JP7099355B2 - Thermosetting silicone composition and its cured product - Google Patents

Thermosetting silicone composition and its cured product Download PDF

Info

Publication number
JP7099355B2
JP7099355B2 JP2019026278A JP2019026278A JP7099355B2 JP 7099355 B2 JP7099355 B2 JP 7099355B2 JP 2019026278 A JP2019026278 A JP 2019026278A JP 2019026278 A JP2019026278 A JP 2019026278A JP 7099355 B2 JP7099355 B2 JP 7099355B2
Authority
JP
Japan
Prior art keywords
group
formula
cured product
mass
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026278A
Other languages
Japanese (ja)
Other versions
JP2020132727A (en
Inventor
真司 木村
展明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019026278A priority Critical patent/JP7099355B2/en
Priority to KR1020200017313A priority patent/KR20200100547A/en
Priority to CN202010094812.2A priority patent/CN111574664A/en
Priority to TW109104941A priority patent/TWI829863B/en
Publication of JP2020132727A publication Critical patent/JP2020132727A/en
Application granted granted Critical
Publication of JP7099355B2 publication Critical patent/JP7099355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Description

本発明は、熱硬化性シリコーン組成物およびその硬化物に関し、さらに詳述すると、光学素子封止材として好適な熱硬化性シリコーン組成物およびその硬化物に関する。 The present invention relates to a thermosetting silicone composition and a cured product thereof, and more specifically to a thermosetting silicone composition and a cured product thereof suitable as an optical element encapsulant.

シリコーンゴムは、従来、光学素子封止材料として使用されている。
この用途に使用されるシリコーンゴムには、高透明、高屈折率が求められており、これらの特性を満足すべく、主骨格にジメチルシロキサン・ジフェニルシロキサン共重合体またはポリメチルフェニルシロキサンを用いた材料が既に提案されている(特許文献1~5参照)。
しかし、これら特許文献1~5に開示されたシリコーンゴムは、主骨格がシロキサンであるため、ガス透過性が高く、光学素子周辺の部材を腐食性ガスから保護できないという問題がある。
Silicone rubber has conventionally been used as an optical element encapsulating material.
Silicone rubber used for this purpose is required to have high transparency and high refractive index, and in order to satisfy these characteristics, a dimethylsiloxane / diphenylsiloxane copolymer or polymethylphenylsiloxane was used for the main skeleton. Materials have already been proposed (see Patent Documents 1-5).
However, since the main skeleton of the silicone rubber disclosed in Patent Documents 1 to 5 is siloxane, there is a problem that the gas permeability is high and the members around the optical element cannot be protected from the corrosive gas.

特開2004-143361号公報Japanese Unexamined Patent Publication No. 2004-143361 特開2005-076003号公報Japanese Unexamined Patent Publication No. 2005-076003 特開2005-105217号公報Japanese Unexamined Patent Publication No. 2005-105217 特開2005-307015号公報Japanese Unexamined Patent Publication No. 2005-307015 特開2010-132795号公報Japanese Unexamined Patent Publication No. 2010-132795

本発明は、上記事情に鑑みなされたもので、耐熱変色性を有し、高屈折率、高透明、低ガス透過性の硬化物を与える熱硬化性シリコーン組成物およびその硬化物を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention has been made in view of the above circumstances, and provides a thermosetting silicone composition and a cured product thereof, which have heat-resistant discoloration property and provide a cured product having a high refractive index, high transparency, and low gas permeability. With the goal.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、末端に(メタ)アクリル基を有するオルガノポリシロキサン、シロキサン構造を含まない単官能(メタ)アクリレート化合物、フェノール系酸化防止剤および過酸化物を含む熱硬化性シリコーン組成物を用いることで、低ガス透過性と耐熱変色性を両立できる硬化物が得られることを見出し、本発明を完成した。 As a result of diligent studies to achieve the above object, the present inventors have conducted an organopolysiloxane having a (meth) acrylic group at the terminal, a monofunctional (meth) acrylate compound containing no siloxane structure, and a phenolic antioxidant. The present invention has been completed by finding that a cured product having both low gas permeability and heat-resistant discoloration can be obtained by using a thermosetting silicone composition containing a peroxide.

すなわち、本発明は、
1. (A)下記式(1)で示されるオルガノポリシロキサン:40~95質量部、

Figure 0007099355000001
〔式(1)中、nは、1≦n≦100を満たす数を表し、Arは、それぞれ独立して芳香族基を表し、F1は、それぞれ独立して、下記式(2)または式(3)
Figure 0007099355000002
(式(2)中、R1は、それぞれ独立して炭素原子数1~20の一価炭化水素基を表す。
式(3)中、mは、0≦m≦10を満たす数を表し、R1は、それぞれ独立して炭素原子数1~20の一価炭化水素基を表し、R2は、酸素原子またはアルキレン基を表し、R3は、アクリロイル基、メタクリロイル基、アクリロイルオキシアルキル基またはメタクリロイルオキシアルキル基を表す。)
で示される基を表すが、F1で示される全末端基の合計数に対し、前記式(3)で表される末端基の数の割合は20%以上である。〕
(B)シロキサン構造を含まない単官能(メタ)アクリレート化合物、またはシロキサン構造を含まない単官能(メタ)アクリレート化合物およびシロキサン構造を含まない多官能(メタ)アクリレート化合物の両方:5~60質量部(ただし、(A)成分と(B)成分との合計は100質量部である。)、
(C)有機過酸化物:0.01~10質量部、および
(D)フェノール系酸化防止剤:50~5,000ppm
を含有することを特徴とする熱硬化性シリコーン組成物、
2. 1の熱硬化性シリコーン組成物の硬化物、
3. 2の硬化物からなる光学素子封止材、
4. 3の光学素子封止材により封止された光学素子
を提供する。 That is, the present invention
1. 1. (A) Organopolysiloxane represented by the following formula (1): 40 to 95 parts by mass,
Figure 0007099355000001
[In the formula (1), n represents a number satisfying 1 ≦ n ≦ 100, Ar represents an aromatic group independently, and F 1 independently represents the following formula (2) or the formula. (3)
Figure 0007099355000002
(In the formula (2), R 1 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
In the formula (3), m represents a number satisfying 0 ≦ m ≦ 10, R 1 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 is an oxygen atom or Represents an alkylene group and R 3 represents an acryloyl group, a methacryloyl group, an acryloyloxyalkyl group or a methacryloyloxyalkyl group. )
The ratio of the number of terminal groups represented by the above formula (3) to the total number of all terminal groups represented by F 1 is 20% or more. ]
(B) Both a monofunctional (meth) acrylate compound not containing a siloxane structure, a monofunctional (meth) acrylate compound not containing a siloxane structure, and a polyfunctional (meth) acrylate compound not containing a siloxane structure: 5 to 60 parts by mass. (However, the total of the component (A) and the component (B) is 100 parts by mass.),
(C) Organic peroxide: 0.01 to 10 parts by mass, and (D) Phenolic antioxidant: 50 to 5,000 ppm
Thermosetting silicone composition, characterized by containing
2. 2. 1 Cured product of thermosetting silicone composition,
3. 3. Optical element encapsulant consisting of 2 cured products,
4. An optical element sealed by the optical element encapsulant of No. 3 is provided.

本発明の熱硬化性シリコーン組成物は、耐熱変色性を有し、高屈折率、高透明、低ガス透過性という特性を有する硬化物を与える。
このような特性を有する本発明の硬化物は、光学素子封止材として好適に用いることができる。
The thermosetting silicone composition of the present invention provides a cured product having heat-resistant discoloration properties, high refractive index, high transparency, and low gas permeability.
The cured product of the present invention having such characteristics can be suitably used as an optical element encapsulant.

以下、本発明について具体的に説明する。
本発明に係る熱硬化性シリコーン組成物は、
(A)下記式(1)で示されるオルガノポリシロキサン:40~95質量部、
(B)シロキサン構造を含まない単官能(メタ)アクリレート化合物、またはシロキサン構造を含まない単官能(メタ)アクリレート化合物およびシロキサン構造を含まない多官能(メタ)アクリレート化合物の両方:5~60質量部(ただし、(A)成分と(B)成分との合計は100質量部である。)、
(C)有機過酸化物:0.01~10質量部、および
(D)フェノール系酸化防止剤:50~5,000ppm
を含有することを特徴とする。
Hereinafter, the present invention will be specifically described.
The thermosetting silicone composition according to the present invention is
(A) Organopolysiloxane represented by the following formula (1): 40 to 95 parts by mass,
(B) Both a monofunctional (meth) acrylate compound not containing a siloxane structure, a monofunctional (meth) acrylate compound not containing a siloxane structure, and a polyfunctional (meth) acrylate compound not containing a siloxane structure: 5 to 60 parts by mass. (However, the total of the component (A) and the component (B) is 100 parts by mass.),
(C) Organic peroxide: 0.01 to 10 parts by mass, and (D) Phenolic antioxidant: 50 to 5,000 ppm
It is characterized by containing.

(A)成分
本発明の熱硬化性シリコーン組成物において、(A)成分のオルガノポリシロキサンは、当該組成物の硬化物に耐熱変色性と柔軟性を与える成分であり、下記式(1)で示される。
(A) Component In the thermosetting silicone composition of the present invention, the organopolysiloxane of the component (A) is a component that imparts heat-resistant discoloration and flexibility to the cured product of the composition, and is represented by the following formula (1). Shown.

Figure 0007099355000003
Figure 0007099355000003

式(1)において、nは、1≦n≦100を満たす数を表すが、好ましくは1≦n≦50、より好ましくは1≦n≦20である。nが1より小さいと揮発し易く、nが100より大きいと組成物の粘度が高くなり、取り扱い性に劣る。 In the formula (1), n represents a number satisfying 1 ≦ n ≦ 100, preferably 1 ≦ n ≦ 50, and more preferably 1 ≦ n ≦ 20. When n is smaller than 1, it is easy to volatilize, and when n is larger than 100, the viscosity of the composition is high and the handleability is poor.

Arは、それぞれ独立して芳香族基を表し、その炭素原子数は特に限定されるものではないが、6~20が好ましい。
芳香族基の具体例としては、フェニル、ビフェニル、ナフチル基等の芳香族炭化水素基;フラニル基等のヘテロ原子(O,S,N)を含む芳香族基が挙げられ、これらの芳香族基は、ハロゲン原子(例えば、塩素原子、臭素原子、フッ素原子)等の置換基を有していてもよい。
これらの中でも、Arとしては、非置換の芳香族炭化水素基が好ましく、フェニル基がより好ましい。
Ar independently represents an aromatic group, and the number of carbon atoms thereof is not particularly limited, but 6 to 20 is preferable.
Specific examples of the aromatic group include aromatic hydrocarbon groups such as phenyl, biphenyl and naphthyl groups; aromatic groups containing heteroatoms (O, S, N) such as furanyl groups, and these aromatic groups are mentioned. May have a substituent such as a halogen atom (for example, a chlorine atom, a bromine atom, a fluorine atom).
Among these, as Ar, an unsubstituted aromatic hydrocarbon group is preferable, and a phenyl group is more preferable.

1は、それぞれ独立して、下記式(2)または式(3)で示される基を表すが、F1で示される全末端基の合計数に対し、式(3)で表される末端基の数の割合は20%以上である。 F 1 independently represents a group represented by the following formula (2) or formula (3), but the terminal represented by the formula (3) is represented by the total number of all terminal groups represented by F 1 . The ratio of the number of groups is 20% or more.

Figure 0007099355000004
Figure 0007099355000004

式(2)および(3)において、R1は、それぞれ独立して炭素原子数1~20、好ましくは1~10の一価炭化水素基を表す。
1の一価炭化水素基は、直鎖、分岐、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ヘキシル、シクロヘキシル、n-オクチル、n-デシル、n-ドデシル基等のアルキル基;ビニル、アリル、1-ブテニル、1-ヘキセニル基等のアルケニル基;フェニル、トリル、キシリル、ナフチル基等のアリール基;ベンジル、2-フェニルエチル、2-フェニルプロピル基等のアラルキル基;これらの炭化水素基の水素原子の一部または全部が、塩素、フッ素、臭素等のハロゲン原子で置換されたフルオロメチル基、ブロモエチル基、クロロメチル基、3,3,3-トリフルオロプロピル基等のハロゲン置換一価炭化水素基などが挙げられる。
上記アルケニル基としては、合成のし易さや、コスト面からビニル基が好ましい。
特に、合成のし易さや、コスト面から、R1の全数の90%以上がメチル基またはフェニル基であることが好ましい。
In the formulas (2) and (3), R 1 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10.
The monovalent hydrocarbon group of R 1 may be linear, branched or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl and n-hexyl. Alkyl groups such as cyclohexyl, n-octyl, n-decyl, n-dodecyl groups; alkenyl groups such as vinyl, allyl, 1-butenyl, 1-hexenyl groups; aryl groups such as phenyl, tolyl, xylyl, naphthyl groups; Aralkyl groups such as benzyl, 2-phenylethyl and 2-phenylpropyl groups; bromoethyl, a fluoromethyl group in which some or all of the hydrogen atoms of these hydrocarbon groups are replaced with halogen atoms such as chlorine, fluorine and bromine. Examples thereof include a halogen-substituted monovalent hydrocarbon group such as a group, a chloromethyl group and a 3,3,3-trifluoropropyl group.
As the alkenyl group, a vinyl group is preferable from the viewpoint of ease of synthesis and cost.
In particular, from the viewpoint of ease of synthesis and cost, it is preferable that 90% or more of the total number of R 1 is a methyl group or a phenyl group.

式(3)において、R2は、酸素原子またはアルキレン基を表し、このアルキレン基は、直鎖、分岐、環状のいずれでもよい。
その具体例としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、イソブチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デシレン基等の炭素原子数1~10のアルキレン基などが挙げられ、中でも合成のし易さや、コスト面から、炭素原子数1~5のアルキレン基が好ましく、エチレン基、トリメチレン基がより好ましく、エチレン基がより一層好ましい。
3は、アクリロイル基、メタクリロイル基、アクリロイルオキシアルキル基またはメタクリロイルオキシアルキル基を表す。これらアクリロイルオキシアルキル基およびメタクリロイルオキシアルキル基におけるアルキル(アルキレン)基の炭素数としては、特に限定されるものではないが、1~10が好ましく、1~5がより好ましく、その具体例としては、4-アクリロイルオキシブチル基、3-アクリロイルオキシプロピル基、4-メタクリロイルオキシブチル基、3-メタクリロイルオキシプロピル基等が挙げられ、中でも合成のし易さ等を考慮すると、4-メタクリロイルオキシブチル基、3-メタクリロイルオキシプロピル基が好ましい。
In the formula (3), R 2 represents an oxygen atom or an alkylene group, and the alkylene group may be linear, branched or cyclic.
Specific examples thereof include alkylene groups having 1 to 10 carbon atoms such as methylene, ethylene, propylene, trimethylene, tetramethylene, isobutylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene and decylene groups. Among them, an alkylene group having 1 to 5 carbon atoms is preferable, an ethylene group and a trimethylene group are more preferable, and an ethylene group is even more preferable, from the viewpoint of ease of synthesis and cost.
R 3 represents an acryloyl group, a methacryloyl group, an acryloyloxyalkyl group or a methacryloyloxyalkyl group. The number of carbon atoms of the alkyl (alkylene) group in these acryloyloxyalkyl groups and methacryloyloxyalkyl groups is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, and specific examples thereof include. Examples thereof include 4-acryloyloxybutyl group, 3-acryloyloxypropyl group, 4-methacryloyloxybutyl group, 3-methacryloyloxypropyl group, etc. Among them, 4-methacryloyloxybutyl group, considering the ease of synthesis and the like, A 3-methacryloyloxypropyl group is preferred.

式(3)において、mは、0≦m≦10を満たす数を表すが、好ましくは1≦m≦8を満たす数、より好ましくは1≦m≦5を満たす数である。 In the formula (3), m represents a number satisfying 0 ≦ m ≦ 10, preferably a number satisfying 1 ≦ m ≦ 8, and more preferably a number satisfying 1 ≦ m ≦ 5.

(A)成分のオルガノポリシロキサンの具体例としては、下記の化合物が挙げられるが、これらに限定されるものではない。 Specific examples of the organopolysiloxane of the component (A) include, but are not limited to, the following compounds.

Figure 0007099355000005
(式中、Meはメチル基を、Phはフェニル基を意味する。)
Figure 0007099355000005
(In the formula, Me means a methyl group and Ph means a phenyl group.)

なお、上記(A)成分のオルガノポリシロキサンは、単独で用いても2種以上組み合わせて用いてもよいが、上述のとおり、上記式(1)で表されるオルガノポリシロキサン中のF1で示される全末端基の合計数に対する、上記式(3)で表される反応基を有する末端基の数の割合は20%以上であり、好ましくは30%以上である。20%未満であると架橋反応が不十分となる。 The organopolysiloxane of the component (A) may be used alone or in combination of two or more, but as described above, F 1 in the organopolysiloxane represented by the above formula (1). The ratio of the number of terminal groups having a reactive group represented by the above formula (3) to the total number of all terminal groups shown is 20% or more, preferably 30% or more. If it is less than 20%, the cross-linking reaction becomes insufficient.

(A)成分のオルガノポリシロキサンは、例えば、下記式(8)で表されるオルガノポリシロキサンに対し、下記式(9)で表されるオルガノポリシロキサンを白金触媒存在下でヒドロシリル化反応させて得ることができる。
この際、1モルのオルガノポリシロキサン(8)に対してオルガノポリシロキサン(9)のモル数を0.4~2モルの範囲で調整することで、F1で示される全末端基の合計数に対する、上記式(3)で表される反応基を有する末端基の数の割合を制御することができる。
For the organopolysiloxane of the component (A), for example, the organopolysiloxane represented by the following formula (8) is hydrosilylated with the organopolysiloxane represented by the following formula (9) in the presence of a platinum catalyst. Obtainable.
At this time, by adjusting the number of moles of the organopolysiloxane (9) in the range of 0.4 to 2 mol with respect to 1 mol of the organopolysiloxane (8), the total number of all terminal groups represented by F 1 is obtained. The ratio of the number of terminal groups having a reactive group represented by the above formula (3) to the above can be controlled.

Figure 0007099355000006
(式中、R1、R3、Ar、mおよびnは、上記と同じ意味を表す。)
Figure 0007099355000006
(In the formula, R 1 , R 3 , Ar, m and n have the same meanings as above.)

(B)成分
(B)成分は、シロキサン構造を含まない単官能(メタ)アクリレート化合物、またはシロキサン構造を含まない単官能(メタ)アクリレート化合物およびシロキサン構造を含まない多官能(メタ)アクリレート化合物の両方であり、本発明の組成物の硬化物のガス透過性を低下させるための成分である。
Component (B) The component (B) is a monofunctional (meth) acrylate compound that does not contain a siloxane structure, or a monofunctional (meth) acrylate compound that does not contain a siloxane structure and a polyfunctional (meth) acrylate compound that does not contain a siloxane structure. Both are components for reducing the gas permeability of the cured product of the composition of the present invention.

シロキサン構造を含まない単官能(メタ)アクリレート化合物の具体例としては、イソアミルアクリレート、ラウリルアクリレート、ステアリルアクリレート、エトキシ-ジエチレングリコールアクリレート、メトキシ-トリエチレングリコールアクリレート、2-エチルヘキシル-ジグリコールアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、テトラヒドロフルフリルアクリレート、イソボルニルアクリレート等が挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、特にイソボルニルアクリレートが好ましい。 Specific examples of the monofunctional (meth) acrylate compound containing no siloxane structure include isoamyl acrylate, lauryl acrylate, stearyl acrylate, ethoxy-diethylene glycol acrylate, methoxy-triethylene glycol acrylate, 2-ethylhexyl-diglycol acrylate, and phenoxyethyl acrylate. , Phenoxydiethylene glycol acrylate, tetrahydrofurfuryl acrylate, isobornyl acrylate and the like, and these may be used alone or in combination of two or more. Among these, isobornyl acrylate is particularly preferable.

また、上記シロキサン構造を含まない単官能(メタ)アクリレート化合物の一部を、シロキサン構造を含まない多官能(メタ)アクリレート化合物に置き換えてもよい。
シロキサン構造を含まない多官能(メタ)アクリレート化合物の具体例としては、トリエチレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ジメチロール-トリシクロデカンジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート等が挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、特にジメチロール-トリシクロデカンジアクリレートが好ましい。
シロキサン構造を含まない単官能(メタ)アクリレート化合物と、シロキサン構造を含まない多官能(メタ)アクリレート化合物とを併用する場合、その使用割合は特に限定されるものではないが、質量比で単官能(メタ)アクリレート化合物:多官能(メタ)アクリレート化合物=9:1~1:9が好ましく、3:1~1:1がより好ましい。
Further, a part of the monofunctional (meth) acrylate compound that does not contain the siloxane structure may be replaced with a polyfunctional (meth) acrylate compound that does not contain the siloxane structure.
Specific examples of the polyfunctional (meth) acrylate compound containing no siloxane structure include triethylene glycol diacrylate, polytetramethylene glycol diacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, and dimethylol-tricyclo. Examples thereof include decandiacrylate, trimethylolpropane triacrylate, pentaerythritol tetraacrylate and the like, and these may be used alone or in combination of two or more. Among these, dimethylol-tricyclodecanediacrylate is particularly preferable.
When a monofunctional (meth) acrylate compound that does not contain a siloxane structure and a polyfunctional (meth) acrylate compound that does not contain a siloxane structure are used in combination, the ratio of use thereof is not particularly limited, but it is monofunctional in terms of mass ratio. (Meta) acrylate compound: Polyfunctional (meth) acrylate compound = 9: 1 to 1: 9 is preferable, and 3: 1 to 1: 1 is more preferable.

(B)成分の使用量は、(A)成分40~95質量部に対し、(A)成分との合計が100質量部となる量である。
(B)成分の含有量が少ないと、得られる硬化物のガス透過性が高くなり、多いと耐熱変色性が悪化する。(B)成分の含有量としては、5~50質量部が好ましく、10~40質量部がより好ましく、10~30質量部がより一層好ましい。
The amount of the component (B) used is such that the total amount of the component (A) and the component (A) is 100 parts by mass with respect to 40 to 95 parts by mass of the component (A).
When the content of the component (B) is low, the gas permeability of the obtained cured product is high, and when the content is high, the heat-resistant discoloration property deteriorates. The content of the component (B) is preferably 5 to 50 parts by mass, more preferably 10 to 40 parts by mass, and even more preferably 10 to 30 parts by mass.

(C)成分
(C)成分の有機過酸化物は、本発明の組成物を所望の形状に成型した後、加熱処理により上記(A)成分および(B)成分を架橋反応により硬化させるために配合される。
すなわち、有機過酸化物の熱分解によって生じるフリーラジカルは、主に上記(A)および(B)成分中の(メタ)アクリル基同士の重合反応を進行させ、架橋硬化物とすることができる。
Component (C) The organic peroxide of the component (C) is used to cure the components (A) and (B) by a cross-linking reaction after molding the composition of the present invention into a desired shape. It is compounded.
That is, the free radicals generated by the thermal decomposition of the organic peroxide can mainly promote the polymerization reaction between the (meth) acrylic groups in the components (A) and (B) to be a crosslinked cured product.

本発明で用いる有機過酸化物は、高い反応性と長いポットライフを両立する観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が180℃以下であることが好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が170℃以下であることがより好ましい。 The organic peroxide used in the present invention has a temperature of 40 ° C. or higher with a half-life of 10 hours and a temperature of 180 ° C. or lower with a half-life of 1 minute from the viewpoint of achieving both high reactivity and a long pot life. It is more preferable that the temperature with a half-life of 10 hours is 60 ° C. or higher and the temperature with a half-life of 1 minute is 170 ° C. or lower.

有機過酸化物は、ラジカル重合反応等に用いられる公知のものから適宜選択して用いることができ、例えば、ジアシルパーオキサイド、ジアルキルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。
その具体例としては、ラウロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン等が挙げられ、これらは1種単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン等のパーオキシケタールが好ましい。
The organic peroxide can be appropriately selected from known substances used for radical polymerization reactions and the like, and can be used, for example, diacyl peroxide, dialkyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, hydro. Examples thereof include peroxides and silyl peroxides.
Specific examples thereof include lauroyl peroxide, succinic peroxide, benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, and t-. Butylperoxybenzoate, t-hexylperoxyisopropyl monocarbonate, 1,1-bis (t-butylperoxy) cyclohexane, 2,2-bis (t-butylperoxy) butane, etc. are mentioned, and these are one kind. It may be used alone or in combination of two or more. Among these, peroxyketals such as 1,1-bis (t-butylperoxy) cyclohexane and 2,2-bis (t-butylperoxy) butane are preferable.

(C)成分の配合量は、(A)および(B)成分の合計量100質量部に対して、0.01~10質量部であるが、0.05~5質量部が好ましく、0.1~1質量部がより好ましい。配合量が、0.01質量部未満であると、反応が十分に進行しないおそれがあり、10質量部を超えると、所望とする硬化後の物性が得られないおそれがある。 The blending amount of the component (C) is 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, with respect to 100 parts by mass of the total amount of the components (A) and (B). 1 to 1 part by mass is more preferable. If the blending amount is less than 0.01 parts by mass, the reaction may not proceed sufficiently, and if it exceeds 10 parts by mass, the desired physical properties after curing may not be obtained.

(D)成分
(D)成分のフェノール系酸化防止剤は、本発明の組成物を硬化させた後、高温環境下に暴露した際の変色を防ぐために配合される。
フェノール系酸化防止剤としては、従来公知のものから適宜選択して用いることができ、その具体例としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-アミルヒドロキノン、2,5-ジ-t-ブチルヒドロキノン、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、IRGANOX1010、IRGANOX3114、IRGANOX1098、(商品名、BASF社製)、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40(商品名、ADEKA製)等が挙げられる。これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。
Component (D) The phenolic antioxidant of component (D) is formulated to prevent discoloration when the composition of the present invention is cured and then exposed to a high temperature environment.
As the phenolic antioxidant, conventionally known ones can be appropriately selected and used, and specific examples thereof include 2,6-di-t-butyl-4-methylphenol and 2,5-di-t. -Amilhydroquinone, 2,5-di-t-butylhydroquinone, 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 2,2'-methylenebis (4-methyl-6-t-butylphenol) , IRGANOX1010, IRGANOX3114, IRGANOX1098, (trade name, manufactured by BASF), Adekastab AO-20, Adekastab AO-30, Adekastab AO-40 (trade name, manufactured by ADEKA) and the like. These may be used alone or in combination of two or more.

(D)成分の配合量は、50~5,000ppmであるが、100~2,000ppmが好ましく、300~1,000ppmがより好ましい。この範囲内の配合量であれば、酸化防止性能が十分に発揮され、着色、白濁、酸化劣化等の発生が無く、光学的特性に優れた硬化物を得ることができる。 The blending amount of the component (D) is 50 to 5,000 ppm, preferably 100 to 2,000 ppm, more preferably 300 to 1,000 ppm. If the blending amount is within this range, the antioxidant performance is sufficiently exhibited, coloring, cloudiness, oxidative deterioration and the like do not occur, and a cured product having excellent optical characteristics can be obtained.

なお、本発明の組成物には、上記(A)~(D)成分以外にも、本発明の目的を損なわない限り、以下に例示するその他の成分を配合してもよい。
その他の成分の具体例としては、結晶性シリカ等の光散乱剤あるいは補強材;蛍光体;石油系溶剤;カーボンファクンショナルシラン等の接着性向上剤;フェノール系酸化防止剤以外の酸化防止剤等が挙げられる。これらのその他の成分は、1種単独で用いても、2種以上を併用してもよい。
In addition to the above components (A) to (D), the composition of the present invention may contain other components exemplified below as long as the object of the present invention is not impaired.
Specific examples of other components include light scattering agents or reinforcing materials such as crystalline silica; phosphors; petroleum-based solvents; adhesion improvers such as carbon fractional silanes; antioxidants other than phenol-based antioxidants. And so on. These other components may be used alone or in combination of two or more.

本発明の熱硬化性シリコーン組成物は、上記(A)~(D)成分、および必要に応じてその他の成分を、任意の順序で混合し、撹拌等して得ることができる。撹拌等の操作に用いる装置は特に限定されないが、擂潰機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。また、これら装置を適宜組み合わせてもよい。
また、本発明の熱硬化性シリコーン組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。
具体的には、通常、80~200℃、好ましくは100~160℃で本発明の組成物を加熱して硬化させることができる。
加熱時間は、通常、0.5分~5時間程度、好ましくは1分~3時間程度であるが、LED封止用等精度が要求される場合は、硬化時間を長めにすることが好ましい。
The thermosetting silicone composition of the present invention can be obtained by mixing the above components (A) to (D) and, if necessary, other components in any order and stirring or the like. The device used for operations such as stirring is not particularly limited, but a grinder, a three-roll, a ball mill, a planetary mixer, or the like can be used. Moreover, you may combine these devices as appropriate.
Further, the thermosetting silicone composition of the present invention can be cured by a known curing method under known curing conditions.
Specifically, the composition of the present invention can be usually heated and cured at 80 to 200 ° C., preferably 100 to 160 ° C.
The heating time is usually about 0.5 minutes to 5 hours, preferably about 1 minute to 3 hours, but when accuracy such as LED encapsulation is required, it is preferable to lengthen the curing time.

本発明の熱硬化性シリコーン組成物の硬化物は、通常の付加硬化性シリコーン組成物の硬化物と同様に耐熱性、耐寒性、電気絶縁性に優れるため、光学素子の封止材として好適に用いることができる
光学素子としては、例えば、LED、半導体レーザー、フォトダイオード、フォトトランジスタ、太陽電池、CCD等が挙げられる。
本発明の硬化物を封止材として使用する場合、光学素子に本発明の熱硬化性シリコーン組成物を塗布し、上述の公知の方法および条件で硬化させればよい。
この場合、塗布方法は、例えば、スピンコーター、コンマコーター、リップコーター、ロールコーター、ダイコーター、ナイフコーター、ブレードコーター、ロッドコーター、キスコーター、グラビアコーター、スクリーン塗工、浸漬塗工、キャスト塗工等の公知の方法から適宜選択すればよい。
The cured product of the heat-curable silicone composition of the present invention has excellent heat resistance, cold resistance, and electrical insulation as well as the cured product of a normal addition-curable silicone composition, and is therefore suitable as a sealing material for optical elements. Examples of the optical element that can be used include LEDs, semiconductor lasers, photodiodes, phototransistors, solar cells, CCDs, and the like.
When the cured product of the present invention is used as a sealing material, the thermosetting silicone composition of the present invention may be applied to an optical element and cured by the above-mentioned known methods and conditions.
In this case, the coating method is, for example, spin coater, comma coater, lip coater, roll coater, die coater, knife coater, blade coater, rod coater, kiss coater, gravure coater, screen coating, dipping coating, cast coating and the like. It may be appropriately selected from the known methods of.

以下、合成例、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下において、各物性は下記の手法により測定した。
[1]屈折率
硬化前の組成物について、ATAGO製デジタル屈折計RX-9000αを用いて25℃で、589nmの屈折率を測定した。
[2]硬さ
デュロメータータイプA硬度計を用いて25℃で測定した。
[3]光透過率
2mm厚のシート状硬化物を、25℃において分光光度計U3310型((株)日立製作所製)にて400nmの平行光線透過率を測定した。
[4]酸素透過率
1mm厚のシート状硬化物を、23℃において酸素透過率測定装置8001(イリノイ社製)を用いて測定した。
[5]高温暴露後の光透過率
2mm厚のシート状硬化物を、180℃,100時間の環境に曝した後、25℃において分光光度計U3310型((株)日立製作所製)にて400nmの平行光線透過率を測定した。
Hereinafter, the present invention will be described in more detail with reference to synthetic examples, examples and comparative examples, but the present invention is not limited to these examples.
In the following, each physical property was measured by the following method.
[1] Refractive index The refractive index of the composition before curing was measured at 25 ° C. using a digital refractometer RX-9000α manufactured by ATAGO at 589 nm.
[2] Hardness Measured at 25 ° C. using a durometer type A hardness tester.
[3] A sheet-like cured product having a light transmittance of 2 mm was measured at 25 ° C. with a spectrophotometer U3310 (manufactured by Hitachi, Ltd.) at a parallel light transmittance of 400 nm.
[4] Oxygen permeability A sheet-like cured product having a thickness of 1 mm was measured at 23 ° C. using an oxygen permeability measuring device 8001 (manufactured by Illinois).
[5] A sheet-like cured product having a light transmittance of 2 mm after high-temperature exposure is exposed to an environment at 180 ° C. for 100 hours, and then at 25 ° C. using a spectrophotometer U3310 (manufactured by Hitachi, Ltd.) at 400 nm. The parallel light transmittance of was measured.

(1)(A)成分の合成
[合成例1]
3Lのフラスコに、1-(3-メタクリロイルオキシプロピル)-1,1,3,3-テトラメチルジシロキサン520.96g、および下記式(10)で表されるオルガノポリシロキサン905.42gを入れ、100℃に加温し、そこにカルステッド(Karstedt)触媒(塩化白金酸とsym-ジビニルテトラメチルジシロキサンとの錯体)0.30gを添加し、さらに100℃で3時間加熱した。室温まで冷却し、オルガノポリシロキサン(A-1)を得た。
29Si-NMRによる末端メタクリル基の割合は90%であり、25℃における粘度は700mPa・sであった。
(1) Synthesis of component (A) [Synthesis example 1]
In a 3 L flask, 520.96 g of 1- (3-methacryloyloxypropyl) -1,1,3,3-tetramethyldisiloxane and 905.42 g of organopolysiloxane represented by the following formula (10) were placed. The mixture was heated to 100 ° C., 0.30 g of a Karsteaded catalyst (complex of platinum chloride acid and sym-divinyltetramethyldisiloxane) was added thereto, and the mixture was further heated at 100 ° C. for 3 hours. The mixture was cooled to room temperature to obtain organopolysiloxane (A-1).
29 The proportion of terminal methacrylic groups by Si-NMR was 90%, and the viscosity at 25 ° C. was 700 mPa · s.

Figure 0007099355000007
(式中、Meはメチル基を、Phはフェニル基を意味する。)
Figure 0007099355000007
(In the formula, Me means a methyl group and Ph means a phenyl group.)

[合成例2]
1-(3-メタクリロイルオキシプロピル)-1,1,3,3-テトラメチルジシロキサンの添加量を260.48gとした以外は、合成例1と同様の手法により、オルガノポリシロキサン(A-2)を得た。
29Si-NMRによる末端メタクリル基の割合は50%であり、25℃における粘度は900mPa・sであった。
[Synthesis Example 2]
Organopolysiloxane (A-2) by the same method as in Synthesis Example 1 except that the amount of 1- (3-methacryloyloxypropyl) -1,1,3,3-tetramethyldisiloxane was set to 260.48 g. ) Was obtained.
29 The proportion of terminal methacrylic acid by Si-NMR was 50%, and the viscosity at 25 ° C. was 900 mPa · s.

[合成例3]
1-(3-メタクリロイルオキシプロピル)-1,1,3,3-テトラメチルジシロキサンの添加量を52.01gとした以外は、合成例1と同様の手法により、オルガノポリシロキサン(A-3)を得た。
29Si-NMRによる末端メタクリル基の割合は10%であり、25℃における粘度は1,800mPa・sであった。
[Synthesis Example 3]
Organopolysiloxane (A-3) by the same method as in Synthesis Example 1 except that the amount of 1- (3-methacryloyloxypropyl) -1,1,3,3-tetramethyldisiloxane was set to 52.01 g. ) Was obtained.
29 The proportion of terminal methacrylic acid by Si-NMR was 10%, and the viscosity at 25 ° C. was 1,800 mPa · s.

[実施例1~3、比較例1~5]
表1に示す組成で各成分を均一に混合して熱硬化性シリコーン組成物を得た。
各実施例および比較例で得られた組成物を、厚さ1mmまたは2mmのシート状となるように型枠に流し入れ、150℃1時間加熱して硬化物を得た。各種物性を上記の方法にて測定した。それらの結果を表1に示す。なお、使用した各成分は以下のとおりである。
[Examples 1 to 3, Comparative Examples 1 to 5]
Each component was uniformly mixed with the composition shown in Table 1 to obtain a thermosetting silicone composition.
The compositions obtained in each Example and Comparative Example were poured into a mold so as to form a sheet having a thickness of 1 mm or 2 mm, and heated at 150 ° C. for 1 hour to obtain a cured product. Various physical properties were measured by the above method. The results are shown in Table 1. The components used are as follows.

(A)成分
(A-1)合成例1で得られたオルガノポリシロキサン
(A-2)合成例2で得られたオルガノポリシロキサン
(A-3)合成例3で得られたオルガノポリシロキサン
(A-4)下記式(11)で表されるオルガノポリシロキサン
(A) Component (A-1) Organopolysiloxane obtained in Synthesis Example 1 (A-2) Organopolysiloxane obtained in Synthesis Example 2 (A-3) Organopolysiloxane obtained in Synthesis Example 3 (A-3) A-4) Organopolysiloxane represented by the following formula (11)

Figure 0007099355000008
(式中、Meはメチル基を意味する。)
Figure 0007099355000008
(In the formula, Me means a methyl group.)

(B)成分
(B-1)イソボルニルアクリレート(共栄社化学(株)製、ライトアクリレートIB-XA)
(B-2)ジメチロール-トリシクロデカンジアクリレート(共栄社化学(株)製、ライトアクリレートDCP-A)
(B) Component (B-1) Isobornyl acrylate (Light acrylate IB-XA manufactured by Kyoeisha Chemical Co., Ltd.)
(B-2) Dimethylol-tricyclodecanediacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light acrylate DCP-A)

(C)成分
1,1-ビス(t-ブチルパーオキシ)シクロヘキサン(純度70%、流動パラフィン希釈、日本油脂(株)製、パーヘキサC(C))
(C) Component 1,1-bis (t-butylperoxy) cyclohexane (purity 70%, liquid paraffin dilution, NOF CORPORATION, Perhexa C (C))

(D)成分
トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート(BASF製、IRGANOX3114)
(D) Ingredient Tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate (manufactured by BASF, IRGANOX3114)

Figure 0007099355000009
Figure 0007099355000009

表1に示されるように、本発明の熱硬化性シリコーン組成物は、高屈折率で、耐熱変色性を有し、高透明、低ガス透過性の硬化物を与えることがわかる。
これに対し、(B)成分を含まない比較例1の硬化物は、酸素透過率が大きく、(D)成分を含まない比較例2の硬化物、および(B)成分の割合が多い比較例5の硬化物では、高温暴露後の光透過率が低いことがわかる。
(A)成分のジアリールシロキサン部位をジメチルシロキサンに変更した比較例4の組成物は、低屈折率で、その硬化物は酸素透過率が高く、高温暴露後の光透過率が低いことがわかる。
(A)成分として末端メタクリル基が20%未満の(A-3)を用いた比較例3では、加熱による硬化が起こらなかった。
As shown in Table 1, it can be seen that the thermosetting silicone composition of the present invention has a high refractive index, heat-resistant discoloration property, and gives a cured product having high transparency and low gas permeability.
On the other hand, the cured product of Comparative Example 1 containing no component (B) has a large oxygen permeability, and the cured product of Comparative Example 2 containing no component (D) and a comparative example having a large proportion of the component (B). It can be seen that the cured product of No. 5 has a low light transmittance after high temperature exposure.
It can be seen that the composition of Comparative Example 4 in which the diarylsiloxane moiety of the component (A) was changed to dimethylsiloxane has a low refractive index, the cured product has a high oxygen transmittance, and the light transmittance after high temperature exposure is low.
In Comparative Example 3 in which (A-3) having a terminal methacrylic group of less than 20% was used as the component (A), curing by heating did not occur.

Claims (4)

(A)下記式(1)で示されるオルガノポリシロキサン:40~95質量部、
Figure 0007099355000010
〔式(1)中、nは、1≦n≦100を満たす数を表し、Arは、それぞれ独立して芳香族基を表し、F1は、それぞれ独立して、下記式(2)または式(3)
Figure 0007099355000011
(式(2)中、R1は、それぞれ独立して炭素原子数1~20の一価炭化水素基を表す。
式(3)中、mは、0≦m≦10を満たす数を表し、R1は、それぞれ独立して炭素原子数1~20の一価炭化水素基を表し、R2は、酸素原子またはアルキレン基を表し、R3は、アクリロイル基、メタクリロイル基、アクリロイルオキシアルキル基またはメタクリロイルオキシアルキル基を表す。)
で示される基を表すが、F1で示される全末端基の合計数に対し、前記式(3)で表される末端基の数の割合は50%以上である。〕
(B)シロキサン構造を含まない単官能(メタ)アクリレート化合物、またはシロキサン構造を含まない単官能(メタ)アクリレート化合物およびシロキサン構造を含まない多官能(メタ)アクリレート化合物の両方:5~60質量部(ただし、(A)成分と(B)成分との合計は100質量部である。)、
(C)有機過酸化物:0.01~10質量部、および
(D)フェノール系酸化防止剤:50~5,000ppm
を含有することを特徴とする熱硬化性シリコーン組成物。
(A) Organopolysiloxane represented by the following formula (1): 40 to 95 parts by mass,
Figure 0007099355000010
[In the formula (1), n represents a number satisfying 1 ≦ n ≦ 100, Ar represents an aromatic group independently, and F 1 independently represents the following formula (2) or the formula. (3)
Figure 0007099355000011
(In the formula (2), R 1 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
In the formula (3), m represents a number satisfying 0 ≦ m ≦ 10, R 1 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and R 2 is an oxygen atom or Represents an alkylene group and R 3 represents an acryloyl group, a methacryloyl group, an acryloyloxyalkyl group or a methacryloyloxyalkyl group. )
The ratio of the number of terminal groups represented by the above formula (3) to the total number of all terminal groups represented by F 1 is 50 % or more. ]
(B) Both a monofunctional (meth) acrylate compound not containing a siloxane structure, a monofunctional (meth) acrylate compound not containing a siloxane structure, and a polyfunctional (meth) acrylate compound not containing a siloxane structure: 5 to 60 parts by mass. (However, the total of the component (A) and the component (B) is 100 parts by mass.),
(C) Organic peroxide: 0.01 to 10 parts by mass, and (D) Phenolic antioxidant: 50 to 5,000 ppm
A thermosetting silicone composition comprising.
請求項1記載の熱硬化性シリコーン組成物の硬化物。 A cured product of the thermosetting silicone composition according to claim 1. 請求項2記載の硬化物からなる光学素子封止材。 An optical element encapsulant made of the cured product according to claim 2. 請求項3記載の光学素子封止材により封止された光学素子。 An optical element sealed by the optical element encapsulant according to claim 3.
JP2019026278A 2019-02-18 2019-02-18 Thermosetting silicone composition and its cured product Active JP7099355B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019026278A JP7099355B2 (en) 2019-02-18 2019-02-18 Thermosetting silicone composition and its cured product
KR1020200017313A KR20200100547A (en) 2019-02-18 2020-02-13 Heat-curable silicone composition and cured product thereof
CN202010094812.2A CN111574664A (en) 2019-02-18 2020-02-17 Heat-curable silicone composition and cured product thereof
TW109104941A TWI829863B (en) 2019-02-18 2020-02-17 Thermosetting silicone compositions and hardened products thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026278A JP7099355B2 (en) 2019-02-18 2019-02-18 Thermosetting silicone composition and its cured product

Publications (2)

Publication Number Publication Date
JP2020132727A JP2020132727A (en) 2020-08-31
JP7099355B2 true JP7099355B2 (en) 2022-07-12

Family

ID=72122362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026278A Active JP7099355B2 (en) 2019-02-18 2019-02-18 Thermosetting silicone composition and its cured product

Country Status (4)

Country Link
JP (1) JP7099355B2 (en)
KR (1) KR20200100547A (en)
CN (1) CN111574664A (en)
TW (1) TWI829863B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155579A1 (en) 2017-02-22 2018-08-30 Jxtgエネルギー株式会社 Antifoaming agent and lubricant composition
JP2018188583A (en) 2017-05-10 2018-11-29 信越化学工業株式会社 Silicone resin composition for die bonding, die bonding material and optical semiconductor device
WO2018225430A1 (en) 2017-06-06 2018-12-13 信越化学工業株式会社 Ultraviolet-curable pressure-sensitive silicone adhesive composition and cured object obtained therefrom

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60206575T2 (en) * 2001-08-30 2006-07-13 Teijin Chemicals Ltd. Flame retardant aromatic polycarbonate resin composition and molding compositions prepared therefrom
JP4409160B2 (en) 2002-10-28 2010-02-03 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JP4180474B2 (en) 2003-09-03 2008-11-12 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Addition-curing silicone composition
JP4908736B2 (en) 2003-10-01 2012-04-04 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition and semiconductor device
JPWO2005075562A1 (en) * 2004-02-03 2007-10-11 株式会社カネカ Curable composition
JP4494077B2 (en) 2004-04-22 2010-06-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Curable composition for sealing optical materials
JP2007327030A (en) * 2006-05-10 2007-12-20 Hitachi Chem Co Ltd Curable resin composition and optical member
JP4862032B2 (en) * 2008-12-05 2012-01-25 信越化学工業株式会社 Addition-curable silicone composition that provides a cured product having a high refractive index, and an optical element sealing material comprising the composition
CN103237827A (en) * 2010-12-02 2013-08-07 株式会社钟化 Active energy ray-curable composition for optical material, cured product, and production methods for active energy ray-curable composition and cured product
TWI507819B (en) * 2011-03-31 2015-11-11 Toyo Ink Sc Holdings Co Ltd Colored composition and color filter using the same
TWI553409B (en) * 2011-08-31 2016-10-11 Asahi Kasei E Materials Corp Hardened
JP5680522B2 (en) * 2011-11-28 2015-03-04 ポリプラスチックス株式会社 Fuel-resistant resin molding
JP2013181077A (en) * 2012-02-29 2013-09-12 Idemitsu Kosan Co Ltd (meth)acrylate-based composition, resin, and molded article
JP2015028619A (en) * 2013-07-30 2015-02-12 東友ファインケム株式会社 Photosensitive resin composition for forming front light-shielding layer of display device
JP6481647B2 (en) * 2016-03-22 2019-03-13 信越化学工業株式会社 Ultraviolet curable silicone composition, cured product thereof, optical element sealing material comprising the composition, and optical element sealed with the optical element sealing material
KR20190092486A (en) * 2016-12-14 2019-08-07 덴카 주식회사 Composition
JP7152854B2 (en) * 2016-12-28 2022-10-13 東京応化工業株式会社 Silicon-containing resin composition, silicon-containing resin film, silica film, light-emitting display element panel, and light-emitting display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155579A1 (en) 2017-02-22 2018-08-30 Jxtgエネルギー株式会社 Antifoaming agent and lubricant composition
US20190390132A1 (en) 2017-02-22 2019-12-26 Jxtg Nippon Oil & Energy Corporation Defoaming agent and lubricating oil composition
JP2018188583A (en) 2017-05-10 2018-11-29 信越化学工業株式会社 Silicone resin composition for die bonding, die bonding material and optical semiconductor device
WO2018225430A1 (en) 2017-06-06 2018-12-13 信越化学工業株式会社 Ultraviolet-curable pressure-sensitive silicone adhesive composition and cured object obtained therefrom
US20200131408A1 (en) 2017-06-06 2020-04-30 Shin-Etsu Chemical Co., Ltd. Ultraviolet-curable pressure-sensitive silicone adhesive composition and cured object obtained therefrom

Also Published As

Publication number Publication date
JP2020132727A (en) 2020-08-31
KR20200100547A (en) 2020-08-26
TW202043315A (en) 2020-12-01
TWI829863B (en) 2024-01-21
CN111574664A (en) 2020-08-25

Similar Documents

Publication Publication Date Title
EP3222689B1 (en) Uv curable silicone composition, cured product thereof, optical element encapsulation material comprised of the composition, and optical element encapsulated by the encapsulation material
JP4862032B2 (en) Addition-curable silicone composition that provides a cured product having a high refractive index, and an optical element sealing material comprising the composition
JP5801028B2 (en) Silicon-containing curable composition and cured product thereof
JP5735446B2 (en) Organopolysiloxane composition, method for curing the organopolysiloxane composition, and light emitting diode
EP3360928A1 (en) Addition-curable silicone resin composition, method for producing said composition, and optical semiconductor device
KR20150117268A (en) Curable silicone compositions comprising clustured functional polyorganosiloxanes and silicone reactive diluents
KR20120106744A (en) Process for preparing clustered functional polyorganosiloxanes, and methods for their use
KR20180090832A (en) Disbondable composition
JP7009381B2 (en) Reactive hot melt silicone filled container and method for manufacturing reactive hot melt silicone
JPWO2018221662A1 (en) Thermally conductive polyorganosiloxane composition
WO2020189307A1 (en) Organopolysiloxane, ultraviolet-curable silicone composition, and cured object
KR20010023087A (en) Dual curing silicone compositions
EP2882796B1 (en) Vinyl carbosiloxane resins
JP7099355B2 (en) Thermosetting silicone composition and its cured product
JP7158100B2 (en) Crosslinkable organopolysiloxane composition, cured product thereof, and LED device
JP7180684B2 (en) UV curable silicone composition and its cured product
JP2006083299A (en) Composition for photoelectronic part
EP4166585A1 (en) Ultraviolet ray-curable silicone composition and cured product thereof
Huaijun et al. Effects of phenyl hydrogen polysiloxane molecular structure on the performance of LED packaging silicone rubber
JP7337470B1 (en) UV curable silicone composition
JP5869827B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
CN110272626B (en) Addition curing type silicone composition, cured silicone material, and semiconductor device
JP7053514B2 (en) Additive-curable silicone resin composition, cured product of the composition, and optical element
JP6863878B2 (en) Additive-curable silicone compositions, cured products, and optics
WO2023182414A1 (en) Paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7099355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150