JP7096962B2 - Optimal method for measuring residual stress - Google Patents

Optimal method for measuring residual stress Download PDF

Info

Publication number
JP7096962B2
JP7096962B2 JP2017241255A JP2017241255A JP7096962B2 JP 7096962 B2 JP7096962 B2 JP 7096962B2 JP 2017241255 A JP2017241255 A JP 2017241255A JP 2017241255 A JP2017241255 A JP 2017241255A JP 7096962 B2 JP7096962 B2 JP 7096962B2
Authority
JP
Japan
Prior art keywords
hole
residual stress
trepanning
measurement
reference hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241255A
Other languages
Japanese (ja)
Other versions
JP2019109099A (en
Inventor
憲吾 山本
真二 河合
裕之 武田
卓也 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAMOTO METAL TECHNOS CO., LTD.
Original Assignee
YAMAMOTO METAL TECHNOS CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAMOTO METAL TECHNOS CO., LTD. filed Critical YAMAMOTO METAL TECHNOS CO., LTD.
Priority to JP2017241255A priority Critical patent/JP7096962B2/en
Publication of JP2019109099A publication Critical patent/JP2019109099A/en
Application granted granted Critical
Publication of JP7096962B2 publication Critical patent/JP7096962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接構造物などの測定対象物に参照孔とその同心外側に環状のトレパニング孔とを穿けて参照孔の孔径変化を測定することで測定対象物の表面および内部の残留応力を測定する方法において、種々の測定対象物の残留応力測定評価として標準化すべく最適な参照孔に対するトレパニング孔の孔径比を数値範囲化した残留応力の最適測定方法に関する。 In the present invention, a reference hole and an annular trepanning hole are formed concentrically outside the reference hole in a measurement object such as a welded structure, and a change in the hole diameter of the reference hole is measured to measure residual stress on the surface and inside of the measurement object. The present invention relates to an optimum method for measuring residual stress in which the pore diameter ratio of the trepanning hole to the optimum reference hole is numerically ranged in order to be standardized as a residual stress measurement evaluation of various measurement objects.

従来、深穴穿孔法(DHD:Deep Hole Drilling)による残留応力評価方法は、図7に示すような4つの手順により、応力解放前後の孔径を測定し孔径変化量から板厚内部の残留応力値を算出する。まず、被測定物の穴あけ箇所に当金(Front bush)を装着し、ガンドリル(Gun drill)を用いて、孔あけ加工による貫通もしくは未貫通孔(Reference hole(以下。「参照孔」と称する))を加工する(図7(a)のStep1参照)。次に、この参照孔に関して孔深さ方向に1箇所以上、周方向に3箇所以上、エアプローブ(Air probe)を用いて、孔径を測定する(図7(b)のStep2参照)。次に、この参照孔に対して、電極(Electrode)を用いて、同軸に円筒状にくり抜き加工(トレパニング加工)などの除去加工を行い、周辺の拘束を開放し、残留応力を開放する(図7(c)のStep3参照)。そして、再度、トレパニング加工で周辺除去した後の参照孔に関して孔深さ方向に1箇所以上、周方向に3箇所以上、孔径を測定する(図7(d)のStep4参照)。これらの測定値より、弾性材料であること、無限平板における孔であること、平面応力状態であることなどの仮定をすることで、孔径に対する面内応力(σx、σy、σxy)が算出できる。 Conventionally, the residual stress evaluation method by the deep hole drilling method (DHD) measures the hole diameter before and after stress release by four procedures as shown in FIG. 7, and the residual stress value inside the plate thickness is measured from the amount of change in the hole diameter. Is calculated. First, a front bush is attached to the drilled part of the object to be measured, and a through or non-penetrating hole is drilled using a gun drill (Reference hole (hereinafter referred to as "reference hole")). ) (See Step 1 in FIG. 7 (a)). Next, the hole diameter is measured with respect to this reference hole at one or more points in the hole depth direction and at three or more points in the circumferential direction using an air probe (see Step 2 in FIG. 7B). Next, the reference hole is subjected to a removal process such as a coaxial cylindrical hollowing process (trepanning process) using an electrode (Electrode) to release the restraint around the reference hole and release the residual stress (Fig.). 7 (c), see Step 3). Then, the hole diameter is measured again at one or more points in the hole depth direction and at three or more points in the circumferential direction with respect to the reference hole after the peripheral removal by the trepanning process (see Step 4 in FIG. 7 (d)). From these measured values, the in-plane stress (σx, σy, σxy) with respect to the hole diameter can be calculated by assuming that it is an elastic material, that it is a hole in an infinite flat plate, and that it is in a plane stress state.

また、同軸に円筒状にトレパニング加工を施す応力解放過程に生じる塑性変形の影響を排除するために、トレパニング加工と孔径測定とを逐次実施する逐次深穴穿孔法(iDHD法:incremental Deep Hole Drilling)などがあり、上述の深穴穿孔法で算出できる孔軸方向成分(σz)も算出することができる。 Further, in order to eliminate the influence of plastic deformation that occurs in the stress release process in which the trepanning process is performed coaxially in a cylindrical shape, the trepanning process and the hole diameter measurement are sequentially performed by the sequential deep hole drilling method (iDHD method: incremental deep hole drilling). The hole axial component (σz) that can be calculated by the above-mentioned deep hole drilling method can also be calculated.

しかしながら、深穴穿孔法および逐次深穴穿孔法ともに孔径に及ぼす三次元的な応力状態や塑性変形の影響が織り込まれておらず、実値が理論値から乖離し精度があがらないという課題があった。 However, both the deep hole drilling method and the sequential deep hole drilling method do not incorporate the effects of the three-dimensional stress state and plastic deformation on the hole diameter, and there is a problem that the actual value deviates from the theoretical value and the accuracy does not improve. rice field.

また、従来の深孔穿孔法および逐次深孔穿孔法(以下、総称して「DHD法」と称する)による残留応力測定方法は、上述のように測定対象が弾性材料であること、無限平板における孔であること、平面応力状態であることなどを仮定し、孔径に対して垂直方向成分の残留応力(σx、σy、σxy)を算出する方法である。したがって、仮定条件により残留応力の精度が落ちるため、DHD法は残留応力測定方法の実用的な測定方法として普及しておらず、仮定条件を実現象に近づける三次元応力状態、塑性変形の影響を考慮できる高精度の板厚内部残留応力測定方法が切望されていた。 Further, in the residual stress measuring method by the conventional deep hole drilling method and the sequential deep hole drilling method (hereinafter, collectively referred to as "DHD method"), the measurement target is an elastic material as described above, and the infinite flat plate is used. This is a method of calculating the residual stress (σx, σy, σxy) of the component in the direction perpendicular to the hole diameter on the assumption that the hole is in a plane stress state. Therefore, since the accuracy of residual stress decreases depending on the assumption conditions, the DHD method is not widely used as a practical measurement method for residual stress measurement methods, and the effects of three-dimensional stress states and plastic deformation that bring the assumption conditions closer to the actual phenomenon are affected. A highly accurate method for measuring internal residual stress in plate thickness that can be taken into consideration has been eagerly desired.

上記DHD法の課題を解決すべく本発明者らは、仮定条件を実現象に近づける三次元応力状態、及び、塑性変形の影響を考慮できる改良型の深孔穿孔法(以下、「MIRS法」と称する)を特許文献2において提供した。 In order to solve the above-mentioned problems of the DHD method, the present inventors have a three-dimensional stress state that brings the assumed conditions closer to the actual phenomenon, and an improved deep hole drilling method that can consider the influence of plastic deformation (hereinafter, "MIRS method"). ) Is provided in Patent Document 2.

特開2007-167937号公報Japanese Unexamined Patent Publication No. 2007-167937 特開2015-184118号公報Japanese Unexamined Patent Publication No. 2015-184118

「一次系実機配管に対する残留応力の現場測定法の提案」INSS JOURNAL Vol.21.2014,61-74 前川ら"Proposal of on-site measurement method of residual stress for primary system actual machine piping" INSS JOURNAL Vol. 21.1024, 61-74 Maekawa et al. 「構造部材内部に閉じ込められた残留応力の計測技術」IHI技法 Vol.53,2013,54-58 中代ら"Measurement technique of residual stress confined inside structural members" IHI Technique Vol. 53, 2013, 54-58 Middle generation et al.

上記深孔穿孔法(DHD法、MIRS法(以下「MIRS法等」とも称する。))において測定対象物の同一平面内の応力は一様と仮定している。しかしながら、実際の測定対象物の同一平面内の応力場は一様でないことがわかっている。例えば、図5と図6には突合せ溶接接手での溶接線方向の残留応力の分布を参照孔及びトレパニング孔の中心を零点座標として重ね合わせた平面図が例示されている。図5の例では、トレパニング孔の内径の内側にはx軸上の応力分布で概ね引張を示す領域が入っている。一方、図6の例では、トレパニング孔の内径の内側にはx軸上の応力分布で引張だけでなく圧縮を示す領域も含まれていることがわかる。図6に示すようにトレパニング孔の内径の内側に引張応力と圧縮応力とが含まれる場合、トレパニングにより残留応力を解放しても圧縮応力分も解放され、参照孔位置の引張応力(残留応力)の解放に基づく算出ができないため正確な測定結果を得ることができない。このことから、参照孔とトレパニング孔とに挟まれたコア部の肉厚が残留応力値の測定値に大きく影響することがわかった。 In the deep hole drilling method (DHD method, MIRS method (hereinafter, also referred to as "MIRS method")), it is assumed that the stress in the same plane of the object to be measured is uniform. However, it is known that the stress field in the same plane of the actual measurement object is not uniform. For example, FIGS. 5 and 6 exemplify a plan view in which the distribution of residual stress in the welding line direction at the butt weld joint is superimposed with the center of the reference hole and the trepanning hole as the zero point coordinates. In the example of FIG. 5, a region showing tension in the stress distribution on the x-axis is included inside the inner diameter of the trepanning hole. On the other hand, in the example of FIG. 6, it can be seen that the inside of the inner diameter of the trepanning hole includes a region showing not only tension but also compression in the stress distribution on the x-axis. As shown in FIG. 6, when tensile stress and compressive stress are included inside the inner diameter of the trepanning hole, even if the residual stress is released by trepanning, the compressive stress is also released, and the tensile stress (residual stress) at the reference hole position. Accurate measurement results cannot be obtained because the calculation based on the release of is not possible. From this, it was found that the wall thickness of the core portion sandwiched between the reference hole and the trepanning hole greatly affects the measured value of the residual stress value.

したがって、MIRS法等において正確な測定結果を得るには図6のような場合、図5のようにトレパニング孔の内径に概ね引張応力だけが含まれ引張応力の最大値を評価し得るるように、コア部の肉厚を小さくする必要があることがわかる。本発明者は測定方法として測定対象や加工条件を問わず標準化するためには無次元化した推奨測定条件を数値で提供することが必要であると考えた。 Therefore, in order to obtain accurate measurement results by the MIRS method or the like, in the case of FIG. 6, the inner diameter of the trepanning hole contains only the tensile stress as shown in FIG. 5, and the maximum value of the tensile stress can be evaluated. , It can be seen that it is necessary to reduce the wall thickness of the core part. The present inventor considered that it is necessary to provide non-dimensional recommended measurement conditions numerically in order to standardize the measurement method regardless of the measurement target or processing conditions.

そこで、本発明は、種々の測定対象物の残留応力測定評価として標準化すべく最適な参照孔に対するトレパニング孔の孔径比の数値範囲を示した残留応力の最適測定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an optimum method for measuring residual stress, which shows a numerical range of the hole diameter ratio of the trepanning hole to the optimum reference hole for standardization as a residual stress measurement evaluation of various measurement objects. ..

本発明は、測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力の最適測定方法であって、
予め定められた所定の測定誤差範囲内に対応する前記トレパニング孔の内径/前記参照孔の孔径の範囲内に形成する。
In the present invention, a reference hole in the thickness direction and a trepanning hole hollowed out substantially concentrically to the outside of the reference hole are formed at a measurement point of the member to be measured, and the change in the hole diameter of the reference hole before and after the formation of the trepanning hole is observed. It is an optimum measurement method of residual stress that measures and calculates the residual stress value on the surface and inside of the member to be measured.
It is formed within the range of the inner diameter of the trepanning hole / the hole diameter of the reference hole corresponding to the predetermined measurement error range.

本発明の残留応力の最適測定方法では、
前記参照孔とトレパニング孔とを
1.5≦前記トレパニング孔の内径/前記参照孔の孔径
となるように形成する。
In the method for optimally measuring residual stress of the present invention,
The reference hole and the trepanning hole are formed so as to have 1.5 ≦ the inner diameter of the trepanning hole / the hole diameter of the reference hole.

また、上記残留応力の最適測定方法では、前記参照孔とトレパニング孔とを
前記トレパニング孔の内径/前記参照孔の孔径の内径<3.0
となるように形成することが好ましい。
Further, in the method for optimally measuring the residual stress, the reference hole and the trepanning hole are defined as the inner diameter of the trepanning hole / the inner diameter of the hole diameter of the reference hole <3.0.
It is preferable to form so as to be.

上述したようにMIRS法等では孔径比を小さくした方が残留応力内の引張応力の最大値を評価することができることがわかった。その一方、MIRS法等を汎用性のある測定方法とするには許容できる測定誤差範囲内であることが必要である。本発明では、測定誤差の許容範囲を引張応力を評価し得る基準となる孔径比に対応して最適な測定方法を提供している。したがって、許容可能な測定誤差の設定には差があっても孔径比を最適な測定方法として提供する場合には、本発明の技術思想を踏襲したものである。 As described above, it was found that the maximum value of the tensile stress in the residual stress can be evaluated by reducing the pore size ratio by the MIRS method or the like. On the other hand, in order to make the MIRS method or the like a versatile measurement method, it is necessary to be within an acceptable measurement error range. The present invention provides an optimum measurement method corresponding to the pore size ratio as a reference for evaluating the tensile stress within the allowable range of measurement error. Therefore, even if there is a difference in the setting of the allowable measurement error, the technical idea of the present invention is followed when the hole diameter ratio is provided as the optimum measurement method.

具体的には、後述するように測定誤差は、80%以上であれば残留応力評価して良好とされることがわかった。これは後述するように、1.5≦孔径比 であり、隅部のような測定対象であっても1.5以上の孔径比を確保する必要がある。 Specifically, as will be described later, it was found that if the measurement error is 80% or more, the residual stress is evaluated and it is considered to be good. As will be described later, this is a hole diameter ratio of 1.5 ≦, and it is necessary to secure a hole diameter ratio of 1.5 or more even for a measurement target such as a corner.

また、上述するように孔径比は小さくした方が残留応力の評価として良好であるが、トレパニングの内径を大きくする又は参照孔を小さくするしかなく、前者は隅部等に向かず、後者は加工が難しく本測定方法の汎用性に欠ける。その意味では標準化した測定条件として数値範囲を提供するには上限値も設定することが好ましい。本発明では後述するように残留応力評価として高精度と言える97%を上限値とし、それ以上の精度を求めることは標準化した測定条件としては過要求(むしろ孔径比が大きくなり圧縮応力も評価されたり、前記隅部等や加工の点から弊害となる)として排除した。従来は経験則上、3以上の測定例が開示されていたが、当業者も特に検証なくこれに従ってきたのが現状であったが。本発明者は、結果としてこれより小さい範囲で測定され、残留応力の最適な測定条件を提供したものと言える。
なお、従来は、孔径比で算出すると3.0以上の例ばかり散見され、これより小さい範囲が最適な測定条件である点を初めて提供した本発明は画期的であり、3.0未満の条件で測定するケースは本発明の測定方法を実施したものであると言える。
Further, as described above, it is better to reduce the hole diameter ratio as an evaluation of residual stress, but there is no choice but to increase the inner diameter of the trepanning or reduce the reference hole, the former is not suitable for corners and the like, and the latter is processed. It is difficult and lacks the versatility of this measurement method. In that sense, it is preferable to set an upper limit value in order to provide a numerical range as a standardized measurement condition. In the present invention, as will be described later, 97%, which can be said to be highly accurate as the residual stress evaluation, is set as the upper limit, and it is excessively required as a standardized measurement condition to obtain an accuracy higher than that (rather, the pore size ratio becomes large and the compressive stress is also evaluated. Or, it is harmful in terms of the corners and processing). In the past, as a rule of thumb, three or more measurement examples were disclosed, but those skilled in the art have followed this without any particular verification. As a result, the present inventor can be said to have provided the optimum measurement conditions for the residual stress, which are measured in a range smaller than this.
In the past, only cases of 3.0 or more were found when calculated by the pore size ratio, and the present invention, which provided for the first time that a range smaller than this is the optimum measurement condition, is epoch-making and is less than 3.0. It can be said that the case of measuring under the conditions is an implementation of the measuring method of the present invention.

本発明の残留応力の最適測定方法によれば、種々の測定対象物の残留応力測定評価として標準化するために、参照孔に対するトレパニング孔の孔径比の所定の数値範囲を最適な測定条件として提供した点で大きく有利である。 According to the optimum measurement method of residual stress of the present invention, a predetermined numerical range of the hole diameter ratio of the trepanning hole to the reference hole is provided as the optimum measurement condition in order to standardize as the residual stress measurement evaluation of various measurement objects. It is a great advantage in that.

MIRS法におけるトレパニング加工の前後における元孔10の長さ変化(伸び量ΔZ)の測定方法を説明するための図であって、(a)は、元孔10及びくり抜き孔11が形成された測定対象部材1を示した斜視図である。(b)は、測定対象部材1の上面視図である。(c)は、トレパニング加工後において円筒部分12の軸方向(Z方向)の長さが変化した状態を示す図である。It is a figure for demonstrating the measuring method of the length change (elongation amount ΔZ) of the original hole 10 before and after the trepanning process in the MIRS method, and (a) is the measurement which formed the original hole 10 and the hollow hole 11. It is a perspective view which showed the target member 1. (B) is a top view of the member 1 to be measured. (C) is a diagram showing a state in which the length of the cylindrical portion 12 in the axial direction (Z direction) has changed after the trepanning process. (a)~(e)は、本発明の一実施形態に係る残留応力測定方法の各工程を示した説明図である。(A) to (e) are explanatory views showing each step of the residual stress measuring method which concerns on one Embodiment of this invention. (a),(b)は、トレパニング加工の前後における元孔の軸の傾き(倒れ量Δθ)の測定方法を説明するための図である。(c)は、トレパニング加工後において円筒部分が傾斜した状態の一例を示す図である。(A) and (b) are diagrams for explaining a method of measuring the inclination (tilt amount Δθ) of the axis of the original hole before and after the trepanning process. (C) is a diagram showing an example of a state in which the cylindrical portion is tilted after the trepanning process. 参照孔とトレパニング孔11との孔空け加工した際に、残留応力の推定値/入力値ついて整理した結果を示すグラフ図である。It is a graph which shows the result of arranging the estimated value / input value of the residual stress at the time of drilling a hole of a reference hole and a trepanning hole 11. 突合せ溶接接手での溶接線方向の残留応力の分布を参照孔及びトレパニング孔の中心を零点座標として重ね合わせた平面図である。It is a top view which superposed the distribution of the residual stress in the welding line direction in the butt weld joint with the center of a reference hole and a trepanning hole as zero point coordinates. 突合せ溶接接手での溶接線方向の残留応力の分布を参照孔及びトレパニング孔の中心を零点座標として重ね合わせた平面図である。It is a top view which superposed the distribution of the residual stress in the welding line direction in the butt weld joint with the center of a reference hole and a trepanning hole as zero point coordinates. 従来の深穴穿孔法による残留応力評価方法の各工程を示した説明図である。It is explanatory drawing which showed each process of the residual stress evaluation method by the conventional deep hole drilling method.

以下、図1~図7を参照しつつ、本発明の実施形態に係る残留応力の最適測定方法について説明する。 Hereinafter, an optimum method for measuring residual stress according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7.

《残留応力測定方法(MIRS法)》
まず、本発明の残留応力測定方法の実施形態の説明として、改良型の深穴穿孔法において測定対象部材の1つの箇所の残留応力値の測定について説明する。図2(a)~(e)は、1つの箇所の残留応力測定方法の各工程を示している。この残留応力評価方法では、図2(a)~(e)に示すような5つの手順により、板厚内部の残留応力値を算出する。ここで、図中の符号1は、溶接構造物などの測定対象部材であり、符号2は測定対象部材1に参照孔10を形成可能なドリルである。また、符号3は、測定対象部材1に形成された参照孔10の内径を測定可能なエアプローブ(孔径測定部及び孔径再測定部)であり、符号4は、放電によって参照孔10の周辺にくり抜き加工(トレパニング加工)を施してくり抜き孔(トレパニング孔)11を形成可能な放電加工機である。符号5は、円筒部分12の軸方向の伸び量ΔZ及び倒れ量Δθのそれぞれを測定可能なタッチプローブである。ここで本残留応力測定方法では、少なくとも、エアプローブ3を用いて、トレパニング加工(くり抜き加工)の前後における参照孔10の形状変化に基づき、測定対象部材1の表面および内部の残留応力値を算出する。残留応力値の算出においては、参照孔10の孔径、参照孔10の長手方向の長さ変化(伸び量ΔZ)、及び、参照孔10の軸の傾き(倒れ量Δθ)を考慮する。
<< Residual stress measurement method (MIRS method) >>
First, as an explanation of the embodiment of the residual stress measuring method of the present invention, the measurement of the residual stress value at one point of the member to be measured will be described in the improved deep hole drilling method. 2 (a) to 2 (e) show each step of the residual stress measuring method at one place. In this residual stress evaluation method, the residual stress value inside the plate thickness is calculated by the five procedures as shown in FIGS. 2 (a) to 2 (e). Here, reference numeral 1 in the drawing is a member to be measured such as a welded structure, and reference numeral 2 is a drill capable of forming a reference hole 10 in the member 1 to be measured. Further, reference numeral 3 is an air probe (hole diameter measuring unit and hole diameter re-measuring unit) capable of measuring the inner diameter of the reference hole 10 formed in the measurement target member 1, and reference numeral 4 is around the reference hole 10 by electric discharge. It is a discharge processing machine capable of forming a hollow hole (trepanning hole) 11 by performing a hollowing process (trepanning process). Reference numeral 5 is a touch probe capable of measuring each of the axial extension amount ΔZ and the tilt amount Δθ of the cylindrical portion 12. Here, in this residual stress measuring method, at least the residual stress values on the surface and inside of the member 1 to be measured are calculated based on the shape change of the reference hole 10 before and after the trepanning process (hollowing process) using the air probe 3. do. In calculating the residual stress value, the hole diameter of the reference hole 10, the change in the length of the reference hole 10 in the longitudinal direction (elongation amount ΔZ), and the inclination of the axis of the reference hole 10 (tilt amount Δθ) are taken into consideration.

なお、本実施形態では、説明の便宜上、XYZ三次元座標系を定義し、この座標系を参照しながら残留応力の測定方法について説明する。図2では、参照孔10の中心位置を原点O、紙面右方向をX軸、紙面に垂直奥方向をY軸、上垂直方向をZ軸とする。すなわち、測定対象部材1の上側表面はXY平面を規定し、参照孔10の長手方向(深さ方向)に沿ってZ軸が通り、円筒部分12の軸方向はZ軸方向となる。 In this embodiment, for convenience of explanation, an XYZ three-dimensional coordinate system is defined, and a method for measuring residual stress will be described with reference to this coordinate system. In FIG. 2, the center position of the reference hole 10 is the origin O, the right direction of the paper surface is the X axis, the back direction perpendicular to the paper surface is the Y axis, and the upper vertical direction is the Z axis. That is, the upper surface of the member 1 to be measured defines an XY plane, the Z axis passes along the longitudinal direction (depth direction) of the reference hole 10, and the axial direction of the cylindrical portion 12 is the Z axis direction.

まず、図2(a)において、測定対象部材1の孔あけ箇所に当金(不図示)を装着し、ドリル2を用いた孔あけ加工によって参照孔10を形成する。なお、この参照孔10は、貫通孔であっても未貫通孔であっても良い。次に、図2(b)において、この参照孔10に関して長手方向(Z方向)に1箇所以上、周方向に3箇所以上、エアプローブ3を用いた孔径の測定を行う。次に、図2(c)において、参照孔10の周辺に対してくり抜き加工(トレパニング加工)を行い、参照孔10の周辺部分の拘束を解放(残留応力を解放)し、同軸に円筒状の円筒部分12を形成する。そして、図2(d)において、再度、周辺除去加工後の参照孔10に関して長手方向(Z方向)に1箇所以上、周方向に3箇所以上、エアプローブ3を用いた孔径の測定(再測定)を行う。そして、図2(e)において、タッチプローブ5を用いて、円筒部分12の軸方向(Z方向)の伸び量(ΔZ)、及び、XY方向の倒れ量(Δθ)を測定する。これら伸び量(ΔZ)及び倒れ量(Δθ)の測定により、DHD法で残留応力測定が、(σx、σy、σxy)の3つからなる残留応力成分のみを考慮するものであるのに対して、特許文献2での改良型の深穴穿孔法では、(σx、σy、σz、σxy、σyz、σzx)の6成分からなる残留応力成分まで考慮した残留応力測定が可能となり、これまでの仮定条件では省略されていた三次元の残留応力成分を高精度に測定することができる。 First, in FIG. 2A, a metal fitting (not shown) is attached to a drilling portion of the member 1 to be measured, and a reference hole 10 is formed by drilling using a drill 2. The reference hole 10 may be a through hole or a non-through hole. Next, in FIG. 2B, the hole diameter of the reference hole 10 is measured at one or more locations in the longitudinal direction (Z direction) and at three or more locations in the circumferential direction using the air probe 3. Next, in FIG. 2C, a hollowing process (trepanning process) is performed on the periphery of the reference hole 10, the restraint of the peripheral portion of the reference hole 10 is released (residual stress is released), and the coaxial shape is cylindrical. Form the cylindrical portion 12. Then, in FIG. 2D, once again, with respect to the reference hole 10 after the peripheral removal processing, the hole diameter is measured (remeasured) at one or more points in the longitudinal direction (Z direction) and three or more points in the circumferential direction using the air probe 3. )I do. Then, in FIG. 2E, the touch probe 5 is used to measure the amount of elongation (ΔZ) in the axial direction (Z direction) of the cylindrical portion 12 and the amount of tilt (Δθ) in the XY direction. By measuring the amount of elongation (ΔZ) and the amount of tilt (Δθ), the residual stress measurement by the DHD method considers only the residual stress component consisting of (σx, σy, σxy). In the improved deep hole drilling method in Patent Document 2, it is possible to measure the residual stress in consideration of the residual stress component consisting of 6 components (σx, σy, σz, σxy, σyz, σzx). The three-dimensional residual stress component, which was omitted under the conditions, can be measured with high accuracy.

《トレパニング前後における参照孔10の長さ変化(伸び量ΔZ)の測定方法》
次に、図1を参照しながら、トレパニング加工の前後における参照孔10の長さ変化(伸び量ΔZ)の測定方法について説明する。図1(a)は、参照孔10及びくり抜き孔11が形成された測定対象部材1を示した斜視図である。図1(b)は、測定対象部材1の上面視図である。図1(c)は、トレパニング加工後において円筒部分12の軸方向(Z方向)の長さが変化した状態を示す図である。なお、図1(b)中の黒い正方形で示した記号■は、トレパニング加工前における測定対象部材1の高さ方向(Z方向)の測定点を示し、黒い正三角形で示した記号▲は、トレパニング加工後における測定対象部材1の高さ方向(Z方向)の測定点を示す。本実施形態では、図1(b)に示すように、各測定点■、▲は、測定対象部材1の上面であって、参照孔10の中心軸Oの周りに等角度(本実施形態では90°)おきであって、且つ、中心軸Oから等距離となる位置に4つずつ設けられている。本実施形態では、トレパニング加工の前後において各測定点■、▲で測定された測定値の平均値が、測定対象部材1の高さ変化(ΔZ)、つまり、円筒部分12の軸方向(Z方向)の伸び量(ΔZ)として測定され、その測定結果が応力値算出部(不図示)に入力される。これにより、応力値算出部は、トレパニング加工の前後における残留応力値の算出において、参照孔10の長手方向の長さ変化(伸び量ΔZ)を考慮することが可能となる。なお、各測定点■、▲の点数は4点に限らず、2点以上であれば何点でも良い。
<< Measurement method of length change (elongation amount ΔZ) of reference hole 10 before and after trepanning >>
Next, with reference to FIG. 1, a method for measuring the length change (elongation amount ΔZ) of the reference hole 10 before and after the trepanning process will be described. FIG. 1A is a perspective view showing a measurement target member 1 in which a reference hole 10 and a hollow hole 11 are formed. FIG. 1B is a top view of the member 1 to be measured. FIG. 1 (c) is a diagram showing a state in which the length of the cylindrical portion 12 in the axial direction (Z direction) has changed after the trepanning process. The symbol ■ indicated by the black square in FIG. 1B indicates the measurement point in the height direction (Z direction) of the member 1 to be measured before the trepanning process, and the symbol ▲ indicated by the black regular triangle is. The measurement points in the height direction (Z direction) of the member 1 to be measured after the trepanning process are shown. In the present embodiment, as shown in FIG. 1 (b), the measurement points ■ and ▲ are the upper surfaces of the measurement target member 1 and are equidistant around the central axis O of the reference hole 10 (in the present embodiment). It is provided at intervals of 90 °) and four at positions equidistant from the central axis O. In the present embodiment, the average value of the measured values measured at the measurement points ■ and ▲ before and after the trepanning process is the height change (ΔZ) of the member 1 to be measured, that is, the axial direction (Z direction) of the cylindrical portion 12. ) Is measured as the amount of elongation (ΔZ), and the measurement result is input to the stress value calculation unit (not shown). As a result, the stress value calculation unit can consider the length change (elongation amount ΔZ) in the longitudinal direction of the reference hole 10 in the calculation of the residual stress value before and after the trepanning process. The points of each measurement point ■ and ▲ are not limited to four points, and may be any number as long as they are two or more points.

《トレパニング前後における参照孔10の軸の傾き(倒れ量Δθ)の測定方法》
次に、図3を参照しながら、トレパニング加工の前後における参照孔10の軸の傾き(倒れ量Δθ)の測定方法について説明する。図3(a),(b)は、トレパニング加工の前後における参照孔10の軸の傾き(倒れ量Δθ)の測定方法を説明するための図である。図3(c)は、トレパニング加工後において円筒部分12が傾斜した状態の一例を示す図である。ここで、図3(b)は、測定対象部材1の高さ方向(Z方向)から見た参照孔10の外形であって、紙面左側に太線で示す円形状は、トレパニング加工前における参照孔10の外形を示し、紙面右側に破線で示す円形状は、トレパニング加工後における参照孔10の外形を示す。また、図3(a)中の点a、bは、参照孔10の内周面において測定対象部材1の上面から紙面下方向(Z軸方向)に深さhの箇所に位置する点であって、図3(b)中の線分abは、参照孔10のX方向の直径を示し、線分cdは、参照孔10のY方向の直径を示す。なお、深さh[mm]は、2.5mm程度に設定されることが好ましい。なお、図3(a)では図示を省略したが、点c、dも、点a、bと同様に、参照孔10の内周面において測定対象部材1の上面から紙面下方向(Z軸方向)に深さhの箇所に位置している。また、図3(b)中の点O、O´は、トレパニング加工前後における参照孔10の各中心を示す。中心O、O´の位置座標は、4点a~dの位置座標を平均することによって取得可能である。本実施形態では、中心O、O´の位置座標に基づき、中心O、O´の位置ズレを見ることで、参照孔10の軸の傾き(倒れ量Δθ)が測定される。
<< Measurement method of the inclination (tilt amount Δθ) of the axis of the reference hole 10 before and after trepanning >>
Next, with reference to FIG. 3, a method for measuring the inclination (tilt amount Δθ) of the axis of the reference hole 10 before and after the trepanning process will be described. FIGS. 3A and 3B are diagrams for explaining a method of measuring the inclination (tilt amount Δθ) of the axis of the reference hole 10 before and after the trepanning process. FIG. 3C is a diagram showing an example of a state in which the cylindrical portion 12 is tilted after the trepanning process. Here, FIG. 3B shows the outer shape of the reference hole 10 seen from the height direction (Z direction) of the member 1 to be measured, and the circular shape shown by the thick line on the left side of the paper surface is the reference hole before the trepanning process. The circular shape shown by the broken line on the right side of the paper surface indicates the outer shape of the reference hole 10 after the trepanning process. Further, points a and b in FIG. 3A are points located at a depth h from the upper surface of the member 1 to be measured to the bottom of the paper surface (Z-axis direction) on the inner peripheral surface of the reference hole 10. The line segment ab in FIG. 3B indicates the diameter of the reference hole 10 in the X direction, and the line segment cd indicates the diameter of the reference hole 10 in the Y direction. The depth h [mm] is preferably set to about 2.5 mm. Although not shown in FIG. 3 (a), points c and d also fall from the upper surface of the member 1 to be measured in the downward direction (Z-axis direction) on the inner peripheral surface of the reference hole 10 in the same manner as the points a and b. ) Is located at the depth h. Further, points O and O'in FIG. 3B indicate the centers of the reference holes 10 before and after the trepanning process. The position coordinates of the centers O and O'can be obtained by averaging the position coordinates of the four points a to d. In the present embodiment, the inclination of the axis of the reference hole 10 (tilt amount Δθ) is measured by observing the positional deviation of the centers O and O'based on the position coordinates of the centers O and O'.

≪トレパニング孔の内径/参照孔の孔径について≫
以上、MIRS法における参照孔10の形状変化に基づく残留応力測定について説明したが、本発明では参照孔の形状変化のうち最も基本となるトレパニング前後の参照孔10の孔径変化からの残留応力測定する場合における参照孔/トレパニング孔径の最適比を知得した。以下、具体的に説明する。
まずここで図4を参照する。図4は、参照孔10とトレパニング孔11との孔空け加工した際に、残留応力の推定値/入力値ついて整理した結果を示すグラフ図である。縦軸は残留応力の推定値/入力値、横軸はトレパニング孔11の内径/参照孔10の孔径を示している。このグラフ図からトレパニング孔11の内径/参照孔10の孔径が小さくなると残留応力の推定精度が低下していることがわかる。一方、トレパニング孔11の内径/参照孔10の孔径が大きくなるにつれ残留応力の推定精度が向上し、1.0に収束している。その意味ではトレパニング孔11を大きくする必要があるが、測定対象部材1の隅部等のスペースがない場合や面内応力の変化が急激で近距離で複数測定したい場合には、信頼度の高い測定精度を十分に担保できれば十分であり、むしろ測定技量に鑑みれば一般測定技術として推奨するものとしてはトレパニング孔11の内径/参照孔10の孔径を大きくすることによるスペース的な無駄を排除する必要もある。したがって、トレパニング孔11の内径/参照孔10の孔径の上限下限を数値化した方が好ましい。
≪Inner diameter of trepanning hole / hole diameter of reference hole≫
The residual stress measurement based on the shape change of the reference hole 10 in the MIRS method has been described above, but in the present invention, the residual stress is measured from the hole diameter change of the reference hole 10 before and after trepanning, which is the most basic of the shape changes of the reference hole. The optimum ratio of the reference hole / trepanning hole diameter in the case was found. Hereinafter, a specific description will be given.
First, refer to FIG. 4 here. FIG. 4 is a graph showing the results of arranging the estimated / input values of the residual stress when the reference hole 10 and the trepanning hole 11 are drilled. The vertical axis shows the estimated value / input value of the residual stress, and the horizontal axis shows the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10. From this graph, it can be seen that the accuracy of estimating the residual stress decreases as the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10 becomes smaller. On the other hand, as the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10 increases, the estimation accuracy of the residual stress improves and converges to 1.0. In that sense, it is necessary to increase the trepanning hole 11, but it is highly reliable when there is no space such as a corner of the member 1 to be measured or when the change in in-plane stress is rapid and a plurality of measurements are desired at a short distance. It is sufficient if the measurement accuracy can be sufficiently guaranteed, and rather, considering the measurement skill, it is necessary to eliminate the waste of space by increasing the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10 as recommended as a general measurement technique. There is also. Therefore, it is preferable to quantify the upper and lower limits of the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10.

上記非特許文献1~2には、実際に残留応力評価として適正と考えられる誤差について提示されている。具体的には、まず非特許文献1では、80%以上であれば残留応力評価として採用できるとされている。これを図4の数値解析結果で検証すると、80%に相当する残留応力の推定値/入力値=0.8でのトレパニング孔11の内径/参照孔10の孔径=1.5であり、この値以上あれば残留応力評価としては十分に採用することができると言える。 The above-mentioned Non-Patent Documents 1 and 2 present an error that is actually considered to be appropriate as a residual stress evaluation. Specifically, in Non-Patent Document 1, it is stated that if it is 80% or more, it can be adopted as a residual stress evaluation. When this is verified by the numerical analysis result of FIG. 4, the estimated value of the residual stress corresponding to 80% / the input value = 0.8, the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10 = 1.5. If it is more than the value, it can be said that it can be sufficiently adopted for the residual stress evaluation.

また、非特許文献2では、3%以下であれば通常以上の高精度な残留応力評価に至っているとされている。したがって、通常、97%未満程度で十分な残留応力評価として採用できると言え、今後普及が期待される評価方法としてのMIRS法においては97%以上の要求は好ましいとは言えない。この考えを図4の数値解析結果で検証すると、97%に相当する残留応力の推定値/入力値=0.97でのトレパニング孔11の内径/参照孔10の孔径=3.0であり、この値以上は測定技量の差やスペースの無駄を考慮すると不必要に高精度を要求するものとして推奨範囲外とすることの方が好ましい。したがって、トレパニング孔11の内径/参照孔10の孔径<3.0が適正なものと考えられる。 Further, in Non-Patent Document 2, it is said that if the content is 3% or less, the residual stress evaluation is more accurate than usual. Therefore, it can be said that usually less than 97% can be adopted as a sufficient residual stress evaluation, and it cannot be said that a requirement of 97% or more is preferable in the MIRS method as an evaluation method expected to be widely used in the future. When this idea is verified by the numerical analysis result of FIG. 4, the estimated value of residual stress corresponding to 97% / input value = 0.97, the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10 = 3.0. It is preferable that the value above this value is out of the recommended range because it requires unnecessarily high accuracy in consideration of the difference in measurement skill and waste of space. Therefore, it is considered that the inner diameter of the trepanning hole 11 / the hole diameter of the reference hole 10 <3.0 is appropriate.


以上を総合すると、参照孔10に対するトレパニング孔11の内径の関係は、
トレパニング孔の内径/参照孔の孔径≧1.5 であり、
好ましくは、
1.5≦トレパニング孔11の内径/参照孔10の孔径<3.0
が推奨される。
..
Summing up the above, the relationship between the inner diameter of the trepanning hole 11 and the reference hole 10 is
The inner diameter of the trepanning hole / the hole diameter of the reference hole ≥ 1.5.
Preferably,
1.5 ≤ inner diameter of trepanning hole 11 / hole diameter of reference hole 10 <3.0
Is recommended.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものではないことは言うまでもない。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Although the embodiments of the present invention have been described above with reference to the drawings, it goes without saying that the specific configuration is not limited to these embodiments. The scope of the present invention is shown by the scope of claims rather than the description of the embodiment described above, and further includes all modifications within the meaning and scope equivalent to the scope of claims.

1 測定対象部材
2 ドリル
3 エアプローブ
4 放電加工機
5 タッチプローブ
10 元孔
11 くり抜き孔
12 円筒部分
1 Member to be measured 2 Drill 3 Air probe 4 Electric discharge machine 5 Touch probe 10 Original hole 11 Hollow hole 12 Cylindrical part

Claims (1)

測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力の最適測定方法において、
前記参照孔とトレパニング孔とを
前記トレパニング孔の内径/前記参照孔の孔径<3.0
となるように形成することを特徴とする残留応力の最適測定方法。
A reference hole in the thickness direction and a trepanning hole hollowed out substantially concentrically to the outside of the reference hole are formed at the measurement point of the member to be measured, and the change in the hole diameter of the reference hole before and after the formation of the trepanning hole is measured. In the optimum measurement method of residual stress for calculating the residual stress value on the surface and inside of the member to be measured.
The reference hole and the trepanning hole are defined as the inner diameter of the trepanning hole / the hole diameter of the reference hole <3.0.
An optimum method for measuring residual stress, which is characterized in that it is formed so as to be.
JP2017241255A 2017-12-16 2017-12-16 Optimal method for measuring residual stress Active JP7096962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241255A JP7096962B2 (en) 2017-12-16 2017-12-16 Optimal method for measuring residual stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241255A JP7096962B2 (en) 2017-12-16 2017-12-16 Optimal method for measuring residual stress

Publications (2)

Publication Number Publication Date
JP2019109099A JP2019109099A (en) 2019-07-04
JP7096962B2 true JP7096962B2 (en) 2022-07-07

Family

ID=67179443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241255A Active JP7096962B2 (en) 2017-12-16 2017-12-16 Optimal method for measuring residual stress

Country Status (1)

Country Link
JP (1) JP7096962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944090B1 (en) * 2020-01-29 2021-10-06 ポリプラスチックス株式会社 Residual stress measuring method and residual stress measuring device
CN114034421B (en) * 2021-10-26 2023-03-24 成都飞机工业(集团)有限责任公司 Method, device, equipment and medium for testing residual stress of pre-stretched plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219444A1 (en) 2014-02-05 2015-08-06 MTU Aero Engines AG Method and apparatus for determining residual stresses of a component
JP2015184118A (en) 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device
JP2017146113A (en) 2016-02-15 2017-08-24 公立大学法人 富山県立大学 Method and device of measuring current distortion of concrete structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820322B2 (en) * 1991-12-30 1996-03-04 洋二 石島 Ground pressure measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150219444A1 (en) 2014-02-05 2015-08-06 MTU Aero Engines AG Method and apparatus for determining residual stresses of a component
JP2015184118A (en) 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device
JP2017146113A (en) 2016-02-15 2017-08-24 公立大学法人 富山県立大学 Method and device of measuring current distortion of concrete structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
三上 隆男,"DHD残留応力測定法について",IIC REVIEW,日本,株式会社IHI検査計測,2009年10月,No. 42,p. 19-26

Also Published As

Publication number Publication date
JP2019109099A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
Peng et al. Residual stress measurement combining blind-hole drilling and digital image correlation approach
CN102661046B (en) Method for manufacturing tubular joint of small-angle fully bent tube
JP7096962B2 (en) Optimal method for measuring residual stress
KR101769952B1 (en) Triaxial stress analyzing method
JP6268373B2 (en) Residual stress measuring method and residual stress measuring device
CN111665132A (en) Method for measuring fatigue crack propagation of opening corner
JP6469927B1 (en) Inspection master
CN105004796A (en) Ultrasonic phased array test block for crankshaft detection
JP2002048773A (en) Calibration test piece for ultrasonic inspection of rail welded part
Sundararaman et al. Design and optimization of machining fixture layout for end-milling operation
JP6428667B2 (en) Reference plane position measurement method
Marannano et al. Effect of the indentation process on fatigue life of drilled specimens
JP6197391B2 (en) Fatigue life evaluation method for structures
US6661930B1 (en) Method for nesting a computer model of a part with a computer model of a fixture
Drbul et al. Influence of normal vectors on the accuracy of product's geometrical specification
CN107941923B (en) Phased array ultrasonic detection capability verification test block group and use method thereof
CN101498572B (en) Cam two-dimensional curve measuring method
Li et al. Bending capacity of single and double-sided welded I-section girders: Part 2: Simplified welding simulation and buckling analysis
CN112924065A (en) Measuring method for measuring residual stress of curved surface based on blind hole method
CN115727764A (en) Method for measuring attitude of spatial complex thin-wall carbon steel process pipeline
CN112464528B (en) Method for measuring residual stress on inner surface and inside of welded pipeline
Brown et al. Quantifying performance of ultrasonic immersion inspection using phased arrays for curvilinear disc forgings
Zhang et al. Phased array ultrasonic inspection of embedded defects in hydropower turbine runner welds
WO2015122000A1 (en) Ductile fracture evaluation method and device
Chandrabalan et al. Investigation on precision of laser powder bed fusion process using statistical process control

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210910

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220527

R150 Certificate of patent or registration of utility model

Ref document number: 7096962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150