mass of styrene and 5.2% by mass of methacrylic acid. Raw material liquid mixed with 0.025 parts by mass of propane.

原料液を12.0kg/hrの供給速度で120℃に設定した第1反応器に連続的に供給し重合した後、次いで125℃に設定した第2反応器に連続的に装入し重合した。第2反応器出口での重合転化率は65%であった。更に125~130℃の温度勾配がつくように調整した第3反応器にて重合転化率が70%になるまで重合を進行させた。
この重合液を直列に2段より構成される予熱器付き真空脱揮槽に導入し、未反応スチレン及びエチルベンゼンを分離した後、ストランド状に押し出して冷却した後切断してペレット化した。なお、1段目の予熱器の温度は200℃に設定し、真空脱揮槽の圧力は66.7kPaとし、2段目の予熱器の温度は240℃に設定し、真空脱揮槽の圧力は0.9kPaとした。得られたスチレン-メタクリル酸共重合体S-1の特性を表1に示す。
The raw material liquid was continuously supplied to the first reactor set at 120 ° C. at a supply rate of 12.0 kg / hr for polymerization, and then continuously charged to the second reactor set at 125 ° C. for polymerization. .. The polymerization conversion rate at the outlet of the second reactor was 65%. Further, the polymerization was allowed to proceed until the polymerization conversion rate reached 70% in the third reactor adjusted so as to have a temperature gradient of 125 to 130 ° C.
This polymerization solution was introduced into a vacuum devolatilization tank equipped with a preheater composed of two stages in series, and unreacted styrene and ethylbenzene were separated, extruded into strands, cooled, and then cut into pellets. The temperature of the first stage preheater is set to 200 ° C., the pressure of the vacuum devolatilization tank is set to 66.7 kPa, the temperature of the second stage preheater is set to 240 ° C., and the pressure of the vacuum devolatilization tank is set. Was 0.9 kPa. The characteristics of the obtained styrene-methacrylic acid copolymer S-1 are shown in Table 1.

(2)スチレン-メタクリル酸共重合体S-2の製造
以下の原料液を用い、原料液の供給速度を12.0kg/hrとし、1~3反応器の温度条件を以下のように変更した以外はS-1の製造と同様にした。その特性を表1に示す。
(2) Production of styrene-methacrylic acid copolymer S-2 Using the following raw material liquid, the supply speed of the raw material liquid was set to 12.0 kg / hr, and the temperature conditions of the 1 to 3 reactors were changed as follows. Other than that, it was the same as the production of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン93.0質量%、メタクリル酸7.0質量%のモノマー構成100質量部に対してエチルベンゼン10質量部、重合開始剤として2,2ビス(4,4-t-ブチルパーオキシシクロへキシル)プロパン0.02質量部を混合した原料液
<Raw material solution>
10 parts by mass of ethylbenzene and 2,2 bis (4,5-t-butylperoxycyclohexyl) as a polymerization initiator with respect to 100 parts by mass of a monomer composition of 93.0% by mass of styrene and 7.0% by mass of methacrylic acid. Raw material liquid mixed with 0.02 parts by mass of propane

<条件>
第1反応器:[反応温度] 128℃
第2反応器:[反応温度] 138℃
第3反応器:[反応温度] 流れ方向に120~125℃の温度勾配がつくように調整
<Conditions>
First reactor: [Reaction temperature] 128 ° C
Second reactor: [Reaction temperature] 138 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 120 to 125 ° C is formed in the flow direction.

(3)スチレン-メタクリル酸共重合体S-3の製造
以下の原料液を用い、原料液の供給速度を12.0kg/hrとし、1~3反応器の温度条件を以下のように変更した以外はS-1の製造と同様にした。その特性を表1に示す。
(3) Production of styrene-methacrylic acid copolymer S-3 Using the following raw material liquid, the supply speed of the raw material liquid was set to 12.0 kg / hr, and the temperature conditions of the 1 to 3 reactors were changed as follows. Other than that, it was the same as the production of S-1. The characteristics are shown in Table 1.

<原料液>
スチレン91.7質量%、メタクリル酸8.3質量%のモノマー構成100質量部に対してエチルベンゼン15質量部、重合開始剤として1,1-ジ(t-ブチルパーオキシ)シクロヘキサン0.025質量部、連鎖移動剤としてα-メチルスチレンダイマー0.1質量部を混合した原料液
<Raw material solution>
15 parts by mass of ethylbenzene and 0.025 parts by mass of 1,1-di (t-butylperoxy) cyclohexane as a polymerization initiator with respect to 100 parts by mass of a monomer composition of 91.7% by mass of styrene and 8.3% by mass of methacrylic acid. , Raw material liquid mixed with 0.1 part by mass of α-methylstyrene dimer as a chain transfer agent

<条件>
第1反応器:[反応温度] 124℃
第2反応器:[反応温度] 138℃
第3反応器:[反応温度] 流れ方向に125~138℃の温度勾配がつくように調整
<Conditions>
First reactor: [Reaction temperature] 124 ° C
Second reactor: [Reaction temperature] 138 ° C
Third reactor: [Reaction temperature] Adjusted so that a temperature gradient of 125 to 138 ° C is formed in the flow direction.

Figure 0007100996000001
Figure 0007100996000001

<実施例1~9、比較例1~2>
上記の方法で製造したスチレン-メタクリル酸共重合体(A)(S-1~3)と、MBS樹脂(B)、ハイインパクトポリスチレン(C)を表2に示す質量%比率にてヘンシェルミキサーで混合し、230~260℃に設定した二軸押出機(神戸製鋼所製、KTX30α)にて溶融コンパウンドした。ソリッド物性を表2に示す。
<Examples 1 to 9, Comparative Examples 1 to 2>
The styrene-methacrylic acid copolymer (A) (S-1 to 3) produced by the above method, MBS resin (B), and high-impact polystyrene (C) are mixed in a mass% ratio shown in Table 2 with a Henshell mixer. The mixture was mixed and melt-compounded with a twin-screw extruder (KTX30α manufactured by Kobe Steel, Ltd.) set at 230 to 260 ° C. Table 2 shows the solid physical characteristics.

なお、MBS樹脂(B)、ハイインパクトポリスチレン(C)としては以下のものを用いた。
<MBS樹脂(B)>
MBS-1 商品名:「カネエースB-564」 カネカ社製
ゴム含有量79%
MBS-2 商品名:「カネエースM-511」 カネカ社製
ゴム含有量85%
MBS-3 商品名:「メタブレンC-223A」 三菱ケミカル社製
ゴム含有量75%
MBS-4 商品名:「メタブレンC-215A」 三菱ケミカル社製
ゴム含有量73%
<ハイインパクトポリスチレン(C)>
商品名:「トーヨースチロール H848」 東洋スチレン社製
ゴム含有量10.0%、ゴム粒子径1.9μm
The following were used as the MBS resin (B) and high-impact polystyrene (C).
<MBS resin (B)>
MBS-1 Product name: "Kaneka B-564" Kaneka Corporation Rubber content 79%
MBS-2 Product name: "Kaneka M-511" Kaneka Corporation Rubber content 85%
MBS-3 Product name: "Metabrene C-223A" Mitsubishi Chemical Corporation Rubber content 75%
MBS-4 Product name: "Metabrene C-215A" Mitsubishi Chemical Corporation Rubber content 73%
<High Impact Polystyrene (C)>
Product name: "Toyo Styrol H848" manufactured by Toyo Styrene Co., Ltd. Rubber content 10.0%, rubber particle diameter 1.9 μm

次に、前記の樹脂組成物をスクリュー径40mmφと50mmφのタンデム式押出機に供給し、発泡シートを製造した。まず、前記の溶融コンパウンドした樹脂100質量部に対しスチレン-メタクリル酸メチル共重合体60質量%とタルク40質量%からなるタルクマスターバッチ2.3質量部を均一に混合したものをスクリュー径40mmφの押出機に供給した。更に、発泡剤としてブタンを押出機先端より樹脂100質量部に対して2.3質量部の割合で圧入し溶融混合した。このときのシリンダー温度230~270℃、樹脂温度235~250℃、圧力12~18MPaであった。
その後、230℃に設定した連結管を介してスクリュー径50mmφの押出機に移送し、シリンダー温度160~200℃、樹脂温度160~170℃、15~17MPaに調整し、リップ開度0.6mm、口径40mmのサーキュラーダイスより吐出量10kg/hrで押出し直径152mmの冷却された円筒に添わせて引取り、円周の下部1点でカッターにより切開して発泡シートを得た。得られた発泡シートの厚みは1.7mm、密度は120kg/mであった。その特性を表2に示す。
Next, the resin composition was supplied to a tandem extruder having a screw diameter of 40 mmφ and 50 mmφ to manufacture a foamed sheet. First, 2.3 parts by mass of a talc masterbatch composed of 60% by mass of a styrene-methyl methacrylate copolymer and 40% by mass of talc is uniformly mixed with 100 parts by mass of the melt-compounded resin, and the screw diameter is 40 mmφ. Supplied to the extruder. Further, butane as a foaming agent was press-fitted from the tip of the extruder at a ratio of 2.3 parts by mass with respect to 100 parts by mass of the resin and melt-mixed. At this time, the cylinder temperature was 230 to 270 ° C, the resin temperature was 235 to 250 ° C, and the pressure was 12 to 18 MPa.
After that, it is transferred to an extruder having a screw diameter of 50 mmφ via a connecting pipe set at 230 ° C., adjusted to a cylinder temperature of 160 to 200 ° C., a resin temperature of 160 to 170 ° C., and 15 to 17 MPa, and has a lip opening of 0.6 mm. It was extruded from a circular die having a diameter of 40 mm at a discharge rate of 10 kg / hr, taken along with a cooled cylinder having a diameter of 152 mm, and cut with a cutter at one point at the lower part of the circumference to obtain a foamed sheet. The thickness of the obtained foamed sheet was 1.7 mm, and the density was 120 kg / m 3 . The characteristics are shown in Table 2.

なお、各種物性、性能評価は以下の方法で行った。 Various physical properties and performance evaluations were performed by the following methods.

(1)スチレン-メタクリル酸共重合体中のメタクリル酸含有量
室温にて、共重合体0.5gを秤量し、トルエン/エタノール=8/2(体積比)の混合溶液に溶解後、水酸化カリウム1mol/エタノール溶液にて中和滴定を行い終点を検出し、水酸化カリウムエタノール溶液の使用量より、メタクリル酸の質量基準の含有量を算出する。なお、電位差自動検出装置(京都電子工業社製、AT-510)により測定した。
(2)分子量
重量平均分子量(Mw)及びZ平均分子量(Mz)、数平均分子量(Mn)は、ゲルパーミエイションクロマトグラフィ―(GPC)を用いて、次の条件で測定した。
GPC機種:Waters社製 アライアンスシステム2695
カラム:東ソー社製 TSKgel-GMHXL(ID)×300mm(L)
移動相:テトラヒドロフラン 0.35ml/min
試料濃度:0.2質量%
注入量:50μL
温度:40℃
検出器:示差屈折計 Waters社製 アライアンスシステム2414
単分散ポリスチレンの溶出曲線により各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出した。
(1) methacrylic acid content in styrene-methacrylic acid copolymer At room temperature, 0.5 g of the copolymer is weighed, dissolved in a mixed solution of toluene / ethanol = 8/2 (volume ratio), and then titrated. Neutralization titration is performed with a potassium 1 mol / ethanol solution to detect the end point, and the mass-based content of methacrylic acid is calculated from the amount of the potassium hydroxide ethanol solution used. The measurement was performed by a potential difference automatic detection device (AT-510 manufactured by Kyoto Electronics Industry Co., Ltd.).
(2) Molecular Weight The weight average molecular weight (Mw), Z average molecular weight (Mz), and number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
GPC model: Waters Alliance System 2695
Column: Tosoh TSKgel-GMHXL (ID) x 300 mm (L)
Mobile phase: Tetrahydrofuran 0.35 ml / min
Sample concentration: 0.2% by mass
Injection volume: 50 μL
Temperature: 40 ° C
Detector: Differential Refractometer Waters Alliance System 2414
The molecular weight at each elution time was calculated from the elution curve of monodisperse polystyrene, and calculated as the polystyrene-equivalent molecular weight.

樹脂特性は以下の方法により評価した。
(3)重量円相当粒子径、円相当粒子径の個数割合
樹脂組成物を80nmの超薄切片に切り出した後、四酸化オスミウムで染色し、透過型顕微鏡(日立ハイテクノロジーズ社製H-7500)を用いて、倍率15,000倍の写真を撮影し、100μmの面積内に存在するゴム分散粒子について、旭化成エンジニアリング社製画像解析ソフト「A像くん」を用いて、2値化処理を行い、得られた分散粒子の面積と同じ面積となる円の直径(円相当粒子径:Di)を求め、下記式から重量平均円相当粒子径(Dv)を求めた。さらに、得られた各円相当粒子径の個数より、100nm以上の円相当粒子径の個数割合を求めた。なお、ゴム分散粒子が凝集したものについては、凝集した形態を1個として数えることとしたが、円相当粒子径が500nmを超える凝集体については、除外した。
The resin properties were evaluated by the following method.
(3) Particle size equivalent to weight circle, number ratio of particle size equivalent to circle The resin composition was cut into ultrathin sections of 80 nm, stained with osmium tetroxide, and transmitted with a transmission microscope (H-7500 manufactured by Hitachi High-Technologies). A photograph with a magnification of 15,000 times was taken using the image, and the rubber dispersed particles existing in an area of 100 μm 2 were binarized using the image analysis software "A image-kun" manufactured by Asahi Kasei Engineering Co., Ltd. The diameter of a circle having the same area as the area of the obtained dispersed particles (circle equivalent particle diameter: Di) was obtained, and the weight average circle equivalent particle diameter (Dv) was obtained from the following formula. Furthermore, the number ratio of the particle size equivalent to a circle of 100 nm or more was obtained from the number of particle size equivalent to each circle obtained. In addition, regarding the aggregated rubber dispersed particles, the aggregated form was counted as one, but the aggregate having a particle size equivalent to a circle exceeding 500 nm was excluded.

Figure 0007100996000002
Figure 0007100996000002

物性は以下の方法により評価した。
(4)メルトマスフローレイト
JIS K7210に基づき200℃、49N荷重の条件により求めた。
(5)ビカット軟化温度
射出成型機を用いて試験片を作成し、JIS K7206に基づき50N荷重の条件により求めた。
(6)荷重たわみ温度
射出成型機を用いて試験片を作成し、JIS K7191に基づき1.8MPa応力の条件により求めた。
(7)溶融張力(MT)
キャピログラフ1B型(東洋精機社製)を使用し、バレル温度200℃、バレル径9.55mm、キャピラリー長さ:L=10mm、キャピラリー径:D=1mm(L/D=10)、バレル内の押出し速度10mm/分にて樹脂を押出し、荷重測定部をダイから60cm下方にセットし、キャピラリーより流出してきたストランド状の樹脂を巻き取り器にセットし、巻き取り線速度を4m/分から徐々に速度を上昇していき、ストランドが破断するまでの荷重を測定する。荷重は巻き取り線速度を上げていくと、一定値に安定するので、荷重が安定した範囲を平均化して溶融張力値(MT)とした。
The physical characteristics were evaluated by the following method.
(4) Melt mass flow rate Obtained based on JIS K7210 under the conditions of 200 ° C. and 49N load.
(5) Vicat softening temperature A test piece was prepared using an injection molding machine, and the temperature was determined based on JIS K7206 under the condition of a 50 N load.
(6) Deflection temperature under load A test piece was prepared using an injection molding machine and determined under the condition of 1.8 MPa stress based on JIS K7191.
(7) Melt tension (MT)
Capillograph 1B type (manufactured by Toyo Seiki Co., Ltd.) is used, barrel temperature 200 ° C., barrel diameter 9.55 mm, capillary length: L = 10 mm, capillary diameter: D = 1 mm (L / D = 10), extrusion in the barrel. The resin is extruded at a speed of 10 mm / min, the load measuring unit is set 60 cm below the die, the strand-shaped resin flowing out of the capillary is set in the winder, and the winding wire speed is gradually increased from 4 m / min. And measure the load until the strand breaks. Since the load stabilizes at a constant value as the take-up wire speed is increased, the range in which the load is stable is averaged to obtain the melt tension value (MT).

発泡シートの特性は以下の方法により評価した。
(8)シートインパクト強度
フィルムインパクトテスターBU-302(テスター産業社製)を用いて衝撃球面R12.7mmにて測定を行った。測定は発泡シートの表面、裏面、各々20回ずつ行い、全ての平均値をシートインパクト強度とした。
(9)成形性
発泡シートを単発成形機を用いて口径φ100mm、深さ60mmのカップ形状容器を熱成形した。ヒーター温度280℃一定にし、加熱時間を0.5秒刻みに変化させ、容器の穴あきやナキの発生しない加熱時間幅を確認し、成形可能な時間幅が10秒以上の場合を◎、8~10秒の場合を○、5~8秒の場合を△、5秒以下の場合を×として深絞り成形性を評価した。
(10)容器強度(割れ)
上記の成形可能な条件にて得られた容器について、小型卓上試験機Ez-test(島津製作所社製、型式:Ez-SX)を用い、容器の口元TD方向の両端部を2枚の板で挟んだ状態で、一方の端を500m/mmの速度で圧縮し、30mm変位時の割れが全く無いものを◎、発泡断面の内部のみに割れが発生するものを○、発泡断面の表層に割れが発生するものを△、発泡断面の表層から内部にかけて全体に割れが発生するものを×として容器強度を評価した。
(11)耐レンジアップ変形
上記の成形可能な条件にて得られた容器について、出力1500Wの電子レンジで70秒加熱し、表面状態を観察し、容器の変形や隆起が全く無いものを◎、容器の一部にわずかに変形や隆起が見られるものを○、容器に大きな変形や隆起が見られるものを△、容器の形状が崩れるか穴あきが発生するものを×とし耐熱性を評価した。
The characteristics of the foamed sheet were evaluated by the following method.
(8) Sheet Impact Strength A film impact tester BU-302 (manufactured by Tester Sangyo Co., Ltd.) was used to measure the impact spherical surface R12.7 mm. The measurement was performed 20 times each on the front surface and the back surface of the foam sheet, and the average value of all was taken as the sheet impact strength.
(9) Formability A cup-shaped container having a diameter of 100 mm and a depth of 60 mm was thermoformed from the foam sheet using a single-shot molding machine. Keep the heater temperature constant at 280 ° C, change the heating time in 0.5 second increments, check the heating time width that does not cause holes or holes in the container, and if the moldable time width is 10 seconds or more, ◎, 8 The deep draw moldability was evaluated by ◯ in the case of ~ 10 seconds, Δ in the case of 5 to 8 seconds, and × in the case of 5 seconds or less.
(10) Container strength (cracking)
For the container obtained under the above moldable conditions, use a small tabletop tester Ez-test (manufactured by Shimadzu Corporation, model: Ez-SX), and use two plates at both ends of the container in the TD direction. In the sandwiched state, one end is compressed at a speed of 500 m / mm, and the one with no crack at the time of displacement of 30 mm is ◎, the one with crack only inside the foamed cross section is ○, and the one with cracked on the surface layer of the foamed cross section is cracked. The strength of the container was evaluated as Δ, and x for the entire cracking from the surface layer to the inside of the foamed cross section.
(11) Range-up resistance deformation The container obtained under the above moldable conditions is heated in a microwave oven with an output of 1500 W for 70 seconds, the surface condition is observed, and the container is not deformed or raised at all. The heat resistance was evaluated as ○ for a part of the container with slight deformation or ridges, △ for those with large deformations or ridges in the container, and × for those with a deformed or perforated container. ..

Figure 0007100996000003
Figure 0007100996000003

実施例の耐熱性スチレン系樹脂組成物は、比較例1~2に比べて、MBS樹脂(B)のゴム島相の重量平均円相当粒子径が大きく、且つ、100nm以上の円相当粒子径の個数割合が多いため、発泡シートの耐熱性を維持しつつ、強度や成形性が大幅に向上した。 In the heat-resistant styrene resin composition of the example, the particle size equivalent to the weight average circle of the rubber island phase of the MBS resin (B) is larger than that of Comparative Examples 1 and 2, and the particle size corresponding to the circle is 100 nm or more. Since the number ratio is large, the strength and moldability are greatly improved while maintaining the heat resistance of the foamed sheet.

本発明の耐熱性スチレン系樹脂組成物は耐熱性と強度、成形性のバランスに優れるため、該耐熱性スチレン系樹脂組成物を用いて作成した押出シートは、深絞り容器等の多様な形状に加工することができ、幅広い用途で使用する事ができる。特に、電子レンジ用食品容器として用いた際、割れの発生が少ない食品容器を得ることができるため、製品輸送時や、食品容器蓋材との嵌合時の割れが減少し、食品廃棄ロスの低減につながる。 Since the heat-resistant styrene-based resin composition of the present invention has an excellent balance between heat resistance, strength, and moldability, the extruded sheet produced using the heat-resistant styrene-based resin composition can be formed into various shapes such as deep-drawn containers. It can be processed and can be used for a wide range of purposes. In particular, when used as a food container for a microwave oven, it is possible to obtain a food container with less cracking, so that cracking during product transportation and fitting with the food container lid material is reduced, resulting in food waste loss. It leads to reduction.

Claims (11)

スチレン-(メタ)アクリル酸共重合体(A)、コア相がブタジエン系ゴムでシェル相がメタクリル酸メチル単量体とスチレン系単量体を主成分とする共重合体である、MBS樹脂(B)を含む、耐熱性スチレン系樹脂組成物であって、
前記共重合体(A)からなる海相に、前記MBS樹脂(B)が島相として分散し、電子顕微鏡写真の画像観察から得られる、前記MBS樹脂(B)のゴム島相の重量平均円相当粒子径が120nm以上であり、且つ、100nm以上の円相当粒子径の個数割合が40%以上78%以下であることを特徴とする耐熱性スチレン系樹脂組成物。
Styrene- (meth) acrylic acid copolymer (A), MBS resin (MBS resin) in which the core phase is a butadiene rubber and the shell phase is a copolymer mainly composed of a methyl methacrylate monomer and a styrene monomer. A heat-resistant styrene-based resin composition containing B).
The MBS resin (B) is dispersed as an island phase in the sea phase composed of the copolymer (A), and the weight average circle of the rubber island phase of the MBS resin (B) obtained from the image observation of the electron micrograph. A heat-resistant styrene-based resin composition having an equivalent particle diameter of 120 nm or more and a number ratio of circle-equivalent particle diameters of 100 nm or more being 40% or more and 78% or less.
スチレン-(メタ)アクリル酸共重合体(A)、コア相がブタジエン系ゴムでシェル相がメタクリル酸メチル単量体とスチレン系単量体を主成分とする共重合体である、MBS樹脂(B)を含む、耐熱性スチレン系樹脂組成物であって、
前記共重合体(A)からなる海相に、前記MBS樹脂(B)が島相として分散し、電子顕微鏡写真の画像観察から得られる、前記MBS樹脂(B)のゴム島相の重量平均円相当粒子径が120nm以上であり、且つ、100nm以上の円相当粒子径の個数割合が40%以上であり、
前記共重合体(A)、及び前記MBS樹脂(B)の合計量を100質量%としたとき、前記共重合体(A)の含有量が70~99質量%、前記MBS樹脂(B)の含有量が5~30質量%である、耐熱性スチレン系樹脂組成物。
Styrene- (meth) acrylic acid copolymer (A), MBS resin (MBS resin) in which the core phase is a butadiene rubber and the shell phase is a copolymer mainly composed of a methyl methacrylate monomer and a styrene monomer. A heat-resistant styrene-based resin composition containing B).
The MBS resin (B) is dispersed as an island phase in the sea phase composed of the copolymer (A), and the weight average circle of the rubber island phase of the MBS resin (B) obtained from the image observation of the electron micrograph. The equivalent particle size is 120 nm or more, and the number ratio of the equivalent particle size of a circle of 100 nm or more is 40% or more.
When the total amount of the copolymer (A) and the MBS resin (B) is 100% by mass, the content of the copolymer (A) is 70 to 99% by mass, and the MBS resin (B) has a content of 70 to 99% by mass. A heat-resistant styrene resin composition having a content of 5 to 30% by mass.
スチレン-(メタ)アクリル酸共重合体(A)、コア相がブタジエン系ゴムでシェル相がメタクリル酸メチル単量体とスチレン系単量体を主成分とする共重合体である、MBS樹脂(B)を含む、耐熱性スチレン系樹脂組成物であって、
前記共重合体(A)からなる海相に、前記MBS樹脂(B)が島相として分散し、電子顕微鏡写真の画像観察から得られる、前記MBS樹脂(B)のゴム島相の重量平均円相当粒子径が120nm以上であり、且つ、100nm以上の円相当粒子径の個数割合が40%以上であり、
前記共重合体(A)に含まれる、スチレン系単量体単位、(メタ)アクリル酸単量体単位の合計量を100質量%としたとき、スチレン系単量体単位の含有量が91.7~99質量%であり、(メタ)アクリル酸単量体単位の含有量が1~8.3質量%である、耐熱性スチレン系樹脂組成物。
Styrene- (meth) acrylic acid copolymer (A), MBS resin (MBS resin) in which the core phase is a butadiene rubber and the shell phase is a copolymer mainly composed of a methyl methacrylate monomer and a styrene monomer. A heat-resistant styrene-based resin composition containing B).
The MBS resin (B) is dispersed as an island phase in the sea phase composed of the copolymer (A), and the weight average circle of the rubber island phase of the MBS resin (B) obtained from the image observation of the electron micrograph. The equivalent particle size is 120 nm or more, and the number ratio of the equivalent particle size of a circle of 100 nm or more is 40% or more.
When the total amount of the styrene-based monomer unit and the (meth) acrylic acid monomer unit contained in the copolymer (A) is 100% by mass, the content of the styrene-based monomer unit is 91. A heat-resistant styrene resin composition having an amount of 7 to 99% by mass and a content of (meth) acrylic acid monomer unit of 1 to 8.3% by mass.
前記共重合体(A)の重量平均分子量(Mw)が10万~40万である、請求項1~3のいずれか1項に記載の耐熱性スチレン系樹脂組成物。 The heat-resistant styrene resin composition according to any one of claims 1 to 3, wherein the copolymer (A) has a weight average molecular weight (Mw) of 100,000 to 400,000. 前記共重合体(A)の数平均分子量(Mn)が6.2万~12.1万である、請求項1~4のいずれか1項に記載の耐熱性スチレン系樹脂組成物。 The heat-resistant styrene resin composition according to any one of claims 1 to 4, wherein the copolymer (A) has a number average molecular weight (Mn) of 62,000 to 121,000. 前記共重合体(A)の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.60~2.90である請求項1~のいずれか1項に記載の耐熱性スチレン系樹脂組成物。 The invention according to any one of claims 1 to 5 , wherein the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the copolymer (A) is 2.60 to 2.90. Heat resistant styrene resin composition. 前記共重合体(A)のZ平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)が1.65~1.87である請求項1~のいずれか1項に記載の耐熱性スチレン系樹脂組成物。 The invention according to any one of claims 1 to 6 , wherein the ratio (Mz / Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) of the copolymer (A) is 1.65 to 1.87. Heat resistant styrene resin composition. ビカット軟化温度が110℃以上である、請求項1~のいずれか1項に記載の耐熱性スチレン系樹脂組成物。 The heat-resistant styrene resin composition according to any one of claims 1 to 7 , wherein the Vicat softening temperature is 110 ° C. or higher. 請求項1~のいずれか1項に記載の耐熱性スチレン系樹脂組成物を成形してなる、成形品。 A molded product obtained by molding the heat-resistant styrene resin composition according to any one of claims 1 to 8 . 請求項1~のいずれか1項に記載の耐熱性スチレン系樹脂組成物を成形してなる、発泡シート。 A foamed sheet obtained by molding the heat-resistant styrene resin composition according to any one of claims 1 to 8 . 請求項10に記載の発泡シートを成形してなる食品包装用容器。 A container for food packaging formed by molding the foam sheet according to claim 10 .
JP2018041167A 2018-03-07 2018-03-07 Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers Active JP7100996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041167A JP7100996B2 (en) 2018-03-07 2018-03-07 Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041167A JP7100996B2 (en) 2018-03-07 2018-03-07 Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers

Publications (2)

Publication Number Publication Date
JP2019156880A JP2019156880A (en) 2019-09-19
JP7100996B2 true JP7100996B2 (en) 2022-07-14

Family

ID=67992418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041167A Active JP7100996B2 (en) 2018-03-07 2018-03-07 Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers

Country Status (1)

Country Link
JP (1) JP7100996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470565B2 (en) 2020-04-10 2024-04-18 東洋スチレン株式会社 Styrene-methacrylic acid copolymer resin composition for film, film, and molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162637A (en) 2011-02-07 2012-08-30 Toyo Styrene Co Ltd Styrene-(meth)acrylic acid copolymer composition
JP2014240459A (en) 2013-06-11 2014-12-25 東洋スチレン株式会社 Styrene-(meth)acrylic acid-based copolymer composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741586A (en) * 1993-05-21 1995-02-10 Dainippon Ink & Chem Inc Production of foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162637A (en) 2011-02-07 2012-08-30 Toyo Styrene Co Ltd Styrene-(meth)acrylic acid copolymer composition
JP2014240459A (en) 2013-06-11 2014-12-25 東洋スチレン株式会社 Styrene-(meth)acrylic acid-based copolymer composition

Also Published As

Publication number Publication date
JP2019156880A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6271147B2 (en) Heat-resistant resin foam sheet and container
JP2014169391A (en) Heat-resistant styrenic resin composition, extruded sheet, and molding
JP2014101403A (en) Heat resistant styrenic resin composition, extruded sheet and molded article
JP7100996B2 (en) Heat-resistant styrene resin compositions, articles, foam sheets, and food packaging containers
JP2005281475A (en) Styrene polymer and its production method
JP6803211B2 (en) Heat-resistant styrene resin composition, extruded sheet, molded product
JP2006282962A (en) Aromatic vinyl compound-methacrylic acid-based copolymer and method for producing the same
JP6580409B2 (en) Styrenic resin composition and foam molded article
JP6262110B2 (en) Styrene-methacrylic acid resin sheet, resin molded product, and container
JP6302629B2 (en) Styrene- (meth) acrylic acid copolymer composition
JP2017133040A (en) Heat resistant styrene resin composition, extrusion sheet and molded article
JP2019108506A (en) Heat-resistant styrene resin composition, molded article, extruded sheet, and food packaging container
JPH1087929A (en) Styrene-(meth) acrylic acid copolymer composition
JP6262109B2 (en) Resin foam sheet, laminated foam sheet, and foam molded product
JP2009029871A (en) Styrenic resin composition and method for producing foamed sheet
JP7084163B2 (en) Heat-resistant styrene resin composition, molded article, foam sheet, and container for food packaging
JP6861014B2 (en) Heat-resistant styrene resin composition, molded product, extruded sheet, and container for food packaging
JP6457898B2 (en) Styrenic resin for molding, molded product, and manufacturing method of molded product
JP6717599B2 (en) Styrene resin, styrene resin foam sheet, and food container
JP2014074080A (en) Styrenic resin, extrusion foamed sheet and its molded article
JP6700005B2 (en) Rubber-modified styrene resin composition, and molded article
JP2008144025A (en) Method for producing styrene-based resin foam sheet
JP7084771B2 (en) Heat-resistant styrene resin composition, molded article, foam sheet, and container for food packaging
JP7179503B2 (en) Styrene-based copolymers and molded articles thereof, sheets
JP6580416B2 (en) Styrenic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220329

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220704

R150 Certificate of patent or registration of utility model

Ref document number: 7100996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150