JP7096743B2 - Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device - Google Patents

Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device Download PDF

Info

Publication number
JP7096743B2
JP7096743B2 JP2018171404A JP2018171404A JP7096743B2 JP 7096743 B2 JP7096743 B2 JP 7096743B2 JP 2018171404 A JP2018171404 A JP 2018171404A JP 2018171404 A JP2018171404 A JP 2018171404A JP 7096743 B2 JP7096743 B2 JP 7096743B2
Authority
JP
Japan
Prior art keywords
photocatalyst
particles
composite material
photocatalytic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018171404A
Other languages
Japanese (ja)
Other versions
JP2020040049A (en
Inventor
直美 信田
勝之 内藤
昌広 横田
尚 千草
英男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2018171404A priority Critical patent/JP7096743B2/en
Priority to CN202211426631.0A priority patent/CN115569648B/en
Priority to CN201910863185.1A priority patent/CN110893342B/en
Publication of JP2020040049A publication Critical patent/JP2020040049A/en
Application granted granted Critical
Publication of JP7096743B2 publication Critical patent/JP7096743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6484Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/93Toxic compounds not provided for in groups B01D2257/00 - B01D2257/708

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Composite Materials (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Laminated Bodies (AREA)

Description

本発明の実施形態は、光触媒複合材料、光触媒複合材料の製造方法および光触媒装置に関するものである。 Embodiments of the present invention relate to a photocatalyst composite material, a method for producing a photocatalyst composite material, and a photocatalyst apparatus.

光触媒は、光によって励起された正孔を生じ、強い酸化反応を促進することが知られている。このような作用を有する光触媒としては種々のものが知られており、この促進作用は有害有機分子の分解除去や殺菌、基材の親水性維持等に利用されている。 Photocatalysts are known to generate light-excited holes and promote strong oxidation reactions. Various photocatalysts having such an action are known, and this promoting action is used for decomposition and removal of harmful organic molecules, sterilization, maintenance of hydrophilicity of a base material, and the like.

このような用途に光触媒を適用しようとする場合、例えば光触媒を基材上に担持させた光触媒複合材料として、処理しようとする物質に接触させることがある。このような方法によって効率的に処理を行うためには、基材上に担持させる光触媒を増量することが一般的である。しかし、光触媒量の増量はコスト上昇に直結し、また光触媒が基材上から剥離しやすくなるという問題点もある。また、表面積を増やすためにフラクタル構造などの形状を採用することもできるが、製造方法が煩雑になりやすく、検討の余地があった。 When a photocatalyst is to be applied to such an application, it may come into contact with a substance to be treated, for example, as a photocatalyst composite material in which a photocatalyst is supported on a substrate. In order to carry out the treatment efficiently by such a method, it is common to increase the amount of the photocatalyst supported on the substrate. However, increasing the amount of the photocatalyst directly leads to an increase in cost, and there is also a problem that the photocatalyst is easily peeled off from the substrate. Further, although a shape such as a fractal structure can be adopted in order to increase the surface area, the manufacturing method tends to be complicated and there is room for consideration.

特許第4163374号明細書Japanese Patent No. 4163374 特開2000-135755号公報Japanese Unexamined Patent Publication No. 2000-135755

実施形態は、上記のような課題に鑑みて、高活性で剥がれにくい光触媒複合材料、その光触媒複合材料を簡便に製造できる製造方法、およびその光触媒複合材料を具備した光触媒装置を提供しようとするものである。 In view of the above problems, the embodiment is intended to provide a photocatalyst composite material having high activity and being hard to peel off, a manufacturing method capable of easily producing the photocatalyst composite material, and a photocatalyst apparatus provided with the photocatalyst composite material. Is.

実施形態による光触媒複合材料は、基材と光触媒粒子を含む光触媒層とを具備し、前記光触媒層の基板側面をS、反対側面をSとしたとき、前記S近傍における前記光触媒粒子の平均粒子径rが、前記S近傍における前記光触媒粒子の平均粒子径rよりも小さいものである。 The photocatalyst composite material according to the embodiment includes a base material and a photocatalyst layer containing photocatalyst particles, and when the substrate side surface of the photocatalyst layer is S b and the opposite side surface is St, the photocatalyst particles in the vicinity of S b . The average particle diameter r b is smaller than the average particle diameter r t of the photocatalytic particles in the vicinity of the St.

また、実施形態による光触媒複合材料の製造方法は、基材上に第1光触媒粒子を含む分散液を塗布する工程と、前記第1光触媒粒子よりも大きい平均粒子径を有する第2光触媒粒子を含む分散液を塗布する工程を含むものである。 Further, the method for producing a photocatalyst composite material according to an embodiment includes a step of applying a dispersion liquid containing the first photocatalyst particles on a substrate, and second photocatalyst particles having an average particle size larger than that of the first photocatalyst particles. It includes a step of applying a dispersion liquid.

また、実施形態による光触媒装置は、
前記光触媒複合材料と、
前記基材に光触媒活性を生じさせる光照射部材と、
処理しようとする物質を前記光触媒複合材料に供給する供給部材と
を具備するものであって、
前記光により触媒活性を生じた前記光触媒複合材料が、前記物質を処理するための化学反応を促進するものである。
Further, the photocatalyst device according to the embodiment is
With the photocatalyst composite material
A light irradiation member that causes photocatalytic activity on the substrate,
It is provided with a supply member for supplying the substance to be treated to the photocatalyst composite material.
The photocatalytic composite material whose catalytic activity is generated by the light promotes a chemical reaction for treating the substance.

実施形態に係る光触媒複合材料の模式図である。It is a schematic diagram of the photocatalyst composite material which concerns on embodiment. 実施形態に係る光触媒複合材料の作製方法の模式図である。It is a schematic diagram of the manufacturing method of the photocatalyst composite material which concerns on embodiment. 実施形態に係る光触媒装置の模式図である。It is a schematic diagram of the photocatalyst apparatus which concerns on embodiment.

以下、実施形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.

なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。 It should be noted that the same reference numerals are given to common configurations throughout the embodiments, and duplicate description will be omitted. In addition, each figure is a schematic diagram for promoting the embodiment and its understanding, and there are some differences in shape, dimensions, ratio, etc. from the actual device, but these are based on the following explanation and known techniques. The design can be changed as appropriate.

(実施形態1)
図1に示すように、実施形態の一例に係る光触媒複合材料10は、基材11と光触媒層12を具備している。光触媒層12は、基材側界面Sと、反対側界面Sを有している。そして、図1に例示されている光触媒層は粒子径の小さい粒子がS側に、粒子径の大きい粒子がS側に局在している。このため、S近傍にある光触媒粒子の平均粒子径rと、S近傍にある光触媒粒子の平均粒子径rを比較すると、rのほうが小さくなっている。
(Embodiment 1)
As shown in FIG. 1, the photocatalyst composite material 10 according to an example of the embodiment includes a base material 11 and a photocatalyst layer 12. The photocatalyst layer 12 has an interface S b on the substrate side and an interface St on the opposite side. In the photocatalyst layer exemplified in FIG. 1, particles having a small particle size are localized on the S b side, and particles having a large particle size are localized on the St side. Therefore, when the average particle diameter r b of the photocatalyst particles in the vicinity of S b and the average particle diameter r t of the photocatalyst particles in the vicinity of St are compared, r b is smaller.

ここで、S近傍またはS近傍とは、一般的には光触媒層をSに近い領域と、Sに近い領域とに二分割した領域とすることができる。 Here, the vicinity of S b or the vicinity of St can generally be a region in which the photocatalyst layer is divided into a region close to S b and a region close to St.

図1においては、模式図としてS側に「小さい粒子」、S側に「大きい粒子」の2種類が配置された構造が示されている。このような光触媒粒子の粒子径分布を測定すると、分布曲線は2つのピークを有する。しかし、それに限定されず、大きさが異なる2種類以上の粒子が層状に積層されていたり、SからSに向かって、粒子径が連続的に変化していく構造になっていたりしてもよい。前者の場合には、粒子径分布曲線が2以上のピークを有するが、後者の場合には粒子径分布には明確なピークが表れないこともある。 In FIG. 1, as a schematic diagram, a structure in which two types of “small particles” are arranged on the S b side and “large particles” are arranged on the St side is shown. When the particle size distribution of such photocatalytic particles is measured, the distribution curve has two peaks. However, the structure is not limited to this, and two or more types of particles having different sizes are laminated in a layered manner, or the particle size continuously changes from S b to St. May be good. In the former case, the particle size distribution curve has two or more peaks, but in the latter case, a clear peak may not appear in the particle size distribution.

光触媒粒子をこのように配置することによって優れた効果を得ることができる。まず、光触媒粒子は小さいと水中や空気中では水流や気流の作用ではがれやすい傾向にある。しかしS近傍にあり、基材表面に接触する粒子は基材に強く吸着されやすいため、その平均粒子径が小さくても剥がれにくい。また、Sb近傍の光触媒粒子が小さいと基材表面近くに存在する光触媒の表面積が増大するので、高い触媒活性を得やすくなる。 Excellent effects can be obtained by arranging the photocatalytic particles in this way. First, if the photocatalytic particles are small, they tend to be easily peeled off by the action of water flow or air flow in water or air. However, since the particles located in the vicinity of Sb and in contact with the surface of the base material are strongly adsorbed by the base material, they are difficult to peel off even if the average particle size is small. Further, if the photocatalyst particles in the vicinity of Sb are small, the surface area of the photocatalyst existing near the surface of the substrate increases, so that high catalytic activity can be easily obtained.

一方、St近傍に存在する光触媒粒子は、その平均粒子径が大きいほど剥離しにくくなる。また粒子同士の間の空間は、粒子径が大きいほど広くなるため、光触媒で処理される物質や分解生成物は拡散しやすくなる。 On the other hand, the photocatalytic particles existing in the vicinity of St are more difficult to peel off as the average particle size is larger. In addition, the larger the particle size, the wider the space between the particles, so that the substances and decomposition products treated by the photocatalyst tend to diffuse.

ここで、光触媒粒子の粒子径や平均粒子径は、TEM(Transmission Electron Microscopy:透過電子顕微鏡法)により撮影された光触媒層の表面および断面を観測することにより測定できる。具体的には光触媒層の断面をTEMで100万倍で観察し、画像処理により粒子の投影面積を同面積の円に換算した時の直径を粒子径とする。また、S近傍における光触媒粒子の平均粒子径r、またはS近傍における光触媒粒子の平均粒子径rは、Sb近傍またはSt近傍に配置されている光触媒粒子の、例えば少なくとも100個の粒子径の平均から求められる。 Here, the particle size and the average particle size of the photocatalyst particles can be measured by observing the surface and cross section of the photocatalyst layer photographed by TEM (Transmission Electron Microscope). Specifically, the cross section of the photocatalyst layer is observed by TEM at a magnification of 1 million, and the diameter when the projected area of the particles is converted into a circle having the same area by image processing is defined as the particle diameter. Further, the average particle size r b of the photocatalyst particles in the vicinity of Sb or the average particle size rt of the photocatalyst particles in the vicinity of St is, for example, at least 100 particles of the photocatalyst particles arranged in the vicinity of Sb or St. Obtained from the average diameter.

実施形態においては、rが2~50nmであることが好ましい。rが2nm以上であると、製造過程における光触媒粒子の分散液の安定性が高く、溶解や凝集を起こす可能性が低くなる。一方rが50nm以下であると、光触媒粒子が基材表面に対して十分に密着することができ、さらに光触媒粒子の総表面積が大きくなって、高い触媒活性を得ることができる。また、rが40~500nmであることが好ましい。rが40nm以上であると、粒子間の空間が広くなるので、光触媒層に処理しようとする物質が十分に拡散して高い触媒活性が得られる上、気流や水流などによる光触媒層の剥離等が置きにくい。一方、rが500nm以下であると、製造過程における分散液の分散性が高くなり、また触媒活性が高くなる傾向にある。 In the embodiment, r b is preferably 2 to 50 nm. When r b is 2 nm or more, the stability of the dispersion liquid of the photocatalytic particles in the manufacturing process is high, and the possibility of dissolution or aggregation is low. On the other hand, when r b is 50 nm or less, the photocatalytic particles can be sufficiently adhered to the surface of the substrate, the total surface area of the photocatalyst particles is further increased, and high catalytic activity can be obtained. Further, it is preferable that the rt is 40 to 500 nm. When rt is 40 nm or more, the space between the particles becomes wide, so that the substance to be treated is sufficiently diffused in the photocatalyst layer to obtain high catalytic activity, and the photocatalyst layer is peeled off by air flow or water flow. Is difficult to place. On the other hand, when rt is 500 nm or less, the dispersibility of the dispersion liquid in the manufacturing process tends to be high, and the catalytic activity tends to be high.

なお、光触媒層に含まれるすべての光触媒粒子の平均粒子径は、散液の安定性、基材に塗布する際の加工性の観点、および光触媒機能を発揮させる観点より、2~500nmであることが好ましく、10~400nmであることがより好ましく、20~200nmであることが特に好ましい。 The average particle size of all the photocatalyst particles contained in the photocatalyst layer shall be 2 to 500 nm from the viewpoint of the stability of the dispersion, the processability when applied to the substrate, and the viewpoint of exerting the photocatalyst function. It is preferably 10 to 400 nm, more preferably 20 to 200 nm, and particularly preferably 20 to 200 nm.

光触媒粒子は、酸化タングステン、酸化チタン、酸化亜鉛、酸化ニオブ、酸化スズなどの金属酸化物を含むものが用いられる。これらの光触媒粒子は2種類以上を組み合わせて用いることもできる。この中で酸化タングステンを含む光触媒は可視光応答性があるので好ましい。特に、酸化タングステンの結晶が単斜晶もしくは三斜晶の結晶構造を含有すると、触媒は活性が高くなりやすいので好ましい。 As the photocatalyst particles, those containing metal oxides such as tungsten oxide, titanium oxide, zinc oxide, niobium oxide and tin oxide are used. Two or more kinds of these photocatalytic particles can be used in combination. Among these, a photocatalyst containing tungsten oxide is preferable because it has visible light responsiveness. In particular, it is preferable that the tungsten oxide crystal contains a monoclinic or triclinic crystal structure because the activity of the catalyst tends to be high.

なお、化学組成の異なる光触媒粒子を組み合わせて用いることができる。これによって、異なる機能を有する光触媒を組み合わせることができるだけでなく、光触媒層の堅牢性を改良したり、触媒に照射される光エネルギーを、より有効に利用できる。例えば、正に帯電しやすい材料を基材に用いた場合、S近傍に、負に帯電しやすい酸化タングステンを、S近傍に酸化チタンを配置すると、光触媒層の基材に対する密着性が改善されて、堅牢性が向上する。この場合、酸化タングステンの平均粒子径は、酸化チタンの平均粒子径よりも小さい。また、光吸収スペクトルの差異が大きい光触媒を組み合わせることで、それぞれの光触媒粒子が効率的に光吸収し、触媒活性を発揮することができる。例えば、St近傍に、Sb近傍に光吸収の吸収端が約470nmである酸化タングステンを、光吸収の吸収端が約400nmである酸化チタンを、配置することで、光吸収面から遠い位置にある酸化タングステンが効率的に光を吸収することが可能となる。 In addition, photocatalytic particles having different chemical compositions can be used in combination. This not only makes it possible to combine photocatalysts having different functions, but also improves the robustness of the photocatalyst layer and makes it possible to more effectively utilize the light energy applied to the catalyst. For example, when a material that is easily charged positively is used as the base material, if tungsten oxide that is easily negatively charged is placed in the vicinity of Sb and titanium oxide is placed in the vicinity of St , the adhesion of the photocatalyst layer to the base material is improved. And the robustness is improved. In this case, the average particle size of tungsten oxide is smaller than the average particle size of titanium oxide. Further, by combining photocatalysts having a large difference in light absorption spectra, each photocatalyst particle can efficiently absorb light and exhibit catalytic activity. For example, by arranging tungsten oxide having an absorption end of light absorption of about 470 nm in the vicinity of St and titanium oxide having an absorption end of light absorption of about 400 nm in the vicinity of Sb, the position is far from the light absorption surface. Tungsten oxide can absorb light efficiently.

光触媒層は、光触媒層の総質量を基準として、高い触媒活性を得るために、光触媒粒子を20~100質量%含むことが好ましい。光触媒層は、光触媒粒子だけから構成されていてもよいが、後述する助触媒、銀ナノワイヤ、バインダーなどを含むことができる。 The photocatalyst layer preferably contains 20 to 100% by mass of photocatalyst particles in order to obtain high catalytic activity based on the total mass of the photocatalyst layer. The photocatalyst layer may be composed of only photocatalyst particles, but may include an auxiliary catalyst, silver nanowires, a binder and the like, which will be described later.

本実施形態の光触媒層は助触媒をさらに含んでいてもよい。この助触媒はナノ粒子の形状で含まれることが多い。助触媒の材料としては、金属元素化合物が好ましい。たとえば酸化タングステン光触媒に対する助触媒はTi、Sn、Zr、Mn、Fe、Ni、Pd、Pt、Cu、Ag、Zn、Al、RuおよびCeから選ばれる少なくとも1種の金属元素を含むことができる。これらのうち、Cu、Fe、Niの金属酸化物またはこれらの複合酸化物が好ましい。光触媒粒子と助触媒粒子の総量に対する遷移金属元素等の金属元素の含有量は0.01~50質量%の範囲とすることができる。遷移金属元素の含有量が50質量%を超えると、光の透過率が下がって触媒の活性が低下する傾向がある。遷移金属元素の含有量は10質量%以下であることがより好ましく、さらに好ましくは2質量%以下である。遷移金属元素の含有量の下限値は特に限定されるものではないが、助触媒の添加効果をより有効に発現させる上で、その含有量は0.01質量%以上とすることが好ましい。上記の遷移金属の酸化物は正に帯電しやすい。Pt、Pd等の貴金属助触媒粒子も好ましく、これらは有機ポリマーで保護して正に帯電しやすくできることから好ましい。 The photocatalyst layer of the present embodiment may further contain a co-catalyst. This co-catalyst is often contained in the form of nanoparticles. As the material of the co-catalyst, a metal element compound is preferable. For example, the co-catalyst for the tungsten oxide photocatalyst can contain at least one metal element selected from Ti, Sn, Zr, Mn, Fe, Ni, Pd, Pt, Cu, Ag, Zn, Al, Ru and Ce. Of these, metal oxides of Cu, Fe, and Ni or composite oxides thereof are preferable. The content of the metal element such as the transition metal element with respect to the total amount of the photocatalyst particles and the co-catalyst particles can be in the range of 0.01 to 50% by mass. When the content of the transition metal element exceeds 50% by mass, the light transmittance tends to decrease and the activity of the catalyst tends to decrease. The content of the transition metal element is more preferably 10% by mass or less, still more preferably 2% by mass or less. The lower limit of the content of the transition metal element is not particularly limited, but the content is preferably 0.01% by mass or more in order to more effectively exhibit the effect of adding the co-catalyst. The oxides of the above transition metals tend to be positively charged. Precious metal co-catalyst particles such as Pt and Pd are also preferable, and these are preferable because they can be protected by an organic polymer and easily charged positively.

実施形態において、ゼータ電位は電気泳動光散乱法により測定することができる。具体的にはでマルバーン社製ゼータサイザーナノZS(商品名)にキャピラリーセルを組み合わせて測定することができる。分散液のpHは光触媒含有物や助触媒粒子を分散させた純水に希塩酸と希水酸化カリウム水溶液を添加して調整する。 In embodiments, the zeta potential can be measured by electrophoretic light scattering. Specifically, it can be measured by combining a capillary cell with Zetasizer Nano ZS (trade name) manufactured by Malvern. The pH of the dispersion is adjusted by adding dilute hydrochloric acid and dilute potassium hydroxide aqueous solution to pure water in which photocatalyst-containing substances and co-catalyst particles are dispersed.

ここで、助触媒とは、光触媒粒子の光触媒作用をさらに強化するものをいう。より具体的には、例えばn型半導体である酸化タングステンに対して、p型半導体である酸化銅などを助触媒として用いることが好ましい。酸化タングステンの伝導帯のエネルギー準位が助触媒の価電子帯より少し高いので、酸化タングステンに光が照射されて価電子帯から電導帯に励起された電子が助触媒の価電子帯に移動し、さらに光で励起されて助触媒の伝道帯に励起される、いわゆるZスキームにより可視光によっても電子のエネルギー準位を高くして空気中の酸素を還元して酸素ラジカルや過酸化水素を生成することができる。酸化タングステンの価電子帯には正孔が生成し、有機分子等を分解する。酸素ラジカルや過酸化水素も有機分子等を分解する。 Here, the cocatalyst means a catalyst that further enhances the photocatalytic action of the photocatalytic particles. More specifically, for example, it is preferable to use copper oxide, which is a p-type semiconductor, as an auxiliary catalyst for tungsten oxide, which is an n-type semiconductor. Since the energy level of the conduction band of tungsten oxide is slightly higher than that of the valence band of the cocatalyst, the electrons excited by the valence band when the tungsten oxide is irradiated with light move to the valence band of the cocatalyst. Furthermore, the so-called Z scheme, which is excited by light and excited by the transmission zone of the co-catalyst, raises the energy level of electrons even by visible light and reduces oxygen in the air to generate oxygen radicals and hydrogen peroxide. can do. Holes are generated in the valence band of tungsten oxide to decompose organic molecules and the like. Oxygen radicals and hydrogen peroxide also decompose organic molecules.

また上記金属酸化物助触媒は正のゼータ電位を有する。これに対して酸化タングステン等の光触媒粒子は負のゼータ電位を有する。このため、光触媒粒子と助触媒粒子とが吸着しやすくなって触媒活性がさらに増強されやすい。 Further, the metal oxide co-catalyst has a positive zeta potential. On the other hand, photocatalytic particles such as tungsten oxide have a negative zeta potential. Therefore, the photocatalyst particles and the co-catalyst particles are easily adsorbed, and the catalytic activity is likely to be further enhanced.

本実施形態の光触媒層は銀ナノワイヤをさらに含んでいてもよい。酸化タングステンは負に帯電しやすい球状の銀粒子とは均一な複合体を作りにくいが、銀ナノワイヤが構成する網目状構造の間に光触媒粒子が保持されやすいことによって均一な複合構造を形成しやすい。 The photocatalyst layer of the present embodiment may further contain silver nanowires. Tungsten oxide is difficult to form a uniform composite with spherical silver particles that are easily negatively charged, but it is easy to form a uniform composite structure because the photocatalytic particles are easily held between the network structures composed of silver nanowires. ..

また、一般に銀ナノワイヤは凝集しやすい傾向があるが、実施形態による光触媒分散液では、凝集の発生が少ない。これは共存する光触媒粒子が分散剤の機能も有していて、凝集を起こしにくくしているものと考えられる。 In general, silver nanowires tend to agglomerate easily, but the photocatalytic dispersion according to the embodiment has less agglomeration. It is considered that this is because the coexisting photocatalytic particles also have a function of a dispersant and make it difficult for aggregation to occur.

また光触媒層も銀ナノワイヤの形成する網目状構造により機械的にも安定になりやすく、銀ナノワイヤの流出も起こりにくい。さらに極微量の銀イオンによって抗菌性が生じ、かつ長時間維持される。さらに銀ナノワイヤはプラズモン共鳴により光電場増強作用があり、銀ナノワイヤ周辺の光触媒粒子の活性を高める作用を有する。 In addition, the photocatalyst layer also tends to be mechanically stable due to the network structure formed by the silver nanowires, and the outflow of the silver nanowires is unlikely to occur. Furthermore, antibacterial properties are generated by a very small amount of silver ions and are maintained for a long time. Further, the silver nanowire has a photoelectric field enhancing action by plasmon resonance, and has an action of enhancing the activity of the photocatalytic particles around the silver nanowire.

銀ナノワイヤの形状は特に限定されず、期待されるプラズモン効果や分散液中での分散状態などを最適にできるように選択される。例えば、実施形態において、銀ナノワイヤは平均直径が10~200nm、平均長さが1~50μm、平均アスペクト比が100~1000であることが好ましい。より好ましくは平均直径が20~100nm、平均長さが4~30μm、平均アスペクト比が200~500である。ここで、銀ナノワイヤの平均直径や平均長さは、SEM(Scanning Electron Microscopy:走査電子顕微鏡法)により20万倍にて撮影された光触媒層の表面および断面を観測することにより測定できる。銀ナノワイヤの直径は銀ナノワイヤ平面画像の幅の長さに相当する。銀ナノワイヤの長さは銀ナノワイヤ平面画像の長手方向の長さに相当する。ここで、銀ナノワイヤが湾曲している場合、その形状を直線状に成形したときの長さを採用する。ひとつの銀ナノワイヤについて、幅が長手方向で変化する場合は、異なる3か所で幅を測定し、その平均を当該ナノワイヤの幅とする。これらの値の平均値はそれぞれランダムに選択した50個のナノワイヤの測定値から求められる。 The shape of the silver nanowires is not particularly limited, and is selected so as to optimize the expected plasmon effect and the dispersed state in the dispersion liquid. For example, in embodiments, the silver nanowires preferably have an average diameter of 10 to 200 nm, an average length of 1 to 50 μm, and an average aspect ratio of 100 to 1000. More preferably, the average diameter is 20 to 100 nm, the average length is 4 to 30 μm, and the average aspect ratio is 200 to 500. Here, the average diameter and average length of the silver nanowires can be measured by observing the surface and cross section of the photocatalyst layer photographed at 200,000 times by SEM (Scanning Electron Microscope). The diameter of the silver nanowire corresponds to the length of the width of the silver nanowire planar image. The length of the silver nanowire corresponds to the length in the longitudinal direction of the silver nanowire planar image. Here, when the silver nanowire is curved, the length when the shape is formed into a straight line is adopted. When the width of one silver nanowire changes in the longitudinal direction, the width is measured at three different points, and the average thereof is taken as the width of the nanowire. The average value of these values is obtained from the measured values of 50 randomly selected nanowires.

光触媒粒子と銀ナノワイヤの配合比は、銀ナノワイヤを組み合わせる場合には、光触媒粒子の質量を基準として、銀ナノワイヤの質量が1/100000~1/10倍であることが好ましく、1/1000~1/10倍であることがより好ましい。銀ナノワイヤの配合比が多いと銀ナノワイヤの光吸収によって光触媒の光励起が阻害されやすい傾向があり、銀ナノワイヤの配合比が少ないと、銀ナノワイヤによる触媒活性の改良効果が小さくなる傾向にある。 When the silver nanowires are combined, the blending ratio of the photocatalyst particles and the silver nanowires is preferably 1/10000 to 1/10 times the mass of the silver nanowires based on the mass of the photocatalyst particles, and 1/1000 to 1 It is more preferable that it is / 10 times. When the compounding ratio of the silver nanowires is large, the photoexcitation of the photocatalyst tends to be hindered by the light absorption of the silver nanowires, and when the compounding ratio of the silver nanowires is small, the effect of improving the catalytic activity by the silver nanowires tends to be small.

本実施形態の光触媒層は、アルミナ水和物をさらに含有してもよい。アルミナ水和物はAl・(HO)(0<x≦3)で表わされる水和物である。アルミナ水和物粒子(以下、簡単にアルミナ粒子という)はバインダーとして優れており触媒粒子同士の凝集も防ぐことから光触媒分散液を安定化する。基材上に塗布した場合に均一で堅牢な膜を形成しやすい。 The photocatalyst layer of the present embodiment may further contain alumina hydrate. Alumina hydrate is a hydrate represented by Al 2 O 3 · (H 2 O) x (0 <x ≦ 3). Alumina hydrate particles (hereinafter, simply referred to as alumina particles) are excellent as binders and prevent aggregation of catalyst particles, thereby stabilizing a photocatalytic dispersion. When applied on a substrate, it tends to form a uniform and robust film.

アルミナ粒子には種々の形態があるがベーマイト(x=1)もしくは擬ベーマイト(1<x<2)であることが好ましい。ベーマイトや擬ベーマイトは水のような極性溶媒中で安定であり塗布乾燥により容易に堅牢な塗布膜を形成できる。特に繊維状もしくは板状の形状を有するアルミナ粒子は触媒粒子同士の凝集を防止する効果が大きい。 Alumina particles have various forms, but boehmite (x = 1) or pseudo-boehmite (1 <x <2) is preferable. Boehmite and pseudo-boehmite are stable in a polar solvent such as water, and a robust coating film can be easily formed by coating and drying. In particular, alumina particles having a fibrous or plate-like shape have a great effect of preventing agglomeration of catalyst particles.

光触媒粒子とアルミナ粒子の配合比は、アルミナ粒子を用いる場合には、光触媒粒子の質量を基準として、アルミナ粒子の質量が0.005~0.1倍であることが好ましく、0.01~0.03倍であることが好ましい。アルミナ水和物の量が多すぎると光触媒層の光触媒活性が低下する場合があり、少なすぎると光触媒層の安定性が低下する場合がある。 When the alumina particles are used, the blending ratio of the photocatalyst particles and the alumina particles is preferably 0.005 to 0.1 times, preferably 0.01 to 0, based on the mass of the photocatalyst particles. It is preferably 0.03 times. If the amount of alumina hydrate is too large, the photocatalytic activity of the photocatalytic layer may decrease, and if it is too small, the stability of the photocatalytic layer may decrease.

アルミナ粒子の形状は特に限定されないが、例えば繊維状であってもよい。アルミナ粒子が繊維状形状である場合、その直径は1~10nm、長さは500~10000nmであることが好ましい。より好ましくは直径が2~8nm、長さは800~60000nmであり、さらに好ましくは直径が3~6nm、長さは1000~3000nmである。 The shape of the alumina particles is not particularly limited, but may be fibrous, for example. When the alumina particles have a fibrous shape, the diameter is preferably 1 to 10 nm and the length is preferably 500 to 10000 nm. More preferably, the diameter is 2 to 8 nm and the length is 800 to 60,000 nm, and more preferably the diameter is 3 to 6 nm and the length is 1000 to 3000 nm.

光触媒層は、他の酸化物がさらに含んでいてもよい。たとえば酸化ケイ素は光触媒層の親水性を増加させる機能がある。また、酸化スズは光触媒層の導電性を増加させて帯電を防止し、汚れが付きにくくする。 The photocatalyst layer may further contain other oxides. For example, silicon oxide has the function of increasing the hydrophilicity of the photocatalytic layer. In addition, tin oxide increases the conductivity of the photocatalyst layer to prevent charging and make it difficult for stains to adhere.

光触媒層は酸化グラフェンまたは酸化グラファイトを含有してもよい。これにより触媒粒子同士の凝集を防ぎ、安定性と光触媒活性を長期間保持できる。光触媒層に含まれる酸化グラフェンもしくは酸化グラファイトとの光触媒粒子の配合比は、光触媒粒子の質量を基準とした酸化グラフェンもしくは酸化グラファイトの質量が、1/200,000~1/100倍であることが好ましく、1/100,000~1/1000倍であることがより好ましく、1/50,000~1/10,000倍であることが特に好ましい。この配合比が小さいと安定性改良効果が小さくなる傾向にあり、大きいと光触媒活性改良の効果小さくなる傾向にある。 The photocatalytic layer may contain graphene oxide or graphite oxide. This prevents the catalyst particles from aggregating with each other and maintains stability and photocatalytic activity for a long period of time. The blending ratio of the photocatalyst particles with graphene oxide or graphite oxide contained in the photocatalyst layer is that the mass of graphene oxide or graphite oxide based on the mass of the photocatalyst particles is 1 / 200,000 to 1/100 times. It is preferably 1 / 100,000 to 1/1000 times, more preferably 1 / 50,000 to 1 / 10,000 times, and particularly preferably 1 / 50,000 to 1 / 10,000 times. When this compounding ratio is small, the effect of improving stability tends to be small, and when it is large, the effect of improving photocatalytic activity tends to be small.

実施形態において、基材と光触媒層との間に下地層を設置することができる。下地層としては無機酸化物を含む層が、光触媒による基材劣化を防ぎ、かつ光触媒層からの剥離を防ぐことができるので好ましい。無機酸化物としてはシリカ、アルミナ、ジルコニア等がある。無機酸化物がアルミニウム酸化物であることがさらに好ましい。基材は負のゼータ電位を持つものが多く、正のゼータ電位を持ちやすいアルミニウム酸化物は安定に基材を被覆しやすい。また負のゼータ電位を有する光触媒粒子および銀ナノワイヤを安定に坦持しやすい。 In the embodiment, the base layer can be installed between the base material and the photocatalyst layer. As the base layer, a layer containing an inorganic oxide is preferable because it can prevent deterioration of the base material due to the photocatalyst and prevent peeling from the photocatalyst layer. Examples of the inorganic oxide include silica, alumina, and zirconia. It is more preferable that the inorganic oxide is an aluminum oxide. Many base materials have a negative zeta potential, and aluminum oxide, which tends to have a positive zeta potential, tends to stably coat the base material. In addition, it is easy to stably carry photocatalytic particles and silver nanowires having a negative zeta potential.

実施形態において、基材の表面積に対する下地層の被覆率は80%以上であることが好ましい。ここで、被覆率とは、基材の表面積に対して下地層により覆われる面積の比である。被覆率がこのような範囲にあることで下地層の触媒固着や基材の保護の効果が得られる。被覆率はSEMにより25倍で観測して、基材表面の面積と下地層で覆われた部分の面積を測定し、その比から求めることができる。 In the embodiment, the coverage of the base layer with respect to the surface area of the base material is preferably 80% or more. Here, the coverage is the ratio of the area covered by the base layer to the surface area of the base material. When the coverage is in such a range, the effect of adhering the catalyst of the base layer and protecting the base material can be obtained. The coverage can be observed at 25 times by SEM, the area of the surface of the base material and the area of the portion covered with the base layer are measured, and can be obtained from the ratio.

基材や下地層のゼータ電位は電気泳動光散乱法 でマルバーン社製 ゼータサイザーナノZSを用い平板ゼータ電位測定用セルによりポリスチレンラテックスをトレーサー粒子として測定することができる。pHは純水に希塩酸と希水酸化カリウム水溶液を添加して調整する。 The zeta potential of the base material and the base layer can be measured as tracer particles using a flat plate zeta potential measuring cell using a zeta potential nano-ZS manufactured by Malvern Co., Ltd. by an electrophoretic light scattering method. The pH is adjusted by adding dilute hydrochloric acid and dilute potassium hydroxide aqueous solution to pure water.

基材は、有機材料や金属材料など、任意の材料から選択することができるが、例えば、金属、セラミックス、紙、およびポリマーフィルムがあげられる。基材は表面が平滑な材料であっても、多孔体であってもよい。多孔体であると表面積を多くできて光触媒坦持量を多くしやすいので好ましい。また、基材の材料は、有機物を含むものであると着色や表面修飾が容易になるので好ましい。 The substrate can be selected from any material, such as organic and metallic materials, including, for example, metals, ceramics, paper, and polymer films. The base material may be a material having a smooth surface or a porous body. A porous body is preferable because it can increase the surface area and easily increase the amount of the photocatalyst carried. Further, it is preferable that the material of the base material contains an organic substance because coloring and surface modification are facilitated.

ポリマーフィルムはフレキシブルな透明フィルムとすることができるので、光触媒複合材料の応用範囲を広げることができる。ポリマー材料としては、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレンナフタレート、及びアクリル樹脂など可視光透明性を高いものが好ましく使用できる。強固な表面を形成する硬化性樹脂であることも好ましい。特にポリエチレンテレフタレートはフレキシブル性に富み、酸化グラフェンを用いる場合にはそれとの密着性がよいので好ましい。強固な表面を形成する硬化性樹脂であることも好ましい。 Since the polymer film can be a flexible transparent film, the range of applications of the photocatalytic composite material can be expanded. As the polymer material, those having high visible light transparency such as polyethylene terephthalate, polycarbonate, polyethylene naphthalate, and acrylic resin can be preferably used. It is also preferable that it is a curable resin that forms a strong surface. In particular, polyethylene terephthalate is highly flexible, and when graphene oxide is used, it is preferable because it has good adhesion to it. It is also preferable that it is a curable resin that forms a strong surface.

基材は、20℃、pH6の水中で負のゼータ電位を有することが好ましい。このような基材を用いることで、触媒粒子の会合が抑制され、均一な膜が得られやすい。 The substrate preferably has a negative zeta potential in water at 20 ° C. and pH 6. By using such a base material, the association of the catalyst particles is suppressed, and a uniform film can be easily obtained.

基材表面は平滑であってもよいが、凹凸があってもよい。基材の表面粗さを大きくすると基材表面の表面積が大きくなり、その基材上の光触媒層の光触媒粒子もより多く担持できる。 The surface of the base material may be smooth, but may be uneven. When the surface roughness of the base material is increased, the surface area of the base material surface is increased, and more photocatalytic particles of the photocatalyst layer on the base material can be supported.

例えば、基材の表面の算術平均粗さRaの絶対値が0.2μm~20μmであることが好ましい。なお、算術平均粗さRaはJIS規格に則して測定することができる。算術平均粗さRaが0.2μmより小さいと光触媒と基材との接触面積が小さくなり剥がれ易くなる傾向にある。算術平均粗さRaが20μmより大きいと基材の凹部のみに光触媒粒子が溜まり、光触媒層の膜厚が大きくなりすぎて下部の光触媒の光による活性化が起こりにくくなる傾向にある。 For example, the absolute value of the arithmetic mean roughness Ra of the surface of the base material is preferably 0.2 μm to 20 μm. The arithmetic mean roughness Ra can be measured according to the JIS standard. When the arithmetic mean roughness Ra is smaller than 0.2 μm, the contact area between the photocatalyst and the base material becomes small and tends to be easily peeled off. When the arithmetic mean roughness Ra is larger than 20 μm, the photocatalyst particles are accumulated only in the recesses of the base material, and the film thickness of the photocatalyst layer becomes too large, so that activation of the lower photocatalyst by light tends to be difficult to occur.

なお、実施形態における「光触媒作用」とは、アンモニア、アルデヒド類等の有害物質の分解、タバコ、ペット臭の不快なにおいの分解消臭、黄色ブドウ球菌、大腸菌等に対する、抗菌作用、抗ウイルス作用、また汚れが付着しにくい防汚作用をいう。 The "photocatalytic action" in the embodiment means decomposition of harmful substances such as ammonia and aldehydes, elimination of unpleasant odors of tobacco and pet odors, antibacterial action and antiviral action against Staphylococcus aureus, Escherichia coli and the like. Also, it has an antifouling effect that makes it difficult for dirt to adhere.

(第2実施形態)
実施形態による光触媒複合材料は、任意の方法で製造することができるが、例えば以下に説明する通りの方法によって製造することができる。
(Second Embodiment)
The photocatalytic composite material according to the embodiment can be produced by any method, and can be produced, for example, by the method as described below.

図2(A)~(C)に、第2実施形態にかかる光触媒複合材料の製造方法の一例を表す概略図を示す。 2 (A) to 2 (C) show schematic views showing an example of a method for producing a photocatalyst composite material according to a second embodiment.

まず、基材11の表面に第1光触媒粒子を含む分散液21を塗布して、第1光触媒粒子層21aを形成させる(図2(A))。第1光触媒粒子は、上記した光触媒粒子から選択することができる。第1光触媒粒子の平均粒子径は2~50nmであることが好ましい。この分散液は、必要に応じて、助触媒粒子、銀ナノ粒子などを含んでいてもよい。分散媒には一般的に水を用いる。ただし、必要に応じてアルコールを混入させることもできる。分散媒がアルコールを含むと、分散液の表面張力が低下して基材に塗布しやすくなる。アルコールとしてはエタノールもしくはメタノール、イソプロパノール等が好ましく、エタノールが安全性からはより好ましい。アルコールの含有量は、分散液の総質量を基準として、1~95質量%が好ましく、5~93質量%がより好ましく、10~90質量%がさらに好ましい。 First, the dispersion liquid 21 containing the first photocatalyst particles is applied to the surface of the base material 11 to form the first photocatalyst particle layer 21a (FIG. 2A). The first photocatalyst particles can be selected from the above-mentioned photocatalyst particles. The average particle size of the first photocatalyst particles is preferably 2 to 50 nm. This dispersion may contain co-catalyst particles, silver nanoparticles and the like, if necessary. Water is generally used as the dispersion medium. However, alcohol can be mixed if necessary. When the dispersion medium contains alcohol, the surface tension of the dispersion liquid decreases and it becomes easy to apply it to the substrate. As the alcohol, ethanol, methanol, isopropanol and the like are preferable, and ethanol is more preferable from the viewpoint of safety. The alcohol content is preferably 1 to 95% by mass, more preferably 5 to 93% by mass, still more preferably 10 to 90% by mass, based on the total mass of the dispersion.

また、分散液中に含まれる光触媒粒子の含有量は、塗布の容易性などの観点から、分散液の総質量を基準として、0.1~20質量%とすることが好ましい。 Further, the content of the photocatalyst particles contained in the dispersion liquid is preferably 0.1 to 20% by mass based on the total mass of the dispersion liquid from the viewpoint of ease of coating and the like.

塗布方法としてはスプレーコート、ダイコート、バーコート、スピンコート、スクリーン印刷、など任意の方法を用いることができる。バッチ法でもよいし、ロールツーロール法で大面積に連続的に塗布することもできる。 As the coating method, any method such as spray coating, die coating, bar coating, spin coating, screen printing and the like can be used. The batch method may be used, or the roll-to-roll method may be used to continuously apply to a large area.

塗布後、必要に応じて層21aに含まれる分散媒の一部または全てを乾燥除去する。乾燥方法としては温風加熱、赤外線加熱、ホットプレート加熱、マイクロウエーブ加熱等の方法がある。このうち、赤外線加熱や温風加熱が簡便でロールツーロール法に対応できるため好ましい。 After coating, if necessary, a part or all of the dispersion medium contained in the layer 21a is dried and removed. As a drying method, there are methods such as warm air heating, infrared heating, hot plate heating, and microwave heating. Of these, infrared heating and warm air heating are preferable because they are simple and can be used for the roll-to-roll method.

その後、第2光触媒粒子22を含む分散液を塗布して、第2光触媒粒子層22aを形成させる(図2(B))。用いる分散液は、光触媒粒子として第1光触媒粒子よりも平均粒子径が大きい第2光触媒を用いることの他は、第1光触媒の分散液について説明した材料や調整条件から任意に選択して採用することができる。なお、第2光触媒粒子の平均粒子径は40~500nmであることが好ましい。また、塗布方法や乾燥条件も、上記のものから任意に選択することができる。ここで、第1光触媒粒子層を完全に乾燥させず、第2光触媒粒子層を形成させた場合、それらの界面においては、多少の混合が起こることがあるが、界面Sおよび界面Sには影響が少なく、S近傍には題意1光触媒粒子が、S近傍には第2光触媒粒子が局在する。 Then, a dispersion liquid containing the second photocatalyst particles 22 is applied to form the second photocatalyst particle layer 22a (FIG. 2B). As the dispersion liquid to be used, a second photocatalyst having a larger average particle diameter than the first photocatalyst particles is used as the photocatalyst particles, and the dispersion liquid is arbitrarily selected from the materials and adjustment conditions described for the dispersion liquid of the first photocatalyst. be able to. The average particle size of the second photocatalyst particles is preferably 40 to 500 nm. Further, the coating method and the drying conditions can be arbitrarily selected from the above. Here, when the first photocatalyst particle layer is not completely dried and the second photocatalyst particle layer is formed, some mixing may occur at the interface between them, but at the interface Sb and the interface St. Has little effect, and the subject 1 photocatalyst particles are localized in the vicinity of Sb , and the second photocatalyst particles are localized in the vicinity of St.

さらに、必要に応じて、分散媒を乾燥除去することで、実施形態による光触媒複合材料10を得ることができる(図2(C))。 Further, if necessary, the dispersion medium is dried and removed to obtain the photocatalyst composite material 10 according to the embodiment (FIG. 2 (C)).

このような方法により、実施形態による光触媒複合材料を得ることができる。なお、第2光触媒粒子を含む分散液を塗布し、分散媒の一部または全てを乾燥除去した後、さらに平均粒子径の大きい光触媒粒子を積層することもできる。 By such a method, the photocatalyst composite material according to the embodiment can be obtained. It is also possible to apply a dispersion liquid containing the second photocatalyst particles, dry and remove a part or all of the dispersion medium, and then stack photocatalyst particles having a larger average particle diameter.

一般的に、大きな粒子と小さな粒子の混合分散液を塗布すると重力の影響から、また小さい粒子は乾燥時の分散液中に生じる液流の影響から、基材側界面とは反対側界面の近傍、即ちS近傍に集まりやすい。このために、実施形態による光触媒粒子とは異なった構造となってしまう。したがって、小さい粒子を先に、大きな粒子を後に、順次積層することで実施形態による光触媒粒子を得ることができる。 In general, when a mixed dispersion of large particles and small particles is applied, it is affected by gravity, and small particles are affected by the liquid flow generated in the dispersion during drying. That is, it is easy to gather in the vicinity of St. Therefore, the structure is different from that of the photocatalytic particles according to the embodiment. Therefore, the photocatalytic particles according to the embodiment can be obtained by sequentially stacking the small particles first and the large particles later.

なお、第1光触媒の塗布に先立ち、予め下地層を形成しておくことができる。下地層も、下地層の材料となる無機酸化物等を分散媒中に分散させた後、上記と同様の方法により塗布、乾燥することによって形成させることができる。 Prior to the application of the first photocatalyst, the base layer can be formed in advance. The base layer can also be formed by dispersing an inorganic oxide or the like as a material of the base layer in a dispersion medium, and then applying and drying by the same method as described above.

基材上に堆積される第1光触媒粒子の総重量は、前記基材上に堆積される前記第2光触媒粒子の総重量よりも少ないことが好ましい。粒子の表面積は粒子径に反比例するため、第1光触媒粒子の堆積量が少なくても十分な触媒活性を得ることができる。一方、第1光触媒粒子の堆積量が多すぎると光触媒層が剥離しやすくなり、粒子間の空間が小さくなって、処理しようとする物質の拡散が阻害される傾向にある。 The total weight of the first photocatalyst particles deposited on the substrate is preferably less than the total weight of the second photocatalyst particles deposited on the substrate. Since the surface area of the particles is inversely proportional to the particle diameter, sufficient catalytic activity can be obtained even if the amount of the first photocatalytic particles deposited is small. On the other hand, if the amount of the first photocatalyst particles deposited is too large, the photocatalyst layer tends to peel off, the space between the particles becomes small, and the diffusion of the substance to be treated tends to be hindered.

また、用いる第1光触媒粒子、第2光触媒粒子、および下地層材料に関して、ゼータ電位が適切なものを選ぶことが好ましい。 第1光触媒粒子と第2光触媒粒子とを、そのゼータ電位の符号が異なるものを選択すること、また下地層材料と第1光触媒粒子とを、そのゼータ電位の符号が異なるものを選択することにより光触媒層の安定性を改良することができる。 Further, it is preferable to select an appropriate zeta potential for the first photocatalyst particles, the second photocatalyst particles, and the base layer material to be used. By selecting the first photocatalyst particles and the second photocatalyst particles having different zeta potential codes, and by selecting the underlayer material and the first photocatalyst particles having different zeta potential codes. The stability of the photocatalyst layer can be improved.

(第3の実施形態)
図3に、第3の実施形態にかかる光触媒装置の構成の一例を表す概略図を示す。
(Third embodiment)
FIG. 3 shows a schematic view showing an example of the configuration of the photocatalyst device according to the third embodiment.

図示するように、実施形態に係る光触媒装置30は、第1の実施形態による光触媒複合材料31と、基材に光触媒活性を生じさせる光照射部材32と、光触媒複合材料に物質を供給する供給部材33を具備する。これらの部材を内包するチャンバー34をさらに具備していてもよい。また、処理しようとする物質を導入するための導入部35aや処理されたあとの物質を排出するための排出口35bを具備することもできる。 As shown in the figure, the photocatalyst device 30 according to the first embodiment includes a photocatalyst composite material 31 according to the first embodiment, a light irradiation member 32 that causes photocatalytic activity on a substrate, and a supply member that supplies a substance to the photocatalyst composite material. 33 is provided. A chamber 34 containing these members may be further provided. Further, it is also possible to provide an introduction unit 35a for introducing the substance to be treated and a discharge port 35b for discharging the treated substance.

ここで、処理しようとする物質とは、光触媒複合材料の光触媒作用によって促進された化学反応によって、変化させようとするものである。具体的には、有害成分を除去することが望まれる有毒成分含有ガス、脱臭が望まれる臭気を含んだガス、汚染物質を含んだ廃液などが挙げられる。 Here, the substance to be treated is a substance to be changed by a chemical reaction promoted by the photocatalytic action of the photocatalytic composite material. Specific examples thereof include a gas containing a toxic component for which harmful components are desired to be removed, a gas containing an odor for which deodorization is desired, and a waste liquid containing a pollutant.

光照射部材としては外光や室内光を利用して、光を光触媒複合材料に誘導する光学系部材である場合、ランプやLED等の光源である場合等がある。外光や室内光を利用する場合には光触媒複合材料が光を受けやすい位置に設置または移動する部材であってもよい光源を用いる場合には低消費電力や小型化の観点からLEDが好ましい。 The light irradiation member may be an optical system member that guides light to a photocatalytic composite material by using external light or indoor light, or may be a light source such as a lamp or an LED. When using external light or indoor light, the photocatalyst composite material may be a member installed or moved at a position where it is easily received. When using a light source, LEDs are preferable from the viewpoint of low power consumption and miniaturization.

光触媒複合材料に物質を供給する部材としては気体であれば、例えばファンやポンプが挙げられる。また、光触媒複合材料を内包するチャンバーに気体や液体を導入する場合には、そのチャンバーやチャンバー内に気体や液体を導入するノズルなども供給部材である。さらに、チャンバー内で気体や液体を自然拡散させてもよいが、ヒーターなどで生じる対流を利用することもできる。この場合には、そのヒーターも供給部材である。さらに、自然拡散を利用する場合は光触媒複合材料が物質と接触しやすい位置に設置または移動する部材であってもよい。 As a member for supplying a substance to the photocatalyst composite material, if it is a gas, for example, a fan or a pump can be mentioned. Further, when a gas or liquid is introduced into a chamber containing a photocatalyst composite material, the chamber or a nozzle for introducing the gas or liquid into the chamber is also a supply member. Further, the gas or liquid may be naturally diffused in the chamber, but convection generated by a heater or the like can also be used. In this case, the heater is also a supply member. Further, when natural diffusion is used, the photocatalytic composite material may be a member installed or moved at a position where it easily comes into contact with a substance.

光触媒複合材料が平板状である場合、処理しようとする物質をその表面に沿って流すことができる。また、光触媒複合材料が多孔体であり、物質が多孔体を透過することができるものである場合、物質と触媒との接触面積が増えるため、処理効率が高くなるので好ましい。また、処理しようとする物質が光触媒複合材料の表面にそって流れる場合であっても、多孔質であれば接触面積が大きくなる。このため、光触媒複合材料は多孔体であることが好ましく、布状であることがより好ましい。 When the photocatalytic composite is in the form of a flat plate, the substance to be treated can flow along its surface. Further, when the photocatalyst composite material is a porous body and the substance can pass through the porous body, the contact area between the substance and the catalyst increases, and the treatment efficiency becomes high, which is preferable. Further, even when the substance to be treated flows along the surface of the photocatalyst composite material, if it is porous, the contact area becomes large. Therefore, the photocatalyst composite material is preferably porous, more preferably cloth-like.

本実施形態では、光触媒層が、物質を吸着するための吸着材をさらに含むことができる。このような吸着材が光触媒に含まれていると、触媒近傍の物質濃度を増加させることにより触媒作用の効率を上げることができる。このような吸着材としては活性炭、アルミナ、ゼオライト、シリカゲル等がある。 In this embodiment, the photocatalyst layer can further contain an adsorbent for adsorbing the substance. When such an adsorbent is contained in the photocatalyst, the efficiency of catalytic action can be improved by increasing the concentration of the substance in the vicinity of the catalyst. Examples of such an adsorbent include activated carbon, alumina, zeolite, silica gel and the like.

(実施例1)
厚さ1mmのガラス板(10cm×10cm)の表面を#40紙ヤスリでこすった後、イソプロパノールで洗浄し、次に純水で洗浄する。表面の算術平均粗さは4μmである。この上に0.5質量%の平均直径4nmで平均長さ1μmの繊維状のアルミナ水和物分散液1gを滴下し、全面に広げた後、室温で1時間乾燥して下地層を形成させる。
(Example 1)
The surface of a 1 mm thick glass plate (10 cm × 10 cm) is rubbed with # 40 sandpaper, washed with isopropanol, and then washed with pure water. The arithmetic mean roughness of the surface is 4 μm. 1 g of a fibrous alumina hydrate dispersion having an average diameter of 4 nm and an average length of 1 μm was dropped onto this, spread over the entire surface, and then dried at room temperature for 1 hour to form an underlayer. ..

次に平均粒子径20nmの酸化タングステン微粒子の10%水分散液を1g滴下し、全面に広げた後、60℃で1時間乾燥する。次に次に平均粒子径100nmの酸化タングステン微粒子の10%水分散液を4g滴下し、全面に広げた後、60℃で1時間乾燥して光触媒複合材料を得る。 Next, 1 g of a 10% aqueous dispersion of tungsten oxide fine particles having an average particle diameter of 20 nm is added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour. Next, 4 g of a 10% aqueous dispersion of tungsten oxide fine particles having an average particle diameter of 100 nm was added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour to obtain a photocatalytic composite material.

(光触媒活性試験)
アセトアルデヒド分解試験では、初期濃度10ppmに対して6000ルクスの蛍光灯照射15分後には0ppmになる遮光した試料を用いた場合、同じ時間経過後の濃度は10ppmである。
(Photocatalytic activity test)
In the acetaldehyde decomposition test, when a light-shielded sample that becomes 0 ppm after 15 minutes of irradiation with a fluorescent lamp of 6000 lux with respect to the initial concentration of 10 ppm is used, the concentration after the same time elapses is 10 ppm.

大腸菌抗菌性試験では、初期菌濃度1×10/ml、蛍光灯による光照射を2時間した後の菌数は0である。遮光した試料を用いた場合、同じ時間経過後の菌数は、1×10/mlである。
上記光触媒活性は光照射300時間後も活性はほとんど変化しない。
In the E. coli antibacterial test, the initial bacterial concentration was 1 × 105 / ml, and the number of bacterial cells after 2 hours of light irradiation with a fluorescent lamp was 0. When a shaded sample is used, the number of bacteria after the same time has passed is 1 × 10 3 / ml.
The photocatalytic activity hardly changes even after 300 hours of light irradiation.

(剥がれ耐性試験)
上記光触媒を30℃の水中で1日放置する。剥がれは見られず、光触媒活性もほとんど変化しない。
(Peeling resistance test)
The photocatalyst is left in water at 30 ° C. for 1 day. No peeling is seen, and the photocatalytic activity is almost unchanged.

(実施例2)
厚さ150μmのPETフィルム(10cm×10cm)の表面をUVオゾン処理を行い、0.5質量%の平均直径4nmで平均長さ1μmの繊維状のアルミナ水和物分散液1gを滴下し、全面に広げた後、室温で1時間乾燥して下地層を形成させる。
(Example 2)
The surface of a 150 μm-thick PET film (10 cm × 10 cm) was treated with UV ozone, and 1 g of a fibrous alumina hydrate dispersion having an average diameter of 4 nm and an average length of 1 μm was dropped over the entire surface. After spreading to, it is dried at room temperature for 1 hour to form an underlayer.

次に平均粒子径20nmの酸化タングステン微粒子の10%水分散液を1g滴下し、全面に広げた後、60℃で1時間乾燥する。次に次に平均粒子径100nmのアナターゼ型酸化チタン微粒子の10%水分散液を4g滴下し、全面に広げた後、60℃で1時間乾燥して光触媒複合材料を形成させる。 Next, 1 g of a 10% aqueous dispersion of tungsten oxide fine particles having an average particle diameter of 20 nm is added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour. Next, 4 g of a 10% aqueous dispersion of anatase-type titanium oxide fine particles having an average particle diameter of 100 nm was added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour to form a photocatalytic composite material.

(光触媒活性試験)
アセトアルデヒド分解試験では、初期濃度10ppmに対して中心波長が395nmのLEDで13分光照射した後には0ppmになる。遮光した試料を用いた場合、同じ時間経過後の濃度は10ppmである。
(Photocatalytic activity test)
In the acetaldehyde decomposition test, the initial concentration is 10 ppm, and the concentration becomes 0 ppm after 13 spectroscopic irradiation with an LED having a center wavelength of 395 nm. When a shaded sample is used, the concentration after the same time elapses is 10 ppm.

大腸菌抗菌性試験では、初期菌濃度 1×10/ml、LEDによる光照射を2時間した後の菌数は0である。遮光した試料を用いた場合、同じ時間経過後の菌数は、1×10/mlである。 In the Escherichia coli antibacterial test, the initial bacterial concentration was 1 × 10 5 / ml, and the bacterial count after 2 hours of light irradiation with an LED was 0. When a shaded sample is used, the number of bacteria after the same time has passed is 1 × 10 3 / ml.

上記光触媒活性は光照射300時間後も活性はほとんど変化しない。 The photocatalytic activity hardly changes even after 300 hours of light irradiation.

(剥がれ耐性試験)
上記光触媒を30℃の水中で1日放置する。剥がれは見られず、光触媒活性もほとんど変化しない。
(Peeling resistance test)
The photocatalyst is left in water at 30 ° C. for 1 day. No peeling is seen, and the photocatalytic activity is almost unchanged.

(実施例3)
PETフィルムの代わりにアルミ板上に形成されたメラミン樹脂膜(10cm×10cm)を未処理で、光触媒含有液を下地層を形成せずに用いることを除いては実施例2と同様にして光触媒複合材料を形成させる。
(Example 3)
The photocatalyst is the same as in Example 2 except that the melamine resin film (10 cm × 10 cm) formed on the aluminum plate instead of the PET film is untreated and the photocatalyst-containing liquid is used without forming the base layer. Form a composite material.

(光触媒活性試験)
アセトアルデヒド分解試験では、初期濃度10ppmに対してLED光照射20分後には0ppmになる。遮光した試料を用いた場合、同じ時間経過後の濃度は10ppmである。
(Photocatalytic activity test)
In the acetaldehyde decomposition test, the initial concentration is 10 ppm, but it becomes 0 ppm 20 minutes after the LED light irradiation. When a shaded sample is used, the concentration after the same time elapses is 10 ppm.

大腸菌抗菌性試験では、初期菌濃度 1×10/ml、LEDによる光照射を2時間した後の菌数は0である。遮光した試料を用いた場合、同じ時間経過後の菌数は、2×10/mlである。 In the Escherichia coli antibacterial test, the initial bacterial concentration was 1 × 10 5 / ml, and the bacterial count after 2 hours of light irradiation with an LED was 0. When a shaded sample is used, the number of bacteria after the same time has passed is 2 × 10 3 / ml.

上記光触媒活性は光照射300時間後も活性はほとんど変化しない。 The photocatalytic activity hardly changes even after 300 hours of light irradiation.

(剥がれ耐性試験)
上記光触媒を30℃の水中で1日放置する。剥がれは見られず、光触媒活性もほとんど変化しない。
(Peeling resistance test)
The photocatalyst is left in water at 30 ° C. for 1 day. No peeling is seen, and the photocatalytic activity is almost unchanged.

(実施例4)
助触媒として平均粒子径20nmの酸化銅ナノ粒子を0.05質量%で塗布液に添加することを除いては実施例1と同様にして光触媒複合材料を得る。
(Example 4)
A photocatalyst composite material is obtained in the same manner as in Example 1 except that copper oxide nanoparticles having an average particle diameter of 20 nm are added to the coating liquid in an amount of 0.05% by mass as a co-catalyst.

(光触媒活性試験)
アセトアルデヒド分解試験では、初期濃度10ppmに対して蛍光灯光照射12分後には0ppmになる。遮光した試料を用いた場合、同じ時間経過後の濃度は10ppmである。
(Photocatalytic activity test)
In the acetaldehyde decomposition test, the initial concentration is 10 ppm, but it becomes 0 ppm 12 minutes after irradiation with fluorescent light. When a shaded sample is used, the concentration after the same time elapses is 10 ppm.

大腸菌抗菌性試験では、初期菌濃度1×10/ml、蛍光灯による光照射を1.5時間した後の菌数は0である。遮光した試料を用いた場合、同じ時間経過後の菌数は、1×10/mlである。 In the E. coli antibacterial test, the initial bacterial concentration was 1 × 105 / ml, and the number of bacterial cells after 1.5 hours of light irradiation with a fluorescent lamp was 0. When a shaded sample is used, the number of bacteria after the same time has passed is 1 × 10 3 / ml.

上記光触媒活性は光照射300時間後も活性はほとんど変化しない。 The photocatalytic activity hardly changes even after 300 hours of light irradiation.

(剥がれ耐性試験)
上記光触媒を30°Cの水中に1日放置する。剥がれは見られず、光触媒活性もほとんど変化しない。
(Peeling resistance test)
The photocatalyst is left in water at 30 ° C for one day. No peeling is seen, and the photocatalytic activity is almost unchanged.

(実施例5)
厚さ1mmのアルミニウム板(10cm×10cm)の表面を#100紙ヤスリでこすった後、イソプロパノールで洗浄し、次に純水で洗浄する。表面の算術平均粗さは1μmである。
(Example 5)
The surface of a 1 mm thick aluminum plate (10 cm × 10 cm) is rubbed with # 100 sandpaper, washed with isopropanol, and then washed with pure water. The arithmetic mean roughness of the surface is 1 μm.

次に平均粒子径20nmの酸化タングステン微粒子の10%水分散液を1g滴下し、全面に広げた後、60℃で1時間乾燥する。次に次に平均粒子径100nmの酸化タングステン微粒子の10%水分散液を4g滴下し、全面に広げた後、60℃で1時間乾燥する。次に大気中で600℃で3時間加熱して光触媒複合材料を得る。 Next, 1 g of a 10% aqueous dispersion of tungsten oxide fine particles having an average particle diameter of 20 nm is added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour. Next, 4 g of a 10% aqueous dispersion of tungsten oxide fine particles having an average particle diameter of 100 nm is added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour. Next, the photocatalytic composite material is obtained by heating at 600 ° C. for 3 hours in the atmosphere.

(光触媒活性試験)
アセトアルデヒド分解試験では、初期濃度10ppmに対して6000ルクスの蛍光灯照射12分後には0ppmになる遮光した試料を用いた場合、同じ時間経過後の濃度は10ppmである。
(Photocatalytic activity test)
In the acetaldehyde decomposition test, when a light-shielded sample that becomes 0 ppm 12 minutes after irradiation with a fluorescent lamp of 6000 lux with respect to the initial concentration of 10 ppm is used, the concentration after the same time elapses is 10 ppm.

大腸菌抗菌性試験では、初期菌濃度1×10/ml、蛍光灯による光照射を1.5時間した後の菌数は0である。遮光した試料を用いた場合、同じ時間経過後の菌数は、1×10/mlである。 In the E. coli antibacterial test, the initial bacterial concentration was 1 × 105 / ml, and the number of bacterial cells after 1.5 hours of light irradiation with a fluorescent lamp was 0. When a shaded sample is used, the number of bacteria after the same time has passed is 1 × 10 3 / ml.

上記光触媒活性は光照射300時間後も活性はほとんど変化しない。 The photocatalytic activity hardly changes even after 300 hours of light irradiation.

(剥がれ耐性試験)
上記光触媒を30℃の水中で1日放置する。剥がれは見られず、光触媒活性もほとんど変化しない。
(Peeling resistance test)
The photocatalyst is left in water at 30 ° C. for 1 day. No peeling is seen, and the photocatalytic activity is almost unchanged.

(実施例6)
実施例2で得られる光触媒複合材料と395nmのLEDと小型のファンを有する光触媒装置を冷蔵庫中に設置する。電源と制御装置は冷蔵の外部に設置する。
(Example 6)
The photocatalyst composite material obtained in Example 2, a photocatalyst device having a 395 nm LED and a small fan is installed in a refrigerator. The power supply and control device will be installed outside the refrigerator.

(光触媒装置の活性試験)
LEDで光を照射しながら光触媒装置を駆動し、10ppmのメチルメルカプタンの初期濃度は30分後に0になる。
(Activity test of photocatalyst device)
The photocatalyst device is driven while irradiating with light by the LED, and the initial concentration of 10 ppm of methyl mercaptan becomes 0 after 30 minutes.

上記光触媒活性は光照射300時間後も活性はほとんど変化しない。 The photocatalytic activity hardly changes even after 300 hours of light irradiation.

(比較例1)
厚さ1mmのガラス板(10cm×10cm)の表面を#40紙ヤスリでこすった後、イソプロパノールで洗浄し、次に純水で洗浄する。表面の算術平均粗さは4μmである。この上に0.5質量%の平均直径4nmで平均長さ1μmの繊維状のアルミナ水和物分散液1gを滴下し、全面に広げた後、室温で1時間乾燥して下地層を形成させる。
(Comparative Example 1)
The surface of a 1 mm thick glass plate (10 cm × 10 cm) is rubbed with # 40 sandpaper, washed with isopropanol, and then washed with pure water. The arithmetic mean roughness of the surface is 4 μm. 1 g of a fibrous alumina hydrate dispersion having an average diameter of 4 nm and an average length of 1 μm was dropped onto this, spread over the entire surface, and then dried at room temperature for 1 hour to form an underlayer. ..

次に平均粒子径20nmの酸化タングステン微粒子の10%水分散液を5g滴下し、全面に広げた後、60℃で1時間乾燥して光触媒複合材料を形成させる。 Next, 5 g of a 10% aqueous dispersion of tungsten oxide fine particles having an average particle diameter of 20 nm is added dropwise, spread over the entire surface, and then dried at 60 ° C. for 1 hour to form a photocatalytic composite material.

(光触媒活性試験)
アセトアルデヒド分解試験では、初期濃度10ppmに対して6000ルクスの蛍光灯照射20分後には0ppmになる。遮光した試料を用いた場合、同じ時間経過後の濃度は10ppmである。
(Photocatalytic activity test)
In the acetaldehyde decomposition test, the initial concentration is 10 ppm, but it becomes 0 ppm 20 minutes after irradiation with a fluorescent lamp of 6000 lux. When a shaded sample is used, the concentration after the same time elapses is 10 ppm.

(剥がれ耐性試験)
上記光触媒を30℃の水中で1日放置する。光触媒粒子の剥がれが見られ、光触媒活性も低下する。
(Peeling resistance test)
The photocatalyst is left in water at 30 ° C. for 1 day. The photocatalytic particles are peeled off, and the photocatalytic activity is also reduced.

上記実施例の結果に明らかであるように、実施形態によれば、優れた触媒活性を有する光触媒複合材料、その製造方法、およびその光触媒複合材料を具備した光触媒装置を提供できる。 As is clear from the results of the above examples, according to the embodiment, it is possible to provide a photocatalytic composite material having excellent catalytic activity, a method for producing the same, and a photocatalytic apparatus including the photocatalytic composite material.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10…光触媒複合材料、11…基材、12…光触媒層、21…第1光触媒粒子、22…第2光触媒粒子、30…光触媒装置、31…光触媒複合材料、32…光照射部材、33…基材に光触媒作用を受ける物質を供給する部材、34…反応チャンバー 10 ... Photocatalyst composite material, 11 ... Substrate, 12 ... Photocatalyst layer, 21 ... First photocatalyst particles, 22 ... Second photocatalyst particles, 30 ... Photocatalyst device, 31 ... Photocatalyst composite material, 32 ... Light irradiation member, 33 ... Group A member that supplies a photocatalytic substance to a material, 34 ... Reaction chamber

Claims (19)

基材と光触媒粒子を含む光触媒層とを具備し、前記光触媒層の基板側界面をS、反対側界面をSとしたとき、前記S近傍における前記光触媒粒子の平均粒子径rが、前記S近傍における前記光触媒粒子の平均粒子径rよりも小さい、光触媒複合材料であって、
前記光触媒層が、光触媒粒子の総質量を基準として、1/100000~1/10倍の銀ナノワイヤをさらに含む光触媒複合材料
When a base material and a photocatalyst layer containing photocatalyst particles are provided, and the substrate-side interface of the photocatalyst layer is S b and the opposite interface is St, the average particle diameter r b of the photocatalyst particles in the vicinity of S b is , A photocatalyst composite material smaller than the average particle diameter rt of the photocatalyst particles in the vicinity of St.
A photocatalyst composite material in which the photocatalyst layer further contains silver nanowires of 1/10000 to 1/10 times the total mass of the photocatalyst particles .
基材と光触媒粒子を含む光触媒層とを具備し、前記光触媒層の基板側界面をSA base material and a photocatalyst layer containing photocatalyst particles are provided, and the substrate-side interface of the photocatalyst layer is S. b 、反対側界面をS, S on the opposite interface t としたとき、前記SWhen, the above S b 近傍における前記光触媒粒子の平均粒子径rAverage particle size r of the photocatalytic particles in the vicinity b が、前記SHowever, the above S t 近傍における前記光触媒粒子の平均粒子径rAverage particle size r of the photocatalytic particles in the vicinity t よりも小さい、光触媒複合材料であって、A photocatalytic composite that is smaller than
前記基材の表面の算術平均粗さが0.2~20μmである光触媒複合材料。 A photocatalytic composite material having an arithmetic mean roughness of the surface of the substrate of 0.2 to 20 μm.
基材と光触媒粒子を含む光触媒層とを具備し、前記光触媒層の基板側界面をSA base material and a photocatalyst layer containing photocatalyst particles are provided, and the substrate-side interface of the photocatalyst layer is S. b 、反対側界面をS, S on the opposite interface t としたとき、前記SWhen, the above S b 近傍における前記光触媒粒子の平均粒子径rAverage particle size r of the photocatalytic particles in the vicinity b が、前記SHowever, the above S t 近傍における前記光触媒粒子の平均粒子径rAverage particle size r of the photocatalytic particles in the vicinity t よりも小さい、光触媒複合材料であって、A photocatalytic composite that is smaller than
前記光触媒層が化学組成の異なる光触媒粒子を含む光触媒複合材料。 A photocatalyst composite material in which the photocatalyst layer contains photocatalyst particles having different chemical compositions.
前記光触媒層に含まれる全ての光触媒粒子の粒子径分布曲線が二つ以上のピークを有する、請求項1~3のいずれか1項に記載の光触媒複合材料。 The photocatalyst composite material according to any one of claims 1 to 3, wherein the particle size distribution curves of all the photocatalyst particles contained in the photocatalyst layer have two or more peaks. 前記rが2~50nmであり、前記rが40~500nmである、請求項1~4のいずれか1項に記載の光触媒複合材料。 The photocatalytic composite material according to any one of claims 1 to 4, wherein the rb is 2 to 50 nm and the rt is 40 to 500 nm. 前記光触媒粒子が、酸化タングステン、酸化チタン、酸化亜鉛、酸化ニオブ、および酸化スズからなる群から選択される金属酸化物を含む、請求項1~5のいずれか1項に記載の光触媒複合材料。 The photocatalytic composite material according to any one of claims 1 to 5, wherein the photocatalytic particles contain a metal oxide selected from the group consisting of tungsten oxide, titanium oxide, zinc oxide, niobium oxide, and tin oxide. 前記光触媒層が、光触媒層の総質量を基準として、前記光触媒粒子を20~100質量%含む、請求項1~6のいずれか1項に記載の光触媒複合材料。 The photocatalyst composite material according to any one of claims 1 to 6, wherein the photocatalyst layer contains 20 to 100% by mass of the photocatalyst particles based on the total mass of the photocatalyst layer. 前記光触媒層が、金属元素を含む助触媒粒子をさらに含み、前記光触媒粒子と前記助触媒粒子の総量に対する前記金属元素の含有量が0.01~50質量%である、請求項1~7のいずれか1項に記載の光触媒複合材料。 13 . The photocatalyst composite material according to any one item. 前記基材と前記光触媒層の間に下地層をさらに具備する、請求項1~8のいずれか1項に記載の光触媒複合材料。 The photocatalyst composite material according to any one of claims 1 to 8, further comprising a base layer between the base material and the photocatalyst layer. 前記下地層が無機酸化物を含む、請求項9に記載の光触媒複合材料。 The photocatalytic composite material according to claim 9, wherein the base layer contains an inorganic oxide. 基材上に第1光触媒粒子を含む分散液を塗布する工程と、前記第1光触媒粒子よりも大きい平均粒子径を有する第2光触媒粒子を含む分散液を塗布する工程を含む、請求項1~10のいずれか1項に記載の光触媒複合材料の製造方法。 Claims 1 to 1 , which include a step of applying a dispersion liquid containing first photocatalyst particles on a substrate and a step of applying a dispersion liquid containing second photocatalyst particles having an average particle size larger than that of the first photocatalyst particles. 10. The method for producing a photocatalyst composite material according to any one of 10 . 前記基材上に堆積される前記第1光触媒粒子の総重量が、前記基材上に堆積される前記第2光触媒粒子の総重量よりも少ない、請求項11に記載の光触媒複合材料の製造方法。 The method for producing a photocatalyst composite material according to claim 11, wherein the total weight of the first photocatalyst particles deposited on the substrate is less than the total weight of the second photocatalyst particles deposited on the substrate. .. pH6の水中で測定された前記第1光触媒粒子のゼータ電位と、同様に測定された前記第1光触媒粒子のゼータ電位とが、異なる符号を有する、請求項11または12に記載の光触媒複合材料の製造方法。 The photocatalytic composite material according to claim 11 or 12, wherein the zeta potential of the first photocatalyst particle measured in water at pH 6 and the zeta potential of the first photocatalyst particle measured in the same manner have different reference numerals. Production method. 第1光触媒粒子を含む分散液を塗布するのに先だって、基材上に下地層を形成させる工程をさらに具備し、前記下地層を構成する材料の、pH6の水中で測定されたゼータ電位が、同様に測定された前記第1光触媒粒子のゼータ電位と異なる符号を有する、請求項11~13のいずれか1項に記載の光触媒複合材料の製造方法。 Prior to applying the dispersion liquid containing the first photocatalyst particles, a step of forming an underlayer on the substrate is further provided, and the zeta potential of the material constituting the underlayer, measured in water at pH 6, is determined. The method for producing a photocatalyst composite material according to any one of claims 11 to 13, which has a code different from the zeta potential of the first photocatalyst particles measured in the same manner. 請求項1~10のいずれか1項に記載の光触媒複合材料と、
前記基材に光触媒活性を生じさせる光照射部材と、
処理しようとする物質を前記光触媒複合材料に供給する供給部材と
を具備する光触媒装置であって、
前記光により触媒活性を生じた前記光触媒複合材料が、前記物質を処理するための化学反応を促進する、
光触媒装置。
The photocatalyst composite material according to any one of claims 1 to 10 and
A light irradiation member that causes photocatalytic activity on the substrate,
A photocatalyst device including a supply member that supplies a substance to be treated to the photocatalyst composite material.
The photocatalytic composite material, whose catalytic activity is generated by the light, promotes a chemical reaction for treating the substance.
Photocatalytic device.
前記光照射部材がLEDである請求項15記載の光触媒装置。 The photocatalyst device according to claim 15, wherein the light irradiation member is an LED. 前記供給部材がファンである、請求項15または16に記載の光触媒装置。 The photocatalytic device according to claim 15 or 16, wherein the supply member is a fan. 前記物質が前記光触媒複合材料の正面に供給され、前記化学反応により生成した生成物が、前記光触媒複合材料の裏面から放出される、請求項15~17のいずれか1項に記載の光触媒装置。 The photocatalyst device according to any one of claims 15 to 17, wherein the substance is supplied to the front surface of the photocatalyst composite material, and the product produced by the chemical reaction is released from the back surface of the photocatalyst composite material. 前記光触媒層が、前記物質を吸着する吸着材をさらに含む、請求項15~18のいずれか1項に記載の光触媒装置。 The photocatalyst device according to any one of claims 15 to 18, wherein the photocatalyst layer further contains an adsorbent for adsorbing the substance.
JP2018171404A 2018-09-13 2018-09-13 Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device Active JP7096743B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018171404A JP7096743B2 (en) 2018-09-13 2018-09-13 Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device
CN202211426631.0A CN115569648B (en) 2018-09-13 2019-09-12 Photocatalyst composite material, method for producing photocatalyst composite material, and photocatalyst device
CN201910863185.1A CN110893342B (en) 2018-09-13 2019-09-12 Photocatalyst composite material, method for producing photocatalyst composite material, and photocatalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018171404A JP7096743B2 (en) 2018-09-13 2018-09-13 Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device

Publications (2)

Publication Number Publication Date
JP2020040049A JP2020040049A (en) 2020-03-19
JP7096743B2 true JP7096743B2 (en) 2022-07-06

Family

ID=69786326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171404A Active JP7096743B2 (en) 2018-09-13 2018-09-13 Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device

Country Status (2)

Country Link
JP (1) JP7096743B2 (en)
CN (2) CN110893342B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102578848B1 (en) * 2020-11-25 2023-09-14 (주)웨이투메이크 Method for producing coating film using titanium dioxide photocatalyst composition
JP7436992B2 (en) * 2021-11-03 2024-02-22 アンデス電気株式会社 Photocatalytic antibacterial deodorizing material, its manufacturing method, antibacterial deodorizing material, and antibacterial deodorizing filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200407A (en) 2000-12-28 2002-07-16 Mitsubishi Plastics Ind Ltd Photocatalytic base material and filter using the same
JP2006150210A (en) 2004-11-29 2006-06-15 Mitsubishi Paper Mills Ltd Manufacturing method of photocatalyst sheet
JP2016530908A (en) 2013-07-05 2016-10-06 日東電工株式会社 Filter element for decomposing pollutants, system for decomposing pollutants and method of using the system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1289195C (en) * 1993-12-10 2006-12-13 东陶机器株式会社 Multifunctional material with optical catalytic function and its mfg. method
US6217732B1 (en) * 1997-09-23 2001-04-17 Abb Business Services Inc. Coated products
JP4074833B2 (en) * 2003-05-12 2008-04-16 独立行政法人産業技術総合研究所 Method for producing photocatalyst paint
JP2006255529A (en) * 2005-03-15 2006-09-28 Seiwa Kogyo Kk Photocatalyst filter, photocatalyst filter unit, clean room, air purifier, manufacturing apparatus and air purifying method
JP2007144403A (en) * 2005-10-27 2007-06-14 Atomix Co Ltd Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
EP2186561B1 (en) * 2007-09-05 2022-08-10 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, and visible-light-responsive photocatalyst material, photocatalytic coating material, and photocatalytic product each containing the same
JP2012250134A (en) * 2009-09-30 2012-12-20 Toto Ltd Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2012250133A (en) * 2009-09-30 2012-12-20 Toto Ltd Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP5395253B2 (en) * 2010-03-17 2014-01-22 株式会社オー・ティー・エー Photocatalytic filter
JP5708805B2 (en) * 2011-07-08 2015-04-30 日産自動車株式会社 Hydrophilic member and method for producing the same
CN103035410B (en) * 2011-10-08 2018-02-06 中国科学院上海硅酸盐研究所 Dye sensitized optoelectronic converting device and its manufacture method, and metal oxide paste
JP5876148B2 (en) * 2012-06-01 2016-03-02 株式会社東芝 Aqueous dispersion and paint, photocatalyst film and product using the same
CN108187662B (en) * 2013-03-12 2020-12-11 株式会社东芝 Photocatalyst, and photocatalyst dispersion, photocatalyst coating, photocatalyst film and product using same
CN103289453B (en) * 2013-07-08 2015-03-18 华夏贝能(北京)生态科技有限公司 Anti-bacteria deodorizing inorganic functional coating and preparation method thereof
JP6237780B2 (en) * 2013-10-16 2017-11-29 信越化学工業株式会社 Titanium oxide / tungsten oxide composite photocatalyst fine particle dispersion, production method thereof, and member having photocatalytic thin film on surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200407A (en) 2000-12-28 2002-07-16 Mitsubishi Plastics Ind Ltd Photocatalytic base material and filter using the same
JP2006150210A (en) 2004-11-29 2006-06-15 Mitsubishi Paper Mills Ltd Manufacturing method of photocatalyst sheet
JP2016530908A (en) 2013-07-05 2016-10-06 日東電工株式会社 Filter element for decomposing pollutants, system for decomposing pollutants and method of using the system

Also Published As

Publication number Publication date
JP2020040049A (en) 2020-03-19
CN110893342B (en) 2022-11-18
CN115569648A (en) 2023-01-06
CN110893342A (en) 2020-03-20
CN115569648B (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP6457301B2 (en) Photocatalyst structure, method for producing the same, and photocatalyst dispersion
Steplin Paul Selvin et al. Visible light driven photodegradation of Rhodamine B using cysteine capped ZnO/GO nanocomposite as photocatalyst
US9636660B2 (en) Photocatalyst, manufacturing method therefor, and photocatalyst apparatus
JP7096743B2 (en) Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device
Grandcolas et al. Combination of photocatalytic and antibacterial effects of silver oxide loaded on titania nanotubes
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
JP2018153787A (en) Photocatalyst coating liquid containing hypochlorous acid, method for producing base material with photocatalyst, and base material with photocatalyst
WO2016191958A1 (en) Photocatalyst apparatus and system
CN114308050B (en) Base material with photocatalyst and photocatalytic device
CN113797927A (en) Sterilization film, preparation method thereof and application thereof in lighting device
Kerwald et al. Influence of silver nanoparticle deposition on self-assembled thin films of weak polyelectrolytes/TiO2 for bezafibrate photodegradation through central composite experimental design
WO2011118695A1 (en) Tungsten oxide secondary structure having antimicrobial activity
JP7222761B2 (en) Photocatalytic composite material, method for producing photocatalytic composite material, and photocatalyst device
JP7096744B2 (en) Photocatalyst composite material, manufacturing method of photocatalyst composite material and photocatalyst device
JP6989419B2 (en) Photocatalyst dispersion, photocatalyst composite material and photocatalyst device
Hu et al. Synthesis and performance of silver photocatalytic nanomaterials for water disinfection
JP6989421B2 (en) Photocatalyst dispersion, photocatalyst composite material and photocatalyst device
JP2011050802A (en) Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP2012017238A (en) Method for producing oxide particle dispersion liquid, oxide particle dispersion liquid, and photocatalyst functional product
JP2010096359A (en) Refrigerating showcase
Ghani et al. Water-based Preparation of Immobilized Ag-doped TiO2 Photocatalyst for Photocatalytic Degradation of RR4 Dye
Chen et al. In situ precipitation 3D printing of highly ordered silver cluster–silver chloride photocatalysts
JP2011083747A (en) Noble-metal-carrying photocatalyst-particle-dispersion and photocatalyst functional product
JP2006136874A (en) Circulation type sewage purification method
Chen et al. In-situ-precipitation three-dimensional printing and photocatalytic applications of highly ordered interconnected submicron-scale pores in silver atomic cluster–silver chloride photocatalyst structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220624

R151 Written notification of patent or utility model registration

Ref document number: 7096743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151